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Abstract

The Ginzburg-Landau (GL) theory is very successful in describing the pairing symme-
try, a fundamental characterization of the broken symmetries in a paired superfluid or
superconductor. However, GL theory does not describe fermionic excitations such as
Bogoliubov quasiparticles or Andreev bound states that are directly related to topologi-
cal properties of the superconductor. In this work, we show that the symmetries of the
fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a
group extension of the bosonic symmetry group in the superconducting state. We further
establish a correspondence between the pairing symmetry and the fermion PSG. When
the normal and superconducting states share the same spin rotational symmetry, there
is a simpler correspondence between the pairing symmetry and the fermion PSG, which
we enumerate for all 32 crystalline point groups. We also discuss the general frame-
work for computing PSGs when the spin rotational symmetry is spontaneously broken
in the superconducting state. This PSG formalism leads to experimental consequences,
and as an example, we show how a given pairing symmetry dictates the classification of
topological superconductivity.
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1 Introduction26

One of the most fundamental characterizations of a superconductor or a paired superfluid is27

the symmetry of its pair wave-function. The standard way of describing pairing symmetry28

is in terms of the irreducible representations (irreps) of the normal state symmetry group G029

which constrains the form of the Ginzburg-Landau (GL) free energy functional [1–4]. G0 can30

be written as31

G0 = G0 ×U(1) =

¨

X0 × SO(3)spin ×U(1) Weak SOC

X0 ×U(1) Strong SOC
(1)

where X0 is the crystalline point group, and SOC denotes spin-orbit coupling. At a second or-32

der phase transition, the superconductor spontaneously breaks global charge U(1) symmetry33

as the system condenses into a particular irrep of the normal state symmetry group. In gen-34

eral, the group of unbroken symmetries in the superconducting phase, G ⊆ G0. For example,35

G = X × SO(3)spin for a singlet superconductor with weak SOC, where X ⊆ X0 is the point36

group symmetry preserved in the superconductor. In the presence of a strong SOC we have37

G = X with X ⊆ X0 being the unbroken point group of the superconductor.38

Essentially all of the phonon-mediated superconductors (SCs) exhibit singlet “s -wave" pair-39

ing, where the superconducting (SC) state transforms according to the trivial representation of40

X0. But superfluid 3He [5] and many quantum materials, including the heavy fermion SCs [6],41

the high Tc cuprates [7], and Sr2RuO4 [8], condense into nontrivial irreps.42

In this paper, we wish to focus on the relation between pairing symmetry and the symmetry43

of the Hamiltonian describing the fermionic excitations in the superconducting state. At the mean44

field level, one focuses on the Bogoliubov-de Gennes (BdG) Hamiltonian, but the fermionic45

symmetry analysis applies equally beyond the BdG framework where one needs to take into46

account interactions between quasiparticles. The approach we develop here will allow us to47

gain new insights that go beyond the (bosonic) GL theory.48

Examples of questions which this formalism would shed light on include: (a) the rela-49

tion between pairing symmetry and topology, as the K-theory classification [9–11] of non-50

interacting topological SCs is based on the BdG Hamiltonians, (b) how interactions between51

quasiparticles for various pairing symmetries impacts the classification of interacting topolog-52

ical SC phases [11–14], (c) the relation between pairing symmetry and excitations in topolog-53

ical defects such as Majorana zero modes trapped in vortices [15–17], and (d) whether new54

probes of electronic excitations can provide insight into the pairing symmetry. We discussed55
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question (a) in section 4.4 of the manuscript. We will return to other questions in subsequent56

papers.57

Here, we first show how starting with the pairing symmetry, together with the crystalline58

symmetries that dictate the normal state electronic structure, we can derive the projective59

symmetry group (PSG) [18] for the fermionic excitations in the SC state. We first focus on60

the cases where the superconductor shares the same spin rotational symmetry as the normal61

state, we present an exhaustive classification of the SC state PSG corresponding to every al-62

lowable pairing symmetry for the 32 crystalline point groups with and without SOC. When63

confronted with a new superconductor, we would like to use these results in the “reverse" di-64

rection, namely, how can we deduce the possible pairing symmetry, given fermionic properties65

in the SC state. Mathematically, the map from the pairing symmetry to the SC state PSG is,66

in general, neither injective nor surjective, and thus it cannot be inverted. Nevertheless, we67

show below that the SC state PSG does constrain to a considerable extent the possible pairing68

symmetries. We also present numerous examples that serve to illustrate our general results.69

To describe the symmetries of the fermionic Hamiltonian we need (i) to focus on the super-70

conducting state symmetry group G as distinct from the normal state G0 relevant for GL theory,71

and (ii) to take into account fermion parity (−1)F̂ , where F̂ is the total number of fermions in72

the system. Let us discuss each of these points in turn.73

On general grounds, the SC state symmetry group G is a subgroup of the normal state G0.74

If the irrep into which the GL theory condenses is one-dimensional, then in fact G = G0. While75

this is obvious for the trivial A1 representation, an example may be useful to illustrate why76

this is true quite generally. Consider the dx2−y2 pairing state in the cuprates that transforms77

according to the B1g irrep of the tetragonal symmetry group D4h. The pair wavefunction78

changes sign under a π/2 rotation, and one might naively think that this breaks C4 down to79

C2. However, one can compensate for this minus sign by having the fermion operators pick up80

an e iπ/2 phase under C4 and thus have the electronic Hamiltonian retain the full symmetry of81

the normal state. We will see a generalization of this at play in the analysis later in section 2.82

On the other hand, if the irrep has a dimension > 1, then one needs to solve the GL83

equations to find the SC state that minimizes the free energy. Then the SC state state symmetry84

is lower than that in the the normal state, and G is a proper subgroup of G0. For example,85

3He is a p-wave, triplet superfluid, corresponding to the L = 1,S = 1 irrep of the normal state86

symmetry group G0 = SO(3)orbital × SO(3)spin. Depending on external parameters various87

superfluid states are stabilized, and in the B-phase of 3He, for instance, G0 is broken down to88

G = SO(3)L+S [19]. We will discuss a general framework to understand the PSG of fermion89

excitations in any superconductor in Section 5, where the superconductor can spontaneously90

break the normal-state spin rotational symmetry.91

The second point above related to fermion parity may seem trivial: it enforces that a Hamil-92

tonian can only have terms with an even number of fermion operators. It leads, however, to93

the important mathematical structure of a projective symmetry group (PSG) G f acting on the94

many-body Hilbert space. In Section 2, we discuss in detail how G f is built as a central exten-95

sion of G by the fermion parity group ZF
2 .96

The rest of the paper is organized as follows. In Section 3 we show how the fermion PSG97

G f can constrain the pairing symmetry of the SC state, applying the framework to all 32 point98

groups (see Table 7) and demonstrating it by a few examples in section 4. We further discuss99

how the PSG determines topological properties of the SC in section 4.4. While sections 2-3100

focus on the cases where the normal state and the SC state shares the same spin rotational101

symmetries, in section 5.1 we describe a generic theory framework that applies to all supercon-102

ductors, and further demonstrate its power in the examples of A- and B-phases of superfluid103

3He in section 5.2. Finally we conclude in section 6 with a discussion on how the fermion PSG104

in SCs discussed here differs from the PSG first introduced in quantum spin liquids [18, 20],105
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and an outlook to future studies.106

2 Characterization of broken symmetries in a superconductor107

2.1 Projective Symmetry Group and Projective Representation108

Any Hamiltonian must conserve fermion parity (−1)F̂ even if it does not conserve particle109

number F̂ , as, for instance, in the presence of pairing. The fermion symmetry group G f acting110

on the many-body Hilbert space of fermions is a projective symmetry group (PSG). Mathemat-111

ically, G f is a central extension of the bosonic symmetry group G in the SC state by the fermion112

parity group ZF
2 =
�

(±1)F̂
	

. This may be written as a short exact sequence113

1→ ZF
2 → G f → G→ 1 (2)

where ZF
2 is in the center of G f . Thus fermion parity commutes with all elements of G f and114

the quotient group G f /Z
F
2 = G.115

Let us denote by ĝ the operator corresponding to the group element g ∈ G that acts on116

Hilbert space. In general it could be unitary or anti-unitary. The group G f is then the set117
�

(±1)F̂ ĝ | g ∈ G
	

with the product rule between (η1)F̂ ĝ and (η2)F̂ ĥ (with ηi = ±1) given118

by119
�

(η1)
F̂ ĝ
� �

(η2)
F̂ ĥ
�

= [η1 η2 ω(g , h)]F̂ dg h (3)

ω called the 2-cocycle is a function ω : G ×G→ {+1,−1} that satisfies120

ω(g , h)ω(g h, k) =ω(g , hk) gω(h, k), 1 (4)

so that the multiplication is associative, andω(eG , eG) = 1, so that the identity element is well121

defined. Each inequivalent cocycle furnishes a distinct projective symmetry group. Thus PSGs122

are characterized by classes of inequivalent cocycles [ω] which form the second cohomology123

group H2(G,Z2).124

As an example, consider time reversal symmetry where G = ZT
2 = {1, T}. In this case,125

H2(Z2,Z2) = Z2 and there are two PSGs characterized by the two inequivalent cocycles: (1)126

ω(T, T) = 1 in which case T̂2 = 1, and (2) ω(T, T) = −1 where T̂2 = (−1)F̂ . In the first case127

G f = Z2 × Z2 while in the second G f = Z4. Physically, the action of the different PSGs on128

the even particle number subspace is the same as that of the bosonic group G. The distinction129

appears in how G f acts on the odd particle number subspace, in particular, the single particle130

subspace.131

In general, one could have both unitary and anti-unitary symmetries but in this paper132

we will focus on unitary operators ĝ ∈ G f , under which the fermion annihilation operator133

transforms as134

ĝ ĉkα ĝ−1 = [Ug (k)]†
αβ

ĉgkβ (5)

where k is the (crystal) momentum, and the α labels spin, orbital/sublattice/band degrees of135

freedom (d.o.f.). Using (−1)F̂ ĉkα (−1)F̂ = −ĉkα and eq. (3), we find that136

Ug (h k)Uh(k) =ω(g , h)Ug h(k). (6)

The Ug ’s thus form a projective representation of G with coefficients in {±1}. Equivalently,137

one can regard {±Ug | g ∈ G} as a linear representation of G f with (−1)F̂ represented by −1.138
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2.2 Pairing Symmetry and Projective Representations139

To be concrete, let us focus on the BdG Hamiltonian140

Ĥ = Ĥ0 + (Ĥpair + h.c.) (7)

where141

Ĥ0 =
∑

αβ;k

ĉ†
kα

hαβ(k)ĉkβ (8)

is the kinetic energy that describes the normal state electronic dispersion, and142

Ĥpair =
∑

αβ;k

ĉ†
kα
∆αβ(k)ĉ

†
−kβ

(9)

describes the pairing. Fermi statistics dictates that ∆αβ(k) = −∆βα(−k).143

Initially, we restrict ourselves for simplicity to situations where SO(3)spin is not broken144

spontaneously in the SC state. In this case, the SC state symmetry group G is of the form145

G =

¨

X × SO(3)spin Weak SOC

X Strong SOC
(10)

where X is the point group of crystalline symmetries. In either case the pairing order parameter146

∆(k) forms a 1d linear representation of crystalline point group X . Moreover the relevant147

fermionic PSGs are of the form G f ≃ (X f × SU(2))/Z2 and G f ≃ X f for the weak and strong148

SOC cases respectively where X f is itself a central extension of X with respect to fermion parity.149

In the first case, we get an SU(2) as a Z2 central extension of SO(3)spin and a quotient by Z2150

is required to take into account the "double- counting" of ZF
2 . It is thus sufficient to look at151

the central extensions of X . Later, in Section 5, we shall present a more general treatment and152

discuss the case of 3He where spin rotation is spontaneously broken in the SC state. In such153

cases, the fermion symmetry group might have a more complicated form and it is no longer154

sufficient to look at central extensions of the spatial part alone.155

We now discuss three different projective representations of X and explore how these are156

related. First, we begin with X0
f
=
�

(±1)F̂ ĝ0 | g ∈ X
	

the PSG of X that preserves the kinetic157

part of the BdG hamiltonian i.e., ĝ0 Ĥ0 ĝ−1
0 = Ĥ0. The fermion operators then transform158

according to the corresponding projective representation Ug
0 (k), defined by159

ĝ0 ckαĝ−1
0 = [Ug

0 (k)]
†
αβ

ĉgkβ , (11)

which preserves the normal state band structure160

Ug
0 (k)h(k) [U

g
0 (k)]

† = h(gk). (12)

We shall call X0
f

the normal state PSG and denote the corresponding 2-cocycle by ω0. For161

systems with weak SOC, crystalline symmetries do not act on the spin degrees of freedom and162

the PSG is trivial in this case ω0(g , h) = 1 for any elements g , h ∈ X . In the presence of163

strong SOC the projective representation in non-trivial with operations like two fold rotations164

and mirror reflections now squaring to fermion parity, ω0(C2, C2) = ω0(M , M) = −1. This165

becomes evident by looking at the forms of the projective representations in the two cases.166

Ug
0 (k) =

¨

ug
orbital

(k)⊗1spin weak SOC

ug
orbital

(k)⊗ ei
θg
2 n̂g .σ⃗ strong SOC

(13)
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where n̂g and θg are the rotation axis and angle associated with crystalline symmetry operation167

g ∈ X .168

Next, we note that the normal state PSG preserves the pairing term only up to a phase,169

namely170

ĝ0 Ĥpair ĝ−1
0 = eiΦg Ĥpair (14)

The phases
�

eiΦg | g ∈ X
	

form a 1D linear representation of X , which we call the pairing171

symmetry Rpair. The phases Φg ’s satisfy the equation172

Φg +Φh = Φg h + 2nπ (n ∈ Z). (15)

The pairing matrix ∆(k) satisfies173

Ug
0 (k)∆(k)
�

Ug
0 (−k)
�T
= eiΦg ∆(gk). (16)

We see from eq. (14) that the PSG X0
f

that leaves Ĥ0 invariant, fails to preserve the pairing174

term. However the situation can be fixed as follows. We modify the transformation of the175

fermions ĝ ′ ckαĝ ′−1 = [Ũ(k)]†
αβ

ĉkβ with176

Ũg (k) = e−iΦg /2Ug
0 (k) (17)

The kinetic part Ĥ0, which is invariant under U(1) phase rotations, is preserved by the modified177

transformations as can be seen from (12). The new transformations are also symmetries of178

the pairing term Ĥpair as Ũg (k)’s lead to eq. (16) without the phase factor eiΦg appearing on179

the right hand side.180

We thus define SC state PSG X̃ f that preserves the full BdG Hamiltonian by181

X̃ f =
¦

(±1)F̂ ĝ ′ = (±1)F̂ e−i(Φg /2)F̂ ĝ | g ∈ X
©

(18)

This PSG is characterized by the 2-cocycle ω̃.182

The last step here is to look at the relation between the normal and the superconducting183

state PSGs, or equivalently, between their cocycles ω0 and ω̃. The phases
�

e−iΦg /2 | g ∈ X
	

184

form a 1D projective representation of X , which we call RΦ. This follows from (15) by observ-185

ing that e−iΦg /2e−iΦh/2 = (−1)n e−iΦg h/2. From eqn.(17) one concludes that the cocycle ωΦ186

associated with RΦ satisfies187

ω̃(g , h) =ωΦ(g , h)ω0(g , h) (19)

To summarize, we encountered the following projective representations and their associ-188

ated cocycles which define the corresponding PSG’s:189

Normal state: Ug
0 (h k)Uh

0 (k) = ω0(g , h)Ug h
0 (k) (20a)

RΦ : e−iΦg /2e−iΦh/2 = ωΦ(g , h) e−iΦg h/2 (20b)

SC state: Ũg (h k) Ũh(k) = ω̃(g , h) Ũg h(k) (20c)

Eq. (17) relates the three projective representations and eq. (19) relates their cocycles.190

Given the normal state PSG and the pairing symmetry of the SC state, one can use the for-191

malism described above to determine the SC state PSG. This is achieved in the following steps.192

Pairing symmetry being a 1D linear representation, Rpair can be read off from the character193
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table of X . Taking the square roots of the characters one obtains the 1D projective representa-194

tion RΦ and its cocycleωΦ. With the normal state PSG known eq. (19) gives the SC state PSG195

while eq. (17) gives the SC state projective representation explicitly. Thus knowing the pairing196

symmetry enables us to find the SC state PSG that preserves the BdG Hamiltonian. In the next197

Section we turn to the inverse problem of constraining the pairing symmetry, knowing the SC198

state PSG.199

3 Constraints on the pairing symmetry by the PSG200

One longstanding experimental challenge in the field of superconductivity is how to unambigu-201

ously determine the pairing symmetry of a superconductor material, based on experimental202

measurements. Since all fermionic excitations in the superconductor form a linear represen-203

tation of the SC state PSG X̃ f , the low-temperature physical properties of the superconductor204

completely depend on the PSG. For example, as will be discussed in section 4.4, the topological205

properties of the SC phase are determined by the PSG. As a result, it seems plausible to detect206

the SC state PSG X̃ f using various experimental probes, which we will clarify in future publi-207

cations. This observation motivates us to answer the following question: given a SC state PSG208

X̃ f , what are the pairing symmetries compatible with X̃ f ? In other words, how does a given209

PSG constrain the possible pairing symmetry in a superconductor? The answer to this question210

will allow us to constrain or even determine the pairing symmetry of a SC, by experimentally211

detecting its PSG.212

Based on the discussions in section 2.2, we can readily derive the constraints on the pairing213

symmetry by the PSG from relations (17) and (19). Specifically, given a SC state PSG X̃ f and214

its associated 2-cocycle ω̃, we can follow the steps listed below to obtain the possible pairing215

symmetries Rpair in (14)-(16):216

(1) Given the crystalline point group X , determine the normal state PSG X0
f

and associated217

2-cocycle {ω0} of the normal-state symmetry transformations {Ug
0 |g ∈ X}. This only depends218

on the strength of SOCs in the system.219

(2) Compute the 2-cocycle {ωΦ} from {ω0} and {ω̃} from relation (19).220

(3) Obtain all one-dimensional (1d) projective representations {RΦ(g )|g ∈ X} of the crys-221

talline symmetry group X compatible with 2-cocyle {ωΦ} obtained in step (2), satisfying222

RΦ(g )RΦ(h) =ωΦ(g , h)RΦ(g h) (21)

(5) For each 1d projective representation RΦ(g ) obtained in step (3), compute the 1d223

linear representation224

Rpair (g ) =
�

RΦ(g )
�−2

(22)

of the pairing order parameter. The collection of all results {Rpair } correspond to all the pos-225

sible pairing symmetries compatible with the PSG X̃ f .226

227

We have applied our general computational scheme to the case of 32 crystalline point228

groups for both strong SOCs and neglible (weak) SOCs. Group cohomology and projective229

representation calculations are performed using the GAP computer algebra program [21]. The230

correspondence between fermion PSGs G f and the representations Rpair of the superconduct-231

ing order parameter is established for all 32 point groups, and the results are summarized in232

Table. 7 in Appendix B.233
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4 Examples234

We now demonstrate the above formalism for different point groups. In section 4.1 we con-235

sider systems with tetragonal symmetry. Cuprates and ruthenates which belong to this cate-236

gory have point group D4h. But for instance in cuprates, only the Cu-O plane is relevant for237

superconductivity and it suffices to consider the point group C4v for the purpose of illustration.238

In section 4.2 we treat systems with hexagonal symmetry. A discussion of superconductivity239

on a honeycomb lattice is followed by a remark on how our formalism can be applied to the240

case of magic angle twisted bilayer graphene. In section 4.3 we discuss superconductivity in241

transition metal dichalcogenides with trigonal point group C3v .242

The purpose of these examples is two-fold. First, we present a detailed account of how243

the table in appendix B is constructed and what information can be extracted from it. Sec-244

ond, we make a direct connection with real physical systems by producing examples of order245

parameters ∆αβ(k) for each 1D irrep (pairing symmetry) of the relevant point group.246

As mentioned earlier we shall restrict ourselves to cases where there is no additional break-247

ing of spin rotation symmetry when going from the normal to the SC phase. Examples which248

do not fit in this category, like superfluid He3, are discussed in the section 5.2.249

4.1 Tetragonal Symmetry250

To be concrete, consider a two dimensional square lattice in the x y plane. The relevant crys-251

talline point group is X = C4v . The group is generated by a rotation by π/2 about the z-axis,252

C4 and reflection about a vertical mirror in the y z plane, σv . The action of these operations253

can be summarized as254

(x , y, z)
C4−→ (−y, x , z) (23a)

(x , y, z)
σv−→ (−x , y, z) (23b)

The group law is captured by the relations C4
4 = e, σ2

v = e and C3
4σv = σvC4. Equivalently255

the group is generated by the vertical mirror σv and the diagonal mirror σd = σvC4. Since256

σ2
v = σ

2
d
= e, these could have either +1 or −1 characters in a 1D irrep. Consequently there257

are four 1D irreps for this group, each labeled uniquely by a tuple of σv and σd characters,258
�

eiΦσv , eiΦσd
�

taking values (±1,±1). The characters for the other group elements can then be259

obtained using the group laws. In particular, it follows from C2 = (σdσv)2 that the character260

for the two-fold rotation in the four 1D irreps is +1.261

Let us now turn our attention to the possible fermion PSGs for this group. From the group262

cohomology calculation we have H(2)(C4v ,Z2) = Z3
2, corresponding to eight inequivalent263

classes of 2-cocycles for this group characterized by the 3-tuple264

(ω(C2, C2),ω(σv ,σv),ω(σd ,σd)) = (±1,±1,±1) . (24)

The eight PSGs are thus distinguished on the basis of whether the two fold rotation, C2 and265

the two mirrors σv and σd square to ±1.266

We are now in a position to explore the connection between the pairing symmetries and267

fermion PSGs for this group. First consider the case when because of weak spin-orbit coupling268

there is spin rotation invariance in the normal state. The symmetry operations that preserve269

the kinetic energy act only on the momentum label, keeping the spin label unaltered. Denoted270

by superscript 0 these are271

Ĉ0
2 ĉkα (Ĉ

0
2 )
−1 = ĉC2kα (25a)

σ̂0
v ĉkα (σ̂

0
v)
−1 = ĉσv kα (25b)

σ̂0
d ĉkα (σ̂

0
d)
−1 = ĉσdkα (25c)

8
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Consequently, the normal state PSG is trivial and272

(ω0(C2, C2),ω0(σv ,σv),ω0(σd ,σd)) = (+1,+1,+1) . (26)

Given the assumption that pairing does not break spin rotation invariance in the supercon-273

ducting phase, condensation takes place in the singlet channel. This enforces the pair wave-274

function to be of the form275

∆αβ(k) = Ψ(k)(iσy)αβ (27)

where α, β are spin labels and Pauli exclusion constrains the orbital part of the pair wave-276

function to obey Ψ(−k) = Ψ(k). As has been discussed in detail in previous sections, the277

phases
�

eiΦg
	

acquired by the pairing term in (9), when acted upon by the operations in278

(25), constitute a 1D linear irrep of C4v which we refer to as pairing symmetry Rpair. We also279

learnt that (25) must be modified by compensating phase rotations so as to make the new280

transformations symmetries of the BdG hamiltonian.281

Different pairing symmetries modify the normal state transformations in (25) differently.282

When the pairing symmetry is A1, which is the case when say Ψ(k) is a constant Ψ0 indepen-283

dent of k, the normal state transformations already preserve the pairing term and no modifi-284

cation is necessary. The normal and the SC state PSGs are the same in this case. If however285

Ψ(k) = Ψ0(k2
x − k2

y), σv keeps the pairing term unchanged whereas under σd (or equiva-286

lently under C4) it acquires a negative sign. The pairing symmetry in this case is B1, labeled287

by (eiΦσv , eiΦσd ) = (+1,−1). Eqn. (25c) now has to be modified by a factor of i appearing on288

the right hand side, i.e, the modified σd must take ĉkα to i ĉσdkα .289

For a generic irrep, when the orbital part transforms as290

Ψ(k) = eiΦgΨ(gk) (28)

the compensating phases are the square roots of the characters of the relevant irrep. Denoted291

with primes, the transformations that preserve the BdG hamiltonian are then292

Ĉ ′2 ĉkα (Ĉ
′
2)
−1 = eiΦC2/2 ĉC2kα (29a)

σ̂′v ĉkα (σ̂
′
v)
−1 = eiΦσv /2 ĉσv kα (29b)

σ̂′d ĉkα (σ̂
′
d)
−1 = eiΦσd

/2 ĉσdkα (29c)

For instance, for A1 and B1 pairing symmetries,
�

eiΦC2/2, eiΦσv /2, eiΦσd
/2� can be chosen to be293

(1, 1, 1) and (1, 1, i) respectively.294

The resulting SC state PSGs are different across pairing symmetries. For the A1 irrep, the295

SC state PSG is trivial. With the diagonal mirror now squaring to fermion parity, the SC state296

PSG for B1 becomes297

(ω̃(C2, C2), ω̃(σv ,σv), ω̃(σd ,σd)) = (+1,+1,−1). (30)

As elaborated in previous sections, the reason for this is best understood once we recognize298

that the compensating phases,
�

e−iΦg /2 | g ∈ X
	

form a 1D projective representation, RΦ299

of X . The corresponding cocycle given by ωΦ could be different for the different pairing300

symmetries. For example,301

(ωΦ(C2, C2),ωΦ(σv ,σv),ωΦ(σd ,σd)) = (1
2, 12, 12) and (12, 12, i2 = −1) (31)

for the A1 and B1 irreps respectively. Pairing symmetry thus dictatesωΦ which through (19) in302

turn decides the SC state PSG. Table 1 summarizes the results of the above analysis for C4v with303

weak SOC. For each irrep, we give an example of Ψ(k), show the 1D projective representation304

of the compensating phases RΦ, the cocycle ωΦ and finally the SC state PSG ω̃.305
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Rpair Ψ(k) RΦ ωΦ ω̃

A1 : (+1,+1) 1 (±1,±1,±1) (+1,+1,+1) (+1,+1,+1)
A2 : (−1,−1) kx ky(k2

x − k2
y) (±1,±i,±i) (+1,−1,−1) (+1,−1,−1)

B1 : (+1,−1) k2
x − k2

y (±1,±1,±i) (+1,+1,−1) (+1,+1,−1)
B2 : (−1,+1) kx ky (±1,±i,±1) (+1,−1,+1) (+1,−1,+1)

Table 1: Tetragonal Symmetry (X = C4v) with weak SOC. Here Rpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2/2, e−iΦσv /2, e−iΦσd

/2)

306

In the presence of strong spin orbit coupling, the transformations that preserve the kinetic307

energy are combined spatial and spin rotation. A rotation by angle θ about n̂ transforms308

the spinor by e−i
θ
2 (n̂·σ) while inversion leaves it unaffected. A mirror could be viewed as a309

combination of inversion and a two fold rotation about an axis perpendicular to the mirror310

plane. For instance, reflection about the y z mirror plane is then effectively a two-fold rotation311

about the x axis and would be implemented by −iσx in the spinor basis. The transformations312

that preserve kinetic energy are313

Ĉ0
2 ĉkα (Ĉ

0
2 )
−1 = [−iσz]αβ ĉC2kβ (32a)

σ̂0
v ĉkα (σ̂

0
v)
−1 = [−iσx ]αβ ĉσv kβ (32b)

σ̂0
d ĉkα (σ̂

0
d)
−1 =
�

−in̂′ ·σ
�

αβ
ĉσdkβ (32c)

Where n̂′ = (x̂ − ŷ)/
p

2 and the Einstein summation convention is implied. With two fold314

rotations and hence mirrors now squaring to fermion parity, the normal state PSG is315

(ω0(C2,C2),ω0(σv ,σv),ω0(σd ,σd)) = (−1,−1,−1). (33)

In the absence of spin rotation invariance in the normal state, the pair wave function is an316

admixture of singlet and triplet parts and takes the form317

∆αβ(k) = Ψ(k)
�

iσy
�

αβ
+ d(k) ·
�

σ⃗(iσy)
�

αβ
(34)

where Pauli exclusion now requires the three component complex vector d to obey d(k) = −d(−k).318

Since the C2 character in all the one dimensional irreps is +1, we must have319

(iσz)∆(k)(iσz)
T =∆(C2k) =∆(−k), (35)

where the last equality follows from the fact that we are in two spatial dimensions. It is320

immediately seen that this implies dz(k) = dz(−k) and the only way this could be consistent321

with the constraint imposed by Pauli exclusion is when dz(k) = 0. Similarly, by effecting322

transformations for σv and σd on the pairing term we conclude that to tranform as a 1D irrep323

labeled by the characters (eiΦσv , eiΦσd ), the non-zero components of the d vector, must satisfy324

325

�

+dx (k), −dy(k)
�

= eiΦσv
�

dx (σvk), dy(σvk)
�

(36a)
�

−dy(k), −dx (k)
�

= eiΦσd
�

dx (σdk), dy(σdk)
�

(36b)

and Ψ(k), like in the case for weak SOC, satisfies (28). Table 2 provides examples of the d(k)326

vector for each pairing symmetry. All of these examples belong to a (p+ ip) ↑ +(p− ip) ↓ type327

SC. As before, square roots of the characters of the 1D irrep form the compensating phases328

which modify the transformations in (32) and different SC state PSGs are obtained for the four329

pairing symmetries as outlined in table 2.330
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Rpair d(k) RΦ ωΦ ω̃

A1 : (+1,+1) ky x̂− kx ŷ (±1,±1,±1) (+1,+1,+1) (−1,−1,−1)
A2 : (−1,−1) kx x̂+ ky ŷ (±1,±i,±i) (+1,−1,−1) (−1,+1,+1)
B1 : (+1,−1) ky x̂+ kx ŷ (±1,±1,±i) (+1,+1,−1) (−1,−1,+1)
B2 : (−1,+1) kx x̂− ky ŷ (±1,±i,±1) (+1,−1,+1) (−1,+1,−1)

Table 2: Tetragonal Symmetry(X = C4v) with strong SOC. HereRpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2/2, e−iΦσv /2, e−iΦσd

/2)

331

A few comments are in order. First, comparing the two tables we observe that since the 1D332

projective representation RΦ formed by the compensating phases and the corresponding co-333

cycle ωΦ depend solely on the pairing symmetry, the correspondence between Rpair and ωΦ334

is identical irrespective of the strength of SOC. The difference in the normal state PSG ω0335

accounts for the difference in the SC state PSG ω̃ between the corresponding rows of tables 1336

and 2.337

Second, a question arises as to why only four of the eight PSGs appear in each of the two ta-338

bles. The answer is apparent once we observe that theωΦ column only contains the four PSGs339

withωΦ(C2, C2) = +1. This is easily seen as follows. Group law tells us thatσvσd = C2σdσv .340

Then for any 1D projective representationφ, we must haveφ(σv)φ(σd) = ±φ(C2)φ(σd)φ(σv).341

Sinceφ’s are all non-zero complex numbers, dividing both sides byφ(σv)φ(σd) givesφ(C2) = ±1342

and henceωφ(C2,C2) = +1. In other words PSGs withω(C2,C2) = −1 cannot have a 1D rep-343

resentation.344

Finally, both tables show a one-one correspondence between the four pairing symmetries345

and four out of the eight possible PSGs. Knowledge of the SC state PSG (from topological or346

spectroscopic properties) thus uniquely determines the pairing symmetry.347

4.2 Hexagonal Symmetry348

Consider a two dimensional honeycomb lattice in the x y plane with a plaquet center chosen349

as the origin and the x -axis passing through a bond center. A six fold rotation about the z-axis,350

C6 and a reflection about a vertical mirror σv in the y z plane then transform the coordinates351

as352

(x , y)
C6−→
�

1

2
x −
p

3

2
y,

1

2
y +
p

3

2
x

�

(37a)

(x , y)
σv−→ (−x , y) (37b)

C6 andσv generate the point group C6v . It comprises of six rotations and six mirror reflections353

and the group law is captured by the relations C6
6
= e, σ2

v = e and C6σvC6 = σv . From these354

relations it is evident that the C6 and σv characters in a 1D linear irrep of C6v could only be355

±1. Indeed, there are four 1D irreps for this group labeled by (eiΦC6 , eiΦσv ) = (±1,±1). Here356

we note that not only is the group D6 isomorphic to C6v , but has indistinguishable action in357

two spatial dimensions. In D6, the two-fold rotation about the in-plane y-axis, C2y assumes358

the role of σv in C6v . Thus, when we are strictly in two spatial dimensions, C6v and D6 can359

be used interchangeably.360

Since H(2)(C6v ,Z2) = Z3
2, there are eight possible PSGs distinguished on the basis of361

whether C2 and σv square to +1 or −1 and whether they commute or anti-commute. The362
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classes of 2-cocycles are labeled by363

�

ω(C2, C2),ω(σv ,σv),
ω(C2,σv)

ω(σv , C2)

�

= (±1,±1,±1). (38)

We discuss the case when the normal and the SC states have spin rotation invariance.364

Denoted by the superscript 0, the transformations that preserve the kinetic energy are365

Ĉ0
6 ĉkα s(Ĉ

0
6 )
−1 = (τx )αβ ĉC6kβ s (39a)

σ̂0
v ĉkα s(σ̂

0
v)
−1 = ĉσv kα s (39b)

Where α,β are sub-lattice labels, s labels spin and τ⃗ denotes Pauli matrices in the sub-lattice366

space. The momentum k is measured from the Γ point of the Brilloin zone. The normal state367

PSG is trivial with368

�

ω0(C2, C2),ω0(σv ,σv),
ω0(C2,σv)

ω0(σv ,C2)

�

= (+1,+1,+1). (40)

Here we consider a generic situation where both the bands participate in pairing and we369

express the pair wave-function in the sub-lattice basis. If however we have a weak coupling370

scenario in which only a single band takes part in pairing, it is more convenient to express371

the pair wave-function in the active band basis. For the present case, consistent with Pauli372

exclusion, the spin singlet wave function has the form373

[∆(k)]α s β s ′ = Ψαβ(k)(iσy)s s ′ (41)

where Ψαβ(k) = Ψβα(−k). For the pairing term to transform as the irrep (eiΦC6 , eiΦσv ) under374

(39), Ψαβ(k) satisfies375

(τx )αγΨγδ(k) (τx )βδ = eiΦC6 Ψαβ(C6k) (42a)

Ψαβ(k) = eiΦσv Ψαβ(σvk) (42b)

In table 3 we provide examples of Ψαβ(k) satisfying (42) for each pairing symmetry. The376

compensating phases (e−iΦC6/2, e−iΦσv /2) forming the 1D projective representation RΦ and377

the corresponding 2-cocycle ωΦ are also tabulated. A product of ωΦ and ω0 then gives the378

SC state PSG ω̃. The four pairing symmetries correspond to four distinct ω̃ s . The SC state379

PSG thus uniquely determines the pairing symmetry for this point group. Like in the previous380

case, only four out of the eight possible PSGs appear in table 3. Inspecting the ωΦ column381

we observe that it only has entries with ωΦ(C2,σv)/ωΦ(σv ,C2) = +1 . Since complex num-382

bers always commute, it is impossible to get a 1D projective representation of C6v where383

ωΦ(C2,σv)/ωΦ(σv , C2) = −1.384

We end this subsection discussing superconductivity in magic angle twisted bilayer graphene385

(MATBG) where the pairing symmetry is still not known although there has been some theo-386

retical proposals [22]. The experimental observation of nematicity in the SC state [23], shows387

that the normal state D6 symmetry, is spontaneously broken in the SC state. Thus condensa-388

tion must take place either in the E1 or the E2 irrep of D6. As pointed out in the introduction,389

if it were any of the 1D irreps, the pair wave function would be invariant under D6 up-to a390

phase rotation, and the SC state would not show the observed nematicity. This corresponds391

to the orbital part being a p-wave for the E1 irrep or a d-wave for the E2 irrep in the pair392

wave-function proposed in [22]. The residual symmetry in the SC state is the two-fold rota-393

tion about z-axis, X = C2z . Since the E1 irrep (p-wave) has a C2 character −1 and the E2 irrep394

(d-wave) has a C2 character +1, these correspond to the two 1D irreps of X . There is a one395

to one correspondence between Rpair and PSGs for X as shown in table B and thus the two396

possible pairing symmetries would give two distinct SC state PSGs.397
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Rpair ΨAA(k) ΨBB(k) ΨAB(k) RΦ ωΦ ω̃

A1 = (+1,+1) ∆0 ∆0 ∆′0 (±1,±1) (+1,+1,+1) (+1,+1,+1)
A2 = (+1,−1) ∆0 f (k) ∆0 f (k) ∆′0g (k) (±1,±i) (+1,−1,+1) (+1,−1,+1)
B1 = (−1,+1) ∆0 −∆0 0 (±i,±1) (−1,+1,+1) (−1,+1,+1)
B2 = (−1,−1) ∆0 f (k) −∆0 f (k) 0 (±i,±i) (−1,−1,+1) (−1,−1,+1)

Table 3: Hexagonal symmetry (X = C6v) with weak SOC.
Here Rpair = (eiΦC6 , eiΦσv ), RΦ = (e−iΦC6/2, e−iΦσv /2). Also,
f (k) = kx ky(k2

x − 3k2
y)(k

2
y − 3k2

x ) and g (k) = kx (3k2
y − k2

x )

4.3 Trigonal Symmetry398

Like in the previous subsection, we consider the honeycomb lattice in the x y plane except399

now two different species occupy the A and B sub-lattices. Such is the case, for example, in a400

mono-layer transition metal dichalcogenide (TMD). The resulting point group C3v is generated401

by a three-fold rotation about the z-axis (C3) and reflection about a vertical mirror in the y z402

plane (σv) which act on the coordinates as403

(x , y)
C3−→
�

−
1

2
x −
p

3

2
y, −

1

2
y +
p

3

2
x

�

(43a)

(x , y)
σv−→ (−x , y) (43b)

The relations C3
3 = σ

2
v = e and C3σvC3 = σv capture the group law. There are two 1D irreps404

for this group with eiΦσv = ±1 and two PSGs with σv squaring to unity in one and to the405

fermion parity in the other, ω(σv ,σv) = ±1406

In TMDs, the presence of strong Ising SOC breaks spin rotation invariance [24]. Hole dop-407

ing away from charge neutrality creates small Fermi surface pockets at the K and K ′ valleys.408

Denoted by superscript 0, the symmetry operations that preserve the kinetic energy act on the409

fermion operator ĉkν s for the active band as410

Ĉ0
3 ĉkν s (Ĉ

0
3 )
−1 =
�

e−i
π
3σz
�

s s ′
ĉC3kν s ′ (44a)

σ̂0
v ĉkν s (σ̂

0
v)
−1 = [τx ]νν′ [iσx ]s s ′ ĉσv kν′ s ′ (44b)

where ν is the valley and s is the spin label and momentum k is measured from the K or K ′411

point. Pauli matrices σ⃗ and τ⃗ act on spin and valley spaces respectively. The normal state PSG412

is thus described by the cocycle ω0(σv ,σv) = −1.413

To ensure the Cooper pair has a zero center of mass momentum, pairing must be inter-414

valley. Because of time reversal invariance, the Fermi surface pockets at opposite valleys have415

oppositely polarized spins. If the spin polarization is σz = +1 in the K valley (τz = +1),416

then it is along σz = −1 in the K ′ valley (τz = −1). Therefore, in addition to Pauli ex-417

clusion, the order parameter matrix ∆(k) in the spin-valley space must satisfy the constraint418

PT∆(k) = ∆(k)P = ∆(k) where P = 1
2(1 + σzτz) projects onto the σzτz = +1 space.419

Consistent with these requirements, ∆(k) takes the form420

∆(k) =

�

Ψ(k)τ+ −Ψ(−k)τ−

�

(ẑ · σ⃗)(iσy) +

�

Ψ(k)τ+ +Ψ(−k)τ−

�

(iσy) (45)

As expected, the absence of spin rotation invariance in the normal state results in a pair wave-421

function which is a superposition of singlet and triplet parts. For the pairing term to transform422
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Rpair ≡ eiΦσv Ψ(k) RΦ ≡ e−iΦσv /2 ωΦ ω̃

A1 = +1 ∆0 ±1 +1 −1
A2 = −1 ∆0ky(3k2

x − k2
y) ±i −1 +1

Table 4: Trigonal Symmetry (X = C3v) with strong SOC

as a 1D irrep of C3v under (44), Ψ(k) must satisfy423

Ψ(k) = Ψ(C3k) (46a)

Ψ(−k) = eiΦσvΨ(σvk) (46b)

Table 4 shows that the two 1D irreps are in a one-one correspondence with the two SC state424

PSGs. It also gives an example of Ψ(k) for each pairing symmetry.425

4.4 Physical consequences of the PSG426

The projective symmetry group G f of the BdG Hamiltonian has effects on all fermionic ex-427

citations of the superconductor, since the Bogoliubov quasipaticles as excitations of the BdG428

Hamiltonian form a linear representation of the PSG G f . In particular, the topological prop-429

erties of the superconductor is determined by the PSG, as different PSGs give rise to different430

classifications of fermion topological superconductors (TSCs) [11,14,25]. This is a well-known431

fact in the classification of gapped fermion topological phases, both in the 10-fold way [26]432

classification of non-interacting topological superconductors [11, 27], and in the interacting433

classification of fermion symmetry protected topological phases [14,28]. For example, in the434

case of time reversal symmetry T , it is well known that two- and three-dimensional topological435

insulators only exist for spinful electrons with T̂ 2 = (−1)F̂ and G f = U(1) ⋊ ZT
4 , which is a436

different symmetry class (class AII in the 10-fold way [26]) than spinless case (class AI in the437

10-fold way [26]), with T̂ 2 = 1 and G f = U(1)⋊ZT
2 . In addition to topological classifications,438

these two distinct symmetry classes have many other different properties, such as the presence439

vs. absence of Kramers degeneracy of fermion excitations. Below we illustrate how different440

PSGs, and hence different pairing symmetries, give rise to different classifications of TSCs, in441

the case of crystalline symmetries [25,29–34]. We use 3d SCs with mirror reflection symmetry442

Mx , and 2d SCs with 2-fold rotational symmetry C2z as two known examples to demonstrate443

this fact.444

4.4.1 3d SCs with mirror reflection symmetry Mx445

Our first example is the classification of TSCs in three dimension (3d) in the presence of446

only mirror reflection symmetry Mx which reverses the x coordinate. From the group co-447

homology H(2)(ZMx
2 ,Z2) = Z2, we find two possible fermion PSGs in the presence of strong448

SOCs: G f = Z
M̂x
2 × Z

F
2 with M̂2

x = +1, and G f = Z
M̂x
4 with M̂2

x = (−1)F̂ . Similarly, in449

the presence of weak SOCs and spin rotational symmetry, the two possible PSGs are given by450

G f = SU(2)×ZM̂x
2 with M̂2

x = +1, and G f = SU(2)× Z M̂x
4 /Z2 with M̂2

x = (−1)F̂ .451

For weakly interacting systems, K -theory [10,11,27,35,36] can be used to classify distinct452

TSCs described by BdG Hamiltonians. In the presence of strong SOCs, it gives rise to a Z453

classification of TSCs for the case of M̂2
x = +1, and a trivial classification for the case of454

M̂2
x = (−1)F̂ [35, 36]. In the presence of a weak SOC and SU(2) spin rotational symmetry,455

there is a Z classification of TSCs for the case of M̂2
x = +1, and a Z2 classification for the case456

of M̂2
x = (−1)F̂ [35,36]. With this result we can now readily bridge the gap between pairing457

symmetry and the K-theory classification of TSC via the projective symmetry group G f .458
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SOC strength pairing symmetry G f K-theory classification [35,36]

Weak
A′ SU(2)×ZM̂x

2 Z

A′′ SU(2)×ZM̂x
4 /Z2 Z2

Strong
A′ Z

M̂x
4 0

A′′ Z
M̂x
2 ×Z

F
2 Z

Table 5: Classification of class D topological superconductor in 3d with mirror reflec-
tion Mx . The fermion projective symmetry groups G f are listed for superconductors
with weak/strong SOCs and A′/A′′ pairing symmetries. Note that the topological
classification is solely determined by G f .

SOC strength pairing symmetry G f K-theory classification [37,38]

Weak
A SU(2)×ZC̃2z

2 Z

B SU(2)×ZC̃2z

4 /Z2 Z
2

Strong
A Z

C̃2z

4 Z
2

B Z
C̃2z

2 ×Z
F
2 Z

Table 6: Classification of class D topological superconductor in 2d with C2z rotation
perpendicular to the 2d x -y plane. The fermion PSGs G f are listed for superconduc-
tors with weak/strong SOC and A/B pairing symmetries. Note that the topological
classification is solely determined by G f .

A mirror symmetry satisfying M̂2
x = +1 is preserved either in a singlet superconductor459

with pairing symmetry A′ in the presence of a weak SOC, or in a superconductor with pairing460

symmetry A′′ in the presence of a strong SOC. The classifications of weakly-interacting TSCs461

in these two cases are both Z.462

To compare, a mirror symmetry satisfying M̂2
x = (−1)F̂ corresponds to either a singlet su-463

perconductor with pairing symmetry A′′ in the presence of a weak SOC, or a pairing symmetry464

A′ in the presence of a strong SOC. For these two cases the classifications of TSCs are Z2 and465

trivial, respectively. The results are summarized in Table 5.466

4.4.2 2d SCs with 2-fold rotational symmetry C2z467

Our second example is the classification of TSCs in two dimensions (2d) with a C2z rotation468

perpendicular to the 2d plane. In this case H(2)(C2z,Z2) = Z2, which yields two different469

fermion PSGs in the presence of a strong (weak) SOC: one with Ĉ2
2z = +1 and the other with470

Ĉ2
2z = (−1)F̂ , as shown in Table 6. Accordingly, the K -theory classification of C2z symmetric471

TSCs [37] are given by Z for Ĉ2
2z = +1 and Z2 for Ĉ2

2z = (−1)F̂ .472

From the relationship between pairing symmetry and projective symmetry group, we find473

that the Ĉ2
2z = +1 case corresponds to either a singlet SC with pairing symmetry A or a SC474

with a strong SOC and pairing symmetry B. Then for these two cases the classifications of475

topological superconductors are both Z.476

The Ĉ2
2z = (−1)F̂ case corresponds to either a singlet superconductor with pairing symme-477

try B or a superconductor with a strong SOC and pairing symmetry A. For these two cases the478

classifications of TSCs are both Z2. The results are summarized in Table 6.479

From these two examples, we see that BdG Hamiltonians with different PSGs generally480

give rise to different topological classifications. Based on the correspondence between the481

fermion PSG and the pairing symmetry discussed in sections 2-3, the classification of TSCs is482
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therefore directly related to the pairing symmetry, as demonstrated in Table 5-6. For TSCs of483

all the possible pairing symmetries associated with a magnetic point group symmetry, Ref. [25]484

summarizes a full list of K-theory classification for both the cases of spinless (weak SOC) and485

spinful (strong SOC) electrons.486

5 General framework487

So far we have only focused on cases where the normal and the SC states have the same spin488

rotational symmetry. This simplifies the the form of the fermion PSG as explained below. For489

systems with weak SOC the physical symmetry group is G = X × SO(3)spin. When we take a490

central extension by the fermion parity group to obtain the fermion PSG, both in the normal491

and SC state PSGs, the SO(3)spin becomes an SU(2)spin. The spatial part however undergoes492

different central extensions: X0
f

in the normal state PSG and X̃ f in the SC state PSG. Thus,493

the fermion PSG preserving the kinetic energy is (X0
f
× SU(2))/Z2 and that preserving the494

BdG is (X̃ f × SU(2))/Z2 (taking a quotent by Z2 takes care of the “double-counting" of ZF
2 ).495

Thus, the difference between the normal and SC state PSGs is completely captured by different496

central extensions of X by ZF
2 . This holds true for systems with strong SOC where spin rotation497

symmetry is altogether absent and with G = X , the fermion PSG is synonymous with the central498

extension of X by ZF
2 .499

When spin rotation is spontaneously broken in the SC state, the fermion PSG no longer500

admits such a simple description in terms of central extensions of the spatial part. When the501

physical symmetry group in the SC state is G = X × S where S is a subgroup of the normal502

state spin rotation group, as we show in section 5.1, the fermion PSG could be a generic503

group extension of X by the fermion spin rotation symmetry group S f . S f in turn is a central504

extension of S by the fermion parity group and could in general be non-Abelian.505

In superfluid 3He, condensation into the spin triplet channel spontaneously breaks the506

continuous spin rotation symmetry present in the normal state. We discuss it in section 5.2 in507

the light of this general framework.508

5.1 Group extension and pairing symmetry in a generic superconductor509

Let the normal state spin rotational symmetry group S0 ⊆ SO(3)spin be spontaneously broken510

down to S ⊆ S0 in the SC state. With the charge U(1) symmetry in the normal state completely511

broken, the SC state physical (bosonic) symmetry group G takes the form G = X ×S, where X512

denotes the spatial symmetry group preserved by the SC state. We now describe the structure513

of the fermion symmetry group G f in such cases. Some of the relevant mathematical details514

can be found in Appendix A.515

First of all, the fermion spin rotation (or internal) symmetry group in the SC-state, S f is a516

subgroup of G f and given by a central extension of the physical spin rotation symmetry group517

S:518

1→ ZF
2 → S f → S→ 1 (47)

S f has the form S f =
�

(±1)F̂ ŝ ′ | s ∈ S
	

where under a spin rotation ŝ ′, the fermion operator519

transforms as520

ŝ ′ ĉkα ŝ ′−1 =
�

Ũ s�†
αβ

ĉkβ (48a)

Ũ s = e−iφs U s
0 (48b)

The transformation is a combination of an SU(2) spin rotation U s
0 that preserves the kinetic521

energy and a compensating phase rotation e−iφs required to make ŝ ′ a symmetry of the BdG522
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hamiltonian. Being an internal (on-site) symmetry, ŝ ′ leaves the momentum label unchanged523

on both sides of (48a). For a given S, the possible choices for S f is captured by H(2)(S,Z2),524

the second cohomology group formed by inequivalent classes of cocycles [ω̃]. As already525

noted in previous sections, the cocycle ω̃ taking values in {±1} also characterize the projective526

representation of S formed by
�

Ũ s | s ∈ S
	

.527

To build G f , next we need to consider the group of spatial symmetries, X . For g ∈ X , ĝ0528

preserves the kinetic energy and transforms the fermion operator as529

ĝ0 ĉkα ĝ−1
0 =
�

Ug
0 (k)
�†

αβ
ĉgkβ (49)

To make this a symmetry of the pairing term, not only do we need to dress it with a compen-530

sating phase e−iφg but also with a normal state spin rotation U s0(g )
0 (where s0(g ) ∈ S0). Since531

the kinetic energy is invariant under normal state spin rotations and U(1) phase rotations, the532

resulting transformation ĝ ′ preserves the BdG hamiltonian. Its action on the fermion operator533

is given by534

ĝ ′ ĉkα ĝ ′−1 =
�

Ũg (k)
�†
αβ

ĉgkβ (50a)

Ũg (k) = e−iφg U s0(g )
0 Ug

0 (k) (50b)

Although the structure of G f is in general much more complicated than simply a direct535

(or even a semi-direct) product of spatial and spin rotation symmetry groups, it is possible536

to obtain a generic characterization as discussed below. To begin with, let us compare what537

one obtains by the successive application of ĥ′ and ĝ ′ on ĉkα and that by applying Óg h
′

on538

the same. Using (50a) we see that in both these cases we get a fermion operator on the right539

hand side with the same momentum label g hk. With both ĝ ′ĥ′ andÓg h
′

being symmetries of540

the BdG hamiltonian, this implies that these are in fact the same upto an internal symmetry541

transformation (η)F̂ ŝ ′(g , h). In other words,542

ĝ ′ ĥ′ = (η)F̂ ŝ ′(g , h)Óg h
′

(51)

Moreover, for any ŝ ′ ∈ S f , the transformation ĝ ′ ŝ ′ ĝ ′−1 keeps the momentum label of the543

fermion operator unchanged and hence must belong to S f . Then again, any element of G f544

can be written as a product of a ĝ ′ for some g ∈ X and an (η)F̂ ŝ ′ ∈ S f such that G f has the545

form G f =
�

(±1)F̂ ŝ ′ ĝ ′ | s ∈ S, g ∈ X
	

. We thus conclude that S f is a normal subgroup of546

G f and G f /S f = X . Equivalently S f , G f and X satisfy the short exact sequence547

1→ S f → G f → X → 1 (52)

It is hard to find all such extensions in the most general case. However, if S f is abelian then all548

such extensions are captured by the second cohomology group H(2)
[ρ]
(X , S f ). It is to be noted549

that the matrices {Ũ s · Ũg |s ∈ S, g ∈ X} form a projective representation of G = S × X with550

coefficients in
�

±Ũ s | s ∈ S
	

.551

Finally, we discuss the relation between the fermion PSG G f and the pairing symmetry. In552

general, the pairing wavefunctions ∆α,β in BdG Hamiltonian (7) form a linear representation553

Rpair of the bosonic symmetry group G = S×X , where S stands for the global (spin rotational)554

symmetry group and X stands for the crystalline symmetry group. Meanwhile, in the repre-555

sentation {Ũ s · Ũg |s ∈ S, g ∈ X} introduced above, we can identify a projective representation556

of group G = S × X :557

RΦ(s , g ) = e− i (φs+φg )U s0(g )
0 , ∀ s ∈ S, g ∈ X . (53)
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It is evident that the projective representation RΦ is not 1D in general. Also note that while558

for the global internal symmetry group S, the transformations that preserve the kinetic energy,559

preserve the pairing term up to a phase (just as in (14)), that may not be the case for the560

crystalline group X . Hence Rpair is in general a multi-dimensional linear representation of G.561

Rpair and RΦ are related by the following relation:562

RΦ ⊗RΦ ⊗Rpair = 1⊕ · · · (54)

where 1 denotes the trivial one-dimensional (1d) representation of group G. This is be-563

cause the pairing term (9) must remain invariant under the PSG symmetry transformation564

{Ũ s · Ũg |s ∈ S, g ∈ X}. Notice that in the special case of RΦ being a 1d irrep, applicable to565

the situation discussed in Section 3, the general relation (54) reduces to Eq. (22).566

5.2 Examples: superfluid A and B phases in Helium-3567

The most famous example of triplet superconductivity (or superfluidity) is perhaps Helium-568

3 [5]. The normal state preserves continuous spatial rotations and inversion symmetry:569

X0 = SO(3)orbital ×ZI
2 ≃ O(3), (55)

along with full spin rotation symmetry, S0 = SO(3)spin. Condensation takes place in a spin570

triplet p-wave state breaking the full spin rotation symmetry down to a proper subgroup. In571

the basis, Ψk ≡ (ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)
T the BdG Hamiltonian takes the form572

ĤBdG =
∑

k

Ψ̂†
k

�

(
k2

2m −µ)1 ∆(k)

∆†(k) (µ− k2

2m )1

�

Ψ̂k (56a)

∆(k) = d(k) · σ⃗(iσy) (56b)

To obey Fermi statistics, the three component complex vector d(k)must satisfy d(k) = −d(−k).573

In particular for p-wave 3He, the components of d(k) are linear in k. The various phases,574

characterized by different broken symmetries, are distinguished by the form of the d(k) vector.575

We apply the general framework described above to the two phases: (1) B phase, also known576

as the Balian-Werthamer (BW) phase [39], (2) A phase, also known as Anderson-Brinkman-577

Morel (ABM) phase [40, 41], discussing the residual symmetry group in the SC state and the578

SC state fermion PSG in each case.579

The transformations that preserve the kinetic energy act on the fermion operators as580

Spin rot. Ŝ0(θ⃗ ) ĉk s Ŝ0(θ⃗ )
−1 =
h

US(θ⃗ )
0

i†

s s ′
ĉk s ′ US(θ⃗ )

0 = eiθ⃗ ·σ⃗/2 (57a)

Space rot. R̂0(θ⃗ )ĉksR̂0(θ⃗ )
−1 =
h

UR(θ⃗ )
0

i†

s s ′
ĉR(θ⃗ )k s ′ UR(θ⃗ )

0 = 1 (57b)

Inversion Î0 ĉk s Î−1
0 =
�

UI
0

�†
s s ′ ĉ−k s ′ UI

0 = 1 (57c)

With
�

R̂0(πn̂)
�2
= Î2

0 = 1 and
�

Ŝ0(πn̂)
�2
= (−1)F̂ , the normal state fermion PSG is of the581

form X0 × SU(2).582

5.2.1 Superfluid B phase of Helium-3583

In the B phase, d(k) =∆0(kx x̂+ky ŷ+kz ẑ) [19]. The spin rotation group is broken down from584

S0 = SO(3)spin to its trivial subgroup S = {1} in the SC state. Using (47), the fermion onsite585

symmetry group is simply the fermion parity group S f = ZF
2 . The system remains isotropic586

in the SC state and X = SO(3)orb.+spin × ZI
2 ≃ O(3). As suggested by the label, the normal587
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state spatial rotation in (57b) has to be modified by including a normal state spin rotation588

and since d(k) is inversion odd, the normal state inversion in (57c) has to be modified by a589

compensating phase rotation by i. The transformations that preserve (56a) are590

Space rot. R̂′(θ⃗ )ĉksR̂′(θ⃗ )−1 =
�

ŨR(θ⃗ )
�†

s s ′
ĉR(θ⃗ )k s ′ ŨR(θ⃗ ) = eiθ⃗ ·σ⃗/2 · 1 (58a)

Inversion Î′ ĉk s Î′−1 =
�

ŨI�†
s s ′ ĉ−k s ′ ŨI = i 1 (58b)

With S f = ZF
2 , the full fermion symmetry group G f , which by (52) is a group extension of X by591

S f , reduces to a central extension of X byZF
2 . Eqns. (58a) and (58b) give R̂′(πn̂)2 = Î′2 = (−1)F̂ ,592

showing that G f involves non-trivial central extensions of both SO(3)orb.+spin and ZI
2 and is593

given by G f = (SU(2)×Z4)/Z2.594

Conversely, one can learn about the pair wave-function from the SC state PSG in the su-595

perfluid B phase. From (58a), we see that RΦ(R(θ⃗ )) = US(θ⃗ )
0 = eiθ⃗ ·σ/2 which is a j = 1/2596

projective representation of G(≃ SO(3)). According to relation (54) and the angular momen-597

tum addition rules, Rpair is either a j = 0 or j = 1 linear irrep of G(≃ SO(3)). However,598

because the projective representation RΦ(R(θ⃗ )) coincides with the normal-state spin rotation599

in (57a), the j = 0 irrep will preserve spin rotation and hence does not apply to the superfluid600

B phase. As a result, the pairing term must transform like a j = 1 representation under (57b).601

This is consistent with d(k)∝ k in this case.602

5.2.2 Superfluid A phase of Helium-3603

In the A-phase, without loss of generality, d(k) = ∆0(kx + iky)ẑ [19]. The spin rotational604

symmetry is broken down from S0 = SO(3)spin to S = U(1)z ⋊ Zx
2 ≃ O(2), which is the605

subgroup generated by continuous spin rotations around the ẑ axis, S(θ ẑ) and π spin ro-606

tations about the x -axis. All possible fermion onsite symmetry groups S f are classified by607

H2(S,ZF
2 ) = H2(O(2),Z2) = Z3

2. Since under π spin rotation about x -axis dz(k)→ −dz(k),608

the corresponding normal state transformation has to be modified by a phase rotation of i.609

No such compensating phase is thus required for spin rotation about z-axis. The SC state spin610

rotations are implemented as611

Spin rot. Ŝ′(θ ẑ) ĉk s Ŝ′(θ ẑ)−1 =
�

ŨS(θ ẑ)�†
s s ′ ĉk s ′ ŨS(θ ẑ) = eiθσz/2 (59a)

Spin rot. Ŝ′(πx̂) ĉk s Ŝ′(πx̂)−1 =
�

ŨS(πx̂)�†
s s ′ ĉk s ′ ŨS(πx̂) = σx (59b)

The central extension is characterized by Ŝ′(πx̂)2 = 1 and Ŝ′(πẑ)2 = Ŝ′(πŷ)2 = (−1)F̂ and612

correspondingly S f ≃
�

±σn
x eiθσz/2 | 0 ≤ θ < 2π , n = 0, 1

	

=
�

σn
x eiξσz | 0 ≤ ξ < 2π , n = 0, 1

	

613

≃ O(2).614

The spatial O(3) symmetry is broken down to a subgroup of X = U(1)z × Z I
2 , generated615

by continuous spatial rotations about z-axis, R(θ ẑ) and inversion I. In this case, the normal616

state transformations need to be modified only by compensating phase rotations. The SC state617

transformations are given by618

Space rot. R̂′(θ ẑ) ĉks R̂′(θ ẑ)−1 =
�

ŨR(θ ẑ)�†
s s ′ ĉR(θ ẑ)k s ′ ŨR(θ ẑ) = e− iθ/2 · 1 (60a)

Inversion Î′ ĉk s Î′−1 =
�

ŨI�†
s s ′ ĉ−k s ′ ŨI = i 1 (60b)

In this case the fermion symmetry group G f ≃ (O(2)×U(1)×Z4)/Z2 is a nontrivial extension619

of X by S f satisfying
�

R̂′(πẑ)
�2
= Î′2 = (−1)F̂ .620
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6 Conclusion621

Traditionally, the broken and unbroken symmetries of a superconductor (SC) is described by622

the Ginzburg-Landau theory, which characterizes the symmetry properties of all bosonic ex-623

citations therein, such as Cooper pairs. In this paper we investigate the same problem of624

broken and unbroken symmetries in a SC state from a viewpoint of fermionic excitations.625

We showed that the projective symmetry group (PSG) of fermions in a superconductor is the626

proper language to capture symmetry-related properties of fermionic excitations in a SC, and627

systematically studied the relationship between the pairing symmetry and the fermion PSGs in628

a superconductor. We provided a general framework in Section 5 to characterize the fermion629

symmetry group after the Cooper pair formation with the concept of PSG, which is a group630

extension of the crystalline space group X by the fermion global symmetry group S f in the631

superconducting phase. Examples of fermion global symmetry groups include the fermion632

parity group Z F
2 in a generic SC without spontaneous breaking of spin rotational symmetries,633

and O(2) as in the case of superfluid A phase of Helium-3. In the case of the fermion global634

symmetry group S f being an Abelian group, the group extension problem can be classified by635

the second group cohomology, which is both conceptually clear and practically easy to com-636

pute.637

When the SC and normal state share the same fermion global symmetries, i.e. in the638

absence of spontaneously broken spin rotational symmetries, the fermion PSG of the SC state is639

particularly simple: it is a central extension of the crystalline symmetry group X by the fermion640

parity group Z F
2 . In this case, we can classify all fermion PSGs using elements of the 2nd641

cohomology group H2(X , Z F
2 ). Using the connection between pairing symmetry and fermion642

PSG discussed in section 2, we can systematically obtain all the possible pairing symmetries643

compatible with the PSGs as delineated in Sec. 3. A distinction was made between the case644

of SCs with and without spin-orbital couplings (SOCs), where in the presence of a strong645

SOC, crystalline symmetries of fermions in the normal state are described by a non-trivial 2-646

cocycle ω0 ∈H2(X , Z F
2 ), and the correspondence between PSG and pairing symmetry should647

be shifted accordingly. Within this general framework, we calculated all the possible PSGs648

for all 3-dimensional point group symmetries both with and without SOCs, and establish the649

correspondence between PSGs and pairing symmetries of the SCs. As a demonstration of650

the framework, we studied in detail the PSGs and pairing symmetries of several physically651

relevant systems in section 4, and hope our work would shed new lights on understandings of652

superconductivity in these systems. Considering the crystalline symmetry group X , although653

we have restricted our attention to point groups in this work, the case of magnetic point groups654

and space groups can be naturally incorporated in our general framework.655

It is useful to compare the fermion PSGs in this work to PSGs initially introduced in the656

context of quantum spin liquids (QSLs) [18,20]. In QSLs, due to the presence of fractionalized657

excitations, like spinons, and emergent gauge fields, each element of the PSG is a combination658

of physical symmetry operation, such as a crystal symmetry g ∈ X , and local gauge rotations.659

In contrast, in a superconductor each element of the fermion PSG is a combination of an660

unbroken crystal symmetry operation g ∈ X and a spontaneously-broken global symmetry661

operation such as a U(1) charge rotation. We emphasize that our analysis does not involve the662

effects of dynamical local gauge fields, which have been proposed to lead to a description of663

superconductors as symmetry protected topological states [42] or states with Z2 topological664

ordered states [43]. We thus treat charged superconductors and neutral paired superfluids on665

the same footing as systems with a broken global U(1) possibly in addition to other broken666

symmetries.667

PSGs have important implications on physical properties of a superconductor. As the PSG668

G f is the symmetry group of fermions in a SC, it dictates the symmetry and topological proper-669
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ties of all the fermionic excitations of the system and its validity extends beyond the mean-field670

BdG equations. Therefore, PSG can be used to classify topological superconductors in both671

non-interacting (i.e., admitting a mean-field description) and interacting cases. As an illustra-672

tion, we discussed systems with two different kinds of symmetry groups where G f determines673

classifications of non-interacting topological superconductors. Moreover, as PSG establishes674

a link between pairing symmetry and topological properties of a system, we can utilize topo-675

logical properties of the electronic excitations as a diagnosis for the pairing symmetry of a676

superconductor. We leave these interesting ideas for future works.677
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A A short introduction to projective representation and 2-cocycle684

In this appendix we want to elucidate the connection between the projective representation of685

the crystalline symmetry group as described by the mathematical object called 2-cocycle and686

the fermion projective symmetry group G f .687

The concept of PSG was first introduced in the study of quantum spin liquids [18]. In the688

context of quantum spin liquids, electrons can be thought of as being composed of chargons689

and spinons which are glued together by an SU(2) gauge field. Due to the emergent gauge690

structures, symmetries that are represented linearly on the physical degrees of freedom are691

now represented only projectively on the spinons. More specifically, spin operators at site i692

can be written as fermionic spinons: Si =
1
2 f †

i,α
σ⃗α,β fi,β . A spin Hamiltonian can be described693

by a mean-field theory of spinons plus gauge fluctuations. Consider the following mean-field694

Hamiltonian:695

H =
∑

i j

[ψ†
i
ui jψ j + h.c.] +

∑

i

al
0ψ

†
i
τlψi , (A.1)

where ui j ’s are 2×2 matrices encoding pairing and hoppings of fermionic spinons,ψi = ( f↑, f †
↓ )

T696

are Nambu spinors.697

The Hamiltonian has a local SU(2) gauge redundancy: a site-dependent SU(2) transfor-698

mationψi → Wiψi , ui j → Wi ui j W
†
j

with Wi ∈ SU(2)which leaves both physical observables699

and the Hamiltonian invariant. Due to this gauge redundancy, the symmetry of the spin liquids700

are described by the projective symmetry group, which is defined as the collection of all com-701

binations of symmetry elements and gauge transformations that leave the mean-field ansatz702

{ui j} invariant:703

GUU({ui j}) = {ui j}, (A.2)

U({ui j} ≡ {ũi j = uU−1(i),U−1( j)}, (A.3)

GU(ui j) ≡ {ũi j = GU(i)ui jG
†
U( j)}, (A.4)

GU(i) ∈ SU(2), (A.5)
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where U is an element of the symmetry group SG of the microscopic system and GU is the704

SU(2) gauge transformation accompanying U that leaves the mean-field ansatz invariant.705

To encode the emergent gauge fields at low energy for spin liquid states, we introduce706

the important concept of invariant gauge group (IGG) which are pure gauge group elements707

that leave the mean-field ansatz invariant: Wi ui j W
†
j
= ui j . It is clear that IGG corresponds708

to elements GUU in PSG where U is the identity. With the concept of IGG it is now easy to709

describe the structure of PSG. In fact, IGG is a normal subgroup of PSG, and with the group710

homomorphism ρ(GUU) = U between PSG and SG, we have the following exact sequence:711

1→ IGG
ι
−→ PSG

ρ
−→ SG→ 1, (A.6)

where ι is the embedding mapping, and the exactness is ensured by the fact that ρ(w ) ≡ 1 ∈712

SG for w ∈ IGG. The structure of the PSG is now quite clear: it is the group extension of the713

SG by the IGG, or alternatively, SG=PSG/IGG.714

Equipped with the knowledge of PSG, it is also easy to see that the problem of unbroken715

symmetries of the superconductor naturally fits into the general framework of PSG if we notice716

that the BdG Hamiltonian takes the same form as the spin liquid mean-field Hamiltonian. More717

precisely, as discussed in the main text, fermions in the superconductor has the symmetry718

group G f , which is an extension of the space group X by the fermion global symmetry group719

S f described by the short exact sequence:720

1→ S f → G f → X → 1. (A.7)

The resemblance to Eq. A.6 is immediately seen if we identify the unbroken global symmetry721

group S f as IGG and the fermion symmetry group G f as PSG. However, there’s an important722

difference we need to keep in mind: in our study of superconductor, the global symmetry723

group S f should not be regarded as the gauge group corresponding to a fluctuating gauge724

field, as was in the context of spin liquids.725

In general S f can be non-Abelian, and we refer to Ref. [18] for a general computation726

scheme to solve the extension problem by obtaining all the inequivalent projective symmetry727

groups G f . Below let’s discuss the special case of S f being Abelian, which covers most of the728

practical situations and is mathematically much simpler to deal with. And we will comment729

briefly on the case of S f being non-Abelian in the end.730

In the case of S f being Abelian, the group extension of X by S f can be described as an731

element in the second cohomology group H2
[ρ]
(X ,S f ) with group actions [ρ] : X → Aut(S f )732

(note that when the group action is trivial, the group extension is simply a central extension).733

To see this more clearly, let’s label group elements in G f as (s , g ) with s ∈ S f , g ∈ X . Now,734

since S f is in the center of G f , we can represent the group multiplication rule in the following735

way:736

(sg , g )× (sh, h) = (s(g , h)sg sh, g h), (A.8)

where s(g , h) is a function X × X → S. The above procedure has an ambiguity since we can737

alternatively define g ′ = γg g ∈ G f (γg ∈ S f ) as our canonical choice of g . This then modifies738

s(g , h) as:739

s(g , h)→ s(g , h) · γg · γ
g
h
· γ−1

g h, (A.9)

where the superscript g indicates group actions g on elements in S f as described by [ρ] .740

The s(g , h)’s satisfy the associativity condition if we apply three group elements in G f in741

two equivalent ways, which yields742

s(g1, g2)s(g1g2, g3) = s(g1, g2g3)s
g1(g2, g3). (A.10)
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The coboundary condition A.9 and the cocycle condition A.10 then define an element in743

H2(X , S f ). Therefore we have found out that in the case of central extension, G f is uniquely744

determined by the 2-cocycle s(g , h), which is further classified by the second cohomology745

group H2(X , S f ).746

Before proceeding, let me emphasize an important point: fermions fulfill a 1d representa-747

tion of S f , which we denote as ρS : S f → U(1). Note that ρS is determined by the microscopic748

electrons and can be viewed as a group homomorphism from S f to Image(ρS).749

Because elements in G f act on fermions in a linear way, let’s consider a linear represen-750

tation Û of the group G f . Since S f lies at the center of the group, Û((s , 1)) should be of the751

form ρS(s)×1 according to Schur’s lemma and the fact that the symmetry action of s ∈ S on752

fermions is given by ρS.753

If we identify U(g ) as Û((1, g )), U(g ) would fulfill a projective representation of X :754

U(g )U(h) = Û((1, g ))Û((1, h)) = Û((s(g , h), g h))

= Û((s(g , h), 1))Û((1, g h)) =ω(g , h)U(g h),
(A.11)

where ω(g , h) ≡ ρS(s(g , h)) is a function X × X → Image(ρS). The ω satisfies the following755

associativity condition if we act three consecutive symmetry operations in two equivalent ways:756

g1g2g3 = (g1g2)g3 = g1(g2g3), which translates to757

ω(g1, g2)ω(g1g2, g3) =ω(g1, g2g3)ω
g1(g2, g3), (A.12)

where the superscript g onω indicates group actions on the U(1) phase induced by the group758

action [ρ] on elements in S f .759

We can also multiply symmetry actions U(g ) by some U(1) phase γg ∈ Image(ρS), which760

then modifies ω in the following way:761

ω(g , h)→ω(g , h)
γgγ

g
h

γg h
. (A.13)

The associativity condition (A.12) and the ambiguity (A.13) thus define a 2-cocycle in762

the second cohomology group H2(X , Image(ρS)). And the equation Eq.(A.11) establishes763

an explicit homomorphism between the projective representation of X (an element in the764

cohomology group H2(X , Image(ρS))) and the fermion projective symmetry group G f (an765

element in H2(X , S)).766

In summary, a linear representation of the fermion projective symmetry group G f can767

alternatively be viewed as a projective representation of the group X with cocycle ω(g , h)768

which is an element in the cohomology group H2(X , Image(ρS)), as elucidated by Eq.(A.11).769

Several remarks are in order:770

1. When S f is Abelian and ρS is injective, the two cohomology groups H2(X , Image(ρS))771

and H2(X , S f ) are isomorphic to each other, therefore we have sometimes used these772

terms interchangeably in the main text.773

2. When S f is non-Abelian, G f can no longer be described by an element in the second774

cohomology group. If we restrict our attention to the case where the representation ρS775

of S f on fermions are one dimensional, then the correspondence Eq.(A.11) still holds,776

enabling us to carry out calculations within this general framework.777

3. When S f is non-Abelian, there are cases where the representation of S f on fermions778

are at least 2-dimensional, such as spin-1/2 fermions in the superfluid A phase with779

S f = O(2). Such cases are beyond the scope of cohomological description, and we need780

to solve the projective symmetry groups up to gauge equivalence on a case-by-case basis781

following the general procedures as described in Ref. [18].782
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B How PSG constrains the pairing symmetry for all crystalline783

point groups784

Since G f is the extension of G by Z F
2 , we can view 1d projective representations RΦ(g ) of G as785

regular representations R̄Φ(ĝ ′) for ĝ ′ ∈ G f with R̄Φ(d) = −1 ( d ≡ (−1)F̂ ) when restricted786

to the subgroup X = G f /Z F
2 . This is confirmed by the following relation:787

R̄Φ((ηg , ĝ ′))R̄Φ((ηh, ĥ′)) = R̄Φ((ηgηhω̃(g , h), ĝ ′ĥ′)) =ω(g , h)R̄Φ((ηgηh, ĝ ′ĥ′)), (B.1)

where we have used the fact that Z F
2 is the center of G f and ηg ,ηh = ±1.788

Our strategy then is to first obtain the group extension G f ∈H2(X , Z F
2 ) and then compute789

the 1d irreducible representations R̄Φ(g ) of G f with Z F
2 = −1, from which we can readily790

obtain Rpair . We used GAP computer algebra program [21] in all these calculations, which is791

ideally suited for the task. The results are displayed in Table.7.792
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Table 7: Correspondence between the fermion PSG and the representation of the
pairing order parameter for all the crystalline point group. We list gauge-invariant
cocycles to label different projective symmetry groups G f for superconductors both
without and with spin-orbital couplings. We follow the convention in Ref. [44] to
label irreducible representations Rpair (g ) of the pairing order parameter. Some G f
does not admit a 1d projective representation and hence the corresponding Rpair
is marked as N/A. For gauge invariant cocycles, we use the following short-hand

notations: ζg ≡ω(g , g ), and ηg ,h ≡
ω(g ,h)
ω(h,g ) .

X H2(X , Z F
2 ) Gauge-invariant 2-cocycles No SOC (spinless) w/ SOC (spinful) Rpair (g )

C1 Z1 − − − A

Ci Z2 ζi
1 1 Ag
−1 −1 Au

C2 Z2 ζC2

1 −1 A
−1 1 B

Cs Z2 ζσh

1 −1 A′

−1 1 A′′

C2h Z
3
2 (ζC2

,ζi ,ζσh
)

(1, 1, 1) (−1, 1,−1) Ag
(1,−1,−1) (−1,−1, 1) Au
(−1, 1,−1) (1, 1, 1) Bg
(−1,−1, 1) (1,−1,−1) Bu
other cases other cases N/A

D2 Z
3
2

(ζC2x
,ζC2y

,ζC2z
)

(1, 1, 1) (−1,−1,−1) A
(−1,−1, 1) (1, 1,−1) B1
(−1, 1,−1) (1,−1, 1) B2
(1,−1,−1) (−1, 1, 1) B3
other cases other cases N/A

C2v Z
3
2 (ζC2

,ζσv
,ζσ′v )

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(−1, 1,−1) (1,−1, 1) B1
(−1,−1, 1) (1, 1,−1) B2
other cases other cases N/A

D2h Z
6
2

(ζC2x
,ζC2y

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1, 1, 1,−1) Ag

ηC2x ,i ,ηC2y ,i ,ηC2x ,C2y
)

(1,−1, 1, 1, 1, 1) (−1, 1, 1, 1, 1,−1) B3g
(−1, 1, 1, 1, 1, 1) (1,−1, 1, 1, 1,−1) B2g
(−1,−1, 1, 1, 1, 1) (1, 1, 1, 1, 1,−1) B1g
(1, 1,−1, 1, 1, 1) (−1,−1,−1, 1, 1,−1) Au
(1,−1,−1, 1, 1, 1) (−1, 1,−1, 1, 1,−1) B3u
(−1, 1,−1, 1, 1, 1) (1,−1,−1, 1, 1,−1) B2u
(−1,−1,−1, 1, 1, 1) (1, 1,−1, 1, 1,−1) B1u

other cases other cases N/A

C4 Z2 ζC2

1 −1 A, B
−1 1 E

S4 Z2 ζC2

1 −1 A, B
−1 1 E
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Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant cocycles No SOC With SOC Rpair (g )

C4h Z
3
2 (ζC2

,ζi ,ηC4,i)

(1, 1, 1) (−1, 1, 1) Ag , Bg
(−1,−1, 1) (1,−1, 1) Eu
(1,−1, 1) (−1,−1, 1) Au , Bu
(−1, 1, 1) (1, 1, 1) Eg

other cases other cases N/A

D4 Z
3
2

(ζC2
,ζC ′2

,ζC ′′2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2

other cases other cases N/A

C4v Z
3
2 (ζC2

,ζσv
,ζσd

)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D2d Z
3
2

(ζC2
,ζC ′2

,ζσd
)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D4h Z
6
2

(ζC ′2
,ζC ′′2

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ζC2
,ηC ′2,i ,ηC ′′2 ,i)

(1, 1,−1, 1, 1, 1) (−1,−1,−1,−1, 1, 1) A1u
(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) B1g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) B1u
(−1,−1, 1,−1, 1, 1) (1, 1, 1, 1, 1, 1) A2g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u

other cases other cases N/A
C3 Z1 − − − A1, E

C3i Z2 ζi
+1 +1 Ag , Eg
−1 −1 Au , Eu

D3 Z2 ζC2

+1 −1 A1
−1 +1 A2

C3v Z2 ζσv

+1 −1 A1
−1 +1 A2

D3d Z
3
2

(ζC ′2
,ζi ,ηC ′2,i)

(1, 1, 1) (−1, 1, 1) A1g
(1,−1, 1) (−1,−1, 1) A1u
(−1, 1, 1) (1, 1, 1) A2g
(−1,−1, 1) (1,−1, 1) A2u
other cases other cases N/A

C6 Z2 ζC2

+1 −1 A, E1
−1 +1 B, E2

C3h Z2 ζσh

+1 −1 A′, E′

−1 1 A′′, E′′
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Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant cocycles No SOC With SOC Rpair (g )

C6h Z
3
2 (ζC2

,ζi ,ηC2,i)

(1, 1, 1) (−1, 1, 1) Ag , E1g
(1,−1, 1) (−1,−1, 1) Au , E1u
(−1, 1, 1) (1, 1, 1) Bg , E2g
(−1,−1, 1) (1,−1, 1) Bu , E2u
other cases other cases N/A

D6 Z
3
2

(ζC2
,ζC ′2

,ηC2,C ′2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

C6v Z
3
2 (ζC2

,ζσv
,ηC2,σv

)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

D3h Z
3
2 (ζσv

,ζσh
,ησh,σv

)

(1, 1, 1) (−1,−1,−1) A′1
(1,−1, 1) (−1, 1,−1) A′′2
(−1, 1, 1) (1,−1,−1) A′2
(−1,−1, 1) (1, 1,−1) A′′1
other cases other cases N/A

D6h Z
6
2

(ζC2
,ζC ′2

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ηC2,C ′2
,ηC2,i ,ηC ′2,i)

(1, 1,−1, 1, 1, 1) (−1,−1,−1,−1, 1, 1) A1u
(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) A2g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u
(−1,−1, 1, 1, 1, 1) (1, 1, 1,−1, 1, 1) B1g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) B1u

other cases other cases N/A

T Z2 ζC2

1 −1 A, E
−1 1 N/A

Th Z
2
2 (ζC2

,ζi)
(1, 1) (−1, 1) Ag , Eg
(1,−1) (−1,−1) Au , Eu

other cases other cases N/A

O Z
2
2

(ζC2
,ζC ′2
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Td Z
2
2 (ζC2

,ζσd
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Oh Z
4
2

(ζC2
,ζC ′2

,
(1, 1, 1, 1) (−1,−1, 1, 1) A1g

ζi ,ηi,C ′2
)

(1, 1,−1, 1) (−1,−1,−1, 1) A1u
(1,−1, 1, 1) (−1, 1, 1, 1) A2g
(1,−1,−1, 1) (−1, 1,−1, 1) A2u
other cases other cases N/A
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