
SciPost Physics Submission

Pairing Symmetry and Fermion Projective Symmetry Groups

Xu Yang1⋆, Sayak Biswas1†, Shuangyuan Lu1†, Mohit Randeria1 and Yuan-Ming Lu1

1 Department of Physics, The Ohio State University, Columbus, OH 43210, USA

⋆ yang.6309@osu.edu , † These two authors contributed equally.

Abstract

The Ginzburg-Landau (GL) theory is very successful in describing the pairing symme-
try, a fundamental characterization of the broken symmetries in a paired superfluid or
superconductor. However, GL theory does not describe fermionic excitations such as
Bogoliubov quasiparticles or Andreev bound states that are directly related to topologi-
cal properties of the superconductor. In this work, we show that the symmetries of the
fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a
group extension of the bosonic symmetry group in the superconducting state. We further
establish a correspondence between the pairing symmetry and the fermion PSG. When
the normal and superconducting states share the same spin rotational symmetry, there
is a simpler correspondence between the pairing symmetry and the fermion PSG, which
we enumerate for all 32 crystalline point groups. We also discuss the general frame-
work for computing PSGs when the spin rotational symmetry is spontaneously broken
in the superconducting state. This PSG formalism leads to experimental consequences,
and as an example, we show how a given pairing symmetry dictates the classification of
topological superconductivity.
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1 Introduction27

One of the most fundamental characterizations of a superconductor or a paired superfluid is28

the symmetry of its pair wavefunction. The standard way of describing pairing symmetry is29

in terms of the irreducible representations (irreps) of the normal state symmetry group G030

which constrains the form of the Ginzburg-Landau (GL) free energy functional [1–4]. G0 can31

be written as32

G0 = G0 ×U(1) =

¨

X0 × SO(3)spin ×U(1) Weak SOC

X0 ×U(1) Strong SOC
(1)

where X0 is the crystalline point group, and SOC denotes spin-orbit coupling. At a second or-33

der phase transition, the superconductor spontaneously breaks global charge U(1) symmetry34

as the system condenses into a particular irrep of the normal state symmetry group. In gen-35

eral, the group of unbroken symmetries in the superconducting phase, G ⊆ G0. For example,36

G = X × SO(3)spin for a singlet superconductor with weak SOC, where X ⊆ X0 is the point37

group symmetry preserved in the superconductor. In the presence of a strong SOC we have38

G = X with X ⊆ X0 being the unbroken point group of the superconductor.39

Essentially all of the phonon-mediated superconductors (SCs) exhibit singlet “s -wave” pair-40

ing, where the superconducting (SC) state transforms according to the trivial representation of41

X0. But superfluid 3He [5] and many quantum materials, including the heavy fermion SCs [6],42

the high Tc cuprates [7], and Sr2RuO4 [8], condense into nontrivial irreps.43

In this paper, we wish to focus on the relation between pairing symmetry and the symmetry44

of the Hamiltonian describing the fermionic excitations in the superconducting state. At the mean45

field level, one focuses on the Bogoliubov-de Gennes (BdG) Hamiltonian, but the fermionic46

symmetry analysis applies equally beyond the BdG framework where one needs to take into47

account interactions between quasiparticles. The approach we develop here will allow us to48

gain new insights that go beyond the (bosonic) GL theory.49

Examples of questions which this formalism would shed light on include: (a) the rela-50

tion between pairing symmetry and topology, as the K-theory classification [9–11] of non-51

interacting topological SCs is based on the BdG Hamiltonians, (b) how interactions between52

quasiparticles for various pairing symmetries impacts the classification of interacting topolog-53

ical SC phases [11–14], (c) the relation between pairing symmetry and excitations in topo-54
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logical defects such as Majorana zero modes trapped in vortices [15–19], and (d) whether55

new probes of electronic excitations can provide insight into the pairing symmetry [20]. We56

discussed question (a) in section 4.4 of the manuscript. We will return to other questions in57

subsequent papers.58

Here, we first show how starting with the pairing symmetry, together with the crystalline59

symmetries that dictate the normal state electronic structure, we can derive the projective60

symmetry group (PSG) [21] for the fermionic excitations in the SC state. We first focus on61

the cases where the superconductor shares the same spin rotational symmetry as the normal62

state, we present an exhaustive classification of the SC state PSG corresponding to every al-63

lowable pairing symmetry for the 32 crystalline point groups with and without SOC. When64

confronted with a new superconductor, we would like to use these results in the “reverse" di-65

rection, namely, how can we deduce the possible pairing symmetry, given fermionic properties66

in the SC state. Mathematically, the map from the pairing symmetry to the SC state PSG is,67

in general, neither injective nor surjective, and thus it cannot be inverted. Nevertheless, we68

show below that the SC state PSG does constrain to a considerable extent the possible pairing69

symmetries. We also present numerous examples that serve to illustrate our general results.70

To describe the symmetries of the fermionic Hamiltonian we need (i) to focus on the super-71

conducting state symmetry group G as distinct from the normal state G0 relevant for GL theory,72

and (ii) to take into account fermion parity (−1)F̂ , where F̂ is the total number of fermions in73

the system. Let us discuss each of these points in turn.74

On general grounds, the SC state symmetry group G is a subgroup of the normal state G0.75

If the irrep into which the GL theory condenses is one-dimensional, then in fact G = G0. While76

this is obvious for the trivial A1 representation, an example may be useful to illustrate why77

this is true quite generally. Consider the dx2−y2 pairing state in the cuprates that transforms78

according to the B1g irrep of the tetragonal symmetry group D4h. The pair wavefunction79

changes sign under a π/2 rotation, and one might naively think that this breaks C4 down to80

C2. However, one can compensate for this minus sign by having the fermion operators pick up81

an e iπ/2 phase under C4 and thus have the electronic Hamiltonian retain the full symmetry of82

the normal state. We will see a generalization of this at play in the analysis later in section 2.83

On the other hand, if the irrep has a dimension > 1, then one needs to solve the GL84

equations to find the SC state that minimizes the free energy. Then the SC state state symmetry85

is lower than that in the the normal state, and G is a proper subgroup of G0. For example,86

3He is a p-wave, triplet superfluid, corresponding to the L = 1,S = 1 irrep of the normal state87

symmetry group G0 = SO(3)orbital × SO(3)spin. Depending on external parameters various88

superfluid states are stabilized, and in the B-phase of 3He, for instance, G0 is broken down to89

G = SO(3)L+S [22]. We will discuss a general framework to understand the PSG of fermion90

excitations in any superconductor in Section 5, where the superconductor can spontaneously91

break the normal-state spin rotational symmetry.92

The second point above related to fermion parity may seem trivial: it enforces that a Hamil-93

tonian can only have terms with an even number of fermion operators. It leads, however, to94

the important mathematical structure of a projective symmetry group (PSG) G f acting on the95

many-body Hilbert space. In Section 2, we discuss in detail how G f is built as a central exten-96

sion of G by the fermion parity group ZF
2 .97

The rest of the paper is organized as follows. In Section 3 we show how the fermion PSG98

G f can constrain the pairing symmetry of the SC state, applying the framework to all 32 point99

groups (see Table 7) and demonstrating it by a few examples in section 4. We further discuss100

how the PSG determines topological properties of the SC in section 4.4. While sections 2-3101

focus on the cases where the normal state and the SC state shares the same spin rotational102

symmetries, in section 5.1 we describe a generic theory framework that applies to all supercon-103

ductors, and further demonstrate its power in the examples of A- and B-phases of superfluid104
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3He in section 5.2. Finally we conclude in section 6 with a discussion on how the fermion PSG105

in SCs discussed here differs from the PSG first introduced in quantum spin liquids [21, 23],106

and an outlook to future studies.107

2 Characterization of broken symmetries in a superconductor108

2.1 Projective Symmetry Group and Projective Representation109

Any Hamiltonian must conserve fermion parity (−1)F̂ even if it does not conserve particle110

number F̂ , as, for instance, in the presence of pairing. The fermion symmetry group G f acting111

on the many-body Hilbert space of fermions is a projective symmetry group (PSG). Mathemat-112

ically, G f is a central extension of the bosonic symmetry group G in the SC state by the fermion113

parity group ZF
2 =
�

(±1)F̂
	

. This may be written as a short exact sequence114

1→ ZF
2 → G f → G→ 1 (2)

where ZF
2 is in the center of G f . Thus fermion parity commutes with all elements of G f and115

the quotient group G f /Z
F
2 = G.116

Let us denote by ĝ the operator corresponding to the group element g ∈ G that acts on117

Hilbert space. In general it could be unitary or anti-unitary. The group G f is then the set118
�

(±1)F̂ ĝ | g ∈ G
	

with the product rule between (η1)F̂ ĝ and (η2)F̂ ĥ (with ηi = ±1) given119

by120
�

(η1)
F̂ ĝ
� �

(η2)
F̂ ĥ
�

= [η1 η2 ω(g , h)]F̂ dg h (3)

ω called the 2-cocycle is a function ω : G ×G→ {+1,−1} that satisfies121

ω(g , h)ω(g h, k) =ω(g , hk) gω(h, k), 1 (4)

so that the multiplication is associative, andω(eG , eG) = 1, so that the identity element is well122

defined. Each inequivalent cocycle furnishes a distinct projective symmetry group. Thus PSGs123

are characterized by classes of inequivalent cocycles [ω] which form the second cohomology124

group H2(G,Z2).125

As an example, consider time reversal symmetry where G = ZT
2 = {1, T}. In this case,126

H2(Z2,Z2) = Z2 and there are two PSGs characterized by the two inequivalent cocycles: (1)127

ω(T, T) = 1 in which case T̂2 = 1, and (2) ω(T, T) = −1 where T̂2 = (−1)F̂ . In the first case128

G f = Z2 × Z2 while in the second G f = Z4. Physically, the action of the different PSGs on129

the even particle number subspace is the same as that of the bosonic group G. The distinction130

appears in how G f acts on the odd particle number subspace, in particular, the single particle131

subspace.132

In general, one could have both unitary and anti-unitary symmetries but in this paper133

we will focus on unitary operators ĝ ∈ G f , under which the fermion annihilation operator134

transforms as135

ĝ ĉkα ĝ−1 = [Ug (k)]†
αβ

ĉgkβ (5)

where k is the (crystal) momentum, and the α labels spin, orbital/sublattice/band degrees of136

freedom (d.o.f.). Using (−1)F̂ ĉkα (−1)F̂ = −ĉkα and eq. (3), we find that137

Ug (h k)Uh(k) =ω(g , h)Ug h(k). (6)

The Ug ’s thus form a projective representation of G with coefficients in {±1}. Equivalently,138

one can regard {±Ug | g ∈ G} as a linear representation of G f with (−1)F̂ represented by −1.139
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2.2 Pairing Symmetry and Projective Representations140

To be concrete, let us focus on the BdG Hamiltonian141

Ĥ = Ĥ0 + (Ĥpair + h.c.) (7)

where142

Ĥ0 =
∑

αβ;k

ĉ†
kα

hαβ(k)ĉkβ (8)

is the kinetic energy that describes the normal state electronic dispersion, and143

Ĥpair =
∑

αβ;k

ĉ†
kα
∆αβ(k)ĉ

†
−kβ

(9)

describes the pairing. Fermi statistics dictates that ∆αβ(k) = −∆βα(−k).144

Initially, we restrict ourselves for simplicity to situations where SO(3)spin is not broken145

spontaneously in the SC state. In this case, the SC state symmetry group G is of the form146

G =

¨

X × SO(3)spin Weak SOC

X Strong SOC
(10)

where X is the point group of crystalline symmetries. In either case the pairing order parameter147

∆(k) forms a 1d linear representation of crystalline point group X . Moreover the relevant148

fermionic PSGs are of the form G f ≃ (X f × SU(2))/Z2 and G f ≃ X f for the weak and strong149

SOC cases respectively where X f is itself a central extension of X with respect to fermion parity.150

In the first case, we get an SU(2) as a Z2 central extension of SO(3)spin and a quotient by Z2151

is required to take into account the "double- counting" of ZF
2 . It is thus sufficient to look at152

the central extensions of X . Later, in Section 5, we shall present a more general treatment and153

discuss the case of 3He where spin rotation is spontaneously broken in the SC state. In such154

cases, the fermion symmetry group might have a more complicated form and it is no longer155

sufficient to look at central extensions of the spatial part alone.156

We now discuss three different projective representations of X and explore how these are157

related. First, we begin with X0
f
=
�

(±1)F̂ ĝ0 | g ∈ X
	

the PSG of X that preserves the kinetic158

part of the BdG hamiltonian i.e., ĝ0 Ĥ0 ĝ−1
0 = Ĥ0. The fermion operators then transform159

according to the corresponding projective representation Ug
0 (k), defined by160

ĝ0 ckαĝ−1
0 = [Ug

0 (k)]
†
αβ

ĉgkβ , (11)

which preserves the normal state band structure161

Ug
0 (k)h(k) [U

g
0 (k)]

† = h(gk). (12)

We shall call X0
f

the normal state PSG and denote the corresponding 2-cocycle by ω0. For162

systems with weak SOC, crystalline symmetries do not act on the spin degrees of freedom and163

the PSG is trivial in this case ω0(g , h) = 1 for any elements g , h ∈ X . In the presence of164

strong SOC the projective representation in non-trivial with operations like two fold rotations165

and mirror reflections now squaring to fermion parity, ω0(C2, C2) = ω0(M , M) = −1. This166

becomes evident by looking at the forms of the projective representations in the two cases.167

Ug
0 (k) =

¨

ug
orbital

(k)⊗1spin weak SOC

ug
orbital

(k)⊗ ei
θg
2 n̂g .σ⃗ strong SOC

(13)
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where n̂g and θg are the rotation axis and angle associated with crystalline symmetry operation168

g ∈ X .169

Next, we note that the normal state PSG preserves the pairing term only up to a phase,170

namely171

ĝ0 Ĥpair ĝ−1
0 = eiΦg Ĥpair (14)

The phases
�

eiΦg | g ∈ X
	

form a 1D linear representation of X , which we call the pairing172

symmetry Rpair. The phases Φg ’s satisfy the equation173

Φg +Φh = Φg h + 2nπ (n ∈ Z). (15)

The pairing matrix ∆(k) satisfies174

Ug
0 (k)∆(k)
�

Ug
0 (−k)
�T
= eiΦg ∆(gk). (16)

We see from eq. (14) that the PSG X0
f

that leaves Ĥ0 invariant, fails to preserve the pairing175

term. However the situation can be fixed as follows. We modify the transformation of the176

fermions ĝ ′ ckαĝ ′−1 = [Ũ(k)]†
αβ

ĉkβ with177

Ũg (k) = e−iΦg /2Ug
0 (k) (17)

The kinetic part Ĥ0, which is invariant under U(1) phase rotations, is preserved by the modified178

transformations as can be seen from (12). The new transformations are also symmetries of179

the pairing term Ĥpair as Ũg (k)’s lead to eq. (16) without the phase factor eiΦg appearing on180

the right-hand side.181

We thus define SC state PSG X̃ f that preserves the full BdG Hamiltonian by182

X̃ f =
¦

(±1)F̂ ĝ ′ = (±1)F̂ e−i(Φg /2)F̂ ĝ | g ∈ X
©

(18)

This PSG is characterized by the 2-cocycle ω̃.183

The last step here is to look at the relation between the normal and the superconducting184

state PSGs, or equivalently, between their cocycles ω0 and ω̃. The phases
�

e−iΦg /2 | g ∈ X
	

185

form a 1D projective representation of X , which we call RΦ. This follows from (15) by observ-186

ing that e−iΦg /2e−iΦh/2 = (−1)n e−iΦg h/2. From eqn.(17) one concludes that the cocycle ωΦ187

associated with RΦ satisfies188

ω̃(g , h) =ωΦ(g , h)ω0(g , h) (19)

To summarize, we encountered the following projective representations and their associ-189

ated cocycles which define the corresponding PSG’s:190

Normal state: Ug
0 (h k)Uh

0 (k) = ω0(g , h)Ug h
0 (k) (20a)

RΦ : e−iΦg /2e−iΦh/2 = ωΦ(g , h) e−iΦg h/2 (20b)

SC state: Ũg (h k) Ũh(k) = ω̃(g , h) Ũg h(k) (20c)

Eq. (17) relates the three projective representations and eq. (19) relates their cocycles.191

Given the normal state PSG and the pairing symmetry of the SC state, one can use the for-192

malism described above to determine the SC state PSG. This is achieved in the following steps.193

Pairing symmetry being a 1D linear representation, Rpair can be read off from the character194
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table of X . Taking the square roots of the characters one obtains the 1D projective representa-195

tion RΦ and its cocycleωΦ. With the normal state PSG known eq. (19) gives the SC state PSG196

while eq. (17) gives the SC state projective representation explicitly. Thus knowing the pairing197

symmetry enables us to find the SC state PSG that preserves the BdG Hamiltonian. In the next198

Section we turn to the inverse problem of constraining the pairing symmetry, knowing the SC199

state PSG.200

3 Constraints on the pairing symmetry by the PSG201

One longstanding experimental challenge in the field of superconductivity is how to unambigu-202

ously determine the pairing symmetry of a superconductor material, based on experimental203

measurements. Since all fermionic excitations in the superconductor form a linear represen-204

tation of the SC state PSG X̃ f , the low-temperature physical properties of the superconductor205

completely depend on the PSG. For example, as will be discussed in section 4.4, the topological206

properties of the SC phase are determined by the PSG. As a result, it seems plausible to detect207

the SC state PSG X̃ f using various experimental probes, which we will clarify in future publi-208

cations. This observation motivates us to answer the following question: given a SC state PSG209

X̃ f , what are the pairing symmetries compatible with X̃ f ? In other words, how does a given210

PSG constrain the possible pairing symmetry in a superconductor? The answer to this question211

will allow us to constrain or even determine the pairing symmetry of a SC, by experimentally212

detecting its PSG.213

Based on the discussions in section 2.2, we can readily derive the constraints on the pairing214

symmetry by the PSG from relations (17) and (19). Specifically, given a SC state PSG X̃ f and215

its associated 2-cocycle ω̃, we can follow the steps listed below to obtain the possible pairing216

symmetries Rpair in (14)-(16):217

(1) Given the crystalline point group X , determine the normal state PSG X0
f

and associated218

2-cocycle {ω0} of the normal-state symmetry transformations {Ug
0 |g ∈ X}. This only depends219

on the strength of SOCs in the system.220

(2) Compute the 2-cocycle {ωΦ} from {ω0} and {ω̃} from relation (19).221

(3) Obtain all one-dimensional (1d) projective representations {RΦ(g )|g ∈ X} of the crys-222

talline symmetry group X compatible with 2-cocyle {ωΦ} obtained in step (2), satisfying223

RΦ(g )RΦ(h) =ωΦ(g , h)RΦ(g h) (21)

(5) For each 1d projective representation RΦ(g ) obtained in step (3), compute the 1d224

linear representation225

Rpair (g ) =
�

RΦ(g )
�−2

(22)

of the pairing order parameter. The collection of all results {Rpair } correspond to all the pos-226

sible pairing symmetries compatible with the PSG X̃ f .227

228

We have applied our general computational scheme to the case of 32 crystalline point229

groups for both strong SOCs and neglible (weak) SOCs. Our analysis focuses on SC order230

parameters that are spatially uniform, where the Cooper pairs condense in a state with zero231

center of mass momentum. Lattice translations then act trivially on the SC state and leave232

the BdG Hamiltonian invariant, and it is sufficient for us to focus on point group symmetry233

alone. Most experimentally relevant systems exhibit spatially uniform pairing (in the absence234

of strong disorder). It is only in exceptional circumstances – under very limited range of ex-235

ternal parameters in a few systems – that that one expects the SC order parameter to sponta-236

neously break translational symmetry, e.g., in FFLO or pair density wave state. In such cases,237
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we would need to investigate space group symmetries which we leave for future investiga-238

tion. Group cohomology and projective representation calculations are performed using the239

GAP computer algebra program [24]. The correspondence between fermion PSGs G f and the240

representations Rpair of the superconducting order parameter is established for all 32 point241

groups, and the results are summarized in Table. 7 in Appendix B.242

4 Examples243

We now demonstrate the above formalism for different point groups. In section 4.1 we con-244

sider systems with tetragonal symmetry. Cuprates and ruthenates which belong to this cate-245

gory have point group D4h. But for instance in cuprates, only the Cu-O plane is relevant for246

superconductivity and it suffices to consider the point group C4v for the purpose of illustration.247

In section 4.2 we treat systems with hexagonal symmetry. A discussion of superconductivity248

on a honeycomb lattice is followed by a remark on how our formalism can be applied to the249

case of magic angle twisted bilayer graphene. In section 4.3 we discuss superconductivity in250

transition metal dichalcogenides with trigonal point group C3v .251

The purpose of these examples is two-fold. First, we present a detailed account of how252

the table in appendix B is constructed and what information can be extracted from it. Sec-253

ond, we make a direct connection with real physical systems by producing examples of order254

parameters ∆αβ(k) for each 1D irrep (pairing symmetry) of the relevant point group.255

As mentioned earlier we shall restrict ourselves to cases where there is no additional break-256

ing of spin rotation symmetry when going from the normal to the SC phase. Examples which257

do not fit in this category, like superfluid He3, are discussed in the section 5.2.258

4.1 Tetragonal Symmetry259

To be concrete, consider a two dimensional square lattice in the x y plane. The relevant crys-260

talline point group is X = C4v . The group is generated by a rotation by π/2 about the z-axis,261

C4 and reflection about a vertical mirror in the y z plane, σv . The action of these operations262

can be summarized as263

(x , y, z)
C4−→ (−y, x , z) (23a)

(x , y, z)
σv−→ (−x , y, z) (23b)

The group law is captured by the relations C4
4 = e, σ2

v = e and C3
4σv = σvC4. Equivalently264

the group is generated by the vertical mirror σv and the diagonal mirror σd = σvC4. Since265

σ2
v = σ

2
d
= e, these could have either +1 or −1 characters in a 1D irrep. Consequently there266

are four 1D irreps for this group, each labeled uniquely by a tuple of σv and σd characters,267
�

eiΦσv , eiΦσd
�

taking values (±1,±1). The characters for the other group elements can then be268

obtained using the group laws. In particular, it follows from C2 = (σdσv)2 that the character269

for the two-fold rotation in the four 1D irreps is +1.270

Let us now turn our attention to the possible fermion PSGs for this group. From the group271

cohomology calculation we have H(2)(C4v ,Z2) = Z3
2, corresponding to eight inequivalent272

classes of 2-cocycles for this group characterized by the 3-tuple273

(ω(C2, C2),ω(σv ,σv),ω(σd ,σd)) = (±1,±1,±1) . (24)

The eight PSGs are thus distinguished on the basis of whether the two fold rotation, C2 and274

the two mirrors σv and σd square to ±1.275

We are now in a position to explore the connection between the pairing symmetries and276

fermion PSGs for this group. First consider the case when because of weak spin-orbit coupling277

8
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there is spin rotation invariance in the normal state. The symmetry operations that preserve278

the kinetic energy act only on the momentum label, keeping the spin label unaltered. Denoted279

by superscript 0 these are280

Ĉ0
2 ĉkα (Ĉ

0
2 )
−1 = ĉC2kα (25a)

σ̂0
v ĉkα (σ̂

0
v)
−1 = ĉσv kα (25b)

σ̂0
d ĉkα (σ̂

0
d)
−1 = ĉσdkα (25c)

Consequently, the normal state PSG is trivial and281

(ω0(C2, C2),ω0(σv ,σv),ω0(σd ,σd)) = (+1,+1,+1) . (26)

Given the assumption that pairing does not break spin rotation invariance in the superconduct-282

ing phase, condensation takes place in the singlet channel. This enforces the pair wavefunction283

to be of the form284

∆αβ(k) = Ψ(k)(iσy)αβ (27)

where α, β are spin labels and Pauli exclusion constrains the orbital part of the pair wavefunc-285

tion to obey Ψ(−k) = Ψ(k). As has been discussed in detail in previous sections, the phases286
�

eiΦg
	

acquired by the pairing term in (9), when acted upon by the operations in (25), consti-287

tute a 1D linear irrep of C4v which we refer to as pairing symmetry Rpair. We also learnt that288

(25) must be modified by compensating phase rotations so as to make the new transformations289

symmetries of the BdG hamiltonian.290

Different pairing symmetries modify the normal state transformations in (25) differently.291

When the pairing symmetry is A1, which is the case when say Ψ(k) is a constant Ψ0 indepen-292

dent of k, the normal state transformations already preserve the pairing term and no modifi-293

cation is necessary. The normal and the SC state PSGs are the same in this case. If however294

Ψ(k) = Ψ0(k2
x − k2

y), σv keeps the pairing term unchanged whereas under σd (or equiva-295

lently under C4) it acquires a negative sign. The pairing symmetry in this case is B1, labeled296

by (eiΦσv , eiΦσd ) = (+1,−1). Eqn. (25c) now has to be modified by a factor of i appearing on297

the right hand side, i.e, the modified σd must take ĉkα to i ĉσdkα .298

For a generic irrep, when the orbital part transforms as299

Ψ(k) = eiΦgΨ(gk) (28)

the compensating phases are the square roots of the characters of the relevant irrep. Denoted300

with primes, the transformations that preserve the BdG hamiltonian are then301

Ĉ ′2 ĉkα (Ĉ
′
2)
−1 = eiΦC2/2 ĉC2kα (29a)

σ̂′v ĉkα (σ̂
′
v)
−1 = eiΦσv /2 ĉσv kα (29b)

σ̂′d ĉkα (σ̂
′
d)
−1 = eiΦσd

/2 ĉσdkα (29c)

For instance, for A1 and B1 pairing symmetries,
�

eiΦC2/2, eiΦσv /2, eiΦσd
/2� can be chosen to be302

(1, 1, 1) and (1, 1, i) respectively.303

The resulting SC state PSGs are different across pairing symmetries. For the A1 irrep, the304

SC state PSG is trivial. With the diagonal mirror now squaring to fermion parity, the SC state305

PSG for B1 becomes306

(ω̃(C2, C2), ω̃(σv ,σv), ω̃(σd ,σd)) = (+1,+1,−1). (30)

As elaborated in previous sections, the reason for this is best understood once we recognize307

that the compensating phases,
�

e−iΦg /2 | g ∈ X
	

form a 1D projective representation, RΦ308

9
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Rpair Ψ(k) RΦ ωΦ ω̃

A1 : (+1,+1) 1 (±1,±1,±1) (+1,+1,+1) (+1,+1,+1)
A2 : (−1,−1) kx ky(k2

x − k2
y) (±1,±i,±i) (+1,−1,−1) (+1,−1,−1)

B1 : (+1,−1) k2
x − k2

y (±1,±1,±i) (+1,+1,−1) (+1,+1,−1)
B2 : (−1,+1) kx ky (±1,±i,±1) (+1,−1,+1) (+1,−1,+1)

Table 1: Tetragonal Symmetry (X = C4v) with weak SOC. Here Rpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2/2, e−iΦσv /2, e−iΦσd

/2)

of X . The corresponding cocycle given by ωΦ could be different for the different pairing309

symmetries. For example,310

(ωΦ(C2, C2),ωΦ(σv ,σv),ωΦ(σd ,σd)) = (1
2, 12, 12) and (12, 12, i2 = −1) (31)

for the A1 and B1 irreps respectively. Pairing symmetry thus dictatesωΦ which through (19) in311

turn decides the SC state PSG. Table 1 summarizes the results of the above analysis for C4v with312

weak SOC. For each irrep, we give an example of Ψ(k), show the 1D projective representation313

of the compensating phases RΦ, the cocycle ωΦ and finally the SC state PSG ω̃.314

315

In the presence of strong spin orbit coupling, the transformations that preserve the kinetic316

energy are combined spatial and spin rotation. A rotation by angle θ about n̂ transforms317

the spinor by e−i
θ
2 (n̂·σ) while inversion leaves it unaffected. A mirror could be viewed as a318

combination of inversion and a two fold rotation about an axis perpendicular to the mirror319

plane. For instance, reflection about the y z mirror plane is then effectively a two-fold rotation320

about the x axis and would be implemented by −iσx in the spinor basis. The transformations321

that preserve kinetic energy are322

Ĉ0
2 ĉkα (Ĉ

0
2 )
−1 = [−iσz]αβ ĉC2kβ (32a)

σ̂0
v ĉkα (σ̂

0
v)
−1 = [−iσx ]αβ ĉσv kβ (32b)

σ̂0
d ĉkα (σ̂

0
d)
−1 =
�

−in̂′ ·σ
�

αβ
ĉσdkβ (32c)

Where n̂′ = (x̂ − ŷ)/
p

2 and the Einstein summation convention is implied. With two fold323

rotations and hence mirrors now squaring to fermion parity, the normal state PSG is324

(ω0(C2,C2),ω0(σv ,σv),ω0(σd ,σd)) = (−1,−1,−1). (33)

In the absence of spin rotation invariance in the normal state, the pair wavefunction is an325

admixture of singlet and triplet parts and takes the form326

∆αβ(k) = Ψ(k)
�

iσy
�

αβ
+ d(k) ·
�

σ⃗(iσy)
�

αβ
(34)

where Pauli exclusion now requires the three component complex vector d to obey d(k) = −d(−k).327

Since the C2 character in all the one dimensional irreps is +1, we must have328

(iσz)∆(k)(iσz)
T =∆(C2k) =∆(−k), (35)

where the last equality follows from the fact that we are in two spatial dimensions. It is329

immediately seen that this implies dz(k) = dz(−k) and the only way this could be consistent330

with the constraint imposed by Pauli exclusion is when dz(k) = 0. Similarly, by effecting331

10
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Rpair d(k) RΦ ωΦ ω̃

A1 : (+1,+1) ky x̂− kx ŷ (±1,±1,±1) (+1,+1,+1) (−1,−1,−1)
A2 : (−1,−1) kx x̂+ ky ŷ (±1,±i,±i) (+1,−1,−1) (−1,+1,+1)
B1 : (+1,−1) ky x̂+ kx ŷ (±1,±1,±i) (+1,+1,−1) (−1,−1,+1)
B2 : (−1,+1) kx x̂− ky ŷ (±1,±i,±1) (+1,−1,+1) (−1,+1,−1)

Table 2: Tetragonal Symmetry(X = C4v) with strong SOC. HereRpair ≡ (eiΦσv , eiΦσd )
and RΦ ≡ (e−iΦC2/2, e−iΦσv /2, e−iΦσd

/2)

transformations for σv and σd on the pairing term we conclude that to tranform as a 1D irrep332

labeled by the characters (eiΦσv , eiΦσd ), the non-zero components of the d vector, must satisfy333

334

�

+dx (k), −dy(k)
�

= eiΦσv
�

dx (σvk), dy(σvk)
�

(36a)
�

−dy(k), −dx (k)
�

= eiΦσd
�

dx (σdk), dy(σdk)
�

(36b)

and Ψ(k), like in the case for weak SOC, satisfies (28). Table 2 provides examples of the d(k)335

vector for each pairing symmetry. All of these examples belong to a (p+ ip) ↑ +(p− ip) ↓ type336

SC. As before, square roots of the characters of the 1D irrep form the compensating phases337

which modify the transformations in (32) and different SC state PSGs are obtained for the four338

pairing symmetries as outlined in table 2.339

340

A few comments are in order. First, comparing the two tables we observe that since the 1D341

projective representation RΦ formed by the compensating phases and the corresponding co-342

cycle ωΦ depend solely on the pairing symmetry, the correspondence between Rpair and ωΦ343

is identical irrespective of the strength of SOC. The difference in the normal state PSG ω0344

accounts for the difference in the SC state PSG ω̃ between the corresponding rows of tables 1345

and 2.346

Second, a question arises as to why only four of the eight PSGs appear in each of the two ta-347

bles. The answer is apparent once we observe that theωΦ column only contains the four PSGs348

withωΦ(C2, C2) = +1. This is easily seen as follows. Group law tells us thatσvσd = C2σdσv .349

Then for any 1D projective representationφ, we must haveφ(σv)φ(σd) = ±φ(C2)φ(σd)φ(σv).350

Sinceφ’s are all non-zero complex numbers, dividing both sides byφ(σv)φ(σd) givesφ(C2) = ±1351

and henceωφ(C2,C2) = +1. In other words PSGs withω(C2,C2) = −1 cannot have a 1D rep-352

resentation.353

Finally, both tables show a one-one correspondence between the four pairing symmetries354

and four out of the eight possible PSGs. Knowledge of the SC state PSG (from topological or355

spectroscopic properties) thus uniquely determines the pairing symmetry.356

4.2 Hexagonal Symmetry357

Consider a two dimensional honeycomb lattice in the x y plane with a plaquet center chosen358

as the origin and the x -axis passing through a bond center. A six fold rotation about the z-axis,359

C6 and a reflection about a vertical mirror σv in the y z plane then transform the coordinates360

as361

(x , y)
C6−→
�

1

2
x −
p

3

2
y,

1

2
y +
p

3

2
x

�

(37a)

(x , y)
σv−→ (−x , y) (37b)
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C6 andσv generate the point group C6v . It comprises of six rotations and six mirror reflections362

and the group law is captured by the relations C6
6
= e, σ2

v = e and C6σvC6 = σv . From these363

relations it is evident that the C6 and σv characters in a 1D linear irrep of C6v could only be364

±1. Indeed, there are four 1D irreps for this group labeled by (eiΦC6 , eiΦσv ) = (±1,±1). Here365

we note that not only is the group D6 isomorphic to C6v , but has indistinguishable action in366

two spatial dimensions. In D6, the two-fold rotation about the in-plane y-axis, C2y assumes367

the role of σv in C6v . Thus, when we are strictly in two spatial dimensions, C6v and D6 can368

be used interchangeably.369

Since H(2)(C6v ,Z2) = Z3
2, there are eight possible PSGs distinguished on the basis of370

whether C2 and σv square to +1 or −1 and whether they commute or anti-commute. The371

classes of 2-cocycles are labeled by372

�

ω(C2, C2),ω(σv ,σv),
ω(C2,σv)

ω(σv , C2)

�

= (±1,±1,±1). (38)

We discuss the case when the normal and the SC states have spin rotation invariance.373

Denoted by the superscript 0, the transformations that preserve the kinetic energy are374

Ĉ0
6 ĉkα s(Ĉ

0
6 )
−1 = (τx )αβ ĉC6kβ s (39a)

σ̂0
v ĉkα s(σ̂

0
v)
−1 = ĉσv kα s (39b)

Where α,β are sub-lattice labels, s labels spin and τ⃗ denotes Pauli matrices in the sub-lattice375

space. The momentum k is measured from the Γ point of the Brilloin zone. The normal state376

PSG is trivial with377

�

ω0(C2, C2),ω0(σv ,σv),
ω0(C2,σv)

ω0(σv ,C2)

�

= (+1,+1,+1). (40)

Here we consider a generic situation where both the bands participate in pairing and we378

express the pair wavefunction in the sub-lattice basis. If however we have a weak coupling379

scenario in which only a single band takes part in pairing, it is more convenient to express380

the pair wavefunction in the active band basis. For the present case, consistent with Pauli381

exclusion, the spin singlet wave function has the form382

[∆(k)]α s β s ′ = Ψαβ(k)(iσy)s s ′ (41)

where Ψαβ(k) = Ψβα(−k). For the pairing term to transform as the irrep (eiΦC6 , eiΦσv ) under383

(39), Ψαβ(k) satisfies384

(τx )αγΨγδ(k) (τx )βδ = eiΦC6 Ψαβ(C6k) (42a)

Ψαβ(k) = eiΦσv Ψαβ(σvk) (42b)

In table 3 we provide examples of Ψαβ(k) satisfying (42) for each pairing symmetry. The385

compensating phases (e−iΦC6/2, e−iΦσv /2) forming the 1D projective representation RΦ and386

the corresponding 2-cocycle ωΦ are also tabulated. A product of ωΦ and ω0 then gives the387

SC state PSG ω̃. The four pairing symmetries correspond to four distinct ω̃ s . The SC state388

PSG thus uniquely determines the pairing symmetry for this point group. Like in the previous389

case, only four out of the eight possible PSGs appear in table 3. Inspecting the ωΦ column390

we observe that it only has entries with ωΦ(C2,σv)/ωΦ(σv ,C2) = +1 . Since complex num-391

bers always commute, it is impossible to get a 1D projective representation of C6v where392

ωΦ(C2,σv)/ωΦ(σv , C2) = −1.393
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Rpair ΨAA(k) ΨBB(k) ΨAB(k) RΦ ωΦ ω̃

A1 = (+1,+1) ∆0 ∆0 ∆′0 (±1,±1) (+1,+1,+1) (+1,+1,+1)
A2 = (+1,−1) ∆0 f (k) ∆0 f (k) ∆′0g (k) (±1,±i) (+1,−1,+1) (+1,−1,+1)
B1 = (−1,+1) ∆0 −∆0 0 (±i,±1) (−1,+1,+1) (−1,+1,+1)
B2 = (−1,−1) ∆0 f (k) −∆0 f (k) 0 (±i,±i) (−1,−1,+1) (−1,−1,+1)

Table 3: Hexagonal symmetry (X = C6v) with weak SOC.
Here Rpair = (eiΦC6 , eiΦσv ), RΦ = (e−iΦC6/2, e−iΦσv /2). Also,
f (k) = kx ky(k2

x − 3k2
y)(k

2
y − 3k2

x ) and g (k) = kx (3k2
y − k2

x )

We end this subsection discussing superconductivity in magic angle twisted bilayer graphene394

(MATBG) where the pairing symmetry is still not known although there has been some theo-395

retical proposals [25]. The experimental observation of nematicity in the SC state [26], shows396

that the normal state D6 symmetry, is spontaneously broken in the SC state. Thus condensa-397

tion must take place either in the E1 or the E2 irrep of D6. As pointed out in the introduction,398

if it were any of the 1D irreps, the pair wavefunction would be invariant under D6 up-to a399

phase rotation, and the SC state would not show the observed nematicity. This corresponds400

to the orbital part being a p-wave for the E1 irrep or a d-wave for the E2 irrep in the pair401

wavefunction proposed in [25]. The residual symmetry in the SC state is the two-fold rotation402

about z-axis, X = C2z . Since the E1 irrep (p-wave) has a C2 character −1 and the E2 irrep403

(d-wave) has a C2 character +1, these correspond to the two 1D irreps of X . There is a one404

to one correspondence between Rpair and PSGs for X as shown in table B and thus the two405

possible pairing symmetries would give two distinct SC state PSGs.406

4.3 Trigonal Symmetry407

Like in the previous subsection, we consider the honeycomb lattice in the x y plane except408

now two different species occupy the A and B sub-lattices. Such is the case, for example, in a409

mono-layer transition metal dichalcogenide (TMD). The resulting point group C3v is generated410

by a three-fold rotation about the z-axis (C3) and reflection about a vertical mirror in the y z411

plane (σv) which act on the coordinates as412

(x , y)
C3−→
�

−
1

2
x −
p

3

2
y, −

1

2
y +
p

3

2
x

�

(43a)

(x , y)
σv−→ (−x , y) (43b)

The relations C3
3 = σ

2
v = e and C3σvC3 = σv capture the group law. There are two 1D irreps413

for this group with eiΦσv = ±1 and two PSGs with σv squaring to unity in one and to the414

fermion parity in the other, ω(σv ,σv) = ±1415

In TMDs, the presence of strong Ising SOC breaks spin rotation invariance [27]. Hole dop-416

ing away from charge neutrality creates small Fermi surface pockets at the K and K ′ valleys.417

Denoted by superscript 0, the symmetry operations that preserve the kinetic energy act on the418

fermion operator ĉkν s for the active band as419

Ĉ0
3 ĉkν s (Ĉ

0
3 )
−1 =
�

e−i
π
3σz
�

s s ′
ĉC3kν s ′ (44a)

σ̂0
v ĉkν s (σ̂

0
v)
−1 = [τx ]νν′ [iσx ]s s ′ ĉσv kν′ s ′ (44b)

where ν is the valley and s is the spin label and momentum k is measured from the K or K ′420

point. Pauli matrices σ⃗ and τ⃗ act on spin and valley spaces respectively. The normal state PSG421

is thus described by the cocycle ω0(σv ,σv) = −1.422
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Rpair ≡ eiΦσv Ψ(k) RΦ ≡ e−iΦσv /2 ωΦ ω̃

A1 = +1 ∆0 ±1 +1 −1
A2 = −1 ∆0ky(3k2

x − k2
y) ±i −1 +1

Table 4: Trigonal Symmetry (X = C3v) with strong SOC

To ensure the Cooper pair has a zero center of mass momentum, pairing must be inter-423

valley. Because of time reversal invariance, the Fermi surface pockets at opposite valleys have424

oppositely polarized spins. If the spin polarization is σz = +1 in the K valley (τz = +1),425

then it is along σz = −1 in the K ′ valley (τz = −1). Therefore, in addition to Pauli ex-426

clusion, the order parameter matrix ∆(k) in the spin-valley space must satisfy the constraint427

PT∆(k) = ∆(k)P = ∆(k) where P = 1
2(1 + σzτz) projects onto the σzτz = +1 space.428

Consistent with these requirements, ∆(k) takes the form429

∆(k) =

�

Ψ(k)τ+ −Ψ(−k)τ−

�

(ẑ · σ⃗)(iσy) +

�

Ψ(k)τ+ +Ψ(−k)τ−

�

(iσy) (45)

As expected, the absence of spin rotation invariance in the normal state results in a pair wave-430

function which is a superposition of singlet and triplet parts. For the pairing term to transform431

as a 1D irrep of C3v under (44), Ψ(k) must satisfy432

Ψ(k) = Ψ(C3k) (46a)

Ψ(−k) = eiΦσvΨ(σvk) (46b)

Table 4 shows that the two 1D irreps are in a one-one correspondence with the two SC state433

PSGs. It also gives an example of Ψ(k) for each pairing symmetry.434

4.4 Physical consequences of the PSG435

The projective symmetry group G f of the BdG Hamiltonian has effects on all fermionic ex-436

citations of the superconductor, since the Bogoliubov quasipaticles as excitations of the BdG437

Hamiltonian form a linear representation of the PSG G f . In particular, the topological prop-438

erties of the superconductor is determined by the PSG, as different PSGs give rise to different439

classifications of fermion topological superconductors (TSCs) [11,14,28]. This is a well-known440

fact in the classification of gapped fermion topological phases, both in the 10-fold way [29]441

classification of non-interacting topological superconductors [11, 30], and in the interacting442

classification of fermion symmetry protected topological phases [14,31]. For example, in the443

case of time reversal symmetry T , it is well known that two- and three-dimensional topolog-444

ical insulators only exist for spinful electrons with T̂ 2 = (−1)F̂ and G f = U(1) ⋊ ZT
4 , which445

is a different symmetry class (class AII in the 10-fold way [29]) than spinless case (class AI in446

the 10-fold way [29]), with T̂ 2 = 1 and G f = U(1)⋊ ZT
2 . In addition to topological classifi-447

cations, these two distinct symmetry classes have many other different properties, such as the448

presence vs. absence of Kramers degeneracy of fermion excitations. Below we illustrate how449

different PSGs, and hence different pairing symmetries, give rise to different classifications of450

TSCs, in the case of crystalline symmetries [28, 32–37]. Our classification scheme applies to451

gapped topological SCs. Thus, weak pairing unconventional SC with gap nodes are not part452

of the classification. However, there are fully gapped unconventional SCs, like the (p + ip)453

state in 2D and the B-phase of He3 , which are topologically non-trivial. Our analysis focus454

on understanding how, in the presence of additional crystalline symmetries, pairing symmetry455

through the PSG affects the classification of such states. We use 3d SCs with mirror reflection456

symmetry Mx , and 2d SCs with 2-fold rotational symmetry C2z as two known examples to457

demonstrate this fact.458
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SOC strength pairing symmetry G f K-theory classification [38,39]

Weak
A′ SU(2)×ZM̂x

2 Z

A′′ SU(2)×ZM̂x
4 /Z2 Z2

Strong
A′ Z

M̂x
4 0

A′′ Z
M̂x
2 ×Z

F
2 Z

Table 5: Classification of class D topological superconductor in 3d with mirror reflec-
tion Mx . The fermion projective symmetry groups G f are listed for superconductors
with weak/strong SOCs and A′/A′′ pairing symmetries. Note that the topological
classification is solely determined by G f .

SOC strength pairing symmetry G f K-theory classification [40,41]

Weak
A SU(2)×ZC̃2z

2 Z

B SU(2)×ZC̃2z

4 /Z2 Z
2

Strong
A Z

C̃2z

4 Z
2

B Z
C̃2z

2 ×Z
F
2 Z

Table 6: Classification of class D topological superconductor in 2d with C2z rotation
perpendicular to the 2d x -y plane. The fermion PSGs G f are listed for superconduc-
tors with weak/strong SOC and A/B pairing symmetries. Note that the topological
classification is solely determined by G f .

4.4.1 3d SCs with mirror reflection symmetry Mx459

Our first example is the classification of TSCs in three dimension (3d) in the presence of460

only mirror reflection symmetry Mx which reverses the x coordinate. From the group co-461

homology H(2)(ZMx
2 ,Z2) = Z2, we find two possible fermion PSGs in the presence of strong462

SOCs: G f = Z
M̂x
2 × Z

F
2 with M̂2

x = +1, and G f = Z
M̂x
4 with M̂2

x = (−1)F̂ . Similarly, in463

the presence of weak SOCs and spin rotational symmetry, the two possible PSGs are given by464

G f = SU(2)×ZM̂x
2 with M̂2

x = +1, and G f = SU(2)× Z M̂x
4 /Z2 with M̂2

x = (−1)F̂ .465

For weakly interacting systems, K -theory [10,11,30,38,39] can be used to classify distinct466

TSCs described by BdG Hamiltonians. In the presence of strong SOCs, it gives rise to a Z467

classification of TSCs for the case of M̂2
x = +1, and a trivial classification for the case of468

M̂2
x = (−1)F̂ [38, 39]. In the presence of a weak SOC and SU(2) spin rotational symmetry,469

there is a Z classification of TSCs for the case of M̂2
x = +1, and a Z2 classification for the case470

of M̂2
x = (−1)F̂ [38,39]. With this result we can now readily bridge the gap between pairing471

symmetry and the K-theory classification of TSC via the projective symmetry group G f .472

A mirror symmetry satisfying M̂2
x = +1 is preserved either in a singlet superconductor473

with pairing symmetry A′ in the presence of a weak SOC, or in a superconductor with pairing474

symmetry A′′ in the presence of a strong SOC. The classifications of weakly-interacting TSCs475

in these two cases are both Z.476

To compare, a mirror symmetry satisfying M̂2
x = (−1)F̂ corresponds to either a singlet su-477

perconductor with pairing symmetry A′′ in the presence of a weak SOC, or a pairing symmetry478

A′ in the presence of a strong SOC. For these two cases the classifications of TSCs are Z2 and479

trivial, respectively. The results are summarized in Table 5.480
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4.4.2 2d SCs with 2-fold rotational symmetry C2z481

Our second example is the classification of TSCs in two dimensions (2d) with a C2z rotation482

perpendicular to the 2d plane. In this case H(2)(C2z,Z2) = Z2, which yields two different483

fermion PSGs in the presence of a strong (weak) SOC: one with Ĉ2
2z = +1 and the other with484

Ĉ2
2z = (−1)F̂ , as shown in Table 6. Accordingly, the K -theory classification of C2z symmetric485

TSCs [40] are given by Z for Ĉ2
2z = +1 and Z2 for Ĉ2

2z = (−1)F̂ .486

From the relationship between pairing symmetry and projective symmetry group, we find487

that the Ĉ2
2z = +1 case corresponds to either a singlet SC with pairing symmetry A or a SC488

with a strong SOC and pairing symmetry B. Then for these two cases the classifications of489

topological superconductors are both Z.490

The Ĉ2
2z = (−1)F̂ case corresponds to either a singlet superconductor with pairing symme-491

try B or a superconductor with a strong SOC and pairing symmetry A. For these two cases the492

classifications of TSCs are both Z2. The results are summarized in Table 6.493

From these two examples, we see that BdG Hamiltonians with different PSGs generally494

give rise to different topological classifications. Based on the correspondence between the495

fermion PSG and the pairing symmetry discussed in sections 2-3, the classification of TSCs is496

therefore directly related to the pairing symmetry, as demonstrated in Table 5-6. For TSCs of497

all the possible pairing symmetries associated with a magnetic point group symmetry, Ref. [28]498

summarizes a full list of K-theory classification for both the cases of spinless (weak SOC) and499

spinful (strong SOC) electrons.500

5 General framework501

So far we have only focused on cases where the normal and the SC states have the same spin502

rotational symmetry. This simplifies the the form of the fermion PSG as explained below. For503

systems with weak SOC the physical symmetry group is G = X × SO(3)spin. When we take a504

central extension by the fermion parity group to obtain the fermion PSG, both in the normal505

and SC state PSGs, the SO(3)spin becomes an SU(2)spin. The spatial part however undergoes506

different central extensions: X0
f

in the normal state PSG and X̃ f in the SC state PSG. Thus,507

the fermion PSG preserving the kinetic energy is (X0
f
× SU(2))/Z2 and that preserving the508

BdG is (X̃ f × SU(2))/Z2 (taking a quotent by Z2 takes care of the “double-counting" of ZF
2 ).509

Thus, the difference between the normal and SC state PSGs is completely captured by different510

central extensions of X by ZF
2 . This holds true for systems with strong SOC where spin rotation511

symmetry is altogether absent and with G = X , the fermion PSG is synonymous with the central512

extension of X by ZF
2 .513

When spin rotation is spontaneously broken in the SC state, the fermion PSG no longer514

admits such a simple description in terms of central extensions of the spatial part. When the515

physical symmetry group in the SC state is G = X × S where S is a subgroup of the normal516

state spin rotation group, as we show in section 5.1, the fermion PSG could be a generic517

group extension of X by the fermion spin rotation symmetry group S f . S f in turn is a central518

extension of S by the fermion parity group and could in general be non-Abelian.519

In superfluid 3He, condensation into the spin triplet channel spontaneously breaks the520

continuous spin rotation symmetry present in the normal state. We discuss it in section 5.2 in521

the light of this general framework.522
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5.1 Group extension and pairing symmetry in a generic superconductor523

Let the normal state spin rotational symmetry group S0 ⊆ SO(3)spin be spontaneously broken524

down to S ⊆ S0 in the SC state. With the charge U(1) symmetry in the normal state completely525

broken, the SC state physical (bosonic) symmetry group G takes the form G = X ×S, where X526

denotes the spatial symmetry group preserved by the SC state. We now describe the structure527

of the fermion symmetry group G f in such cases. Some of the relevant mathematical details528

can be found in Appendix A.529

First of all, the fermion spin rotation (or internal) symmetry group in the SC-state, S f is a530

subgroup of G f and given by a central extension of the physical spin rotation symmetry group531

S:532

1→ ZF
2 → S f → S→ 1 (47)

S f has the form S f =
�

(±1)F̂ ŝ ′ | s ∈ S
	

where under a spin rotation ŝ ′, the fermion operator533

transforms as534

ŝ ′ ĉkα ŝ ′−1 =
�

Ũ s�†
αβ

ĉkβ (48a)

Ũ s = e−iφs U s
0 (48b)

The transformation is a combination of an SU(2) spin rotation U s
0 that preserves the kinetic535

energy and a compensating phase rotation e−iφs required to make ŝ ′ a symmetry of the BdG536

hamiltonian. Being an internal (on-site) symmetry, ŝ ′ leaves the momentum label unchanged537

on both sides of (48a). For a given S, the possible choices for S f is captured by H(2)(S,Z2),538

the second cohomology group formed by inequivalent classes of cocycles [ω̃]. As already539

noted in previous sections, the cocycle ω̃ taking values in {±1} also characterize the projective540

representation of S formed by
�

Ũ s | s ∈ S
	

.541

To build G f , next we need to consider the group of spatial symmetries, X . For g ∈ X , ĝ0542

preserves the kinetic energy and transforms the fermion operator as543

ĝ0 ĉkα ĝ−1
0 =
�

Ug
0 (k)
�†

αβ
ĉgkβ (49)

To make this a symmetry of the pairing term, not only do we need to dress it with a compen-544

sating phase e−iφg but also with a normal state spin rotation U s0(g )
0 (where s0(g ) ∈ S0). Since545

the kinetic energy is invariant under normal state spin rotations and U(1) phase rotations, the546

resulting transformation ĝ ′ preserves the BdG hamiltonian. Its action on the fermion operator547

is given by548

ĝ ′ ĉkα ĝ ′−1 =
�

Ũg (k)
�†
αβ

ĉgkβ (50a)

Ũg (k) = e−iφg U s0(g )
0 Ug

0 (k) (50b)

Although the structure of G f is in general much more complicated than simply a direct549

(or even a semi-direct) product of spatial and spin rotation symmetry groups, it is possible550

to obtain a generic characterization as discussed below. To begin with, let us compare what551

one obtains by the successive application of ĥ′ and ĝ ′ on ĉkα and that by applying Óg h
′

on552

the same. Using (50a) we see that in both these cases we get a fermion operator on the right553

hand side with the same momentum label g hk. With both ĝ ′ĥ′ andÓg h
′

being symmetries of554

the BdG hamiltonian, this implies that these are in fact the same upto an internal symmetry555

transformation (η)F̂ ŝ ′(g , h). In other words,556

ĝ ′ ĥ′ = (η)F̂ ŝ ′(g , h)Óg h
′

(51)
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Moreover, for any ŝ ′ ∈ S f , the transformation ĝ ′ ŝ ′ ĝ ′−1 keeps the momentum label of the557

fermion operator unchanged and hence must belong to S f . Then again, any element of G f558

can be written as a product of a ĝ ′ for some g ∈ X and an (η)F̂ ŝ ′ ∈ S f such that G f has the559

form G f =
�

(±1)F̂ ŝ ′ ĝ ′ | s ∈ S, g ∈ X
	

. We thus conclude that S f is a normal subgroup of560

G f and G f /S f = X . Equivalently S f , G f and X satisfy the short exact sequence561

1→ S f → G f → X → 1 (52)

It is hard to find all such extensions in the most general case. However, if S f is abelian then all562

such extensions are captured by the second cohomology group H(2)
[ρ]
(X , S f ). It is to be noted563

that the matrices {Ũ s · Ũg |s ∈ S, g ∈ X} form a projective representation of G = S × X with564

coefficients in
�

±Ũ s | s ∈ S
	

.565

Finally, we discuss the relation between the fermion PSG G f and the pairing symmetry. In566

general, the pairing wavefunctions ∆α,β in BdG Hamiltonian (7) form a linear representation567

Rpair of the bosonic symmetry group G = S×X , where S stands for the global (spin rotational)568

symmetry group and X stands for the crystalline symmetry group. Meanwhile, in the repre-569

sentation {Ũ s · Ũg |s ∈ S, g ∈ X} introduced above, we can identify a projective representation570

of group G = S × X :571

RΦ(s , g ) = e− i (φs+φg )U s0(g )
0 , ∀ s ∈ S, g ∈ X . (53)

It is evident that the projective representation RΦ is not 1D in general. Also note that while572

for the global internal symmetry group S, the transformations that preserve the kinetic energy,573

preserve the pairing term up to a phase (just as in (14)), that may not be the case for the574

crystalline group X . Hence Rpair is in general a multi-dimensional linear representation of G.575

Rpair and RΦ are related by the following relation:576

RΦ ⊗RΦ ⊗Rpair = 1⊕ · · · (54)

where 1 denotes the trivial one-dimensional (1d) representation of group G. This is be-577

cause the pairing term (9) must remain invariant under the PSG symmetry transformation578

{Ũ s · Ũg |s ∈ S, g ∈ X}. Notice that in the special case of RΦ being a 1d irrep, applicable to579

the situation discussed in Section 3, the general relation (54) reduces to Eq. (22). In order for580

Rpair to be a multi-dimensional irrep., the tensor product RΦ ⊗RΦ of two projective repre-581

sentations in Eq. (54) must be a multi-dimensional irrep. of group G. Therefore, a necessary582

condition for the pairing order parameter to form a multi-dimensional irrep. of symmetry583

group G (i.e. for Rpair to be multi-dimensional) is that RΦ is a multi-dimensional projective584

representation of group G. As we will show below, one such example is the superfluid B phase585

of Helium 3.586

5.2 Examples: superfluid A and B phases in Helium-3587

The most famous example of triplet superconductivity (or superfluidity) is perhaps Helium-588

3 [5]. The normal state preserves continuous spatial rotations and inversion symmetry:589

X0 = SO(3)orbital ×ZI
2 ≃ O(3), (55)

along with full spin rotation symmetry, S0 = SO(3)spin. Condensation takes place in a spin590

triplet p-wave state breaking the full spin rotation symmetry down to a proper subgroup. In591

the basis, Ψk ≡ (ck,↑, ck,↓, c†
−k,↑, c†

−k,↓)
T the BdG Hamiltonian takes the form592

ĤBdG =
∑

k

Ψ̂†
k

�

(
k2

2m −µ)1 ∆(k)

∆†(k) (µ− k2

2m )1

�

Ψ̂k (56a)

∆(k) = d(k) · σ⃗(iσy) (56b)
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To obey Fermi statistics, the three component complex vector d(k)must satisfy d(k) = −d(−k).593

In particular for p-wave 3He, the components of d(k) are linear in k. The various phases,594

characterized by different broken symmetries, are distinguished by the form of the d(k) vector.595

We apply the general framework described above to the two phases: (1) B phase, also known596

as the Balian-Werthamer (BW) phase [42], (2) A phase, also known as Anderson-Brinkman-597

Morel (ABM) phase [43, 44], discussing the residual symmetry group in the SC state and the598

SC state fermion PSG in each case.599

The transformations that preserve the kinetic energy act on the fermion operators as600

Spin rot. Ŝ0(θ⃗ ) ĉk s Ŝ0(θ⃗ )
−1 =
h

US(θ⃗ )
0

i†

s s ′
ĉk s ′ US(θ⃗ )

0 = eiθ⃗ ·σ⃗/2 (57a)

Space rot. R̂0(θ⃗ )ĉksR̂0(θ⃗ )
−1 =
h

UR(θ⃗ )
0

i†

s s ′
ĉR(θ⃗ )k s ′ UR(θ⃗ )

0 = 1 (57b)

Inversion Î0 ĉk s Î−1
0 =
�

UI
0

�†
s s ′ ĉ−k s ′ UI

0 = 1 (57c)

With
�

R̂0(πn̂)
�2
= Î2

0 = 1 and
�

Ŝ0(πn̂)
�2
= (−1)F̂ , the normal state fermion PSG is of the601

form X0 × SU(2).602

5.2.1 Superfluid B phase of Helium-3603

In the B phase, d(k) =∆0(kx x̂+ky ŷ+kz ẑ) [22]. The spin rotation group is broken down from604

S0 = SO(3)spin to its trivial subgroup S = {1} in the SC state. Using (47), the fermion onsite605

symmetry group is simply the fermion parity group S f = ZF
2 . The system remains isotropic606

in the SC state and X = SO(3)orb.+spin × ZI
2 ≃ O(3). As suggested by the label, the normal607

state spatial rotation in (57b) has to be modified by including a normal state spin rotation608

and since d(k) is inversion odd, the normal state inversion in (57c) has to be modified by a609

compensating phase rotation by i. The transformations that preserve (56a) are610

Space rot. R̂′(θ⃗ )ĉksR̂′(θ⃗ )−1 =
�

ŨR(θ⃗ )
�†

s s ′
ĉR(θ⃗ )k s ′ ŨR(θ⃗ ) = eiθ⃗ ·σ⃗/2 · 1 (58a)

Inversion Î′ ĉk s Î′−1 =
�

ŨI�†
s s ′ ĉ−k s ′ ŨI = i 1 (58b)

With S f = ZF
2 , the full fermion symmetry group G f , which by (52) is a group extension of X by611

S f , reduces to a central extension of X byZF
2 . Eqns. (58a) and (58b) give R̂′(πn̂)2 = Î′2 = (−1)F̂ ,612

showing that G f involves non-trivial central extensions of both SO(3)orb.+spin and ZI
2 and is613

given by G f = (SU(2)×Z4)/Z2.614

Conversely, one can learn about the pair wavefunction from the SC state PSG in the su-615

perfluid B phase. From (58a), we see that RΦ(R(θ⃗ )) = US(θ⃗ )
0 = eiθ⃗ ·σ/2 which is a j = 1/2616

projective representation of G(≃ SO(3)). According to relation (54) and the angular momen-617

tum addition rules, Rpair is either a j = 0 or j = 1 linear irrep of G(≃ SO(3)). However,618

because the projective representation RΦ(R(θ⃗ )) coincides with the normal-state spin rotation619

in (57a), the j = 0 irrep will preserve spin rotation and hence does not apply to the superfluid620

B phase. As a result, the pairing term must transform like a j = 1 representation under (57b).621

This is consistent with d(k)∝ k in this case.622

5.2.2 Superfluid A phase of Helium-3623

In the A-phase, without loss of generality, d(k) = ∆0(kx + iky)ẑ [22]. The spin rotational624

symmetry is broken down from S0 = SO(3)spin to S = U(1)z ⋊ Zx
2 ≃ O(2), which is the625

subgroup generated by continuous spin rotations around the ẑ axis, S(θ ẑ) and π spin ro-626

tations about the x -axis. All possible fermion onsite symmetry groups S f are classified by627
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H2(S,ZF
2 ) = H2(O(2),Z2) = Z3

2. Since under π spin rotation about x -axis dz(k)→ −dz(k),628

the corresponding normal state transformation has to be modified by a phase rotation of i.629

No such compensating phase is thus required for spin rotation about z-axis. The SC state spin630

rotations are implemented as631

Spin rot. Ŝ′(θ ẑ) ĉk s Ŝ′(θ ẑ)−1 =
�

ŨS(θ ẑ)�†
s s ′ ĉk s ′ ŨS(θ ẑ) = eiθσz/2 (59a)

Spin rot. Ŝ′(πx̂) ĉk s Ŝ′(πx̂)−1 =
�

ŨS(πx̂)�†
s s ′ ĉk s ′ ŨS(πx̂) = σx (59b)

The central extension is characterized by Ŝ′(πx̂)2 = 1 and Ŝ′(πẑ)2 = Ŝ′(πŷ)2 = (−1)F̂ and632

correspondingly S f ≃
�

±σn
x eiθσz/2 | 0 ≤ θ < 2π , n = 0, 1

	

=
�

σn
x eiξσz | 0 ≤ ξ < 2π , n = 0, 1

	

633

≃ O(2).634

The spatial O(3) symmetry is broken down to a subgroup of X = U(1)z × Z I
2 , generated635

by continuous spatial rotations about z-axis, R(θ ẑ) and inversion I. In this case, the normal636

state transformations need to be modified only by compensating phase rotations. The SC state637

transformations are given by638

Space rot. R̂′(θ ẑ) ĉks R̂′(θ ẑ)−1 =
�

ŨR(θ ẑ)�†
s s ′ ĉR(θ ẑ)k s ′ ŨR(θ ẑ) = e− iθ/2 · 1 (60a)

Inversion Î′ ĉk s Î′−1 =
�

ŨI�†
s s ′ ĉ−k s ′ ŨI = i 1 (60b)

In this case the fermion symmetry group G f ≃ (O(2)×U(1)×Z4)/Z2 is a nontrivial extension639

of X by S f satisfying
�

R̂′(πẑ)
�2
= Î′2 = (−1)F̂ .640

6 Conclusion641

Traditionally, the broken and unbroken symmetries of a superconductor (SC) is described by642

the Ginzburg-Landau theory, which characterizes the symmetry properties of all bosonic ex-643

citations therein, such as Cooper pairs. In this paper we investigate the same problem of644

broken and unbroken symmetries in a SC state from a viewpoint of fermionic excitations.645

We showed that the projective symmetry group (PSG) of fermions in a superconductor is the646

proper language to capture symmetry-related properties of fermionic excitations in a SC, and647

systematically studied the relationship between the pairing symmetry and the fermion PSGs in648

a superconductor. We provided a general framework in Section 5 to characterize the fermion649

symmetry group after the Cooper pair formation with the concept of PSG, which is a group650

extension of the crystalline space group X by the fermion global symmetry group S f in the651

superconducting phase. Examples of fermion global symmetry groups include the fermion652

parity group Z F
2 in a generic SC without spontaneous breaking of spin rotational symmetries,653

and O(2) as in the case of superfluid A phase of Helium-3. In the case of the fermion global654

symmetry group S f being an Abelian group, the group extension problem can be classified by655

the second group cohomology, which is both conceptually clear and practically easy to com-656

pute.657

When the SC and normal state share the same fermion global symmetries, i.e. in the658

absence of spontaneously broken spin rotational symmetries, the fermion PSG of the SC state is659

particularly simple: it is a central extension of the crystalline symmetry group X by the fermion660

parity group Z F
2 . In this case, we can classify all fermion PSGs using elements of the 2nd661

cohomology group H2(X , Z F
2 ). Using the connection between pairing symmetry and fermion662

PSG discussed in section 2, we can systematically obtain all the possible pairing symmetries663

compatible with the PSGs as delineated in Sec. 3. A distinction was made between the case664

of SCs with and without spin-orbital couplings (SOCs), where in the presence of a strong665
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SOC, crystalline symmetries of fermions in the normal state are described by a non-trivial 2-666

cocycle ω0 ∈H2(X , Z F
2 ), and the correspondence between PSG and pairing symmetry should667

be shifted accordingly. Within this general framework, we calculated all the possible PSGs668

for all 3-dimensional point group symmetries both with and without SOCs, and establish the669

correspondence between PSGs and pairing symmetries of the SCs. As a demonstration of670

the framework, we studied in detail the PSGs and pairing symmetries of several physically671

relevant systems in section 4, and hope our work would shed new lights on understandings of672

superconductivity in these systems. Considering the crystalline symmetry group X , although673

we have restricted our attention to point groups in this work, the case of magnetic point groups674

and space groups can be naturally incorporated in our general framework.675

It is useful to compare the fermion PSGs in this work to PSGs initially introduced in the676

context of quantum spin liquids (QSLs) [21,23]. In QSLs, due to the presence of fractionalized677

excitations, like spinons, and emergent gauge fields, each element of the PSG is a combination678

of physical symmetry operation, such as a crystal symmetry g ∈ X , and local gauge rotations.679

In contrast, in a superconductor each element of the fermion PSG is a combination of an680

unbroken crystal symmetry operation g ∈ X and a spontaneously-broken global symmetry681

operation such as a U(1) charge rotation. We emphasize that our analysis does not involve the682

effects of dynamical local gauge fields, which have been proposed to lead to a description of683

superconductors as symmetry protected topological states [45] or states with Z2 topological684

ordered states [46]. We thus treat charged superconductors and neutral paired superfluids on685

the same footing as systems with a broken global U(1) possibly in addition to other broken686

symmetries.687

PSGs have important implications on physical properties of a superconductor. As the PSG688

G f is the symmetry group of fermions in a SC, it dictates the symmetry and topological proper-689

ties of all the fermionic excitations of the system and its validity extends beyond the mean-field690

BdG equations. Therefore, PSG can be used to classify topological superconductors in both691

non-interacting (i.e., admitting a mean-field description) and interacting cases. As an illustra-692

tion, we discussed systems with two different kinds of symmetry groups where G f determines693

classifications of non-interacting topological superconductors. Moreover, as PSG establishes694

a link between pairing symmetry and topological properties of a system, we can utilize topo-695

logical properties of the electronic excitations as a diagnosis for the pairing symmetry of a696

superconductor. We leave these interesting ideas for future works.697
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A A short introduction to projective representation and 2-cocycle704

In this appendix we want to elucidate the connection between the projective representation of705

the crystalline symmetry group as described by the mathematical object called 2-cocycle and706

the fermion projective symmetry group G f .707

The concept of PSG was first introduced in the study of quantum spin liquids [21]. In the708

context of quantum spin liquids, electrons can be thought of as being composed of chargons709
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and spinons which are glued together by an SU(2) gauge field. Due to the emergent gauge710

structures, symmetries that are represented linearly on the physical degrees of freedom are711

now represented only projectively on the spinons. More specifically, spin operators at site i712

can be written as fermionic spinons: Si =
1
2 f †

i,α
σ⃗α,β fi,β . A spin Hamiltonian can be described713

by a mean-field theory of spinons plus gauge fluctuations. Consider the following mean-field714

Hamiltonian:715

H =
∑

i j

[ψ†
i
ui jψ j + h.c.] +

∑

i

al
0ψ

†
i
τlψi , (A.1)

where ui j ’s are 2×2 matrices encoding pairing and hoppings of fermionic spinons,ψi = ( f↑, f †
↓ )

T716

are Nambu spinors.717

The Hamiltonian has a local SU(2) gauge redundancy: a site-dependent SU(2) transfor-718

mationψi → Wiψi , ui j → Wi ui j W
†
j

with Wi ∈ SU(2)which leaves both physical observables719

and the Hamiltonian invariant. Due to this gauge redundancy, the symmetry of the spin liquids720

are described by the projective symmetry group, which is defined as the collection of all com-721

binations of symmetry elements and gauge transformations that leave the mean-field ansatz722

{ui j} invariant:723

GUU({ui j}) = {ui j}, (A.2)

U({ui j} ≡ {ũi j = uU−1(i),U−1( j)}, (A.3)

GU(ui j) ≡ {ũi j = GU(i)ui jG
†
U( j)}, (A.4)

GU(i) ∈ SU(2), (A.5)

where U is an element of the symmetry group SG of the microscopic system and GU is the724

SU(2) gauge transformation accompanying U that leaves the mean-field ansatz invariant.725

To encode the emergent gauge fields at low energy for spin liquid states, we introduce726

the important concept of invariant gauge group (IGG) which are pure gauge group elements727

that leave the mean-field ansatz invariant: Wi ui j W
†
j
= ui j . It is clear that IGG corresponds728

to elements GUU in PSG where U is the identity. With the concept of IGG it is now easy to729

describe the structure of PSG. In fact, IGG is a normal subgroup of PSG, and with the group730

homomorphism ρ(GUU) = U between PSG and SG, we have the following exact sequence:731

1→ IGG
ι
−→ PSG

ρ
−→ SG→ 1, (A.6)

where ι is the embedding mapping, and the exactness is ensured by the fact that ρ(w ) ≡ 1 ∈732

SG for w ∈ IGG. The structure of the PSG is now quite clear: it is the group extension of the733

SG by the IGG, or alternatively, SG=PSG/IGG.734

Equipped with the knowledge of PSG, it is also easy to see that the problem of unbroken735

symmetries of the superconductor naturally fits into the general framework of PSG if we notice736

that the BdG Hamiltonian takes the same form as the spin liquid mean-field Hamiltonian. More737

precisely, as discussed in the main text, fermions in the superconductor has the symmetry738

group G f , which is an extension of the space group X by the fermion global symmetry group739

S f described by the short exact sequence:740

1→ S f → G f → X → 1. (A.7)

The resemblance to Eq. A.6 is immediately seen if we identify the unbroken global symmetry741

group S f as IGG and the fermion symmetry group G f as PSG. However, there’s an important742

difference we need to keep in mind: in our study of superconductor, the global symmetry743
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group S f should not be regarded as the gauge group corresponding to a fluctuating gauge744

field, as was in the context of spin liquids.745

In general S f can be non-Abelian, and we refer to Ref. [21] for a general computation746

scheme to solve the extension problem by obtaining all the inequivalent projective symmetry747

groups G f . Below let’s discuss the special case of S f being Abelian, which covers most of the748

practical situations and is mathematically much simpler to deal with. And we will comment749

briefly on the case of S f being non-Abelian in the end.750

In the case of S f being Abelian, the group extension of X by S f can be described as an751

element in the second cohomology group H2
[ρ]
(X ,S f ) with group actions [ρ] : X → Aut(S f )752

(note that when the group action is trivial, the group extension is simply a central extension).753

To see this more clearly, let’s label group elements in G f as (s , g ) with s ∈ S f , g ∈ X . Now,754

since S f is in the center of G f , we can represent the group multiplication rule in the following755

way:756

(sg , g )× (sh, h) = (s(g , h)sg sh, g h), (A.8)

where s(g , h) is a function X × X → S. The above procedure has an ambiguity since we can757

alternatively define g ′ = γg g ∈ G f (γg ∈ S f ) as our canonical choice of g . This then modifies758

s(g , h) as:759

s(g , h)→ s(g , h) · γg · γ
g
h
· γ−1

g h, (A.9)

where the superscript g indicates group actions g on elements in S f as described by [ρ] .760

The s(g , h)’s satisfy the associativity condition if we apply three group elements in G f in761

two equivalent ways, which yields762

s(g1, g2)s(g1g2, g3) = s(g1, g2g3)s
g1(g2, g3). (A.10)

The coboundary condition A.9 and the cocycle condition A.10 then define an element in763

H2(X , S f ). Therefore we have found out that in the case of central extension, G f is uniquely764

determined by the 2-cocycle s(g , h), which is further classified by the second cohomology765

group H2(X , S f ).766

Before proceeding, let me emphasize an important point: fermions fulfill a 1d representa-767

tion of S f , which we denote as ρS : S f → U(1). Note that ρS is determined by the microscopic768

electrons and can be viewed as a group homomorphism from S f to Image(ρS).769

Because elements in G f act on fermions in a linear way, let’s consider a linear represen-770

tation Û of the group G f . Since S f lies at the center of the group, Û((s , 1)) should be of the771

form ρS(s)×1 according to Schur’s lemma and the fact that the symmetry action of s ∈ S on772

fermions is given by ρS.773

If we identify U(g ) as Û((1, g )), U(g ) would fulfill a projective representation of X :774

U(g )U(h) = Û((1, g ))Û((1, h)) = Û((s(g , h), g h))

= Û((s(g , h), 1))Û((1, g h)) =ω(g , h)U(g h),
(A.11)

where ω(g , h) ≡ ρS(s(g , h)) is a function X × X → Image(ρS). The ω satisfies the following775

associativity condition if we act three consecutive symmetry operations in two equivalent ways:776

g1g2g3 = (g1g2)g3 = g1(g2g3), which translates to777

ω(g1, g2)ω(g1g2, g3) =ω(g1, g2g3)ω
g1(g2, g3), (A.12)

where the superscript g onω indicates group actions on the U(1) phase induced by the group778

action [ρ] on elements in S f .779
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We can also multiply symmetry actions U(g ) by some U(1) phase γg ∈ Image(ρS), which780

then modifies ω in the following way:781

ω(g , h)→ω(g , h)
γgγ

g
h

γg h
. (A.13)

The associativity condition (A.12) and the ambiguity (A.13) thus define a 2-cocycle in782

the second cohomology group H2(X , Image(ρS)). And the equation Eq.(A.11) establishes783

an explicit homomorphism between the projective representation of X (an element in the784

cohomology group H2(X , Image(ρS))) and the fermion projective symmetry group G f (an785

element in H2(X , S)).786

In summary, a linear representation of the fermion projective symmetry group G f can787

alternatively be viewed as a projective representation of the group X with cocycle ω(g , h)788

which is an element in the cohomology group H2(X , Image(ρS)), as elucidated by Eq.(A.11).789

Several remarks are in order:790

1. When S f is Abelian and ρS is injective, the two cohomology groups H2(X , Image(ρS))791

and H2(X , S f ) are isomorphic to each other, therefore we have sometimes used these792

terms interchangeably in the main text.793

2. When S f is non-Abelian, G f can no longer be described by an element in the second794

cohomology group. If we restrict our attention to the case where the representation ρS795

of S f on fermions are one dimensional, then the correspondence Eq.(A.11) still holds,796

enabling us to carry out calculations within this general framework.797

3. When S f is non-Abelian, there are cases where the representation of S f on fermions798

are at least 2-dimensional, such as spin-1/2 fermions in the superfluid A phase with799

S f = O(2). Such cases are beyond the scope of cohomological description, and we need800

to solve the projective symmetry groups up to gauge equivalence on a case-by-case basis801

following the general procedures as described in Ref. [21].802

B How PSG constrains the pairing symmetry for all crystalline803

point groups804

Since G f is the extension of G by Z F
2 , we can view 1d projective representations RΦ(g ) of G as805

regular representations R̄Φ(ĝ ′) for ĝ ′ ∈ G f with R̄Φ(d) = −1 ( d ≡ (−1)F̂ ) when restricted806

to the subgroup X = G f /Z F
2 . This is confirmed by the following relation:807

R̄Φ((ηg , ĝ ′))R̄Φ((ηh, ĥ′)) = R̄Φ((ηgηhω̃(g , h), ĝ ′ĥ′)) =ω(g , h)R̄Φ((ηgηh, ĝ ′ĥ′)), (B.1)

where we have used the fact that Z F
2 is the center of G f and ηg ,ηh = ±1.808

Our strategy then is to first obtain the group extension G f ∈H2(X , Z F
2 ) and then compute809

the 1d irreducible representations R̄Φ(g ) of G f with Z F
2 = −1, from which we can readily810

obtain Rpair . We used GAP computer algebra program [24] in all these calculations, which is811

ideally suited for the task. The results are displayed in Table.7.812

C GAP program for PSG calculation813

Groups, Algorithms and Programming (GAP) is a software system designed for algebraic com-814

putations. In this section, we provide further details on how GAP is applied to the theories815

discussed in Sections 2, 3.816
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To calculate the group cohomology of point groups, we use the HAP and Cryst pack-817

ages in GAP. Starting from a point group G, we calculate its second cohomology with coeffi-818

cients in Z2 using the TwoCohomologyGeneric function, and we determine the representa-819

tions of G using the Irr function. For each cohomology class, we obtain the unique (up to820

coboundary equivalence) group extension X̃ f of G via the FpGroupCocycle function. From821

the TwoCohomologyGeneric function and the FpGroupCocycle function we can easily con-822

struct the quotient map X̃ f → G. Next, we calculate the representations and characters of X̃ f .823

For each one-dimensional irrep of X̃ f , we simply square it and use the quotient map X̃ f → G824

to obtain the corresponding irrep of G. We then look up the group representation tables in825

Ref. [47] to find the corresponding Rpair as listed in the last column of Table. 7. The pseu-826

docode is presented in Algorithm 1.827

One complication in the algorithm is to obtain a complete and linearly-independent list of828

gauge-invariant cocycles to label the cohomology classes H2(G,Z2). This is done manually829

by first listing all the gauge-invariant cocycles of the form ζg ≡ ω(g , g ) for group element830

g satisfying g 2 = 1, and ηg ,h ≡
ω(g ,h)
ω(h,g ) for group elements g , h satisfying g h = hg . We831

have tested that this list completely characterize all the cohomology classes. We then find the832

linearly-independent ones among these gauge-invariant cocycles to label all the cohomology833

classes as shown in column 3 of Table. 7.834

Algorithm 1 Pseudocode for calculating PSGs and corresponding pairing symmetries
Input: Point group G
Output: the (spinless) PSG ωΦ
Output: the corresponding pairing symmetry Rpair

1: Coh = H2(G,Z2) //Obtain all information on the second cohomology
2: Char = Characters of irreps of G
3: for ωΦ ∈ Coh do
4: X̃ f = The extended group of G corresponding to ωΦ
5: CharExt = Characters of irreps of X̃ f
6: Identify the group elements of X̃ f within conjugacy classes of G
7: for RΦ ∈ CharExt do
8: if RΦ is a 1D irrep then
9: Rpair = R2

Φ
10: Identify Rpair ∈ Char
11: end if
12: end for
13: end for
14: Return All matching pairs (ωΦ ∈ Coh, Rpair ∈ Char)
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Table 7: Correspondence between the fermion PSG and the representation of the
pairing order parameter for all the crystalline point group. We list gauge-invariant
cocycles to label different projective symmetry groups G f for superconductors both
without and with spin-orbital couplings. We follow the convention in Ref. [47] to
label irreducible representations Rpair (g ) of the pairing order parameter. Some G f
does not admit a 1d projective representation and hence the corresponding Rpair
is marked as N/A. For gauge invariant cocycles, we use the following short-hand

notations: ζg ≡ω(g , g ), and ηg ,h ≡
ω(g ,h)
ω(h,g ) .

X H2(X , Z F
2 ) Gauge-invariant 2-cocycles No SOC (spinless) w/ SOC (spinful) Rpair (g )

C1 Z1 − − − A

Ci Z2 ζi
1 1 Ag
−1 −1 Au

C2 Z2 ζC2

1 −1 A
−1 1 B

Cs Z2 ζσh

1 −1 A′

−1 1 A′′

C2h Z
3
2 (ζC2

,ζi ,ζσh
)

(1, 1, 1) (−1, 1,−1) Ag
(1,−1,−1) (−1,−1, 1) Au
(−1, 1,−1) (1, 1, 1) Bg
(−1,−1, 1) (1,−1,−1) Bu
other cases other cases N/A

D2 Z
3
2

(ζC2x
,ζC2y

,ζC2z
)

(1, 1, 1) (−1,−1,−1) A
(−1,−1, 1) (1, 1,−1) B1
(−1, 1,−1) (1,−1, 1) B2
(1,−1,−1) (−1, 1, 1) B3
other cases other cases N/A

C2v Z
3
2 (ζC2

,ζσv
,ζσ′v )

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(−1, 1,−1) (1,−1, 1) B1
(−1,−1, 1) (1, 1,−1) B2
other cases other cases N/A

D2h Z
6
2

(ζC2x
,ζC2y

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1, 1, 1,−1) Ag

ηC2x ,i ,ηC2y ,i ,ηC2x ,C2y
)

(1,−1, 1, 1, 1, 1) (−1, 1, 1, 1, 1,−1) B3g
(−1, 1, 1, 1, 1, 1) (1,−1, 1, 1, 1,−1) B2g
(−1,−1, 1, 1, 1, 1) (1, 1, 1, 1, 1,−1) B1g
(1, 1,−1, 1, 1, 1) (−1,−1,−1, 1, 1,−1) Au
(1,−1,−1, 1, 1, 1) (−1, 1,−1, 1, 1,−1) B3u
(−1, 1,−1, 1, 1, 1) (1,−1,−1, 1, 1,−1) B2u
(−1,−1,−1, 1, 1, 1) (1, 1,−1, 1, 1,−1) B1u

other cases other cases N/A

C4 Z2 ζC2

1 −1 A, B
−1 1 E

S4 Z2 ζC2

1 −1 A, B
−1 1 E

26



SciPost Physics Submission

Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant cocycles No SOC With SOC Rpair (g )

C4h Z
3
2 (ζC2

,ζi ,ηC4,i)

(1, 1, 1) (−1, 1, 1) Ag , Bg
(−1,−1, 1) (1,−1, 1) Eu
(1,−1, 1) (−1,−1, 1) Au , Bu
(−1, 1, 1) (1, 1, 1) Eg

other cases other cases N/A

D4 Z
3
2

(ζC2
,ζC ′2

,ζC ′′2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1,−1) (−1, 1, 1) A2
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2

other cases other cases N/A

C4v Z
3
2 (ζC2

,ζσv
,ζσd

)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D2d Z
3
2

(ζC2
,ζC ′2

,ζσd
)

(1, 1, 1) (−1,−1,−1) A1
(1, 1,−1) (−1,−1, 1) B1
(1,−1, 1) (−1, 1,−1) B2
(1,−1,−1) (−1, 1, 1) A2
other cases other cases N/A

D4h Z
6
2

(ζC ′2
,ζC ′′2

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ζC2
,ηC ′2,i ,ηC ′′2 ,i)

(1, 1,−1, 1, 1, 1) (−1,−1,−1,−1, 1, 1) A1u
(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) B1g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) B1u
(−1,−1, 1,−1, 1, 1) (1, 1, 1, 1, 1, 1) A2g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u

other cases other cases N/A
C3 Z1 − − − A1, E

C3i Z2 ζi
+1 +1 Ag , Eg
−1 −1 Au , Eu

D3 Z2 ζC2

+1 −1 A1
−1 +1 A2

C3v Z2 ζσv

+1 −1 A1
−1 +1 A2

D3d Z
3
2

(ζC ′2
,ζi ,ηC ′2,i)

(1, 1, 1) (−1, 1, 1) A1g
(1,−1, 1) (−1,−1, 1) A1u
(−1, 1, 1) (1, 1, 1) A2g
(−1,−1, 1) (1,−1, 1) A2u
other cases other cases N/A

C6 Z2 ζC2

+1 −1 A, E1
−1 +1 B, E2

C3h Z2 ζσh

+1 −1 A′, E′

−1 1 A′′, E′′
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Table 7 Continued.

X H2(X , Z F
2 ) Gauge-invariant cocycles No SOC With SOC Rpair (g )

C6h Z
3
2 (ζC2

,ζi ,ηC2,i)

(1, 1, 1) (−1, 1, 1) Ag , E1g
(1,−1, 1) (−1,−1, 1) Au , E1u
(−1, 1, 1) (1, 1, 1) Bg , E2g
(−1,−1, 1) (1,−1, 1) Bu , E2u
other cases other cases N/A

D6 Z
3
2

(ζC2
,ζC ′2

,ηC2,C ′2
)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

C6v Z
3
2 (ζC2

,ζσv
,ηC2,σv

)

(1, 1, 1) (−1,−1,−1) A1
(1,−1, 1) (−1, 1,−1) A2
(−1, 1, 1) (1,−1,−1) B2
(−1,−1, 1) (1, 1,−1) B1
other cases other cases N/A

D3h Z
3
2 (ζσv

,ζσh
,ησh,σv

)

(1, 1, 1) (−1,−1,−1) A′1
(1,−1, 1) (−1, 1,−1) A′′2
(−1, 1, 1) (1,−1,−1) A′2
(−1,−1, 1) (1, 1,−1) A′′1
other cases other cases N/A

D6h Z
6
2

(ζC2
,ζC ′2

,ζi ,

(1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1, 1) A1g

ηC2,C ′2
,ηC2,i ,ηC ′2,i)

(1, 1,−1, 1, 1, 1) (−1,−1,−1,−1, 1, 1) A1u
(1,−1, 1, 1, 1, 1) (−1, 1, 1,−1, 1, 1) A2g
(1,−1,−1, 1, 1, 1) (−1, 1,−1,−1, 1, 1) A2u
(−1, 1, 1, 1, 1, 1) (1,−1, 1,−1, 1, 1) B2g
(−1, 1,−1, 1, 1, 1) (1,−1,−1,−1, 1, 1) B2u
(−1,−1, 1, 1, 1, 1) (1, 1, 1,−1, 1, 1) B1g
(−1,−1,−1, 1, 1, 1) (1, 1,−1,−1, 1, 1) B1u

other cases other cases N/A

T Z2 ζC2

1 −1 A, E
−1 1 N/A

Th Z
2
2 (ζC2

,ζi)
(1, 1) (−1, 1) Ag , Eg
(1,−1) (−1,−1) Au , Eu

other cases other cases N/A

O Z
2
2

(ζC2
,ζC ′2
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Td Z
2
2 (ζC2

,ζσd
)

(1, 1) (−1,−1) A1
(1,−1) (−1, 1) A2

other cases other cases N/A

Oh Z
4
2

(ζC2
,ζC ′2

,
(1, 1, 1, 1) (−1,−1, 1, 1) A1g

ζi ,ηi,C ′2
)

(1, 1,−1, 1) (−1,−1,−1, 1) A1u
(1,−1, 1, 1) (−1, 1, 1, 1) A2g
(1,−1,−1, 1) (−1, 1,−1, 1) A2u
other cases other cases N/A
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