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Abstract

We develop a Dirac fermion theory for topological phases in magnetic topological insulator
films. The theory is based on exact solutions of the energies and the wave functions for an
effective model of the three-dimensional topological insulator (TI) film. It is found that the
TI film consists of a pair of massless or massive Dirac fermions for the surface states, and
a series of massive Dirac fermions for the bulk states. The massive Dirac fermion always
carries zero or integer quantum Hall conductance when the valence band is fully occupied
while the massless Dirac fermion carries a one-half quantum Hall conductance when the
chemical potential is located around the Dirac point for a finite range. The magnetic
exchange interaction in the magnetic layers in the film can be used to manipulate either
the masses or chirality of the Dirac fermions and gives rise to distinct topological phases,
which cover the known topological insulating phases, such as the quantum anomalous Hall
effect, quantum spin Hall effect and axion effect, and also the novel topological metallic
phases, such as the half-quantized Hall effect, half quantum mirror Hall effect, and metallic
quantum anomalous Hall effect.
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1 Introduction54

Topological phases, bridging the abstract topological classification [1–4] to the practical55

electronic phases of matter, have gained an increasing interest and redefined the way people56

understand and estimate physics in condensed matter systems [5–7]. In contrast to phases57

described by the Landau-Ginzburg theory and spontaneous symmetry breaking scheme58

[8, 9], phases termed after topological share no local order parameter, but topological59

invariants [4, 10–12] defined globally only. These invariants, such as Chern numbers and60

the Z2 invariant, exhibit robustness against continuous deformations that do not alter61

certain preconditions imposed over specified topological classes, like the global gap for an62

insulator [13–16], and symmetry constraints over the total system [3] or the Fermi surface63

in a metal [4].64

Within the vast topological phase landscape, the three-dimensional topological insula-65

tor (3D TI) [17–23] stands out as a unique state of matter, protected by the time-reversal66

symmetry and characterized by a strong Z2 index. As a result of the celebrated bulk-67

boundary correspondence [24–27], the surface of a 3D TI hosts a single gapless Dirac68

fermion, whose low-energy dispersion is necessarily governed by the massless Dirac equa-69

tion in 2D, exhibiting spin-momentum locking [28]. Nevertheless, the ever existence of70

such a gapless Dirac fermion has to be restrained by the no-go Nielsen-Ninomiya theo-71

rem [29, 30], and it turns out that the high-energy states of this fermionic band gain a72

bulk-like mass [31, 32] to reconcile the contradiction. The sign of this restored mass is73

defined as the chirality [33] for a regulated 2D gapless Dirac fermion, and it is responsible74

for the half-quantization of its Hall conductance. The emergence of the high-energy mass75

term due to the lattice regularization essentially breaks the parity symmetry explicitly [34]76

and evades locality [35] simultaneously.77

The gapless behavior of the surface Dirac fermion can be altered through the finite-78

size effect. When the topological insulator is exfoliated into a film, two gapless Dirac79

fermions emerge at the top and bottom surfaces. However, as the thickness of the film is80

further reduced to the ultra-thin limit, by quantum confinement [36–38] the surface states81

of the two Dirac bands become gapped. The thickness-dependent mass gap exhibits an82

exponentially decaying and oscillating pattern [39], revealing multiple topological phase83

transitions. This phenomenon provides a pathway to realize the 2D quantum spin Hall84

effect [12,40–42] with an ultra-thin TI film.85

The occurrence of spontaneous magnetization can alter the topological property of the86

TI film. Typically, a pair of gapless Dirac fermions emerge at two surfaces of a TI film,87

each carrying half-quantized Hall conductance with opposite signs under mirror symmetry,88

leading to the half quantum mirror Hall effect [33]. The effect shares a similar quantized89

non-local transport signature with the quantum spin Hall effect [12, 43–45], while being90

intrinsically a metallic phase. Further gapping out the surface states by an out-of-plane91

magnetism [46] gives rise to various topologically distinct phases. Within the scheme of92

magnetic topological insulators, two such phases have been discovered as the Chern insu-93

lator [47–49], aka quantum anomalous Hall effect (QAHE) that is characterized by Chern94

invariant and quantized Hall plateau, and the axion insulator [50,51], marked by zero Hall95

plateau and non-vanishing longitudinal conductance. A semi-magnetic topological insula-96

tor, on the other hand, bears with the half-quantized quantum anomalous Hall effect (half97

QAHE) [31, 52, 53] with a half-quantized Hall conductance and unusual bulk-boundary98

correspondence, signed by the absence of edge state but the appearance of the power-law99

decaying current from boundary to bulk. In addition, if the magnetization is pushed away100

from the surfaces and towards the middle of the film with sufficient strength, the metal-101

lic quantized anomalous Hall effect (metallic QAHE) [32] can occur, which also exhibits102
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integer Hall conductance but lacks chiral edge states.103

Remarkably, the physics underlying the topological phases in the (magnetic) topo-104

logical insulator films can be all attributed to the topological properties of the emergent105

two-dimensional Dirac fermions in the system. While certain phases, like QAHE and half106

QAHE, can be well explained by focusing on the interplay between surface Dirac fermions107

and magnetism, there exist other phases that essentially involve higher bulk bands, no-108

tably the metallic QAHE. These higher bulk bands are identified as a series of massive109

Dirac fermions, revealing that both gapless and gapped Dirac fermions in the topological110

insulator film interact with spontaneous magnetism to generate various topological phases.111

The topological index, or the quantized Hall conductance in each phase, is always given112

by some gapped or gapless Dirac fermion(s), described by a modified Dirac equation.113

In this paper, we will provide a unified framework to discuss and review how emer-114

gent Dirac fermions exist and generate various topological phases in magnetic topological115

insulator films, thus naturally partitioning the paper into two main parts. The first part116

of the paper will focus on establishing the existence of Dirac fermions in magnetic topo-117

logical insulator films. This discussion will heavily rely on a newly defined basis derived118

from an exact solution in 1D. We will thoroughly investigate the Hall conductivity car-119

ried by different types of Dirac fermions within this framework, setting the stage for the120

subsequent discussion of topological phases. In the second part we will delve into the121

characterization and analysis of topological phases in magnetic topological insulator films.122

These phases will be classified into weak- and strong-magnetism regimes, providing a com-123

prehensive understanding of how different magnetic strengths influence the emergence of124

various topological states. In the remainder of this introduction we will give an overview125

of the main results of this paper following the line.126

The TI film is equivalent to a set of Dirac fermions: a pair of massless Dirac fermions127

for bands that contain the surface states, and a series of massive Dirac fermions consisting128

of purely bulk states, classified by their momentum-dependent mass terms mn(k). This129

scenario holds within both its continuum and lattice model versions, and is made clear130

and exact through an introduced unitary transformation in the whole k-space, based on131

an exact solution in one dimension perpendicular to the film plane. The finite-size effect132

is briefly discussed here.133

The Hall conductivity carried by a massive or gapless Dirac fermion is discussed gen-134

erally, with additional symmetry constraints imposed on the Fermi surface for the latter135

one, for both continuum and lattice models. A direct deduction leads to the result that the136

Hall conductivities associated with the gapless and gapped Dirac fermions in the TI film137

are ±e2/2h and 0, respectively, leading to a half quantum mirror Hall effect by 1/2−1/2,138

serving as a metallic partner to the insulating quantum spin Hall effect. A brief proof for139

the half-quantization of a metallic band structure with considered symmetry constraints140

over the Fermi surface is also presented. Additionally, a field theoretical deduction for the141

half quantization, and a discussion on handling the Hall conductivity of a gapless Dirac142

fermion are provided.143

The introduced magnetism, characterized by out-of-plane polarization, manifests as144

two equivalent matrix Higgs fields that collectively couple the Dirac fermions in a TI145

film, generating and altering their masses. Treated at the mean-field level, the exchange146

interaction stands as an out-of-plane Zeeman field in TI film, which transforms via the147

unitary transformation into two momentum-dependent matrix fields IS/A(k). The two148

fields directly couple different species of Dirac fermions and alter their masses, serving as149

mass-generating Higgs fields, whose non-vanishing expectation values arise concurrently150

with the spontaneous establishment of the ferromagnetic order. Depending on the field151

strength, generally two regimes as weak and strong magnetism are classified. In addi-152
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tion, the forms of other kinds of spin and orbital fields under unitary transformation are153

discussed.154

In the weak Zeeman field regime, the topological phases are characterized by focusing155

on n = 1 matrix elements affecting the two gapless Dirac fermions near the surface. This156

framework clarifies the underlying physics behind the Chern insulator, axion insulator, and157

half QAHE, with symmetric, antisymmetric, or unilateral distribution of Zeeman fields at158

the surface of the TI film, respectively. The resulting Hall conductance exhibits quantized159

nature: 1 + 0, 0 + 0, and 1/2 + 0 in units of e2/h. Additionally, the mirror layer Chern160

number in the Chern insulator with symmetrically distributed magnetism is examined,161

revealing (1/4)–(1/2)–(1/4) partition for the non-trivial band and (c/4)–(−c/2)–(c/4)162

with c ≈ 1 for the trivial band.163

In the strong Zeeman field regime, the discussion is based on the effective mass pic-164

ture, involving the gapped series of Dirac fermions through matrix Higgs fields couplings.165

Another metallic topological phase, the metallic QAHE, is identified where the magnetism166

is centralized in the middle of the TI film. Despite remaining gapless and lacking chiral167

edge states, its Hall conductance is quantized into an integer over e2/h. Additionally,168

higher Chern insulators resulting from sub-band inversion at high-symmetry points are169

presented under a uniform Zeeman field. Furthermore, the paper discusses topological170

phases characterized by cooperation between magnetism in the middle and at the surface,171

based on the framework of gapping out surface states in the metallic QAHE.172

The plan of the remainder of this paper is as follows. Beginning with the exact solu-173

tion of the model Hamiltonian for a topological insulator film in Section 2, we demonstrate174

that a TI film comprises a pair of gapless Dirac fermions, which contain low-energy surface175

states, and a series of gapped massive bulk Dirac fermions. Section 3 offers a comprehen-176

sive discussion on the Hall conductivity, a critical indicator revealing the presence of177

topological phases, carried by different species of Dirac fermions. Moving on to the inclu-178

sion of magnetism in Section 4, we unveil the role of magnetism as matrix Higgs fields,179

responsible for generating masses of the Dirac fermions in a TI film. This section also180

briefly explores other spin and orbital fields possible within the framework. In Section 5,181

based on the weak magnetism approximation, we identify topological phases processable182

under the lowest four-band model framework, which stresses surface states with mag-183

netism: half quantum mirror Hall effect, quantum anomalous Hall effect, half-quantized184

anomalous Hall effect, and axion insulator. We introduce the mirror layer Chern number185

and illustrate the Hall conductivity distribution in symmetrically magnetized TI film. The186

Chern and axion insulator phases in interlayer anti-ferromagnetic material MnBi2Te4 are187

also discussed under the same framework. In Section 6, we delve into topological phases188

within relatively strong magnetism regimes, such as high Chern number insulators and189

the metallic quantized anomalous Hall effect, where bulk Dirac fermions come into play.190

The paper concludes in Section 7 with a summary and a discussion of future prospects.191

2 Massless and massive Dirac fermions in a topological insulator192

film193

In this section, by solving the minimal continuum and lattice models of the topological194

insulator, we show that from the physical aspect, a topological insulator film is composed195

of a pair of gapless Dirac fermions, whose low-energy parts near Dirac point are composed196

of massless surface states inside the bulk gap while the high-energy parts away from the197

Dirac point evolve into bulk states gradually, together with a series of gapped massive198
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(a) (b) (c)

Figure 1: Schematic momentum dependent mass configurations (upper panel)
and corresponding band structure of Dirac fermions (lower panel). The quanti-
zation of Hall conductivity is denoted by N for half quantization in a metallic
band and C for quantization at the bottom of a gapped band. The colors assigned
to the Dirac cones represent the sign of Berry curvature with red for positive and
blue for negative. (a) On the left panel, two gapless Dirac fermions are shown,
whose masses are zero at low-energy near the Dirac point (assumed to be k = 0),
while non-vanishing at high-energy with opposite signs, which we define as the
chirality χ of a 2D gapless Dirac fermion. Such chirality unambiguously deter-
mines the sign of the loop integral of Berry connection around the Fermi surface,
consequently determining the sign of half-quantized Hall conductivity. (b) In
the middle, two trivially gapped massive Dirac fermions are present, with masses
being either positive or negative for all k, leading to a sign change of Berry cur-
vature and a totally vanishing Hall conductivity labeled by zero Chern number.
(c) On the right panel, two non-trivial gapped Dirac cones are displayed, and
the corresponding masses exhibit kink configurations with sign change between
low and high-energy areas. Such non-trivial mass configuration indicates overall
Berry curvature sign convergence, and leads to a non-vanishing Hall conductivity
labelled by an integer Chern number. The non-triviality is also addressed by
formally drawing states connecting conduction and valence bands, well-known as
chiral edge states for a Chern band under open boundary conditions [13,14].
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Dirac fermions consisting of purely bulk states. Quantitatively, we write199

Hc(k) =
⊕

n

�
λ‖k ·σ +mn(k)τzσz

�
, (1a)

Hl(k) =
Lz⊕

n=1

�
λ‖ sin(kx a)σx + λ‖ sin

�
ky a
�
σy +mn(k)τzσz

�
, (1b)

for the continuum and lattice model, respectively. Here we adopt a homogeneous in-film-200

plane parameter set with a and λ‖ as the in plane lattice constant and Fermi velocity, and201

k = (kx , ky) is the in-film-plane wavevector. Notice that an infinitely direct summed Dirac202

fermions exist in the continuum model, while there are only 2Lz species with Lz the layer203

number along opened z-direction of the film in the lattice model. For the mainly concerned204

individual Dirac cone with a single Dirac point at k = 0, its topological property is revealed205

based on a general discussion over the nature of its Hall conductivity quantization, as206

revealed in the schematic diagram Fig. 1. Especially, in the strong TI film with a single207

Dirac cone at Γ , aka k = 0 point, the gapless pair of Dirac fermions carry ±e2/2h, as208

half-quantized Hall conductivity, while the gapped series are all trivial.209

2.1 The continuum model210

In this subsection, the exact solution of the confined 3D modified Dirac equation, which211

is the continuum model describing the topological insulator film, is presented. A detailed212

study can be found in Appendix A.213

The continuum model Hamiltonian for the 3D TI reads [27,54]214

HTI(k, kz) = λ‖(k ·σ)τx + λ⊥kzσzτx + (m0(k)− t⊥k2
z )σ0τz

= H1d(k, kz) + H‖(k),
(2)

where H‖(k) = λ‖(k ·σ)τx , m0(k) = m0− t‖k2. This Hamiltonian is isotropic only in x -y215

plane. Substituting kz 7−→ −i∂z leads to the real-z-space description for the 1-D part as216

H1d(k, z) = ⊕s=±h(s), where217

h(s) = −i sλ⊥∂zτx + (m0(k) + t⊥∂ 2
z )τz. (3)

Solving the eigenproblem h(s)ϕ = Eϕ leads to specifically symmetrized chiral-partner218

basis [36–38]219

φn(s) = C

�−i sλ⊥ f n
+

t⊥ηn f n−

�
, E = mn, (4a)

χn(s) = C

�
t⊥ηn f n−
i sλ⊥ f n

+

�
, E = −mn, (4b)

where the dependence on (k, z) is inherited inside even/odd parity functions f n± (k, z)220

and real factor ηn(k), whose definition can be found in Appendix A. The k-dependent221

eigenvalue of h(s) is represented by ±mn(k), n = 1, 2, · · · , as a mass term, which can be222

solved in a closed manner through equations223

mn = m0(k)− t⊥
ξ2

1g (ξ1)− ξ2
2g (ξ2)

g (ξ1)− g (ξ2)
, (5a)

ξα =

√√√− F

D
+ (−1)α−1

p
R

D
, α = 1,2, (5b)
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where224 
g (ξ) = tan
�
ξL/2
�
/ξ

D = 2t 2
⊥

F = −2m0(k)t⊥ + λ2
⊥

R = F2 − 2D(m2
0(k)−m2

n)

. (6)

Figure 2: The momentum-dependent mass of Dirac fermions in a TI film as a con-
tinuum model. The lowest several momentum-dependent mn(k) along kx solved
from closed equations Eq. (5) are presented, while the homogeneous in-plane na-
ture of the model ensures that the asymptotic behavior of mn(k) is the same as
k →∞. Here the film thickness L = (Lz+1)c with Lz = 10 is chosen here as a TI
film with 10 layers. The index n is assigned such that |mn | increases with n. Es-
pecially notice the sign-jump behavior that sgn(mn(∞)) = (−1)n. From here on,
the model parameters on lattice for numerical calculations and verifications are
set as λ‖ = 0.41 eV eV, λ⊥ = 0.44 eV, t‖ = 0.566 eV, t⊥ = 0.4 eV, m0 = 0.28 eV,
a = b = 1 nm, c = 0.5 nm if with no specific indication [54]. Generically, these
parameters can be determined through the first-principle calculations, and the
specific choice here is for the sake of illustration. This parameter choice makes
the bulk 3D TI a strong one with a single Dirac point at Γ . And for the con-
tinuum model discussed here, the substitution λ‖ → λ‖a λ⊥ → λ⊥c, t‖ → t‖a2,
t⊥→ t⊥c2 should be recognized.

Projecting TI film Hamiltonian on eigenstates of H1d equals to performing an infinite-225

dimensional local unitary transformation in k-space, which gives a Hamiltonian equivalent226

to the TI film one as (see Appendix A.)227

H(k) =
⊕

n
λ‖τ0(k ·σ) +mn(k)τzσz, (7)

as Eq. (1a), where the projection basis is organized as228

Φn
1 =

�
φn(+)

0

�
,Φn

2 =

�
0

χn(−)
�

,

Φn
3 =

�
χn(+)

0

�
,Φn

4 =

�
0

φn(−)
�

.

(8)

We have to emphasize here that although spin is still preserved as σ in the transformed229

Hamiltonian, the degrees of freedom τ newly appeared here share a different meaning230
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compared with the original TI film Hamiltonian. Notice that Φ1,4 (Φ2,3) are z-parity even231

(odd) states, while Φ1,2 (Φ3,4) are z-mirror even (odd) states, which means that under232

the projection, the unitary matrices related to two operators are transformed into (see233

Appendix A.)234

Pz = τzσz, (9a)
Mz = τz. (9b)

Meanwhile, the local unitary matrix in k-space that transforms the continuum model235

Hamiltonian under the original representation is formally written as236

U c(k, z) = ({{Φ(k, z)}i}n), (10)

where the double brackets mean that we arrange i = 1, 2, 3, 4 index inside each n = 1, 2, · · · ,237

we see that U c is topologically trivial in (kx , ky) space, as it consists of certain arrange-238

ment of eigenstates Φn
i
, which are solved from the separated 1-D Hamiltonian and has a239

well-defined global representation within the same gauge choice in (kx , ky) plane, and is240

therefore topologically trivial.241

Our solution reveals that the 3D topological insulator film is composed of effectively242

2D multi-Dirac fermions, differing by their mass terms represented in Fig. 2 only. Notice243

that for the continuum model, there are in fact an infinite number of mns as a basic244

property of bound states in a quantum well, and we just present several lowest branches245

of the solutions. Also notice that from the solved mn, the mass terms show sign jumping246

behavior at high-energy (large k). Comparing the mass configurations in continuum model247

with the general classification in Fig. 1 reveals that while all n ≥ 2 masses serve as trivial248

massive Dirac band in the bulk, the lowest states with n = 1 are necessarily not, which249

in the presented case serve as two possible gapless Dirac cones whose low-energy parts250

are localized z-mirror-symmetrically at top and bottom surfaces. Especially, the analytic251

expression for m1(k), when the film is thick enough, can be written as [33] (also see252

Appendix A, and here t⊥ > 0 is assumed without losing generality)253

m1(k) = Θ(−m0(k))m0(k). (11)

Notice that the Heaviside Theta function appearing here only reveals physics that, in254

the low-energy zone near the Dirac point, the surface Dirac cone is massless, preserving255

both time-reversal and parity symmetry, while for the high-energy part away from the256

Dirac point, the non-vanishing mass term reveals that the surface Dirac cone has emerged257

into the bulk state, which breaks both time-reversal and parity symmetry explicitly. The258

appearance of such non-vanishing high-energy mass term is analogous to the introduced259

regulator [55–57] in quantum field theory. In this sense, one should not worry about the260

nonanalytic behavior of the Theta function near m0(k) = 0, as it can always be replaced261

by its mollifier [31,58].262

For the completeness of discussion here, we note that an ultra-thin TI film bears an263

exponentially decaying oscillating small gap m(0) with varying film thickness [36–38],264

which reads upon the lowest order as (for derivation, also see Appendix A)265

m1(0) ≈ − 4m0p
4γ− 1

sin
�
u
p

4γ− 1L
�
e−uL, (12)

with γ = m0t⊥/λ2
⊥, u = λ⊥/2t⊥. The numerical result is shown in Fig. 3, with excellent266

agreement between the lowest order approximated gap and that from solving the set of non-267

linear equations, especially for relatively large L. The exponentially decaying tendency is268

9
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Figure 3: Finite-size effect of an ultra-thin TI film in the continuum model,
revealed by the exponentially decaying oscillating mass gap 2m1(0) of surface
Dirac cones. Both m1(0) and its logarithmic absolute value varying with film
thickness L are shown. The solid line represents results from Eq. (12), while the
circles are obtained from solving the self-consistent equations Eq. (5) directly.
The inset shows an amplified area of the m1(0)− L diagram.

best revealed by the logarithmic absolute value of mass gap at k = 0, as its center decreases269

linearly with thickness, while the oscillating nature is revealed by the dips, which will270

extend to negative infinity at strict gap closing point, and the mass gap will reverse its271

sign before and after the dip, as shown directly by the m1(0)− L diagram and the inner272

amplified picture. Since m1(∞) = m0(∞) < 0 is certain, we see that the oscillating273

behavior of m1(0) with thickness L can drive m1(k) to share configuration that jumps274

between the one shown in Fig. 1(b) and (c), i.e., between a trivial band and a band with275

unit Chern number. Then for an ultra-thin film which owns two copies ±m1(k) reflected276

by τz in Eq. (7), the Z2 topological index shows jumping behavior between Z2 = 0 and277

Z2 = 1, i.e., between a band insulator and a quantum spin Hall insulator [40–42, 59, 60].278

We will not discuss further about this phenomenon except for giving an explicit Z2(Lz)279

oscillating diagram below in the lattice model subsection shown in Fig. 5. We emphasize280

here that the exponentially decaying gap will not affect physically observable topological281

phase, either for an insulating or metallic one, for a TI film with enough thickness.282

The solution of the continuum model enlightens us to commence with the lattice model283

of TI film below.284

2.2 The lattice model285

In this subsection, we ask and deal with the same question as above, but in the more286

realistic lattice model. Details are presented in Appendix B.287

The Hamiltonian of a 3D TI with nearest-neighbour hopping on cubic lattice is [17,54]288

HT I =
∑

l

Ψ†
l
M0Ψl +
∑
l,µ

�
Ψ†

l
TµΨl+µ + h.c.
�

, (13)

where energy and hopping matrices are M0 = (m0 − 2
∑
µ tµ)β , Tµ = tµβ − i

λµ
2 αµ, with289

l and µ denoting site locations and three spatial directions, while {β ,αµ} denoting Dirac290

matrices under standard Dirac representation β = σ0τz, αµ = σµτx , where Pauli matrices291

σµ and τµ represent different degrees of freedom, respectively. For instance, one could292

choose them to represent spin and pseudo-spin (like orbital) ones. Ψl represents vectorized293

10
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Fermionic operator at site l. Notice that when adopting a full Fourier transformation upon294

all three spatial dimensions, i.e., an infinite bulk system, the Hamiltonian is transformed295

into the standard modified Dirac’s equation [27] on lattice HT I =
∑

k Ψ
†
k
H(k)Ψk where296

H(k) =
∑
µ

λµ sin
�
kµaµ
�
αµ +

�
m0 − 4tµ sin2

�
kµaµ

2

��
β , (14)

whose continuum model is just an anisotropic version of Eq. (2). This model avoids297

the fermion-doubling problem [29, 30] by introducing Wilson terms [34] that break chiral298

symmetry explicitly for k 6= 0.299

Consider such a film with Lz number of sites along z direction. The Fourier transfor-300

mation in x -y plane gives301

HFilm =
∑
lz ,k

�
Ψ†

lz ,k
M0(k)Ψlz ,k +Ψ

†
lz ,k

TzΨlz+1,k + h.c.
�

+
∑
lz ,k

Ψ†
lz ,k

H‖Ψlz ,k ,
(15)

with302

H‖ = λ‖[sin(kx a)σxτx + sin
�
ky b
�
σyτx ], (16)

and M0(k) = M0(k)σ0τz = [m0(k)− 2t⊥]σ0τz, where303

m0(k) = m0 − 4t‖
�

sin2 kx a

2
+ sin2

ky b

2

�
. (17)

Note that we have set tx = ty = t‖, tz = t⊥, λx = λy = λ‖, λz = λ⊥, a = b.304

The solution of lattice model [32] shares much similarity with the continuum one. The305

details can be found in Appendix B as a repeat. Separating the Hamiltonian at k as306

HFilm(k) =H1d(k) +HS(k), (18)

where307

H1d(k) =
∑
lz

�
Ψ†

lz ,k
M0(k)Ψlz ,k +Ψ

†
lz ,k

TzΨlz+1,k + h.c.
�

, (19a)

HS(k) =
∑
lz

Ψ†
lz ,k

H‖Ψlz ,k . (19b)

The eigenvalues of H1d can be obtained with a set of simultaneous equations below,308

mn = M + 2t⊥
cosξ1g (ξ1)− cosξ2g (ξ2)

g (ξ1)− g (ξ2)
, (20a)

cosξα =
−Mt⊥ + (−1)α−1

Ç
M2t 2

⊥ − (t 2
⊥ − λ2

⊥/4)(M2 + λ2
⊥ −m2

n)

2(t 2
⊥ − λ2

⊥/4)
, (20b)

where309 
M = M0(k),

g (ξ) =
tan
�
ξ(Lz + 1)
�
/2

sinξ
,

(21)

and the sign of ξ is fixed by310

sinξα =
q

1− cosξ2
α, α = 1,2. (22)
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Now, different from the continuum model, the set of equations give Lz solutions mn(k), n = 1,2, · · · , Lz311

including one surface state and Lz − 1 purely trivial bulk states, if within suitable choice312

of parameters. This is essentially because now the Dirac equation is put on lattice, and313

the number of solutions is constrained by finite lattice constants. And the other set of Lz314

masses are just the chiral partners with eigenvalues −mn(k).315

Figure 4: The momentum-dependent mass of Dirac fermions in a TI film on
the lattice. Namely, mn(k), n = 1, 2, · · · , Lz along kx are solved from closed
equations Eq. (20) of lattice model with Lz = 40. Again, index n is assigned
in the way that |mn(π,π)| increases with n. Especially notice the sign-jump
behavior that sgn(mn(π,π)) = (−1)n.

The projection basis shares the same form as with the continuum model eigenstates,316

with only re-defined factor η (for details, refer to Appendix B or [32]). And the projection317

of the TI film model offers an equivalent description as318

H(k) =
Lz⊕

n=1

�
λ‖(sin(kx a)σx + sin

�
ky b
�
σy) +mn(k)τzσz

�
, (23)

as Eq. (1b), where 2Lz Dirac fermions H = ⊕n,χhn,χ(k) emerge as319

hn,χ(k) = λ‖(sin(kx a)σx + sin
�
ky b
�
σy) + χmn(k)σz, (24)

with χ = ± labelling the mirror eigenvalue [33]. An example of mn(k) with Lz = 40 is pre-320

sented in Fig. 4. Among these Dirac fermions, two of them with ±m1(k) are gapless Dirac321

cones with their low-energy states localized at top and bottom surfaces, while emerging322

into the bulk at their high-energy away from Dirac point, and the remaining fermions are323

all gapped. Notice that the same arguments about the projection as a trivial local unitary324

transformation and Heaviside Theta function form of the lowest solution (see below) can325

be made here, as in the continuum model.326

For the strong topological insulator with a single Dirac cone at Γ point, as we consider327

in the article, the lowest mass reads (t⊥ > 0 assumed, and the film is thick enough)328

m1(k) = Θ [−m0(k)]m0(k), (25)

which shares the same form with the continuum model.329
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Figure 5: Finite size effect of an ultra-thin strong TI film (Dirac point at Γ ) in
the lattice model, revealed by the exponentially decaying oscillating gap 2m1(0)
of surface Dirac cones and the oscillating Z2 index. The solid blue line of m1(0)
represents results from solving the self-consistent equations Eq. (20), while the
circles are obtained from diagonalizing the TI film Hamiltonian at k = 0 directly.
The Z2 index is calculated from inversion symmetry indicator [64] method, and
the solid red line represents index of n = 1 block Dirac fermions with solved
m1(k), while circles are indices calculated from TI film Hamiltonian directly.

2.2.1 Oscillating Z2 invariant330

As discussed in the continuum model case, in the ultra-thin film limit, the strong TI thin331

film with a single Dirac cone at Γ (k = 0) point will show oscillating behavior between332

a quantum spin Hall insulator and an ordinary insulator. The topological index of this333

kind is carried out explicitly in Fig. 5, with Z2 = (−1)ν with ν = 0,1, and the latter334

corresponds to a non-trivial 2D quantum spin Hall insulator. The mass oscillation and335

the index oscillation match perfectly, as Z2 = −1 (ν = 1) zones correspond to m1(0) > 0,336

so do their sign transitions (remind that m1(π,π) < 0 and m1(0) > 0 leads to a nontrivial337

mass configuration, as to be discussed below). Notice that when attributed to the lowest338

n = 1 block in Eq. (23), there is no constraint to force Lz to be integer from Eq. (20), and in339

this sense we continue the n = 1 block from integer Lz to a positively real one. This is why340

we can do the calculation above. Again we emphasize that we will consider thick-enough341

strong TI film for topological phases hereafter, and the exponentially decaying finite size342

effect is physically negligible.343

3 The quantum Hall conductivity of Dirac fermions344

As stated, in both the continuum model and lattice model, the strong topological insulator345

film is composed of two gapless Dirac fermions and countable gapped Dirac fermions. We346

have also claimed that all the massive fermions inside are trivial, while saying nothing347

about the massless two. Here in this subsection, we shall complete the basic picture of348

them. Discussion here is restricted to effectively two-dimensional systems and the zero-349

temperature limit.350
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3.1 In the continuum model351

Our starting point is the continuum model of a two-band Dirac fermion appearing above352

hC
DF = λk ·σ +m(k)σz, (26)

with k = (kx , ky) and σ = (σx ,σy). Notice that the mass depends on k = |k| and353

possesses a topologically trivial infinity behavior. Its Hall conductivity can be carried out354

by a deformed Kubo formula [27, 65], when the chemical potential µ lies at the valence355

band,356

σH = −e2

h

1

4π

∫
d2kΘ(µ+ d)

(∂kx
d × ∂ky

d) · d
d3

, (27)

where d(k) = (λkx ,λky , m(k)), d = |d|, and to reveal possible topological property, we357

have used the Heaviside Theta function with Θ(x > 0) = 1 and zero otherwise, as the358

zero-temperature Fermi-Dirac distribution. The Hall conductivity can then be carried out359

easily by defining360

cosθ =
m

(λ2k2 +m2)1/2
, (28)

and notice that361

σH

e2/h
=

1

2

∫ +∞
kF

dk2 ∂ cosθ

∂ k2
, (29)

which finally leads to362

σH =
e2

2h

�
sgn(m(+∞))− m(kF )

d(kF )

�
, (30)

with kF the Fermi vector determined by µ = d(kF ), and sgn(x ) the sign function. From363

this equation, three topological phases are readily to be classified. While we have assumed364

Notice that we assume a path connected Fermi surface, the discussion here should be easily365

generalized to the Fermi surface composed of concentric circles.366

3.1.1 Gapless/Metallic case367

The first case corresponds to a metallic phase with a finite kF . If m(kF ) = 0, which leaves368

a perfect linearized dispersion near the Fermi surface, we obtain a half-quantized Hall369

conductance as370

σH(µ|d(kF ) = λkF ) =
e2

2h
sgn(m(+∞)), (31)

where the half-quantization is completely determined by the high-energy mass sign which371

may be recognized as the chirality assigned to the low-energy massless Dirac fermion near372

the Fermi surface. In our equivalent model, such a case exists for the n = 1 bands373

h1,χ = λ‖(k ·σ) + χΘ(−m0(k))m0(k)σz, χ = ±. (32)

Since m0(k) = m0 − t⊥k2, then by assuming m0 > 0, t⊥ > 0, we have374

σ
1,χ
H (kF < kc) = −χ e2

2h
, (33)

with kc =
p

m0/t⊥ identified. For each gapless Dirac fermion, the exact half-quantization375

[4,53] comes deeply from the parity ‘anomaly’ [47,66–71], which manifests itself as an ex-376

plicit symmetry breaking term at high-energy for a low-energy massless 2D Dirac fermion.377

To be clearer, the 2D parity symmetry is indeed an in-plane mirror symmetry [31], say378
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about x , which forces (kx , ky)
Mx−→ (kx ,−ky), and in our model, the projected spin degrees379

of freedom make the related unitary transformation to be UMx
= σx , then the imposed380

parity symmetry U†
Mx

h(k)UMx
= h(Mx k) stands only when k < kc, which forms a parity381

invariant regime (PIR) inside which the parity symmetry is respected. The parity invari-382

ant regime is recognized as the low-energy zone around the Dirac point with small k, and383

for larger k > kc recognized as the high-energy zone, the non-vanishing mass term breaks384

the 2D parity symmetry explicitly, as a consequence of regulating the effective low-energy385

theory [55].386

3.1.2 Insulating case387

The remaining two phases are insulating with kF = 0 recognized when the chemical po-388

tential lies inside the global insulating gap, then simply389

σH(|µ| < dmin) =
e2

2h
[sgn(m(+∞))− sgn(m(0))] , (34)

for a Dirac cone, where dmin = min(d(k)) denotes the bound of the global gap. Clearly,390

σH/(e2/h) = 0,±1 appears, notifying trivial or non-trivial phases depending on the rel-391

ative signs of low and high-energy masses, with the ±1 cases identified as the Chern392

insulator or equivalently, the quantum anomalous Hall effect. In our equivalent model,393

one sees from Fig. 2 that all n ≥ 2 masses contains the same sign, and the corresponding394

Dirac cones are all trivial. And we come back to the statement that in a TI film, there395

are two gapless Dirac fermions with opposite half-quantized Hall conductance, while all396

other bands form paired trivial massive Dirac fermions. The quantized nature of the Hall397

conductance in insulating system, σH = −Ce2/h, is referred to by the famous TKNN398

theorem [10], with its robustness against continuous non-gap-closing perturbations rooted399

in the topological nature of C as the Chern invariant [72,73].400

3.2 In the lattice model401

Now we turn to the lattice model with a starting Dirac Hamiltonian defined on the lattice402

hL
DF = λ(sin(kx )σx + sin

�
ky
�
σy) +m(k)σz. (35)

Firstly, we notice that when m ≡ 0, the remaining part is a naive lattice realization of single403

Weyl fermion, which is strongly constrained by the Nielsen-Ninomiya theorem [29, 30].404

There appear to be four connected Dirac points at Γ , X , Y, M , respectively. Any non-405

vanishing m(k) will serve as a lattice regularization of the theory, with the only difference406

as its effectiveness upon in gapping out which Dirac point. Essentially, here the difference407

with a continuum model appears, say in the latter case there is only a single gapless408

Dirac cone, and the infinity is usually treated by one-point compactification and the k-409

space is topologically equivalent to a sphere surface S2, while on lattice the Brillouin zone410

geometry as a torus T2 can contain non-trivial property on its periodic boundary. Such a411

non-trivial property is exactly reflected by the existence of four Dirac points under naive412

lattice realization of Dirac operator k ·σ. With an analogical formulation, we write413

σH =
e2

2h
[SX + SY − SΓ − SM] , (36)

with Sk as an analogy to m(k)/d(k) appearing in the continuum model. Sk becomes zero414

when the chemical potential lies in the metallic states around k, and over those states415
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certain symmetry constraint is imposed in a finite regime around, such as the parity sym-416

metry which requires m(Mx k) = −m(k), and essentially, the imposed symmetry should417

ensure that the net Berry curvature integral contributed from the regime (constrained418

also by chemical potential) is zero wherever we put the Fermi level inside. On the other419

hand, we recognize Sk = sgn(m(k)) when Dirac point k is gapped, and the Fermi level420

lies inside. The formula is further classified into two cases under additional conditions.421

3.2.1 Gapless/Metallic case422

The first case corresponds to the existence of gapless Dirac fermion(s) inside a parity423

invariant regime. Consider an example as a single gapless Dirac fermion at Γ point, let424

the Fermi level lie in the symmetry constrained regime (SCR), and we recognize425

σH(kF ⊆ SCR) = e2

2h
[sgn(m(X)) + sgn(m(Y))− sgn(m(M))] , (37)

which is always half-quantized. Notice that kF = {k|d(k) = µ} is now a set, representing426

Fermi surface wavevectors. Also notice that unlike the case in the continuum model where427

the regulator comes from only at infinity, here on the square lattice, a single gapless Dirac428

fermion owns three regulators. At the same time, if sgn(m(X)) = sgn(m(Y)) = sgn(m(M))429

is recognized which makes the boundary of the Brillouin zone trivial, we get430

σH(kF ⊆ SCR) = e2

2h
sgn(m(M)). (38)

In our equivalent model on lattice, the lowest two cones431

h1,χ(k) = λ‖(sin(kx a)σx + sin
�
ky b
�
σy) + χm1(k)σz, (39)

satisfy the condition, with m1(k) = Θ(−m0(k))m0(k) identified. Since under our model432

parameter choice, it is easy to verify that sgn(m1(X)) = sgn(m1(Y)) = sgn(m1(M)) < 0,433

and we write434

σ
1,χ
H (m1(kF ) > 0) = −χ e2

2h
, (40)

inside the symmetry constrained regime which is now the parity invariant regime defined435

by m0(k) > 0.436

3.2.2 Insulating case437

The second case corresponds to a globally gapped Dirac band. Now by requiring the438

chemical potential to lie inside the gap, the Chern number reads439

C =
1

2
[sgn(m(Γ )) + sgn(m(M))− sgn(m(X))− sgn(m(Y))] , (41)

which ranges among 0,±1,±2. This formula has two common versions that we will come440

up with in the following. The first version is the most familiar one with a trivial Brillouin441

boundary when sgn(m(X)) = sgn(m(Y)) = sgn(m(M)) is recognized, and442

C =
1

2
[sgn(m(Γ ))− sgn(m(M))] . (42)

The mass term generating this formula, is usually written as443

m(k) = m0 − 4t

�
sin2 kx

2
+ sin2

ky

2

�
, (43)
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with a relatively small |m0| compared to |t |, and correspondingly, we have444

C =
1

2
[sgn(m0) + sgn(t )], (44)

which is non-trivial with unit Chern number when m0t > 0. And when we relax the value445

of m0, a better formula for this mass term is446

C = −sgn(m(X))

2
[sgn(m(Γ ))− sgn(m(M))] . (45)

In our equivalent model on lattice within our parameter choice as a strong topological447

insulator with homogeneous in-film-plane parameters, Eq. (42) is enough to describe all448

n ≥ 2 massive Dirac fermions; and since from Fig. 4, all mn≥2(k) do not change sign at Γ449

and M , they are evidently all trivial.450

3.3 A glance in proof of half-quantization451

The proof [4, 31] for the half-quantization of a general band structure in 2D comes as452

follows, with a requirement of parity or time reversal symmetry at the Fermi surface.453

Without losing generality, we consider a connected Fermi surface. Recognizing the in-454

finity as one point compactifies the k-space, then the existence of Fermi surface cuts the455

curvature integral into two parts with three boundaries where the Stokes’ theorem applies456

−2πσH

e2/h
=

∮
FS

dk · Tr
�
AM�+∮

FS
dk · Tr
�
AL�+∮

FS
dk · Tr
�
ÃL�, (46)

where AM refers to the non-Abelian Berry connection (convention follows that A = i 〈u|d|u〉)457

formed by the metallic bands crossed by the Fermi surface with parity or time-reversal458

symmetry, while AL refers to connection of bands with lower energy, on the boundary459

formed by kF . Essentially, the last two terms are phase integrals around one mutual460

boundary with opposite orientations, which will contribute an integer value [74–76] 2πC .461

For the first term, requiring the 2D parity (i.e., mirror) symmetry at the Fermi surface462

leads to a local unitary transformation UM
k

relating states at parity-symmetric points,463

which leads to464

AM
µ (k) = i(UM

k )
†∂kµU

M
k + (U

M
k )

†AM
ν (Mk)UM

k Jνµ, (47)

where Jνµ = ∂ (Mk)ν/∂ kµ is the Jacobian matrix with det(J) = −1. And similarly,465

requiring time reversal at Fermi surface leads to466

AM
µ (k) = i(UT

k )
†∂kµU

T
k − (UT

k )
†AM
µ (−k)UT

k , (48)

where UT
k

is the unitary matrix relating time reversal points satisfying that UT
k
= −(UT

−k
)T .467

Performing Berry phase loop integral of both sides leads to, for both symmetry restricted468

cases,469 ∮
FS

dk · Tr
�
AM� = i

2

∮
FS

dk · Tr
�
U†

k
∇kUk

�
= πN. (49)

Combining three terms gives470

σH = −e2

h

�
C +

N

2

�
, (50)

with both C and N integers. The proof here can be easily generalized to the lattice model,471

by simply replacing the base manifold with a torus, and to the case when the Fermi surface472
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consists of several separately connected components, with the curvature integral cut into473

more parts determined by Fermi surface position in k-space.474

When bands related to C and N are fully separated, the former can be recognized as475

the Chern number contributed from these fully occupied bands, while the latter reduces476

to a quantized Fermi surface loop integral over metallic bands [77–80]. We would like to477

emphasize here that even though reduced to cumulating low-energy (refer to Fermi surface478

here) quantities, the N index in our analysis has to be determined by the properties of far479

Fermi sea, i.e., high-energy regime. This is because the application of the Stokes theorem,480

which turns the Fermi sea volume integral over Berry curvature into Fermi surface line481

integral over Berry phase, requires a self-consistent gauge choice of the vector field. This482

gauge choice must not contain any singularities in the integrated volume, in order to ensure483

the existence of a non-singular gauge field throughout the volume.484

3.4 View from field theory485

The gapless Dirac fermion in a strong topological insulator film can be written as H0(k) =486

λ‖σ · (sin kx , sin ky) + m(k)σz with m(k) = Θ(−m0(k))m0(k) identified, which is con-487

structed on lattice with finite 2D Brillouin zone. The time-ordered Green function is488

G0(k) = [ω − d · σ(1 − iη)]−1where kµ = (ω, k)µ, d(k) = (λ‖ sin kx ,λ sin ky , m(k)) and489

η is infinitesimally small quantity. In order to study a linear electromagnetic response in490

the film system, we include the electromagnetic fields A which are coupled to the current491

through the interaction term Hgauge = j ·A. The electric current density operator in the492

momentum space is given by j = ∇kG−1
0 (k). With the electromagnetic fields, the action493

reads (e = ℏ = 1)494

S =

∫
k

ψ†
k
G−1

0 (k)ψk +

∫
k

∫
q

Aµ(q)ψ†
k+q/2

∂kµG
−1
0 (k)ψk−q/2, (51)

where
∫

k =
∫ dω

2π

∫
BZ

d2k
(2π)2 and the momentum k integral is performed over the whole 2D495

Brillouin zone. By integrating out the fermions in the action, the effective action for gauge496

fields Seff[A] can be obtained by expanding to the quadratic order497

Seff =
1

2

∫
d3q

(2π)3
Aµ(−q)Πµν(q)Aν(q). (52)

where µ,ν run over the space-time indices (0, 1, 2) with the vacuum polarization operator498

defined as499

iΠµν(q) =

∫
d3k

(2π)3
Tr[∂kµG

−1
0 (k)G0(k + q/2)∂kνG

−1
0 (k)G0(k − q/2)], (53)

There is no divergence in Πµν as the momentum integral is performed over a finite Brillouin500

zone due to the lattice regularization. The antisymmetric terms ΠA
µν(q) can be evaluated501

as follows502

ΠA
µν =

1

2π
εµνζq

ζC , (54)

with Chern number in the case following definition that503

C =

∫
BZ

d2k

4π
d̂ · ∂kx

d̂ × ∂ky
d̂, (55)
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where εµνζ is Levi-Civita symbol and d̂ = d/|d|. Finally, we obtain the Chern-Simons504

theory for Aµ505

Seff[A] =
C

2π

∫
d3xεµνςAµ∂ςAν. (56)

For the lattice Hamiltonian H0(k), we have C = − sgn(m(π,π))
2 which is a half-integer with506

its sign determined by the sign of m(π,π). Restoring physical units, the Chern-Simons507

term corresponds a half quantum Hall effect508

〈 jν〉 = δSeff

δAν
=

sgn(m(π,π))

2

e2

h
εµνς∂ςAµ. (57)

Notice that upon DC linear response, the result is strict.509

(a) (b)

PV Regularization

(c) (d)

Figure 6: Regulated gapless Dirac fermion on lattice and by Pauli-Villars reg-
ularization. (a) Momentum dependent mass of regulated gapless Dirac fermion
on lattice, kc is defined by m0(k) = 0, which splits the mass and the dispersion
in (c) of the Dirac fermion into two regions, low-energy part with k < kc and
high-energy part with k > kc. (b) Mass of massless Dirac fermion and of its
regulator partner by Pauli-Villars treatment. (c) Dispersion of regulated gapless
Dirac fermion on lattice with spin orientation. (d) Dispersion of double Dirac
fermions, one massless and one massive under Pauli-Villars regularization, and to
obtain convergent result, contributions from two fermions should be subtracted.

If we now focus on the low-energy effective model of the lattice four-band Hamiltonian510

by neglecting higher energy states (∝ m(k)), which can be expressed as Hlow
0 (k) = λ‖(kxσ1+kyσ2).511
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There is a linear ultraviolet divergence in Πµν(q) which should be regularized by Pauli-512

Villars method in a gauge-invariant way. In the Pauli-Villars regularization approach, we513

need to introduce a second Dirac field mass Mσ3. In the limit (M →∞), the regulator514

field decouples from the theory, which removes the divergence in Πµν, leaving a finite515

contribution for the crossed polarization tensor Πµν =
sgn(M)

4π εµνζqζ. This also induces a516

Chern-Simons term and corresponds to a half-quantum Hall effect.517

The comparison of mass configuration and band dispersion of two methods is shown in518

Fig. 6. The advantage of our approach for lattice realization single gapless Dirac fermion519

lies in its realism, as it appears naturally in a topological insulator film, and also in its520

conciseness of expressing topological properties with a single analytical mass term. The521

price here, however, is to introduce symmetry-breaking term at high-energy zone explicitly,522

and the form of Theta function (or its mollifier) will introduce long-range hopping in real523

space.524

3.5 Unexchangeable limits525

In the usual context of quantum field theory, a massive (2 + 1)-D Dirac fermion bears526

half-quantized Hall conductivity when the chemical potential lies inside the gap, even if527

the mass is infinitesimally small [14, 68, 70], under which one gets in fact a Dirac point.528

Such a picture relies on the limit sequence that one firstly takes µ→ 0, and then the mass529

m→ 0, while on the other hand, once the sequence is inverted, say at first place, one stays530

at finite chemical potential µ and takes m→ 0, which leads to zero Hall conductivity, one531

gets constant zero Hall plateau when pushing µ→ 0. And in this sense one realizes that532

a gapless Dirac point is singular, and different approaches to reach it will lead to different533

and even contradictory pictures.534

The same thing happens in our model. Consider now a gapless Dirac fermion is535

perturbed by a small constant mass term536

h = λ‖(k ·σ) + [δm +Θ(−m0(k))m0(k)]σz, (58)

where for simplicity we discuss the continuum model here. Given m0(k) = m0− bk2 with537

m0b > 0, by Eq. (30) we have538

σH = − e2

2h

sgn(b) +
δmr

λ2
‖k

2
F + δm2

 , (59)

where a small µ near the Dirac point is assumed. The kF refers to the Fermi wavevector de-539

fined by µ = −rλ2
‖k

2
F + δm2, which lies inside the valence band and satisfies m0(kF ) > 0.540

Now the two different limits for the Hall conductivity of the gapless Dirac cone in the case541

read542

lim
δm→0

lim
µ→0

σH = − e2

2h
[sgn(b) + sgn(δm)] , (60a)

lim
µ→0

lim
δm→0

σH = − e2

2h
sgn(b), (60b)

i.e., first pushing chemical potential to zero and then pushing δm to zero leads to an543

undefined limit that depends on the limit direction δm takes (positive or negative), while544

an admittedly infinitesimal mass gap will not affect the half-quantization of the gapless545

Dirac cone by subsequent Fermi level tuning — not only to µ → 0 but for all possible546
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(a) (b)

(d)(c)

Figure 7: Schematic diagrams illustrating the limits in calculating the Hall con-
ductivity of a regulated gapless Dirac fermion are shown below. In these diagrams,
kc =
p

m0/b. (a) Initially tuning the chemical potential to µ = 0 leads to integer
quantized Hall conductivity. (b) Initially adjusting the chemical potential finite
inside the valence band with Fermi wavevector kF < kc results in unquantized
Hall conductivity asymptotically proportional to δm/kF . (c) Continuing from
(a), pushing the small gap δm→ 0 while pinning the chemical potential at µ = 0
leaves the integer of the quantized Hall conductivity invariant. (d) Continuing
from (b), pushing the small gap δm→ 0 while keeping the finite chemical poten-
tial inside the valence band with kF < kc leads to half-quantized Hall conductivity
of a gapless Dirac fermion, with the sign of the Hall conductivity determined by
its chirality or equivalently its high-energy mass sign.
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Top & Bottom
Symmetric

Top & Bottom
Anti-Symmetric

One-Surface Only In The Middle

Figure 8: Several basic representative magnetic topological insulator heterostruc-
tures. From left to right: Zeeman field at top and bottom surfaces with parallel
and antiparallel polarizations, at top surface and in the middle only, correspond-
ing to basic topological phases in magnetic topological insulator film as Chern
insulator, axion insulator, half-quantized anomalous Hall effect, and metallic
quantized anomalous Hall effect, respectively. We use color and its gradation
to emphasize the direction and strength of the Zeeman field.

Fermi wavevectors that lie inside the parity invariant regime [31] defined by m0(k) > 0.547

The corresponding schematic diagram illustrating the sequential limit-taking processes548

upon evaluating the Hall conductivity of a regulated gapless Dirac fermion is presented549

in Fig. 7. In reality, which limit the measured Hall conductance takes has to depend on550

specific situation of the system, while for the Dirac point emerged in a purely magnetic551

TI, the second perspective may be deemed more realistic.552

4 Magnetic and orbital fields in topological insulator films553

In this section we consider additional elements, such as exchange interaction, gate-voltage554

and orbital orders, to play their roles in the topological insulator film at the mean-field555

level. We identify the mean field to be V(k, lz)σµτν, with single in plane wavevector and556

out of plane position dependence, and transform the field into the Dirac fermion represen-557

tation. For instance, an induced z-Zeeman field Vz(lz)σzτ0 with solely z-dependence and558

intrinsic spin-orbital coupling H‖(k) that only depends on k are two special cases under559

the formulation. For our interest, we will mainly consider magnetic exchange interaction560

that has been approximated to affect as an effectively mean-field Zeeman field [81] along z561

direction, and transformation over other spin and orbital related fields are discussed and562

summarized later.563

4.1 Magnetism polarized along z direction564

The stated mean z-Zeeman field is assumed to be uniform intralayer while varies with lz,565

and that is to say [32],566

VZ(k) =
∑
lz ,k

Ψ†
lz ,k

VZ(lz)Ψlz ,k , (61)

where567

VZ(lz) ≡ Vz(lz)σzτ0, (62)

which acts on spin z. For several schematic examples with different Zeeman configu-568

rations, see Fig. 8. Its equivalent action by projection 〈Φn
m |VZ |Φn′

m′〉 (m, m′ = 1,2, 3, 4;569

n,n′ = 1, · · · , Lz) reads570

V(k) =
�
IS(k)τ0 − IA(k)τy

�
σz. (63)
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In the expression, two projected Hermitian matrices IS/A(k) have been defined with ele-571

ments572

Inn′
S = |CnCn′ |
∑
lz

Vz(lz)[λ
2
⊥( f

n
+ )
∗ f n′
+ + t 2

⊥η
nηn′( f n− )∗ f n′− ] = (In′n

S )∗, (64a)

i Inn′
A = i|CnCn′ |
∑
lz

Vz(lz)λ⊥t⊥[ηn′( f n
+ )
∗ f n′− +ηn( f n− )∗ f n′

+ ] = −i(In′n
A )∗, (64b)

where n, n′ = 1, · · · , Lz. Notice that IS/A is non-vanishing only when the symmetric/antisymmetric573

component of Vz is non-zero. Our formula then illustrates that the Zeeman field in a TI574

film is brought into two classes by the discrete parity or mirror symmetry, with S(A) la-575

belling the part respects (disrespects) this symmetry. Bring the transformed Zeeman term576

into multi-Dirac fermions representation, and we obtain577

HV =
Lz⊕

n=1

�
λ‖(sin(kx a)σx + sin

�
ky b
�
σy) +mn(k)τzσz

�
+
�
IS(k)τ0 − IA(k)τy

�
σz. (65)

Under the local unitary transformation, the Zeeman field in TI film undergoes a trans-578

formation into the I matrices, which act as generalized Higgs fields in matrix form, gener-579

ating mass through the Yukawa-like couplings among Dirac fermions in the film [55, 82].580

This phenomenon occurs precisely due to the fact that the projected Zeeman terms still581

act on spin-z component, similar to how masses affect the system. The emergence of a582

non-vanishing Higgs expectation value is closely associated with the establishment of the583

magnetic order in the system, either by intrinsic spontaneous magnetization or a proximate584

magnetic field.585

A closer look then classifies this action into three aspects. Firstly, the intra-Dirac cone586

elements Inn
S tell how the Zeeman field directly modifies the mass term mn, and due to587

the trace invariance under unitary transformation, such a direct modification is significant588

in understanding the impact of the Zeeman field on the overall mass generation process.589

Secondly, the intra-block inter-Dirac cone elements Inn
A couple the two mirror-symmetric590

Dirac fermions with the same n-label together, and force them to recombine into two new591

Dirac fermions that break the mirror symmetry. Finally, the general inter-block elements592

Inn′
S/A
(n 6= n′) couple Dirac cones with different n-labels. Nevertheless, since the linear593

winding part of Dirac fermions in our equivalent TI film model (see Eq. (65)) is identity in594

subspace spanned by n and τ, the total effect of the projected Zeeman term is to modify595

the mass terms, i.e.,596

M(k)σz =

� Lz⊕
n=1

mnτz + ISτ0 − IAτy

�
(k)σz, (66)

and further diagonalization of this total mass part will give another set of 2Lz mass terms597

without affecting the winding part, i.e.,598

M(k)
diagonalization−→

2Lz⊕
n=1

m̃n(k), (67)

and accordingly, we can write down the Dirac fermion Hamiltonian under Zeeman field as599

H̃(k) =
2Lz⊕
n=1

�
λ‖(sin(kx a)σx + sin

�
ky b
�
σy) + m̃n(k)σz

�
, (68)
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which describes the 2Lz Dirac fermions in a magnetic topological insulator film. Notice600

that the Zeeman term alters the masses of Dirac fermions thus their topological properties,601

which is the origin of the fruitful magnetic topological phases in the system.602

The formula and discussion above are general and applies for any z-varying Zeeman603

configurations. For our consideration here, we separately discuss main cases.604

4.1.1 Uniform field strength605

In this case Vz(lz) ≡ V for any lz, and it is easy to check out that606

Inn′
S = Vδnn′ , (69a)

Inn′
A = 0, (69b)

which offers us with an exact projection without further diagonalization as607

HV(k) =
Lz⊕

n=1

�
λ‖(sin(kx a)σx + sin

�
ky b
�
σy) + (mn(k)τz + Vτ0)σz

�
= hV

n,χ(k), (70)

where each sub-block608

hV
n,χ(k) = λ‖(sin(kx a)σx + sin

�
ky b
�
σy) + (χmn(k) + V)σz, (71)

describes a Dirac fermion of TI film modified by a uniform Zeeman splitting V. This609

formula serves as a clear physical picture to illustrate the formation of higher Chern610

number in TI film, with multi-sub-bands inversion [83] generated by the direct Higgs611

coupling V, as we shall illustrate in the section thereafter.612

4.1.2 Weak Zeeman field613

(a) (b)

Figure 9: Basis wavefunction distribution along z for (a) n = 1 and (b) n = 2,
varying from kx = 0 to kx = π with ky = 0. Dots in purple light, yellow and
green represent wavefunction at kx = 0, kx = 0.5 and kx = 0.7, respectively.
Total layer number Lz = 19.

When a weak Zeeman field, whose strength is comparably small to major parameters614

in topological insulator, especially, the bulk gap m0, is applied to the topological insulator615

film system, its effective Hamiltonian can be obtained by considering only n = n′ = 1616

elements in the projected matrix as a cut-off approximation. The reason why we can do617

this lies in the basis wavefunction distribution along z-direction. As revealed in Fig. 9,618

where we have presented n = 1 basis wavefunction distribution for the strong topological619

insulator with a single Dirac cone at Γ , together with n = 2 basis wavefunction distribution620

as a representative for higher states, the surface state and higher states have little overlap621
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in the low-energy zone (near Dirac cone, in our case the parity-invariant regime [31] around622

Γ point, i.e., small k area), which makes the overlap integral I1,n≥2
S/A

approach zero in the623

regime. This tells that the low-energy behavior of the system under weak Zeeman field624

is dominated by only I1,1
S/A

terms. And when we turn to high-energy part, the effective625

Hamiltonian for n = 1 is dominated by the non-vanishing mass term m1(k) since Zeeman626

integrals are all perturbative quantities in the case. What is more, since n ≥ 2 bands are627

naturally gapped with minimal gap m0, weak Zeeman field has no prominent influence to628

them. Based on the picture above, it suffices that we only consider n = 1 block with m1(k)629

and preserve I1,1
S/A

as the influence (mass-)source at low energy. This procedure is equivalent630

to a cut-off approximation. Notice that since low-energy surface states distribute mainly631

at two surfaces, Zeeman field at these two zones should play the major role.632

Now we ignore n = 1 index and write633 ¨
IS(k) = 〈Φ1(k)|VZ |Φ1(k)〉
i IA(k) = 〈Φ1(k)|VZ |Φ3(k)〉 , (72)

which varies with wavevector k, then by utilizing basis solutions above we have634

IS = |C |2
∑
lz

VS(lz)[λ
2
⊥| f+|2 + t 2

⊥η
2| f−|2], (73a)

i IA = i|C |2∑
lz

VA(lz)λ⊥t⊥2ηRe[( f+)
∗ f−], (73b)

respecting (anti-)symmetric part projection of Zeeman field to z as635

VS/A(lz) =
Vz(lz)± Vz(−lz)

2
. (74)

Note that IS/A are real. The effective Hamiltonian for Zeeman term then reads636

VEFF(k) =
�
IS(k)τ0 − IA(k)τy

�
σz. (75)

Adding this term to the lowest four-band model leads to637

HEFF = λ‖(sin(kx a)σx + sin
�
ky a
�
σy) +m(k)τzσz + IS(k)τ0σz − IA(k)τyσz, (76)

where m(k) = Θ(−m0(k))m0(k) for thick-enough film, while IS/A(k) are z-Zeeman-related638

integrals dependent on k. This effective Hamiltonian serves as the starting point for639

analyzing magnetic phases in a topological insulator film within weak Zeeman regime, and640

we should confine the Zeeman distribution to mainly stay at the top and bottom surfaces641

to make the best use of it.642

Notice that this Hamiltonian for the lowest surface bands is written under the (mirror)643

symmetric basis, and it is actually equivalent to a generalization of the commonly utilized644

four-band surface state Hamiltonian [48,84], which treats the top and bottom surfaces as645

two fundamental degrees of freedom. To show this, we introduce a two-step unitary trans-646

formation U = U1U2 with U1 = eiπτyσz/4 and U2 = e−iπτx /4, which combines the mirror647

symmetric basis and transforms the Hamiltonian into the ‘surface state representation’ as648

HS = U†HEFFU

=

�−λ‖(sin(kx a)σy − sin
�
ky a
�
σx ) + I+(k)σz m(k)

m(k) λ‖(sin(kx a)σy − sin
�
ky a
�
σx ) + I−(k)σz

�
,

(77)
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with I± = IS ± IA. When k < kc with the projecting basis composing of surface states,649

I+ and I− can be recognized approximately as the Zeeman field strengths at top and650

bottom, respectively. This Hamiltonian utilizes the same Dirac matrices as the usual651

four-band surface state Hamiltonian, but includes k-dependent projected Zeeman terms652

IS/A(k) and mass term m(k). The low-energy form m(0) is commonly referred to as the653

finite-size coupling between the top and bottom surface states in an ultra-thin film. For654

a sufficiently thick film, the k-dependence of this mass term becomes crucial, since at low655

energies it is zero and offers us two well-separated surface states localized at the top and656

bottom surfaces, while at high energies it tells us that the surface bands will inevitably657

mix together, rendering the ’top’ and ’bottom’ labels ineffective as quantum numbers in658

this much broader zone. This observation is consistent with the wavefunction distribution659

in Fig. 9(a), where the low-energy surface states are predominantly localized on the top660

and bottom surfaces, whereas the high-energy states spread into the bulk. As a result, a661

well-defined Chern number cannot be assigned to a single surface but must instead involve662

contributions from bulk states. Furthermore, as we have discussed, the Theta function663

form of the lowest mass term m(k) differs from the conventional approach, which assumes664

a mass term of the form m̃0+bk2 similar to the bulk band. The usual choice only restores665

parity symmetry near k = 0 as m̃0 goes to zero, and fails to fully capture the topological666

nature of the surface gapless Dirac fermion that contains parity symmetry in a finite but667

much larger area by k < kc.668

Effective mass treatment Diagonalization of the mass part in the weak Zeeman field case669

shows much less complexity than that in Eq. (67), and is accessible analytically. A careful670

look on Eq. (76) tells that we can treat all the latter-three terms as mass terms, since by671

τ-space diagonalization672

U†
M

�
mτz + ISτ0 − IAτy

�
UM =

�
m̃+

m̃−

�
, (78)

where the defined unitary matrix reads673

UM =
1p
2

�
isgn(IA)
q

1+
m
M

q
1− m

Mq
1− m

M isgn(IA)
q

1+
m
M

�
, (79)

with M(k) =
q

m2(k) + I2
A(k), we can write H̃EFF = ⊕χ=±H̃χ with674

H̃χ = λ‖(sin(kx a)σx + sin
�
ky a
�
σy) + m̃χ(k)σz, (80)

where the effective mass is defined as675

m̃χ(k) ≡ IS(k) + χ
Ç

m2(k) + I2
A(k). (81)

This equation illustrates minimally the mass generation brought by the matrix form Higgs676

fields, which are reduced into merely two components IS/A(k) here. The ultimate effect677

given by the Zeeman field action to the system is reduced to a correction of the Dirac678

mass term, which is responsible for the possible non-trivial topology of the system. The679

treatment here relies on the sign invariance of IA inside the parity invariant regime, which680

ensures the global gauge consistency for the transformation.681

Notice that the gap is now determined by682

∆χ = 2|m̃χ(0)| = 2|IS(0) + χ |IA(0)||, (82)
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which is non-zero (gapped) as long as |IS(0)| 6= |IA(0)|. The χ-Chern number, according683

to Eq. (42), for each gapped surface state is written as684

Cχ =
1

2
[sgn(m̃χ(0))− sgn(m̃χ(π,π))], (83)

which, by utilizing the fact that m(0) = 0 and Zeeman field is added perturbatively so685

that m(k) dominates at (π,π), we obtain that686

Cχ =
1

2
[sgn (IS(0) + χ |IA(0)|)− χ]

= −χΘ(−|IA(0)| − χ IS(0)).
(84)

This formula works in the chosen parameter regime 0 < m0 < 4t⊥ within weak Zeeman687

treatment.688

4.1.3 Strong Zeeman field689

For a general strong Zeeman field whose strength is comparably large enough relative to690

the system parameters (mainly bulk gap m0) or even stronger, with arbitrary configuration691

along z direction, both the uniform and the weak criteria fail, and in this case, we usually692

have to adopt the most general formula from Eq. (65), whose topological property is693

revealed after a further diagonalization of mass terms given by Eq. (67), which turns the694

total Hamiltonian again into a direct sum of a series of Dirac fermions shown in Eq. (68).695

Then based on our discussion in 3, the Hall conductivity of each single Dirac fermion is696

determined, from which we can analyze the topological property of the system.697

4.2 Other fields698

In the subsection, we present more examples of spin and orbital fields other than the z-699

Zeeman field discussed above, and the results are listed in Table 1. The signals appearing700

here only apply in the subsection. The list of results reveals the power of our general701

procedure, and is enlightening for discovering more topological phases driven by diverse702

physical origins.703

Table 1: Different fields and their forms under the transformation.

Name of field Original field expression Field after transformation Kernel

Spin-orbital coupling λ‖[sin(kx a)σxτx + sin
�
ky b
�
σyτx ]
⊕Lz

n=1λ‖τ0(sin(kx a)σx + sin
�
ky b
�
σy) FS+

Zeeman field
Zz(lz)σzτ0

�
Iz
S(k)τ0 − Iz

A(k)τy
�
σz FS+, FA+

Zx (lz)σxτ0
�
Ix
S (k)τx − Ix

A(k)τz
�
σx FS−, FA−

Zy(lz)σyτ0
�
Iy
S (k)τx − Iy

A(k)τz
�
σy FS−, FA−

Gate-voltage G(lz)σ0τ0
�
GS(k)τ0 −GA(k)τy

�
σ0 FS+, FA+

Oribital field
Oy(lz)σ0τy

�
Oy

A(k)τ0 −Oy
S (k)τy
�
σz FS+, FA+

Ox (lz)σ0τx
�
Ox

A(k)τz −Ox
S (k)τx
�
σ0 −FS−, − FA−

Oz(lz)σ0τz
�
Oz

A(k)τx −Oz
S(k)τz
�
σz FS−, − FA−

For a given field V(k, lz)σµτν, the transformation follows similarly by organizing the704

projected elements
∑

lz
V(k, lz) 〈Φn

m(k, lz)|σµτν|Φn′
m′(k, lz)〉 (m, m′ = 1, 2, 3, 4; n,n′ = 1, · · · , Lz)705

aligned with the sequence of the basis. The form of field after transformation will always706

be two Lz × Lz matrix fields differing by z-parity symmetry labels, with S counting for707
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symmetric distribution and A for the opposite. Each matrix field will also be attached708

with a new 4× 4 Dirac matrix.709

To express matrix quantities I, G, O in Table 1, we introduce the momentum-dependent710

matrix-form acting functional Fk over V field that generates projected matrix component711

like712

Fnn′
k [V] =
∑
lz

V(k, lz)F
nn′
V (k, lz) = (Fn′n

k [V])∗, (85)

where the summation kernel Fnn′
V (k, lz) depends on different Dirac matrix the untrans-713

formed field carries. However, in practice, we find that the non-vanishing components in714

the transformed field matrix are only generated by four kinds of summation kernels,715

Fnn′
S+ (k, lz) = |CnCn′ |[λ2

⊥( f
n
+ )
∗ f n′
+ + t 2

⊥η
nηn′( f n− )∗ f n′− ], (86a)

Fnn′
A+ (k, lz) = |CnCn′ |λ⊥t⊥[ηn′( f n

+ )
∗ f n′− +ηn( f n− )∗ f n′

+ ], (86b)
Fnn′

S− (k, lz) = |CnCn′ |[−λ2
⊥( f

n
+ )
∗ f n′
+ + t 2

⊥η
nηn′( f n− )∗ f n′− ], (86c)

Fnn′
A− (k, lz) = |CnCn′ |(−i)λ⊥t⊥[ηn′( f n

+ )
∗ f n′− −ηn( f n− )∗ f n′

+ ], (86d)

different by symmetry requirement and an inner sign. In the table the symmetry labels716

between the transformed fields and the summation kernels are in one-to-one correspon-717

dence.718

The table can be longer once one considers more kinds of Dirac matrices. This proce-719

dure above is general, powerful while easy to understand. Despite the easiness of the trans-720

formation, the non-trivial difficult part is to endow physical meaning to the attached fields,721

both before transformation and after. For instance, the spin-orbital coupling remains its722

meaning after the transformation, while being block-diagonal in the Dirac fermion rep-723

resentation; the z-Zeeman field, as discussed above, is transformed into two matrix form724

Higgs fields, which stand as the effective mass generators.725

Table 2: Duality of typical topological phases induced by spin order σz and orbital
order τy . t , b, m for top, bottom, middle and S, A for symmetric, antisymmetric
distribution of fields, respectively.

Name of phase σz configuration τy configuration

Chern insulator Z t
z = Zb

z 6= 0 O t
y = −Ob

y 6= 0

Axion insulator Z t
z = −Zb

z 6= 0 O t
y = Ob

y 6= 0

Half QAHE Z t
z 6= 0, Zb

z = 0 O t
y 6= 0, Ob

y = 0

Metallic QAHE Zm
z,S strong Om

y,A strong

Spin-orbital duality Interestingly, we see that the y-orbital order is transformed to726

attach the same Dirac matrices as the transformed z-Zeeman field, but with symmetry727

indices of matrix quantities exchanged. This relation tells that, as long as some topo-728

logical phase is discovered with z-Zeeman field Zz = Zz,S + Zz,A, another phase with the729

same topological index can immediately be identified with y-orbital order satisfying that730

Oy,A = Zz,S, Oy,S = Zz,A. For instance, we show the dual phases formed by σz and τy orders731

in Table 2, the Chern insulator, aka quantum anomalous Hall effect (QAHE), the axion732

insulator, the half QAHE and the metallic QAHE as several typical phases in magnetic733

topological insulators as we will discuss below. Here one has to notice that for the metallic734
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QAHE [32], which requires a relatively strong magnetism in the middle of a topological in-735

sulator film, the corresponding τy orbital order induced metallic QAHE requires a higher736

threshold for the antisymmetric field strength Om
y,A, due to the odd function nature which737

forces Om
y,A(Lz/2) = 0.738

Following the effective mass treatment above, we can furthermore construct quantita-739

tive model unifying the two orders. There are now totally five mass terms that read740

M(k) =

� Lz⊕
n=1

mnτz + (I
z
S +Oy

A)τ0 − (Iz
A +Oy

S )τy

�
(k), (87)

and a similar diagonalization leads to the effective masses741

M(k)
diagonalization−→

2Lz⊕
n=1

m̃n(k), (88)

without affecting the spin-orbital coupling field (the linear winding part). On the other742

hand, in the context of weak field, we only preserve n = n′ = 1 components and write743

down mass terms for n = 1 block as744 �
mτz + (I

z
S + Oy

A)τ0 − (I z
A + Oy

S )τy
�
(k), (89)

with n = 1 label ignored. Here merely a substitution IS → I z
S +Oy

A , IA→ I z
A+Oy

S happened745

compare with Eq. (76), and a similar diagonalization leads to two effective masses for the746

surface Dirac bands as747

m̃χ(k) = (I
z
S + Oy

A)(k) + χ
Ç

m2(k) + (I z
A + Oy

S )
2(k), (90)

from which the synergistic and competing relations between σz and τy orders are shown748

more explicitly.749

5 Topological phases with weak field750

Counting on the mean strength of the magnetic exchange interaction, our exploration751

can be further divided into two main branches as weak and strong Zeeman fields. The752

division follows simply from the criterion whether the phase can be described within the753

n = 1 frame, or equivalently, whether Eq. (76) from weak Zeeman field approximation is754

applicable. If it is the case, we identify the phase to lie inside the weak field regime, as we755

shall discuss here. From here on, all references to topological insulator mean a strong TI756

with single Dirac point at Γ .757

5.1 Half quantum mirror Hall effect: a non-magnetic film with mirror symmetry758

The topological insulator film itself without adding any external ingredients or interac-759

tions, but with an intrinsic mirror symmetry, possibly like rhombohedral 3D TI Bi2(Se,760

Te)3 along the [100] direction or with a mirror twin-boundary along [001] direction,761

is already interesting enough and exhibits a novel topological phase [33], namely, the762

half quantum mirror Hall effect shown in Fig. 10, which is deeply related to the mirror763

symmetry of the system and reveals measurable parity anomaly physics. A general film764

Hamiltonian reads H =
∑

lz ,l′z ,k Ψ
†
lz ,k

H(lz, l′z, k)Ψl′z ,k with k = (kx , ky), and the out of film765

plane mirror symmetry Mz emerges as a combination of inversion and C2z rotation that766
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TI Film with
Mirror Symmetry

Gapless Dirac Cones
with Opposite Chirality

Figure 10: Schematic diagram of the half quantum mirror Hall effect. The lowest
four bands of a topological insulator film with mirror symmetry (left) are classified
into two gapless Dirac cones with opposite chiralities labelled by the eigenvalues
of z-mirror operator.

reads MzΨlz ,kM−1
z = UzΨ−lz ,k , where Uz is a unitary matrix. Requiring such a symmetry767

over the system Hamiltonian leads to the condition U†
z H(lz, l′z, k, )Uz = H(−lz,−l′z, k).768

It is then possible to write down the mirror operator under {Ψk,lz
} as Mz = C2zP, with769

Uz as its anti-diagonaloff-diagonal elements, and the Hamiltonian can be projected into770

decoupled mirror-labelled parts as771

Hχ = PMz
χ H , PMz

χ =
1+ iχMz

2
, (91)

with χ labelling the eigenvalue of the mirror operator. Each Hχ is yet again a complete772

system whose non-trivial property is revealed by the (zero-temperature, ignored below)773

mirror Hall conductivity774

σ
χ

H =
e2

h

Im

π

 ∑
Eχn <µ<Eχm

∫
d2k

v̄mn,χ
x v̄nm,χ

y

(Eχn − Eχm)2

 , (92)

where v̄mn,χ
i

= 〈nχ |∂ki
Hχ |mχ〉 is the expectation value of the mirror velocity operator775

evaluated over eigenstates of the mirror-projected Hamiltonian. Clearly, this is just the776

usual Kubo formula [65] evaluated over the projected Hamiltonian Hχ , and thanks to the777

imposed mirror symmetry, two parts with mirror label χ = ± do not communicate with778

each other and are totally decoupled.779

The gapless pair of Dirac fermions in a topological insulator film causes the half quan-780

tum mirror Hall effect. Here in the concrete model the anti-diagonaloff-diagonal ele-781

ments of mirror operator read Uz = −iσzτz, which is projected into τz under multi-Dirac782

fermions representation (see Appendix B.), indicated by χ = ± as its eigenvalue in the783

effective Hamiltonian. The gapless n = 1 Dirac fermions in the TI film read784

Hn=1 = Hsurf,+ ⊕Hsurf,=, (93)

where each block with mirror label reads785

Hsurf,χ = λ‖(sin(kx a)σx + sin
�
ky a
�
σy) + χm(k)σz, (94)

with m(k) = Θ(−m0(k))m0(k) identified. To show the nature of the half quantum mirror786

Hall effect, we calculate the Hall conductivity of Hχ obtained from the mirror-projected787

TI film Hamiltonian, and of the split Dirac fermion Hsurf,χ . The results are shown in788
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(a)
Film
Effective Model

(b)

Film
Effective Model

Figure 11: Half-quantized mirror Hall metal: total layer number Lz = 19. Results
are presented for (a) χ = +, and (b) χ = −. Both results from direct calculation
with TI film model and effective model with hn=1,χ sub-blocks are shown.

Fig. 11, where the half-quantized transverse conductivity nature is shown for each χ789

part with inverse signs, indicating quantum spin Hall like physics [12,43–45,85–89], while790

the topological origin of the half-quantized mirror Hall conductivity is bound with the791

metallic gapless Dirac fermions [33]. Their massless low-energy parts distribute mirror-792

(anti-)symmetrically at both top and bottom surfaces of the TI film as a result from the793

bulk-boundary correspondence of 3D strong topological insulator [17], corresponding to794

states with mass ±Θ(−m0(k))m0(k) term at m0(k) > 0. Here, the symmetry statement is795

traced back to our basis, which is chosen to distribute along z either mirror symmetrically796

or anti-symmetrically (see Appendix B). As a complete band, the surface Dirac cone does797

not end at a finite wavevector, but gradually emerges into the bulk with a regulated non-798

zero mass term represented by Θ(−m0(k))m0(k) at m0(k) < 0, and it is this non-vanishing799

high-energy part that ultimately gives rise to the half-quantized Hall conductivity, as800

discussed in Section 3, which finally reads by Eq. (40) as σχH = −χe2/2h, when the Fermi801

surface satisfies that m0(kF ) > 0.802

The physically observable effect generated by the phase is embedded in the mirror Hall803

conductivity [33], which is defined as804

σMirror
H =
∑
χ

χσ
χ

H , (95)

and equals to quantum unit −e2/h in the case. The quantity reveals that, though, by805

opposite Hall conductivity, the charge current by a transverse electrical field vanishes806

as σH =
∑
χ σ

χ

H = 0, the ‘mirror’ current does not, similar to that in quantum spin807

Hall effect. Nevertheless, a better way of looking at the half quantum mirror Hall effect808

may start from treating it as an intrinsic ‘spin’ Hall effect in metal, while the effect809

shows quantization with its transverse ‘spin’ Hall conductivity that shares a topological810

origin deeply related to the parity anomaly, and replacing ‘spin’ with ‘mirror’ leads to811

the observation that in different mirror sectors, the mirror current and the charge current812

will be either parallel or anti-parallel with the same quantized magnitude. Such a way of813

narration also lies in the lineage of induced dissipationless mirror current and dissipative814

longitudinal current, as they are both generated by metallic gapless Dirac fermions. To815

detect the mirror current, non-local electrical transport signals [90–92] are needed, while816

to reveal the quantized nature, one needs to perform a series of measurements to fully817

separate the dissipationless and dissipative currents [33], by changing the sample width818

and noticing the scale invariance of the Hall conductance.819
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5.2 Quantum anomalous Hall effect: Chern Insulators820

The Chern insulator is identified as an insulating phase which hosts the quantum Hall821

effect [93] with quantized Hall conductance, while without the need of applying an external822

magnetic field to form Landau levels [94]. The key ingredient lies in the breaking of time-823

reversal symmetry, which makes the non-vanishing Hall conductivity possible, as studied824

extensively in the anomalous Hall effect [95]. The quantization nature, on the other825

hand, is determined by the Berry phase flux integral over the Brillouin zone, which is826

an integer known as the first Chern number [10, 47, 72, 96–98]. An insulator with a non-827

zero Chern number is known to host gapless chiral edge modes [24] that circulate around828

the system dissipationlessly without backscattering [99]. Essentially, the number of these829

modes is equal to the Chern invariant, as a physical realization of the index theorem830

by bulk-boundary correspondence [13, 25, 26, 100]. It is usually argued that to realize a831

Chern insulator in a realistic material, relatively strong spin-orbital coupling together with832

internal magnetism are needed [101].833

With confined geometry, the topological insulator film is predicted [48,50,102] to host834

the quantum anomalous Hall effect (QAHE) with proper magnetism, either by magnetic835

doping approach [49, 103–107] like Cr and V doped (Bi,Sb)2Te3, magnetic proximity ef-836

fect [108] in the sandwich heterostructures of (Zn, Cr)Te/(Bi, Sb)2Te3/(Zn, Cr)Te or837

establishing intrinsic magnetic order [109–111] in materials like MnBi2Te4 with an odd838

layer number. In this sense three typical cases realizing the Chern insulating phase are839

presented in Fig. 12, with uniform Zeeman field (to make consistency with discussion here,840

the Zeeman strength here is still chosen to be weak, while the uniformly strong strength841

case is left to be discussed in the higher Chern number case later on), symmetric top and842

bottom surface Zeeman fields configuration and an asymmetric configuration which does843

not break the holistic polarization, by which we mean that the symmetric ingredient in844

the configuration overwhelms the asymmetric one. The common feature these realizations845

share is the parallel polarization of the top and bottom surface-magnetism vertical to the846

TI film plane, effectively as the Zeeman field directions that point to both up or down.847

The verification of the three cases is brought out by numerical calculations with both848

TI film and weak Zeeman effective four-band models, as revealed in Fig. 13, Fig. 14 and849

Fig. 15, respectively. Besides the bands in (a) that all show Zeeman-gapped feature with850

perfect correspondence between two methods, the Hall conductivity in (c) pictures captures851

the essence of a Chern insulator with an integer Chern number quantifying the quantized852

Hall plateau magnitude. What is more, the calculated IS/A in (b) and Hall conductivity853

in (d) for H̃χ reveal more about physics behind the phenomenon. Below, based on the854

symmetric or asymmetric Zeeman configurations, we further divide the discussion into two855

classes.856

5.2.1 Symmetric magnetic structure857

In this class,858 ¨
IS 6= 0

IA = 0
, (96)

and the given first two cases satisfy the condition. In case I and II, the symmetric Zeeman859

distribution leads to a vanishing IA, and the effective mass, according to Eq. (81), is written860

as861

m̃χ(k) = IS(k) + χ |m(k)|, IS > 0, (97)

it is thus clear that under the circumstance, χ = − branch will contain a mass sign change862

from Dirac point Γ = (0,0) to high-energy point M = (π,π), and is topologically non-863
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Case I

Case II

Case III

Uniform

Top & Bottom Symmetric

Top & Bottom Deviate From Symmetric

Figure 12: Schematic diagram of three typical Chern insulator cases with pair-
ing gapped lowest Dirac cones responsible for the phase. From top to bottom:
Case I: Chern insulator with uniform magnetism whose polarization contains a
non-vanishing component vertical to the TI film; Case II: Chern insulator with
symmetric top and bottom magnetism; Case III: Chern insulator with top and
bottom magnetism that deviates from symmetric distribution, but the polariza-
tion direction remains the same. In all three cases, two gapped Dirac cones,
where the gap comes from the gapped surface states, are present with one trivial
cone and one cone with a unit Chern number. In the third case we deliberately
tune the gap in the diagram to emphasize that it is the cone with a smaller gap
that is non-trivial.
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(a) Thin film
Effective model

(b)

(c) Thin film
Effective model

(d)

Figure 13: Chern insulator case I: total layer number Lz = 19 with uniform Zee-
man field Vz ≡ 0.1 eV. (a) Comparison of band structure from TI film model and
effective four-band Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated
Hall conductivity from TI film model and effective four-band Hamiltonian. (d)
Hall conductivity for χ = ±.

(a)
Thin film
Effective model

(b)

(c) Thin film
Effective model

(d)

Figure 14: Chern insulator case II: total layer number Lz = 19 with symmetric
Zeeman field Vz(lz) = 0.1 eV at top and bottom 2 layerstop-2-layer Zeeman
field V t

z = 0.1 eV and bottom-2-layer field Vb
z = 0.2 eV. (a) Comparison of band

structure from the lowest four bands of TI film model and effective four-band
Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity
from TI film model and effective four-band Hamiltonian. (d) Hall conductivity
for χ = ±.
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(a) (b)

(c) Thin film
Effective model

(d)

Figure 15: Chern insulator case III: total layer number Lz = 19 with top-2-
layer Zeeman field V t

z = 0.1 eV and bottom-2-layer field Vb
z = 0.2 eVsymmetric

Zeeman field Vz(lz) = 0.1 eV at top and bottom 2 layers. (a) Comparison of band
structure from the lowest four bands of TI film model and effective four-band
Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity
from TI film model and effective four-band Hamiltonian. (d) Hall conductivity
for χ = ±.

trivial with unit Chern number given by Eq. (83), while χ = + mass remains positive and864

leads to a trivially gapped surface band. And this composes of the explanation of the865

χ-dependent Hall conductivity for the first two cases.866

5.2.2 Asymmetric magnetic structure867

In this case,868 
IS 6= 0

IA 6= 0

|IS| > |IA|
, (98)

i.e., an imbalance between top and bottom Zeeman strength appears, while their directions869

remain parallel so that the symmetric component overwhelms, as reflected by the case III.870

Now we observe that in Fig. 15 (d) the χ = − branch is non-trivial with unit quantized871

Hall plateau, and χ = + branch is trivial with a broader zero-Hall plateau, this means that872

the non-trivial χ = − band has a smaller gap than the χ = + band, as revealed in Fig. 15873

(a). Lifting this to some principle, we claim that the surface band with a smaller magnetic874

gap is non-trivial for a Chern insulator film. To gain insight from the phenomenon, notice875

that in this case, both IS and IA are non-vanishing, but generally IS > |IA| > 0 since the876

Zeeman configuration is closer to the symmetric case, i.e. VS > |VA| > 0 near two surfaces877

in this case. The above observation leads to878 ¨
m̃χ(0) = IS(0) + χ |IA(0)| > 0

m̃χ(M) = IS(M) + χ
q

m2(M) + I2
A(M) ∼ χ |m(M)|

, (99)
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and since non-trivial topology requires mass inversion, we conclude that m̃− is non-trivial879

with unit Chern number while χ = + is trivial, and clearly the gap ∆ = 2|m̃(0)| tells that880

∆− <∆+.881

Pictures and discussions above complete the case study for the Chern insulator phase882

here. Notice that in the typical cases given above, the Zeeman field directs along z-positive883

axis, and it is always thethat χ = − band that has −e2/h Hall conductivity while the χ = +884

band is trivial with zero Hall contribution, i.e., it is a 1 + 0 combination with the sign885

of Hall conductivity determined by the polarization direction of the Zeeman field, as we886

shall illustrate further below.887

Generalization of the picture above about the Chern insulator phase in TI film to888

arbitrary weak Zeeman configuration that varies layer by layer is presented here. According889

to Eq. (84), the non-trivial condition is satisfied whenever |IS| > |IA|, i.e., symmetric890

Zeeman distribution overwhelms asymmetric configuration, and especially there exists a891

χ for which it holds that892

−χ IS(0) > |IA(0)|, (100)
and correspondingly we have893

Cχ = −χ , Cχ̄ = 0, (101)
with χ̄ = −χ identified. This tells us that while one of the two gapped surface Dirac894

fermions becomes topologically non-trivial, carrying non-vanishing Chern index of unit,895

the other gapped cone is driven into a topologically trivial band. Then totally the system896

owns unit Chern number and quantized Hall conductivity. Meanwhile, by definition of IS897

in Eq. (73a), one deduces that when IS(0) > 0 which corresponds to a general z-up VS898

configuration, it is χ = − that satisfies the condition, vice versa, which allows us to write899 ¨
C− = 1, C+ = 0, for IS(0) > 0

C+ = −1, C− = 0, for IS(0) < 0
, (102)

with IS(0) contributed mainly from surfaces. There is indeed no threshold for the Zeeman900

strength to realize Chern insulator counting the gapless feature of surface states as long901

as Eq. (100) is satisfied.902

We have seen that for the topological insulator based Chern insulator, there are always903

one trivially gapped Dirac cone and one with unit Chern number, and a natural question904

emerges as which cone is non-trivial? In the symmetric case, gaps of two Dirac fermions are905

the same, and we have to rely on χ labelled mirror symmetry together with magnetization906

direction to decide which cone is non-trivial. However, for the slightly asymmetric case,907

a quick answer to the question can be made: the one with smaller gap is. To see why, we908

can consider the gap equation Eq. (82) which can be rewritten as909

∆χ = 2|(−χ IS(0))− |IA(0)||, (103)

we find that for the asymmetric Chern insulator case −χ IS(0) > |IA(0)| ≥ 0, and it always910

holds that911

∆χ <∆χ̄ , (104)
then combined with Eq. (101), we arrive at the conclusion that it is always the cone with912

smaller gap which becomes topologically non-trivial carrying unit Chern number, while913

the cone with a larger Zeeman gap becomes just trivial.914

5.2.3 Mirror layer Chern number915

Notice that there exists a fully mirror symmetric case where VA = 0, and in this special916

case, a quantity proposed as mirror layer Chern number can be defined. Again, the917
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mirror-symmetric Hamiltonian including the Zeeman term can be projected into decoupled918

mirror-labelled parts as919

Hχ = PMz
χ H , PMz

χ =
1+ iχMz

2
, (91)

with Mz the represented mirror operator, and its anti-diagonaloff-diagonal elements are920

recognized to be Uz, which relates quantity at ±lz (see section 5.1 for more about mirror921

symmetry).922

Due to the film geometry, it is natural to introduce the so-called layer Hall conductivity923

[112–116] by considering layer-dependent eigenstates924

σH(l) =
e2

h

Im

π

∑
En<µ<Em

∑
l′

∫
d2k

v̄nm
x (l)v̄mn

y (l
′)

(En − Em)2
, (105)

where in the usual case, the expectation value of velocity operator is v̄mn
i
(l) = 〈m(l)|∂ki

H |n(l)〉925

with only diagonal elements, which, however, fails for the mirror projected Hamiltonian.926

The key observation lies in the fact that by projection ∂ki
Hχ contains not only diagonal927

elements but off-diagonal part, which induces additional non-local transition contribution928

from exactly mirror symmetrized layers. Work the effect out and one obtains the mirror929

layer Hall conductivity930

σ
χ

H(l) =
e2

h

Im

π

 ∑
Eχn <µ<Eχm

∑
l′

∫
d2k

v̄nm
χ ,kx
(l)v̄mn

χ ,ky
(l′)

(Eχn − Eχm)2

 , (106)

with931

v̄nm
χ ,ki
(l) =

1

2
〈nχ(l)| �vki

(l) |mχ(l)〉+Uz vki
(−l) |mχ(−l)〉� , (107)

where the appeared velocity operator is defined through the original Hamiltonian and is932

assumed to contain only diagonal element vki
(l) = (∂ki

H)(l).933

Now we turn to our special case. As stated in half quantum mirror Hall effect,934

the bare Hamiltonian without external field contains mirror symmetry, while the same935

symmetry constraint imposed on the Zeeman field distribution leads to the restriction936

that Vz(lz) = Vz(−lz), which is equivalent to the requirement that VA(lz) = 0. Thus,937

Chern insulator generated by TI film with symmetric Zeeman field owns mirror symme-938

try, and the corresponding σχH(lz) could be carried out, so does its layer-cumulated version939

σ
χ

H ,c(lz) =
∑lz

l=−(Lz−1)/2
σ
χ

H(l), as presented in Fig. 16. The anti-diagonaloff-diagonal ele-940

ments of mirror operator read Uz = −iσzτz for the TI film.941

The layer dependent Hall conductivity serves us a new insight to understand the phe-942

nomenon. Treating the system as a whole, its layer-resolved Hall conductivity, as pre-943

sented in Fig. 16(c), becomes non-zero mainly near the top and bottom surfaces where944

time-reversal symmetry is broken explicitly under the Zeeman field. And the cumulated945

Hall conductivity gains approximately half quantum Hall conductivity near two surfaces.946

On the other hand, as shown in Fig. 16(a), (b), when we split the system by mirror symme-947

try, the layer-resolved mirror Hall conductivity shows similar top and bottom distribution948

as the whole system, but with only half the amplitude by mirror splitting, while the Hall949

conductivity distribution around mirror plane shows opposite-sign peaks inherited from950

the time-reversal unbroken bulk property like that in the half quantum mirror Hall effect.951

Once the Hall conductivity contribution is added layer by layer, we immediately see the952

tri-section configuration: for the non-trivial C− = 1 part, there exist two Hall-plateaus953

separating the surface and bulk, then following the top-middle-bottom section cut, we954

see a contribution rather close to (−1/4)–(−1/2)–(−1/4) from each section; and for the955
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(a) (b)

(c)
Layer-resolved
Layer-added

Figure 16: Mirror layer Hall conductivity for topological insulator film with sym-
metric z-Zeeman field immersed at top 2 and bottom 2 layers upon total 19 layers
with strength Vz = 0.1eV, and chemical potential is chosen to be µ = 2.5meV,
where (a) for χ = −, (b) for χ = + and (c) for the total result by adding two
mirror parts together, respectively. Both layer-resolved and layer-added Hall
conductivity are presented. To respect the mirror symmetry we put the TI film
at origin and the layer index becomes lz = − Lz−1

2 ,− Lz−3
2 , · · · , Lz−1

2 with total layer
number Lz = 19.

38



SciPost Physics Submission

trivial C+ = 0 part, the section separation is not that apparent, and we only roughly write956

(−c/4)–(c/2)–(−c/4) with c approximately one to represent the observed distribution.957

5.3 Axion insulator: an antisymmetric magnetic structure958

Top & Bottom Anti-Symmetric

Figure 17: Schematic diagram of the axion insulator. On the left, the magnetic
heterostructure of the TI film is presented, with top and bottom surface mag-
netism containing opposite polarization components vertical to the film. On the
right, a pair of trivially gapped Dirac cones is presented, both with zero Chern
number. The gap comes from the gapped surface states.

Along with the special (3+ 1)-D space-time dimension, the Maxwell electrodynamics959

is allowed to be decorated with an extra θ term, which generates the axion electrodynam-960

ics [117,118] to the space-time dependent θ axion field that couples with the ordinary elec-961

tromagnetic field. On a practical level, based on the picture of surface Hall effect [64,119]962

and analogical mathematical structure between Hall current and magnetization current,963

people generalize and propose the topological field theory [50], where a θ term is intro-964

duced to describe the magnetoelectric effect [112–114, 120–125] in a topological insulator965

medium, where the axion field is forced to gain a magnitude of π [126] by symmetry and966

topological requirement.967

Realistically, an anti-ferromagnetic TI represents an example of the axion insulator968

[112]. The axion field, proportional to the space-time volume integral field product E · B969

or equivalently the Chern-Simons form [50], is odd under time reversal/inversion. In a970

system with such symmetry, the θ field matters only for its absolute value and is defined971

only modulo 2π, which is essential for its π magnitude [84]. The anti-ferromagnetic TI972

certainly breaks these two symmetries, however, as a 3D system, its θ quantization is973

protected by an effective time-reversal symmetry as a combination of time reversal and974

translation [127].975

The magnetic configuration in TI film closest to the proposed axion insulator is the one976

in Fig. 17, which shows a zero-Hall plateau and accompanied non-vanishing longitudinal977

conductance as an experimental signature [51,110,128], also in Cr, V doped (Bi, Sb)2Te3978

and MnBi2Te4 systems with an even layer number. Here then, based on the effective mass979

picture, we show that the two Dirac cones with gapped surface states are both trivial,980

once high-energy parts are involved. Now the fully antisymmetric magnetic configuration981

leads to IS = 0 for all k, and the only left Zeeman quantity is IA, as shown in Fig. 18(b).982

Then upon weak Zeeman approximation, the two effective masses become, according to983

Eq. (81),984

m̃χ(k) = χ
Ç

m2(k) + I2
A(k), (108)

which do not show sign reversal in whole Brillouin zone for both χ and are thus trivial.985

Numerical results for the Hall conductivities related to two masses are shown in Fig. 18986
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(a)
Thin film
Effective model

(b)

(c)
Thin film
Effective model

(d)

Figure 18: Axion insulator: total layer number Lz = 19 with top-2-layer Zeeman
field V t

z = 0.1 eV and bottom-2-layer field Vb
z = −0.1 eV. (a) Comparison of band

structure from the lowest four bands of TI film model and effective four-band
Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity
from TI film model and effective four-band Hamiltonian. (d) Hall conductivity
for χ = ±.

(d), where they cancel each other exactly at any chemical potential. Especially the zero-987

plateaus for both χ bands, which correspond to the situation with the chemical potential988

lying inside the Zeeman gap, reveal that both bands are trivial with zero Chern number.989

We can also generalize this case. Generally for the axion insulator we need |IS(0)| < |IA(0)|,990

i.e., asymmetric Zeeman distribution overwhelms symmetric configuration at surfaces,991

then from Eq. (84) we have992

C+ = C− = 0, (109)

which in fact leads to a trivially insulating phase viewed from the effective 2D model. The993

phase is termed as the axion insulator (AI) phase, since the totally asymmetric magnetic994

polarization leads to, if one switches a surface-state representation, a sign difference of995

low-energy mass of top and bottom surface states, which gives rise to non-vanishing Berry996

curvature at low-energy thus surface Hall contribution, with opposite sign for two surfaces.997

However, the Chern number as we have shown for each complete surface band is zero, which998

reveals an overall cancellation of transverse transport signals to the linear order, and the999

Hall conductivity contributed from the gapped surface states is not protected to be half-1000

quantized. Furthermore, counting on the zero Chern number nature for each individual1001

band, the absence of chiral edge state for an x -y opened TI film stands firmly, and the1002

non-vanishing longitudinal conductance measured has to be induced by the side-surface1003

states of a topological insulator, and the signal becomes non-zero only when the chemical1004

potential is fine-tuned to avoid falling in the finite-size gap ∼ λ‖/Lz of the side surface.1005

5.4 MnBi2Te4 film: even and odd number of magnetic layers1006

The first intrinsic antiferromagnetic topological insulator [112], MnBi2Te4 (Te-Bi-Te-Mn-1007

Te-Bi-Te) [129–131], is composed of septuple layers (SLs), with out-of-plane intralayer1008
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odd, symmetric Chern insulator

Axion insulatoreven, asymmetric

Figure 19: Schematic diagram of the anti-ferromagnetic topological insulator
films MnBi2Te4 with the magnetic moments along the z axis. Up: Odd layer
number film with net ferromagnetism and symmetric Zeeman distribution, which
corresponds to a non-trivial Chern insulator; Down: Even layer number film
without net ferromagnetism and antisymmetric Zeeman distribution, which cor-
responds to the axion insulator with two trivially gapped Dirac cones.

(a) (b)

(c) (d)

Figure 20: Left (right) pictures are for Lz = 19 (18) anti-ferromagnetic TI film
as an odd (even) one. The Zeeman strength is chosen to be |Vz | = 0.1 eV. (a) (b)
Calculated IS/A(k) for the effective model. (c) (d) Calculated Hall conductance
from magnetic TI film Hamiltonian.
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ferromagnetism and interlayer anti-ferromagnetism, known as the A-type AFM state. It1009

is predicted and shown that with odd or even SL layer numbers, the material will exhibit1010

quantum anomalous Hall effect [109,110,132–134] or the axion insulating phase [110,135],1011

respectively. Here, based on the lowest four-band model and the discussed Chern and1012

axion insulator pictures, we can explain these two phenomena in a simple and elegant1013

way.1014

The combination of layer-number-odevity determined (anti-)symmetric Zeeman distri-1015

bution and the localized nature of surface states leads to two qualitatively distinct physical1016

pictures. As revealed in the schematic diagram Fig. 19, when the layer number Lz is odd,1017

the Zeeman distribution is symmetric with parallel polarization of the outermost top and1018

bottom Zeeman field direction, and vice versa. Based on the symmetry analysis, two cases1019

are identified.1020

5.4.1 Odd layer: Chern insulator1021

In this case1022 ¨
IS > 0

IA = 0
, Lz mod 2 = 1, (110)

with the maximum value of IS centralized around Γ as shown in Fig. 20(a), and its sign1023

is controlled by the outermost layer Zeeman field direction, given by the fact that the low1024

energy states around Γ are localized near two surfaces. IS almost vanishes for large k since1025

the high energy states emerge into bulk and distribute diffusely, which leads to the can-1026

cellation of IS integral counting on the interlayer antiferromagnetism. Discussion above1027

classifies the odd SL MnBi2Te4 films into Chern insulator phase, as now m̃χ = IS + χ |m|1028

following Eq. (97), with sgn(m̃χ(Γ )) = sgn(IS) > 0, sgn(m̃χ(M)) = χ , and m̃− changes1029

signs at Γ and M which gives rise to a unit Chern number, while m̃+ is trivially gapped.1030

Totally, the odd-layer MnBi2Te4 stands as a Chern insulator with unit Hall plateau, as1031

revealed in Fig. 20(c), where the relatively narrow quantized Hall plateau for the quantum1032

anomalous Hall insulator phase is due to the second-outermost-layer Zeeman field which1033

owns an inverse polarization direction compared with the outermost field by the interlayer1034

anti-ferromagnetic nature, and thus weakens the IS integral at the Γ point, whose ampli-1035

tude is recognized as the band gap which measures the width of the quantized plateau1036

when the chemical potential shifts.1037

5.4.2 Even layer: axion insulator1038

In this case1039 ¨
IS = 0

IA > 0
, Lz mod 2 = 0, (111)

with the maximum value of IA centralized around Γ as shown in Fig. 20(b), which classifies1040

the even SL MnBi2Te4 films into axion insulator phase, as now m̃χ = χ
q

m2 + I2
A following1041

Eq. (108), with sgn(m̃χ(Γ )) = sgn(m̃χ(M)) = χ , and both become trivial since they do1042

not change signs. Totally, the even-layer MnBi2Te4 shares zero Hall plateau revealed in1043

Fig. 20(d).1044

5.5 Half-quantized anomalous Hall effect: a semi-magnetic film1045

From a model point of view, there should exist a search for the phase characterized1046

by a domain-wall separating the axion insulator (|IA(0)| > |IS(0)|) and Chern insula-1047

tor (|IA(0)| < |IS(0)|), and that comes to the celebrated half-quantized anomalous Hall1048
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Magnetism at One-Surface Only

Figure 21: Schematic diagram of the half-quantized anomalous Hall effect. In
this case only one side of the TI film is immersed with magnetism. The topolog-
ical property is revealed by one trivially gapped Dirac cone and a gapless Dirac
fermion that carries half-quantized Hall conductivity.

(a)
Thin film
Effective model

(b)

(c)
Thin film
Effective model

(d)

Figure 22: Half-quantized anomalous Hall metal: total layer number Lz = 19
with top-2-layer Zeeman field V t

z = 0.1 eV. (a) Comparison of band structure
from the lowest four bands of TI film model and effective four-band Hamiltonian.
(b) Calculated IS(k) and IA(k). (c) Calculated Hall conductance from TI film
model and effective four-band Hamiltonian. (d) Hall conductance for χ = ±.
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phase [31, 52, 53] with condition |IS| = |IA| inside the parity-invariant regime. Configu-1049

rationally, this corresponds to a semi-magnetic TI with a Zeeman field applied on only1050

one side, as illustrated in Fig. 21. The corresponding numerical results are presented in1051

Fig. 22.1052

Another motivation for searching such a phase lies deeply in the lattice realization of1053

a single Dirac fermion, which serves as a basis for the lattice gauge theory [136,137]. The1054

Nielsen-Ninomiya theorem [29,30], however, imposes strong constraints on this realization.1055

Tremendous approaches have been proposed like the Wilson fermion [4, 34], the SLAC1056

fermion [35, 138, 139], the Tan fermion [140, 141], etc. These realizations either break one1057

or more conditions required by the fermion-doubling theorem, such as symmetry or locality,1058

or evade the physical requirements like existence of first order derivative of wavefunction1059

and finite bandwidth on lattice.1060

In this context, by introducing magnetism to gap out surface states of one Dirac cone1061

through magnetism, the remaining gapless Dirac cone, as depicted in Fig. 22(a), essentially1062

serves as one lattice realization of a single Dirac fermion. As stated, the gapless Dirac cone1063

on lattice has to boil one or more conditions required by the fermion-doubling problem, and1064

it is the 2D parity symmetry together with the locality that are broken. To avoid doubling1065

caused by periodicity of Brillouin zone, the mass term of this gapless Dirac fermion has to1066

contain non-vanishing bulk-like high-energy part, as captured by Eq. (11), which breaks the1067

parity symmetry explicitly, while the vanishing low energy mass preserves the symmetry.1068

Such a low-energy symmetry-preserving while high-energy symmetry-breaking term shares1069

similarity with the ‘quantum anomaly’ [47, 66–71] in field theory, specifically the parity1070

anomaly in this case. However, the gapless Dirac fermion appeared here manifests itself1071

as a regularized complete condensed matter system with explicit symmetry breaking at1072

high-energy, which should be distinguished from the spontaneous symmetry breaking case1073

under the frame of quantum anomaly. The locality principle is violated by the massless1074

to massive transition.1075

The gapless Dirac fermion, identified as the band with gapless surface states contributes1076

a half-quantized Hall conductance. From Fig. 22 (d), the χ = + band is trivial with1077

zero-Hall plateau inside the Zeeman gap, i.e., the Zeeman gapped band is trivial, while1078

the χ = − band contains a relatively large Hall plateau quantized to −e2/2h, which is1079

bounded by the TI bulk gap and corresponds to the Hall conductance contributed from the1080

high-energy part of the gapless Dirac band [31]. To explain this behavior, it is important1081

to note that we now have I ≡ IS = IA > 0 around the Dirac point revealed in Fig. 22 (b)1082

(valid in the parity invariant regime bounded by kc), and the effective masses become,1083

according to Eq. (81),1084

m̃χ = I(k) + χ
Æ

m2(k) + I2(k), (112)

from which we see that m̃+ > 0 holds for any k and is trivial, while1085

m̃− =
¨

0, k < kc

I −pm2 + I2 ∼ −|m(k)|, k > kc
, (113)

which is nontrivial and offers us with a half-quantized Hall conductance within the regime1086

k < kc, as read from Eq. (38).1087

To realize this phase generally, we need |IS(k)| = |IA(k)| when k < kc. Under the1088

situation, one specifies the χ such satisfying that1089

−χ IS(k < kc) = |IA(k < kc)|, (114)

which gives the gaps according to Eq. (82) that ∆χ = 0 while ∆χ̄ = 4|IA(0)|, i.e., one1090

gapless band plus one gapped band. For the gapped band, the Chern number description1091
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still works and gives1092

Cχ̄ = −χ̄Θ(−2|IA(0)|) = 0, (115)
while for the gapless band, we can not use Chern number to define its topology in principle,1093

since it describes a metallic phase with a non-vanishing Fermi surface. Nevertheless, the1094

effective masses now have property1095 ¨
m̃χ(k < kc) = 0

m̃ χ̄(k < kc) = 2χ̄ |IA(k)| , (116)

then combined with the high-energy condition m̃χ(π,π) ∼ χ |m(π,π)|, one obtains that1096 σχH =
χ

2

e2

h
σ
χ̄

H = 0
, |µ| < 2|IA(0)|, (117)

in line with Eq. (38), i.e., the gapless Dirac cone provides half-quantized Hall conductance,1097

accompanied by a trivially gapped cone. This phenomenon is known as the half-quantized1098

anomalous Hall effect [31,52,53], and is experimentally observed in Cr-doped (Bi, Sb)2Te31099

system. It is important to note that the chemical potential should lie within the magnetic1100

gapgapped band to avoid non-quantized contributions from the trivial χ̄ band. Addition-1101

ally, the weak Zeeman field presumption ensures that the Zeeman gap, which is smaller1102

than the bulk gap, does not exceed the energy limit of the parity-invariant regime. The1103

metallic nature of the non-trivial gapless Dirac fermion indicates that the system stays1104

inside a metallic topological phase. Notice that the non-trivial gapless band requirement1105

Eq. (114) gives χ = −sgn(I) = −sgn(V) with I = IS(0) and V = Vtop
S , and we can write1106

down the asymptotic Hamiltonian for this band as1107

Hhalf ∼ λ‖(sin(kx a)σx + sin
�
ky b
�
σy) + sgn(V)m(k)σz, (118)

counting on the fact that m(k) ≤ 0. This effective Hamiltonian offers with half-quantized1108

Hall conductance −sgn(V)e2/2h, which does not depend on whether the magnetism is1109

put at the top or bottom of TI film, but only on its polarization direction. Under an1110

external magnetic field, such a single gapless Dirac fermion will step into the quantum1111

Hall regime [52,93] and exhibits quantized Hall conductance whenever an integer number1112

of Landau levels become fully filled [142]. Especially, the ‘anomaly’ contribution will1113

manifest itself to compensate the half quantization contributed from the lowest Landau1114

level, so as to keep the integer value of Chern invariant for this gapped Landau level1115

system.1116

5.6 Phase diagram1117

To appreciate the details of the phases mentioned, especially regarding the phase transi-1118

tions among, we go back to the effective model and assume that the immersed depth of top1119

and bottom Zeeman field, if exists, is relatively longer than the characteristic exponen-1120

tially decaying length of surface states while being much smaller than the film thickness,1121

with uniform strength for the top or bottom field. Then we can adopt the substitution1122

IS/A→ VS/A = Vtop
S/A

. (119)

And the effective model reads1123 
H̃χ = λ‖(sin(kx a)σx + sin

�
ky a
�
σy) + m̃χ(k)σz

m̃χ(k) = VS + χ
q

m2(k) + V2
A

m(k) = Θ(−m0(k))m0(k)

m0(k) = m0 − 4t‖
�
sin2 kx a

2 + sin2 ky b
2

� , (120)
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Chern

Chern

Axion

Axion

HQMHE
HQAHE

HQAHE

Figure 23: Phase diagram of topological phases with weak field. Four distinct
phases have been labelled as Chern insulator phase in the first and fourth quad-
rants differed by sign of Hall conductance, Axion insulator phase in the second
and third quadrants, the half quantum mirror Hall effect (HQMHE) along the
x -axis (indicated by the green wave line), and the half-quantized anomalous Hall
effect (HQAHE) along V+0 and V−0 rays (indicated by red or blue dashed lines) dif-
fered by sign of Hall conductance. The effectiveness of the phase diagram should
be confirmed for chemical potential lying in both the parity invariant regime and
or (smaller) Zeeman gap of surface states, and the Zeeman strength should be
constrained to be relatively weak compared with the bulk gap, while playing its
role mainly at top and bottom surfaces under the discussed frame.

from which one reads the Hall conductance from Eq. (83) as (in the Zeeman gap or the1124

parity invariant regime)1125

σ
χ

H =
e2

h

1

2
[χ − sgn(VS + χ |VA|)] . (121)

Now let us introduce the top Zeeman strength Vtop
z = V0, and the bottom Zeeman strength1126

Vbottom
z = x V0 described by the collaboration between Vtop

z and a phenomenological pa-1127

rameter x characterizing their relative strength. Then accordingly we have1128 VS = V0
1+ x

2
VA = V0

1− x

2

, (122)

which gives further the Hall conductance1129

σ
χ

H =
e2

h

1

2

�
χ − sgn(V0)sgn

�
1+ x

2
+ χsgn(V0)

����1− x

2

������ , (123)

whose dependence on parameters (x , V0) are presented in Fig. 23 as a phase diagram1130

emphasizing the role the relative strength x plays here. Notice that we have defined1131

sgn(0) = 0 here, corresponding to realistic physical phenomenon when V0 = 0. From the1132

diagram, except for V0 = 0 line, which represents a pure topological insulator film with1133

half quantum mirror Hall effect, it is always x ≥ 0 side that gives rise to phases with1134

non-vanishing Hall conductance, belonging to either Chern insulator or half-quantized1135

anomalous Hall metal phase, while the x < 0 side termed as axion insulator phase always1136

contains two trivially gapped Dirac cones/fermions.1137
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Focusing on the phase transition, we observe that a phase characterized by an anoma-1138

lous half-quantized index always emerges upon the integer index phase transition. This1139

phenomenon echoes transitions observed in integer quantum Hall systems [103,143], where1140

the renormalization group flow diagram exhibits a generic fixed point with half-quantized1141

Hall conductance and finite longitudinal conductance, suggesting a phase transition in 2D1142

from a field theoretical point of view. However, the physics here should differ, as the1143

robustness of the gapless surface state is protected by the bulk and corresponding surface1144

time-reversal symmetry as an intrinsic feature of 3D strong topological insulators [17]. Put1145

the statement differently, the additional dimension in our system exhibits robust topolog-1146

ical/geometric effects, making it plausible that phases characterized by half-integers here1147

are more likely to be symmetry-protected metallic topological phases, while this protection1148

only occurs in a finite regime over the whole Brillouin zone. Especially, the half QAHE1149

here is protected by a parity invariant regime, and is different from a critical quantum1150

Hall transition phase without protection from any non-conformal symmetries.1151

In the phase diagram we draw, the line of half quantum mirror Hall effect is crossed1152

when transitioning between two Chern insulator phases characterized by opposite Chern1153

numbers, since such a phase transition relies on changing of Zeeman polarization direction,1154

thus crossing V0 = 0 where half quantum mirror Hall effect happens. A similar thing1155

happens for the transition between axion insulator phases differed by Zeeman direction.1156

On the other hand, lines representing half QAHE are crossed when stepping between the1157

Chern insulator and axion insulator phases, with the sign of Hall conductance determined1158

by Zeeman direction.1159

6 Topological phases with strong field1160

A more extensive and complex regime exists beyond the weak Zeeman field approxima-1161

tion, and the criterion tells that the topological phase appearing here can not be simply1162

described under n = 1 framework. In this scenario, we step into the strong field regime,1163

where the appearance of n ≥ 2 cones is unavoidable. Surprisingly, the inter-Dirac-cone1164

interaction can sometimes play the ultimate role deciding the topological property of the1165

system. It is in such situations that our effective mass picture from Eq. (66) and Eq. (67)1166

serves as the ultimate criterion for the topological property in the system.1167

6.1 Metallic quantized anomalous Hall effect: a film with a magnetic sandwich1168

structure1169

One other novel metallic topological phase bearing a pair of gapless Dirac fermions has1170

been recently proposed [32], which shows a quantized Hall conductivity of unit that orig-1171

inates from two metallic bands, each with one-half quantum. To further enhance our1172

understanding of magnetic topological phases, the key findings related to this phase are1173

summarized below.1174

The schematic diagram is shown in Fig. 24. We set total layer number Lz = 22 which1175

is even, and the z-symmetric site positions read1176

lz = ±1

2
, · · · ,±Lz − 1

2
. (124)

Accordingly, z-symmetric Zeeman field in magnetically doped layers at the middle of the1177

TI film is set as1178

Vz(lz) =

¨
αt⊥, lz = ±1/2, · · · ,±(m z − 1)/2
0, otherwise

, (125)
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Magnetism in the Middle

Figure 24: Schematic diagram of the metallic quantized anomalous Hall effect. In
the case a relatively strong out-of-plane ordered magnetism exists in the middle
of the film. The topological property of the system is reflected by a pair of gapless
Dirac cones with the same high-energy mass sign, each carrying half-quantized
Hall conductivity.

(a) (b)

Figure 25: (a) The band structure near the Γ point with ky = 0 with the presence
of magnetic doping (α = 0.9). The gapless dispersions for the surface states are
doubly degenerate, as shown by the red and yellow lines. (b) Corresponding Hall
conductivity as a function of the chemical potential µ at α = 0.9. The thickness
Lz = 22 and the magnetic layers m z = 6.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 26: The evolution of the effective mass m̃n,χ(kx , ky = 0) (n = 1,2).
(a)∼(g) and (h)∼(n) show lowest-two effective masses varying with changing
Zeeman field strength α belonging to set [0,0.3, 0.5, 0.7, 0.74, 0.8, 0.9] for χ = +
and χ = −, respectively. (a) (g) (h) (n) have already been shown as Fig. 3 in the
main text but with a finer structure here. Adapted from [32].

with magnetic layer number m z = 6. By z-symmetric VS(lz) = Vz(lz), VA(lz) = 0, the1179

projection only contains IS term proportional to α. Then we bring α to the front explicitly1180

as1181

IS(α, k)τ0σz 7→ αIS(k)τ0σz, (126)

with IS(α = 1, k) 7→ IS(k) as a re-definition.1182

The metallic feature and quantized Hall conductivity nature are revealed in Fig. 25.1183

The band structure of the film is shown in the presence of strong enough magnetism1184

(α = 0.9), with a pair of massless Dirac fermions. The pairing nature is reflected by the1185

double degeneracy of band dispersion near the Γ point, as labelled by the red and yellow1186

lines. The unbroken surface states picture is possible due to the localized nature of the1187

surface states inside the bulk-gap, which is not affected by the far-away magnetism in1188

the middle of the film. Meanwhile, a quantized Hall conductivity is observed, when the1189

chemical potential lies inside both the bulk and magnetic gap. And as we shall see later,1190

essentially the quantization comes from the two gapless Dirac fermions, each sharing a1191

half-quantized Hall conductivity with the same sign, based on which we further identify1192

that the effect is not only superficially metallic, but originates from such metallic bands.1193

And it is in this circumstance that we term this new phase as the ‘metallic quantized1194

anomalous Hall effect’ (metallic QAHE), indicating that it differs from the conventional1195

QAHE, aka the Chern insulator in an insulating phase.1196

Attributed to the mass exchange mechanism over the effective mass picture presented in1197

Section 4, such a topological phase transition with the increasing of α as Zeeman strength1198

in the middle can be explained. Absorbing the α-dependent Zeeman term into the one-1199

dimensional Hamiltonian separated from the TI film leads to an α-dependent 1-D Hamil-1200

tonian H1d(α), with H1d(α = 0) coming back to the 1-D Hamiltonian extracted from TI1201

film and solved exactly before (see section 2.2). Projecting H1d(α) over solutions of H1d(0)1202

leads to
�⊕Lz

n=1 mnτz +αIS(k)τ0

�
σz, and further diagonalizing this provides a bijection1203

which maps the projected Hamiltonian form into the mass term
⊕Lz

n=1,χ=± m̃n,χ(k,α)σz1204

(see section 4.1). Notice that both σz and τz here are good quantum numbers, as spin1205
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and mirror indices (χ = ±), respectively. Confining to the subspace with σz = +, we1206

could then track the evolution and interaction of the mass terms m̃n,χ between n = 11207

and n = 2 blocks with increasing α for given χ . As shown in Fig. 26, m̃n,+(n = 1,2)1208

maintain their shapes increasing α, while m̃n,−(n = 1, 2) have effectively exchanged their1209

high-energy parts through the low-energy mass exchange, which leads to the high-energy1210

mass sign change of the gapless Dirac cone, and alters its Hall conductivity from e2/2h to1211

−e2/2h, when Fermi surface lies inside the parity invariant regime. Then combined with1212

the unaltered −e2/2h from m̃1,+, totally a topological phase transition happens, driving1213

the system from zero Hall conductivity to quantized Hall conductivity, with Hall contri-1214

bution coming from two metallic bands, which makes the system a metallic topological1215

phase. We can identify1216

αc ≈ 0.74 (127)
in this case to indicate 0→−1 plateau transition. Notice that although we have explicitly1217

exploited the z-mirror symmetry to separate our effective masses into two groups, this1218

symmetry consideration is not necessary here and the metallic QAHE is not protected by1219

the symmetry. For example, from Eq. (66), Eq. (67) we see clearly that a general Zeeman1220

field configuration can still generate 2Lz independent Dirac masses, and if we place a1221

strong enough Zeeman field in the middle of the film deviating from the symmetric case,1222

still we can see the effect with unit Hall plateau.1223

The key difference between our metallic QAHE and the conventional QAHE or equiv-1224

alently the Chern insulator lies in the unconventional bulk boundary correspondence. As1225

discussed in [31], the half-quantized Hall conductivity bears no chiral edge states, while its1226

corresponding boundary physics lies in the existence of the chiral current, which is indeed1227

a bulk states contribution and decays algebraically along the metallic surface, starting1228

from the middle magnetic zone where time-reversal symmetry is broken most severely.1229

6.1.1 A qualitatively model with n = 1, 21230

A qualitative understanding of the phenomenon within a cut-off approximation based on1231

the n = 1, 2 blocks can be deduced. In the mass exchange picture above, we have used the1232

fully diagonalized m̃1,2 to illustrate the physics behind, while the picture with only n = 11233

involved based on the weak Zeeman field approximation breaks down. This is essentially1234

because, the weak field approximation heavily relies on effect the magnetism has upon the1235

surface states, which is not the case here since the magnetism in the middle will not directly1236

affect the surface states, and were there to be any physics effects, they must be conducted1237

through the bulk states, whose wavefunction has maximal overlap with the magnetic areas.1238

Here, the metallic QAHE is just the first non-trivial case of such kind, where the inter-n1239

blocks interaction conducted through magnetism is deterministic, and luckily, we have1240

found a way to directly observe the overall effect by a second diagonalization, yielding the1241

effective masses m̃n. While the process and the results are straightforward and conclusive,1242

it will be more satisfying if a simplified model exists and grasps the core of physics even1243

qualitatively. Interestingly, a model incorporating the n = 1,2 blocks plays a crucial role1244

in achieving this.1245

For simplicity, we consider the symmetric Zeeman field in the middle, and by preserving1246

n = 1, 2, the mass terms read1247

M(α) =

�
m1

m2

�
τz +α

�
I11
S I12

S
I21
S I22

S

�
τ0, (128)

with k-dependence in mn and IS terms. The Hamiltonian for n = 1,2 reads1248

Hn=1,2(k) = λ‖ρ0τ0(sin(kx a)σx + sin
�
ky b
�
σy) +Mσz, (129)
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with ρ another pseudo-spin degrees of freedom for two blocks.1249

Following the effective mass treatment, we further block-diagonalize H1,2 into 2×2 sub-1250

blocks. Notice that again the projected mirror operator τz in M serves as a good quantum1251

number due to the chosen symmetric Zeeman distribution, then a split M = ⊕χMχ(χ = ±)1252

can be made, so does that for the Hamiltonian H1,2 = ⊕χH1,2
χ , where1253

H1,2
χ = λ‖ρ0(sin(kx a)σx + sin

�
ky b
�
σy) +αRe(I12

S )(k)ρxσz −α Im(I12
S )(k)ρyσz

+ Eχ(k)ρ0σz +∆χ(k)ρzσz,
(130)

with1254 ¨
Eχ = [χ(m1 +m2) +α(I11

S + I22
S )]/2

∆χ = [χ(m1 −m2) +α(I11
S − I22

S )]/2
. (131)

Clearly, diagonalization in ρ-space is accessible without altering the linear part, which1255

leads to1256

H̃1,2
χζ
= λ‖(sin(kx a)σx + sin

�
ky b
�
σy) + m̃χ ,ζσz, (132)

where1257

m̃χ ,ζ = (Eχ(k) + ζΛχ(k))σz, χ ,ζ = ±, (133)

with Λχ =
q
∆2
χ +α2|I12

S |2 defined. This is reached by a unitary transformation Uχ = Uχ2 Uχ11258

for each χ , where Uχ2 = eiρxθ
χ

2 , Uχ1 = eiρyθ
χ

1 , with definitions tan 2θ χ1 = αRe(I12
S )/∆χ ,1259

tan 2θ χ2 = α Im(I12
S )/δχ , δχ =
q
α2 Re(I12

S )
2 +∆2

χ .1260

(a) (b)

Figure 27: I11
S/A

, I22
S/A

and I12
S/A

calculated with total layer number Lz = 22 and
middle Zeeman layer number m z = 6. Re-plotted from [32].

Now we choose case α > 0 so that αInn
S > 0 to illustrate the physics. Topological phase1261

transition happens when αI22
S > m2(0) > 0 (for m2(0) > 0 see Fig. 4) with the help of1262

I12
S . In the case now, we identify the Hall conductivity for each sub-block as1263

σ
χζ

H =
e2

2h

�
sgn(m̃χ ,ζ(M))− sgn(m̃χ ,ζ(k

χ ,ζ
F ))
�

, (134)

with m̃χ ,ζ(k
χ ,ζ
F ) recognized as m̃χ ,ζ at Fermi surface of the band, and for an insulating1264

band with Fermi level inside the gap, it is m̃χ ,ζ(0). For unification and simplicity, we will1265

always assume Fermi level to lie inside insulating gap and the parity invariant regime of1266

a gapless band near Γ point so to always recognize kF = 0, and those worrying about the1267

singular gapless Dirac point for the metallic case can always take the unambiguous second1268
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limit in Section 3.5. Then by treating1269 
m1(0) = 0, m2(0) > 0

−m1(M) ≈ m2(M)� α|IS(M)| > 0

I11
S (0) = I12

S (0) = 0, I22
S (0) > 0

IA = 0

,

where quantities IS/A can be read from Fig. 27, we can write1270 m̃χ ,ζ(0) =
χm2(0) +αI22

S (0)

2
+ ζ

����χm2(0) +αI22
S (0)

2

����
m̃χ ,ζ(M) ≈ ζm2(M)

. (135)

Clearly, m̃χ ,ζ(M) are almost unchanged since the projected Zeeman field is not that strong1271

here, and the Hall conductivity formula is reduced into1272

σ
χζ

H =
e2

2h

�
ζ− sgn(m̃χ ,ζ(0))

�
. (136)

For m̃χ ,ζ(0) two cases should be distinguished. When αI22
S (0) < m2(0),1273 

m̃++(0) = m2(0) +αI22
S (0) > 0

m̃+−(0) = 0

m̃−+(0) = 0

m̃−−(0) = −m2(0) +αI22
S (0) < 0

, (137)

and we obtain1274 
σ++H = 0

σ+−H = −e2/2h

σ−+H = e2/2h

σ−−H = 0

, (138)

with total Hall conductivity zero. Interestingly, in this case the symmetric magnetism in1275

the middle does not even quantitatively change the half quantum mirror Hall phase. On1276

the other hand, for αI22
S (0) > m2(0),1277 

m̃++(0) = m2(0) +αI22
S (0) > 0

m̃+−(0) = 0

m̃−+(0) = −m2(0) +αI22
S (0) > 0

m̃−−(0) = 0

, (139)

and we obtain1278 
σ++H = 0

σ+−H = −e2/2h

σ−+H = 0

σ−−H = −e2/2h

, (140)

with total Hall conductivity unit upon e2/h. This unit is fundamentally different the C = 11279

as Chern insulator case, since here 1 = 1/2+1/2, with non-vanishing contribution coming1280

from two metallic bands describing gapless Dirac fermions. It is recognized that the phase1281
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transition happens only within χ = − sub-blocks, where ζ = ± Dirac fermions exchange1282

their low-energy mass when crossing the qualitative phase transition point I22
S (0) = m2(0),1283

and by treating approximately I22
S ≈ αt⊥, m2(0) ≈ m0, we see the qualitative critical point1284

as1285

α
quali
c =

m0

t⊥
≈ 0.7, (141)

which is close to the numerical result.1286

I12
S as inter-n Dirac fermions coupling plays an important role here. Without this term,1287

n = 1 and n = 2 Dirac fermions will totally be decoupled from Eq. (128), which makes1288

the mass exchange between ζ-Dirac fermions with χ = − impossible. With this term,1289

which serves as an avoid-crossing source between ζ-Dirac fermions masses, and obtains its1290

maximum nearly after surface to bulk transition of n = 1 gapless Dirac fermions, we see1291

that the crossing behavior of m̃−,ζ at ∆−(kcross) = 0 is prohibited by a non-zero I12
S (kcross),1292

and the two bands are forced to exchange masses before and after kcross. This is possible1293

since ∆−(k) = 0 requires that I11
S (k) > I22

S (k), which can happen only when n = 1 surface1294

states emerge into the bulk at k > kc, where I12
S (k) is also non-zero.1295

6.1.2 Lower threshold by decreasing the mass in the middle1296

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 28: The evolution of the effective mass m̃n,χ(kx , ky = 0). (a)∼(g)
and (h)∼(n) emphasize lowest-two (n = 1,2) effective masses in red and
blue colors, varying with changing Zeeman field strength α belonging to set
[0,0.1, 0.25, 0.4, 0.435, 0.5, 0.6] for χ = + and χ = −, respectively. Still, we
take total layer number Lz = 22 and middle Zeeman layer number m z = 6,
while the difference with Fig. 26 is that here the middle-layer mass is reduced to
m̃0 = 0.08 eV.

It was pointed out [144,145] that magnetic doping can reduce and even drive the bulk1297

band gap m0 of TI into a trivial one, and this effect plays a positive role in realizing1298

the metallic QAHE indeed. To illustrate this, consider a simplified scenario where the1299

bulk mass of TI, initially m0 = 0.28 eV, is reduced to m̃0 = 0.08 eV in the magnetically1300

doped region. Then by comparing the detailed effective mass evolution in Fig. 28 with the1301

original case in Fig. 26, we observe that the critical point αc decreases to approximately1302

αc ≈ 0.435. Such a reduction is beneficial for the experimental realization of the metallic1303
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Stronger Magnetism
in the Middle

Figure 29: Schematic diagram of a stronger magnetism in the middle of the topo-
logical insulator film. The system now contains a pair of gapless Dirac fermions
with the same high-energy mass signs, together with one non-trivial gapped Dirac
cone with unit Chern number. The contributions of these Dirac fermions are syn-
ergistic.

QAHE. Moreover, since the decrease in the critical α is positively correlated with the re-1304

duction of doped middle layer mass, while and this mass reduction itself is also positively1305

correlated with the increase in concentration of magnetic doping, it is expected that the1306

metallic QAHE can be achieved with a significantly lower threshold of magnetic doping1307

concentration in practice. Note that if the middle layers are driven to a trivial state with1308

a negative bulk mass m̃0 < 0, and are simultaneously considered nonconductive, the sys-1309

tem effectively splits into two semi-magnetic TI films, a trivial metallic QAHE comprising1310

two non-communicative half QAHEs with the same half-quantized Hall conductance is1311

obtained. It is important to recognize that the above calculation assumes an oversimpli-1312

fied relationship between doping concentration and the reduced mass. A more accurate1313

determination of the modified critical point requires a realistic model and a self-consistent1314

calculation.1315

6.1.3 Stronger field in the middle1316

Encouraged by the mass exchange series diagrams, a natural question to ask is what hap-1317

pens when we increase Zeeman strength in the middle further. A first step answer to the1318

ask is we will meet a system with higher Hall conductance. For instance, after increasing1319

Zeeman field strength to α = 1.2, we see from Fig. 30(a) that the Hall conductivity of the1320

system becomes −2e2/h now. For the reason behind, we again look on the effective masses1321

presented in Fig. 30(b), where a pair of gapless Dirac cones and one non-trivial gapped1322

Dirac cone with mass sign reversal emerge, and essentially, from Eq. 38 and Eq. 42, they1323

contribute synergistically to the Hall conductivity, i.e., 1/2+1/2+1 = 2 units over −e2/h.1324

A careful trace over the effective mass evolution upon increasing α reveals that, at this1325

time, n = 3 band of χ = + closes and reopens the gap, during which an avoid crossing1326

happens and forces it to exchange low energy mass with n = 1 band of χ = +, which leads1327

to the result above.1328

6.2 Higher Chern Number Insulator1329

Based on magnetic TI film, several proposals to realize higher Chern number have been1330

provided [83,134,145], among which one theoretical proposal [83] utilizes one-by-one sub-1331

band inversion to illustrate the increasing Chern number process. Here the physics behind1332
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(a) (b) (c)

Figure 30: (a) Hall conductance of a metallic QAHE with a stronger magnetic
field in the middle. (b) Momentum-dependent effective masses of Dirac fermions
in Eq. (68). The masses for non-trivial bands have been stressed in the same
color. (c) Band dispersion for the system, where the gapless bands at Γ are
doubly degenerate. Specifically, here the total layer number of TI film is Lz = 22,
the magnetic layer number is the middle is 6, and the Zeeman strength is V = αt⊥
with α = 1.2.

(a)
X & Y
M

(b)

Figure 31: (a) Chern numbers of magnetic TI film with varying uniform Zeeman
field strength V. Red, blue and purple dots represent Chern numbers caused by
Γ , X/Y and M mass inversions, respectively. (b) Calculated mass mn(k) along
M − Γ −X high symmetry line. Green guidance lines have been imposed to reveal
either zero-energy surface state plateau or relative magnitude of masses among
high symmetry points. Total layer number Lz = 8.
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is brought out in a more strict way with a similar picture.1333

Still we firstly present an example shown in Fig. 31(a) as the Chern numbers of a1334

uniformly magnetized TI film with total layer number Lz = 8. The algorithm follows [146].1335

With increasing the uniform Zeeman strength V, the change of Chern numbers experiences1336

three stages: For the relatively weak Zeeman field, the Chern number plateau increases1337

step by step, from 0 to 8, as revealed by red dots; For the Zeeman field with medium1338

strength, the Chern number plateau drops from 8 to −8 with 2 as a step, illustrated by1339

blue dots; Finally for the relatively strong Zeeman field, the Chern number plateau again1340

increases from −8 to 0 one-by-one, shown by purple dots. Notice that under our parameter1341

choice we have m1(π, 0) ∼ 2 eV and m1(π,π) ∼ 4.3 eV.1342

The Hamiltonian Eq. (70) now best suits to describe the phenomenon, where the1343

uniform Zeeman field makes it exact to preserve diagonal blocks only. However, due to1344

the largely adjustable magnitude of the Zeeman field, Eq. (83) becomes inapplicable here,1345

and a more general formula following Eq. (45) is written as [27,50,101]1346

Cχ = −
sgn(m̃χ(X))

2
[sgn(m̃χ(Γ ))− sgn(m̃χ(M))], (142)

i.e., it accounts for the mass sign-change induced topological phase transition at X = (π, 0).1347

In this case, the χ-Chern number for each n = 1, · · · , Lz is written as1348

Cn
χ = −sgn(V + χmn(X))

2
[sgn(V + χmn(Γ ))− sgn(V + χmn(M))] . (143)

In our case, |mn(Γ )| < |mn(X)| < |mn(M)|, and admittedly, all bulk bands n ≥ 2 are1349

trivial by which we mean mn(Γ/X/M) share the same sign, then focusing on one band1350

and increasing V from zero, we see that when V just crosses |mn(Γ )|, the band with1351

χmn < 0 increases its Chern number from zero to one; continuing to increase V so that it1352

is bigger that mn(X), the corresponding Chern number reverses its sign from 1 to −1; and1353

finally when V goes beyond the bandwidth |mn(M)|, the band goes back to its trivial phase1354

with zero Chern number. Notice that under our assumption V > 0, the band χ̄mn > 0 is1355

always trivial.1356

It is now clear that the sub-band mass-inversion at Γ , X and M points are responsible1357

for the change of Chern numbers, or equivalently the anomalous Hall plateaus with quan-1358

tum units of conductance revealed in Fig. 31(a). As presented in Fig. 31(b), the masses1359

mn(k) now share the property that max[mn(Γ )] <min[m l(X)], max[mn(X)] <min[m l(M)],1360

as revealed by the green guidance lines. Then the Chern number change can be divided1361

into three regions with increasing Zeeman field V labelled in Fig. 31(a), i.e., the Γ -mass1362

inverse region, the X(Y)-mass inverse region and the M-mass inverse region, without cross-1363

ing among distinct regions. The physics happening in each region is exactly Lz = 8 copies1364

illustrated above with increasing V, i.e., the Chern number increases one-by-one in the1365

Γ -region each time Zeeman field V crosses some |mn(Γ )| and makes the band non-trivial,1366

until it reaches its maximum Cmax = Lz = 8, then decreases two-by-two in the X-region1367

once V gets bigger than some |mn(X)|, where topological phase transition happens with1368

both sides non-trivial, until bottom touching Cmin = Lz − 2Lz = −8, and finally the Chern1369

number goes back to zero step-by-step in the M-region as long as V becomes bigger than1370

some bandwidth |mn(M)| and makes corresponding band trivial again. The inverse pro-1371

cess happens for an opposite Zeeman field, with Chern number reversing its sign.1372

6.3 Cooperation between middle and surfaces1373

Similar to the approach of gapping out surface(s) of a topological insulator film, we can1374

gap out the surface states in metallic QAHE with surface magnetism polarized along z1375
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direction. In this sense we explore the cooperation between magnetism in the middle and1376

at surface(s).1377

The surface magnetism is chosen to be weak compared to the smallest gap in metallic1378

QAHE, and it can thus be treated again as a perturbation. This is simply because gapping1379

out the gapless surface needs no threshold over surface magnetic strength. Based on such1380

a picture, the physics beneath comes from perturbating two gapless Dirac fermions with1381

the same high-energy mass signs in metallic QAHE, whose simplified model Hamiltonian1382

reads HMQAHE = h ⊕ h with single Dirac cone Hamiltonian1383

h(k) = λ‖(sin(kx a)σx + sin
�
ky b
�
σy) + sgn(Vmid)m̃(k)σz, (144)

with m̃(k) = Θ(−m0(k))m0(k) identified. Considering now in metallic QAHE, the middle1384

Zeeman field does not affect the gapless surface states, then the projection of top and1385

bottom Zeeman fields onto the mirror-symmetric surface states can still be written as1386

IS(k)τ0σz − IA(k)τyσz. And by approximation, we recognize IS ≡ Vtop
S , IA ≡ Vtop

A so that1387

the phenomenological mass terms read1388

sgn(Vmid)m̃(k)τ0 + Vtop
S τ0 + Vtop

A τy , (145)

which can be diagonalized without affecting linear term as1389

m̃ζ(k) = sgn(Vmid)m̃(k) + Vtop
S + ζVtop

A , (146)

with ζ = ±. Attributing to Eq. (42), we have for a gapped Dirac cone with Vtop
S +ζVtop

A 6= 0,1390

Cζ =
1

2

�
sgn(Vtop

S + ζVtop
A ) + sgn(Vmid)

�
, (147)

while for a gapless Dirac cone with Vtop
S + ζVtop

A = 0, according to Eq. (38) we have1391

Nζ = sgn(Vmid), (148)

and the corresponding Hall conductivity reads σζH = −Ce2/h or σζH = −Ne2/2h depending1392

on gapped or gapless nature, which serves as the starting point for analyzing phases below.1393

For an instance, adding gap opening z-Zeeman field at both top and bottom surfaces1394

parallel to magnetic polarization in the metallic QAHE system leads to C = 2 state, com-1395

posed of a pair of non-trivial gapped Dirac fermions each carrying unit Chern number, as1396

represented in Fig. 32. Such C = 2 state has been observed [145] in a similar magnetic1397

structure with an alternate explanation based on the assumption that magnetic layers1398

dividing topological insulator film do not hold side surface states, which then turns the1399

magnetic insulator-topological insulator multilayer structure into individual C = 1 insula-1400

tors, each of which can be explained by the discussion over Chern insulator in the weak1401

Zeeman field section. Here instead we assume that the magnetism does not alter the bulk1402

gap m0 very much, so that the side surface state goes throughout the zone with magnetism.1403

The calculated Hall conductivity for one configuration following the assumption is shown1404

in Fig. 33(a), where a C = 2 plateau is presented inside the top/bottom Zeeman gap for1405

surface states. The system is thus identified as a Chern insulator by the gapped band1406

structure shown in Fig. 33(c). For simplicity, we have chosen a symmetric surface Zeeman1407

distribution with Vtop
A = 0. Now since Vtop

S > 0, Vmid > 0, we have mass sign changes at1408

Γ and M for both surface states as revealed by mass configurations in Fig. 33(b), and by1409

Eq. (147)1410

C+ = C− = 1, (149)
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Metallic QAHE

Parallel Surface Magnetism

Figure 32: Schematic diagram of the metallic quantized anomalous Hall effect
with top and bottom symmetric magnetism parallel to that in the middle. In the
case a relatively strong Zeeman field exists in the middle of the film, while top
and bottom states are gapped out by a weak Zeeman field. The system is now an
insulator again, and contains a pair of gapped Dirac cones, each carrying Chern
number one.

(a) (b) (c)

Figure 33: (a) Hall conductivity of a metallic QAHE with its top and bottom
surface states also gapped by magnetism, whose polarization direction is parallel
to the field in the middle. (b) Momentum-dependent effective masses of Dirac
fermions in Eq. (68). Due to the symmetric Zeeman configurations, masses are
again divided into mirror classes by χ = ±. The masses for gapped surface states
have been stressed in the same color. (c) The band structure of the system.
Specifically, here the total layer number of TI film is Lz = 22, the magnetic layer
numbers at top, middle and bottom are 2, 6, 2, with mean Zeeman strengths
chosen to be Vtop = 0.05 eV, Vmid = αt⊥ with α = 0.9, and Vbot = 0.05 eV,
respectively.
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which leads to totally a C = 2 state.1411

Now let us switch down Vtop, which makes Vtop
S = −Vtop

A > 0, accordingly we have1412

N+ = 1, C− = 1, which corresponds to a system with Hall conductivity 3e2/2h. Further we1413

re-add Vtop = −Vbottom < 0, which leads to Vtop
S = 0, Vtop

A > 0, and we see C+ = 1, C− = 0,1414

which makes the system a Chern insulator again with unit Chern number. Next we1415

reverse Vbottom to minus, and Vtop
S < 0, Vtop

A = 0, which makes the system trivial with1416

C+ = C− = 0. Finally, we switch down again Vtop, and now Vtop
S = −Vtop

A < 0, accordingly1417

we have N+ = 1, C− = 0, which leaves half quantization of Hall conductivity in the system.1418

Totally, we see that there exist five more additional topologically distinct phases upon1419

tuning surface magnetism of metallic QAHE, with Hall conductivities quantized into1420

2, 3/2,1, 1/2 and 0 over quantum units, respectively. The topological properties of these1421

additional phases can be easily verified by calculating their Hall conductivities, or reading1422

from their effective mass pictures. The signs of Hall conductivities are inverted once we1423

overturn magnetism at both surfaces and in the middle.1424

7 Discussion and conclusion1425

It is quite remarkable and surprising that so many topologically distinct phases already1426

emerge under such a relatively simple model describing a magnetic topological insulator1427

film. At the core of physics, however, such a descriptive and predictive power of the1428

frame should be estimated. Although, admittedly infinite possibilities exist to explain the1429

phenomena, down to the ground several principles, such as symmetry, topology, emergence1430

and conciseness, have almost fixed the formalism we are willing to adapt in addressing1431

the problem. In our focused questions, particularly regarding the Hall conductances for1432

different species of Dirac fermions in the system, the property of several points in the1433

spectrum is already sufficient to solely determine the result. And to endow physical1434

meaning to these points, we name the points to represent low-energy and anomaly. The1435

invariance of laws of physics then suggests that, once we have grasped these key ingredients,1436

the complexities of the more intricate components will naturally fall into place. Below we1437

summarize key points in our paper and extend to further discussions.1438

The introduced local unitary transformation in k-space, based on the exact solution,1439

unveils the existence of a pair of gapless Dirac fermions and a series of massive gapped1440

Dirac fermions in a 3D topological insulator film, when viewed as 2D system effectively.1441

This comprehensive understanding of the constitutes inside the TI film is paramount, in1442

our discussion. as our derivation here is a complete extension of the previous work on1443

projection of TI surface states [36–38], with the inclusion of the high-energy part of the1444

surface bands in the full 2D Brillouin zone and higher massive Dirac fermions for bulk1445

bands.1446

The Hall conductivity associated with the gapless and gapped Dirac fermions in the1447

TI film are ±e2/2h and 0, respectively. This results in a half-quantized topological phase,1448

serving as a metallic partner to the insulating quantum spin Hall effect, namely, the half1449

quantum mirror Hall effect in TI film itself with a mirror symmetry. The pairing feature1450

of the gapless Dirac fermions in half quantum mirror Hall effect is summarized in Table1451

3. It is noteworthy that their existence here is not a result from the Nielsen-Ninomiya1452

theorem, since they are two separable fermions in whole Brillouin zone; rather, it is the1453

mirror symmetry along the opened direction of the TI film that requires the doubling —1454

symmetric and antisymmetric.1455

The mass term of the gapless Dirac fermion in our study is a regularized one that1456

can be directly expressed on a lattice. However, this regularization comes at the cost of1457
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Table 3: Summation of main magnetic topological phases discussed. C represents
Chern number for a fully occupied band, while N is the half-integer index for a
metallic band. The Hall conductance σH = −(C +N/2)(e2/h) when the chemical
potential lies inside the insulating gap and symmetry constrained regime of the
metallic band.

Name of phase Magnetic structure Responsible Dirac fermion(s) Topological index

Half quantum
mirror Hall effect Nmirror = 1− (−1) = 2

Half quantized
anomalous Hall effect C = 0, N = 1

Metallic quantized
anomalous Hall effect N = 1+ 1 = 2

Chern insulator C = 0+ 1 = 1

Axion insulator C = 0+ 0 = 0
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introducing an explicitly parity-symmetry-breaking term away from the Dirac point. As a1458

result, the gapless Dirac fermion remains massless at low-energy but becomes massive at1459

high-energy. In the article, a Heaviside Theta function is utilized to grasp the feature of1460

such a mass term, which exhibits long-range algebraic decay with the first power modified1461

by a sinusoidal function, when Fourier transformed into real space. Specifically, it con-1462

tains a hopping term proportional to ∼ sin(∆l)/∆l, with ∆l being the distance between1463

sites. Not accidentally, a similar hopping term with the same algebraic decaying order1464

has been used as one way to construct single gapless Dirac fermion on lattice, known as1465

the SLAC fermion [35, 138, 139]. However, it is important to note that in our theory, the1466

phenomenological evasion of locality by the gapless Dirac fermion, residing in effectively1467

2D space, is a consequence of the bulk property of the 3D TI, where locality is preserved.1468

This phenomenon underscores the concept of bulk-boundary correspondence and suggests1469

that a seemingly unphysical theory in lower dimensions can be attributed to a projection1470

from a higher-dimensional theory. It is noteworthy that the procedure employed here1471

is different from a dimensional reduction, and is not an effective field theory because the1472

Dirac fermion naturally obtains completeness on lattice. Rather, a better similarity can be1473

shared with the quasicrystal containing aperiodic order, which can arise from projections1474

of higher-dimensional periodic lattices [147]. Essentially, both the gapless Dirac fermion1475

containing surface states of a 3D TI, and the quasicrystal from tilings, are physically1476

realizable systems.1477

The formalism introduced here, involving the transformation of a confined spatially1478

(n + 1)D Dirac Hamiltonian into nD Dirac fermions through the construction of a local1479

unitary matrix using solutions from a decomposed 1D Hamiltonian along the confined1480

direction, can be generalized to arbitrary dimensions, with the aid of Clifford algebra. In1481

particular, initiating from a 4D space modified Dirac equation, a unitary transformation1482

yields a pair of gapless Dirac fermions effectively in 3D space. This extension holds the1483

potential to enhance our comprehension of the chiral anomaly in the system [56,57]. What1484

is more, given that the high-energy components of the two Dirac fermions explicitly break1485

the chiral symmetry, they are not obliged to be paired by violating conditions stipulated by1486

the Nielsen-Ninomiya theorem. As a result, we can anticipate that when the constrained1487

4D Hamiltonian becomes ‘semi-magnetic’, a single gapless Dirac fermion will be observed,1488

similar to that in half QAHE.1489

The introduced magnetism, initially presented as an out-of-plane Zeeman field at the1490

mean-field level, undergoes the unitary transformation into two momentum-dependent1491

matrix Higgs fields IS/A(k), which obtain non-vanishing values along with the spontaneous1492

symmetry breaking that establishes intralayer ferromagnetic order. The two fields play1493

a pivotal role in generating mass to the Dirac fermions through Yukawa-like couplings.1494

The nature of the magnetic structure, influencing the distribution and strength of the1495

Zeeman field along the open direction, leads to the classification of several topologically1496

distinct phases, including the Chern insulator, axion insulator, half-quantized anomalous1497

Hall effect and metallic quantized anomalous Hall effect. A summary of their main features1498

is presented in Table 3. Essentially, IS predominates in the Chern insulator and metallic1499

QAHE phases, IA takes precedence in the axion insulator, while a collaborative effort1500

between both IS and IA is necessary to achieve the half QAHE.1501

In the presence of a uniform Zeeman field, the mass of each Dirac fermion in TI film1502

is directly modified by a Zeeman field. By tuning the strength of magnetism, sub-band1503

inversion happens step-by-step for each Dirac fermion, whose Chern character changes cor-1504

respondingly. Summing those mass-modified Dirac fermions together gives a Chern insu-1505

lator that carries jumping Hall conductance among integers in [−Lz, Lz] over the quantum1506

unit e2/h, with Lz the total layer number.1507
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With a relatively weak Zeeman field compared with the bulk gap, focusing solely on1508

the n = 1 matrix elements that act on the two gapless Dirac fermions becomes feasible.1509

In this scenario, only fields near the two surfaces maximally tune the topological property1510

of the TI film by influencing the surface states. This approximation, referred to as the1511

weak Zeeman field condition, elucidates the underlying physics behind the Chern insulator,1512

axion insulator and half QAHE clearly, with Hall conductance showing 1 + 0, 0 + 0 and1513

1/2+ 0 quantized nature upon quantum unit.1514

Under a general strong Zeeman field, the gapped series of Dirac fermions have to be1515

involved, and the n 6= 1 Higgs components can play a crucial role. The most general1516

description is conducted by a further diagonalization over mass terms mn and Higgs fields1517

IS/A, and the procedure leads to effective masses m̃n for the Dirac fermions, which de-1518

termine the topological property of the system. As discussed, the avoid-crossing between1519

m̃1 and m̃2 leads to the formation of two gapless Dirac fermions with the same chirality1520

(high-energy mass sign) in system, which bears a doublet of half quantized Hall conduc-1521

tivity and leads to the metallic QAHE. Interestingly, in the case, another cut-off over1522

n = 1, 2 blocks can be made, since the Zeeman field applied should not alter the n ≥ 31523

states dramatically.1524

When IA = 0, the mirror symmetry is respected by the system, allowing for the sep-1525

aration of the total Hamiltonian by the projection operator of mirror symmetry. This1526

separation provides valuable insights, such as the application of mirror layer Chern num-1527

ber in a Chern insulator with a unit Chern number.1528

It is certainly reasonable but lamentable that we cannot exhaustively list all relevant1529

topological phases in magnetic topological insulators in the article. The sheer multitude1530

of possible magnetic distributions makes it impractical to cover every potential scenario.1531

However, our work lays down a unified framework that enables the depiction of both1532

discovered and yet-to-be-discovered topological phases in a uniform and consistent manner,1533

grounded in the conceptualization of the grouped Dirac fermions and the associated mass1534

generation mechanism. We believe that the diversity and variety of different magnetic1535

configurations can lead to even richer topological phases within our framework.1536

Furthermore, as elaborated in Section 4.2, our exploration is not confined solely to1537

topological phases induced by magnetism, especially a Zeeman field in the TI film. One1538

illustrative example, as highlighted earlier, involves the duality between the z-Zeeman1539

field σz and a special orbital order τy . This duality has the potential to generate all1540

topological phases discussed in the paper, with symmetric and antisymmetric distributions1541

exchanged for the time-reversal-breaking τy field. This approach extends beyond the1542

commonly studied ferromagnetism (or layer-by-layer antiferromagnetism, as observed in1543

materials like MnBi2Te4) induced quantum anomalous Hall effect (QAHE). Moreover,1544

leveraging the superconducting effect, we can include the superconducting pairing field1545

into the frame across all pairing symmetries. This inclusion opens avenues for exploration1546

and determination of the possibilities and conditions necessary for realizing topological1547

superconductors [148–151] within the solid framework we have established.1548

An additional intriguing aspect to consider pertains to the symmetries in the system.1549

The modified Dirac equation model we employed for the topological insulator film en-1550

capsulates fruitful symmetries, like the standard time reversal, particle hole and chiral1551

symmetries, together with the inversion symmetry in each dimension and the 1D mirror1552

symmetry along each direction. Some of these symmetries play crucial roles in determining1553

our solutions and topological phases in the system. For instance, in solving the separated1554

1D Hamiltonian, the utilization of one-dimensional parity and chiral symmetry is essen-1555

tial; the z-mirror symmetry becomes decisive for the manifestation of the half quantum1556

mirror Hall effect, contributing to quantized mirror Hall conductance; despite not a pro-1557
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tecting symmetry in the metallic quantized anomalous Hall effect, the ever existence of1558

the same mirror symmetry helps us to cut the effective masses into two groups by their1559

mirror labels and clarifies the mass exchange mechanism. It may prove worthwhile to1560

contemplate a starting point Hamiltonian with lower symmetry or introduce additional1561

symmetry-breaking fields to assess the stability of these effects. For instance, the half1562

quantum mirror Hall effect is clearly a metallic twin partner of the quantum spin Hall1563

effect, and it should also share a general Z2 classification scheme depending on the time1564

reversal symmetry solely. Consequently, it is worthy to give a unified expression for this1565

invariant. Moreover, as we have shortly discussed, the half-quantization of the gapless1566

Dirac fermion is protected by the parity invariant regime around the Dirac point, and1567

indeed, this 2D parity symmetry coexists with the time reversal in our model, which1568

warrants further discussion regarding their individual impacts on half-quantization. This1569

exploration can be extended to encompass broader symmetries and other kinds of metallic1570

topological phase classes, providing a comprehensive understanding.1571

Besides, the exploration of disorder and interaction effects in metallic phases presents1572

a rich avenue for investigation. As previously discussed, metallic topological phases inher-1573

ently grapple with disorder effects on their metallic side, wherein mechanisms like skew-1574

scattering and side-jump alter the transverse transport behavior [92, 95]. The stability of1575

these phases against disorder, addressed through parameter renormalization, poses a signif-1576

icant question, akin to considerations in their insulating counterparts [97,152–155]. More-1577

over, while the adiabatic criterion justifiably establishes a connection between a gapped1578

interacting phase and a non-interacting one by preserving gap opening, it remains elu-1579

sive in what way we can say something similar in those metallic phases. Clarifying how1580

this linkage can be articulated in the context of these metallic phases poses an ongoing1581

challenge.1582

In short, the interplay between magnetism and topology in 3D TI film is investigated1583

under a unified frame, exploiting the Dirac fermion physics and mass generating mecha-1584

nism.1585
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A Derivation of Eq. (1a)1593

We start from solving1594

h(s) = −i sλ⊥∂zτx + (m0(k) + t⊥∂ 2
z )τz, (A.1)

with s defined by eigenvalue of σz. All parameters are real with m0(k) = m0 − t‖k2 > 01595

to be the criterion for the region where surface states emerge. For the purpose of keeping1596

consistence with the lattice model in 2.2, one in fact needs to substitute parameters as1597

λ⊥→ cλ⊥, λ‖→ aλ‖, t⊥→ c2t⊥, t‖→ a2t‖.
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However, we would not write in that way explicitly for simplicity. Also, to make discussion1598

pithy, we shall omit s in wavefunction below.1599

The eigenproblem of h(s) is a second-order differential equation and allows us to set1600

solutions with trial function ϕ = ϕξeiξz. Using ∂zϕ = iξϕ, ∂ 2
z ϕ = −ξ2ϕ, one has1601

equation below:1602 �
m0(k)− t⊥ξ2 sλ⊥ξ

sλ⊥ξ −m0(k) + t⊥ξ2

�
ϕ = Eϕ, (A.2)

which readily leads to1603

E2 − (m0(k)− t⊥ξ2)2 − λ2
⊥ξ

2 = 0, (A.3)
and gives1604

ξ
p
α = pξα = p

√√√− F

D
+ (−1)α−1

p
R

D
, p = ±, α = 1, 2, (A.4)

where1605

D = 2t 2
⊥, F = −2m0(k)t⊥ + sλ2

⊥, R = F2 − 2D(m2
0(k)− E2).

For each ξs
α, one has1606

ϕαp =

�
sλ⊥pξα

E −m0(k) + t⊥ξ2
α

�
, (A.5)

and the general solution would be1607

Φ =
∑
αp

Cαpϕαpeipξαz. (A.6)

Now considering finite size along z direction with top and bottom surfaces located at1608

±L

2
, respectively, one would have boundary condition1609

Φ(±L

2
) = 0, (A.7)

applying which one would get four linear equations for coefficients1610

P(C1+, C1−, C2+, C2−)T = 0, (A.8)

and requirement det(P) = 0 leads to two transcendental equations1611

m1ξ2

m2ξ1
=

tanξ2L/2

tanξ1L/2
(A.9a)

m1ξ2

m2ξ1
=

tanξ1L/2

tanξ2L/2
(A.9b)

which gives two energies varying with k, designated as E+ and E−, respectively. To be1612

clearer,1613

E+ = m0(k)− t⊥
ξ2

1g+(ξ1)− ξ2
2g+(ξ2)

g+(ξ1)− g+(ξ2)
, g+(ξ) =

tan
�
ξL/2
�

ξ
, (A.10a)

E− = m0(k)− t⊥
ξ2

1g−(ξ1)− ξ2
2g−(ξ2)

g−(ξ1)− g−(ξ2)
, g−(ξ) = 1

tan
�
ξL/2
�
ξ

. (A.10b)

In common sense, it is time taking E± into expressions of ξs, together with the coefficients1614

equations again and solve them. However, that not only is tricky but lacks of physical1615

insight, and we shall change our perspective.1616
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Notice that under parity operation z↔−z, τx ↔−τx and h(s)↔ h(s), then both1617

h(s) and H1d has parity symmetry and the general solution should contain two factors1618

below considering the boundary condition:1619 
f+(z) =

cos
�
ξ1z
�

cos
�
ξ1L/2
� − cos
�
ξ2z
�

cos
�
ξ2L/2
�

f−(z) =
sin
�
ξ1z
�

sin
�
ξ1L/2
� − sin
�
ξ2z
�

sin
�
ξ2L/2
� , (A.11)

where the subscripts refer to even or odd parity. Now we can assume that for energy E,1620

h(s) has solution1621

ϕ = c̃ f+ + d̃ f− =
�

c̃1 f+ + d̃1 f−
c̃2 f+ + d̃2 f−

�
, (A.12)

and the two-line eigenequation h(s)ϕ = Eϕ gives, for the first line1622

d̃2 = i t⊥η1 c̃1/sλ⊥, (A.13a)
c̃2 = −i t⊥η2d̃1/sλ⊥, (A.13b)

which leads to1623

ϕ+1 = C+1

�−i sλ⊥ f+
t⊥η1 f−

�
, E = E+, (A.14a)

ϕ−1 = C−1
�

i sλ⊥ f−
t⊥η2 f+

�
, E = E−; (A.14b)

and for the second line,1624

d̃1 = −i t⊥η1 c̃2/sλ⊥, (A.15a)
c̃1 = i t⊥η2d̃2/sλ⊥, (A.15b)

which leads to1625

ϕ+2 = C+2

�
t⊥η1 f−
i sλ⊥ f+

�
, E = −E+, (A.16a)

ϕ−2 = C−2
�

t⊥η2 f+−i sλ⊥ f−

�
, E = −E−, (A.16b)

by defining two coefficients1626

η1 =
ξ2

1 − ξ2
2

ξ1 cot
�
ξ1L/2
�− ξ2 cot
�
ξ2L/2
� , (A.17a)

η2 =
ξ2

1 − ξ2
2

ξ1 tan
�
ξ1L/2
�− ξ2 tan
�
ξ2L/2
� , (A.17b)

with C is the norm, and super and lower indices represent E± and line index, respectively.1627

Clearly, C ι1 = C ι2 is identified, and ϕι1 = −iτyϕ
ι
2 as they are chiral partners (ι = ±).1628

Solution above seems to give four solutions, mathematical restriction, however, tells1629

that equations from different lines for the same set of coefficients must stand simulta-1630

neously, i.e., (A.14a)⇔(A.16b) and (A.14b)⇔(A.16a), which gives us two relations as1631

1632

1 =

���� i t⊥η1

sλ⊥
· i t⊥η2

sλ⊥

���� =⇒ |η1η2| =
λ2
⊥

t 2
⊥

, (A.18a)
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E+ = −E−, (A.18b)

and the latter is also a physical result from Dirac equation. Then, we only have two1633

independent solutions for one h(s) sub-block, say Eq. (A.14a) and Eq. (A.16a). Formal1634

combination of equations for the simultaneous-standing equations from different lines again1635

leads to1636

E2 − (m0(k)− t⊥ξ2)2 − λ2
⊥ξ

2 = 0. (A.19)
Then we see that the guessing solution not only satisfies the boundary condition, but also1637

satisfies all E − ξ equations, thus it is indeed our solution.1638

Notice that, by Eq. (A.4), ξα are both complex or not complex for a given energy,1639

where complex means both real and imaginary parts of ξ are non-vanishing, determined1640

by the sign of R. This information, combined with property of trigonometric/hyperbolic1641

function leads to the conclusion that quadratic form f ∗+ f− and η (at certain (k, z, E)) are1642

always real. Essentially, f± are either real or purely imaginary.1643

Now, we restore s explicitly and extract1644

φ(s) = ϕ s ,+
1 , χ(s) = ϕ s ,+

2 (A.20)

as two solutions for h(s) for basis construction. Then by defining1645 

m = E+ = m0(k)− t⊥
ξ2

1g (ξ1)− ξ2
2g (ξ2)

g (ξ1)− g (ξ2)
,

g (ξ) =
tan
�
ξL/2
�

ξ
,

η =
ξ2

1 − ξ2
2

ξ1 cot
�
ξ1L/2
�− ξ2 cot
�
ξ2L/2
� ,

C = C+1 = C+2 ,

(A.21)

one obtains four projecting basis in certain sequence as1646

Φ1 =

�
φ(+)

0

�
= C

−iλ⊥ f+
t⊥η f−

0
0

 ,

Φ2 =

�
0
χ(−)
�
= C

 0
0

t⊥η f−−iλ⊥ f+

 ,

Φ3 =

�
χ(+)

0

�
= C

t⊥η f−
iλ⊥ f+

0
0

 ,

Φ4 =

�
0

φ(−)
�
= C

 0
0

iλ⊥ f+
t⊥η f−

 ,

(A.22)

with energy (m,−m,−m, m), respectively. Notice that Φ3,4 are chiral partners of Φ1,2 by1647

−iτy , respectively. To obtain m, a set of closed equations need to be solved1648

m = m0(k)− t⊥
ξ2

1g+(ξ1)− ξ2
2g+(ξ2)

g+(ξ1)− g+(ξ2)
, (A.23a)
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ξα =

√√√− F

D
+ (−1)α−1

p
R

D
, α = 1,2, (A.23b)

where1649 
g+(ξ) = tan
�
ξL/2
�
/ξ

D = 2t 2
⊥

F = −2m0(k)t⊥ + λ2
⊥

R = F2 − 2D(m2
0(k)−m2)

. (A.24)

Basically, there are three variables (m,ξ1,ξ2) with three equations, then they could be1650

determined exactly.1651

A.1 Symmetry analysis of solutions1652

Firstly, as we have stated, the chiral symmetry τy is respected in Eq. (A.1) since {h(s),τy} = 0,1653

and this symmetry is reflected in our solutions by φ(s) = −iτyχ(s) with opposite energies.1654

Meanwhile, we have relied on the help from the 1D parity symmetry which is a reflection1655

along z direction, or simply, the z-parity Pz, which acts on the basis as1656

Φ(z)
Pz−→ τzΦ(−z), (A.25)

with τz the unitary matrix related to inner degrees of freedom transformation. Now1657

since f±(z) = ± f±(−z), we identify that Φ1,4 (Φ2,3) are even (odd) under z-parity, and1658

correspondingly, under the representation of Φ, the unitary matrix related to z-parity is1659

written as τzσz.1660

There exists in fact a hidden symmetry in the model, namely, the mirror symmetry1661

about the x -y plane. Effectively, it will also bring z to −z as an inversion, but with an1662

additional operation that rotates spin angular momentum by π phase, i.e., such a z-Mirror1663

symmetry Mz is a combination of Pz and a C2z rotation, which then acts on the basis as1664

Φ(z)
Mz−→ σzτzΦ(−z), (A.26)

and classifies Φ1,2 (Φ3,4) into z-mirror even (odd) states. Accordingly, under Φ represen-1665

tation this operator has form τzσ0. Then combined with the spin index s = ± appeared1666

in φ(s),χ(s), we can further assign Φi to be Φχ ,s with χ , s labelling mirror and spin-z1667

index as1668
Φ++ = Φ1, Φ+− = Φ2,

Φ−+ = Φ3, Φ−− = Φ4.
(A.27)

The single h(s) does not share time reversal symmetry, since under T = iσyK,1669

h(+) ↔ h(−), i.e., H1d owns this symmetry. Also given by the fact that time rever-1670

sal keeps energy unconverted, one finds Φ4 = eiθT Φ1, Φ2 = eiθT Φ3, where θ = 0 or π1671

depending on k, E. The essential point to get avoid of subtle f ∗± is to notice that they are1672

either both real or imaginary, as stated above, while η is always real. Also notice that we1673

did not write k explicitly since H1d(k) = H1d(−k).1674

The combination of time reversal and chiral symmetries gives rise to a particle hole1675

symmetry, which, when implanted over basis, reads φ(s) = eiθφ∗(s̄) = eiθ [−iτyχ(s̄)]∗,1676

with s̄ = −s identified.1677

Similar analysis applies for the lattice model, and the projected Pz, Mz share the same1678

matrix form above.1679
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A.2 Equivalent block Hamiltonian1680

The projection procedure works under the given basis representation HT I(k), which is1681

formally H = 〈Φ|HT I(k) |Φ〉, with1682

(H)nn′
i j =

∫
dz (Φn

i (z))
†HT I(k, z)Φn′

j (z), (A.28)

where the integral is done from −L/2 to L/2. Clearly, projection on H1d would give1683

diag(m,−m,−m, m), then we only need to deal with H‖(k) = λ‖(k·σ)τx = λ‖(kxσx+kyσy)τx1684

term. Since H‖(k) is purely off-diagonal, it is easy to conclude that1685

〈Φn
i |H‖|Φn′

i 〉 = 0, i = 1, 2, 3, 4

〈Φn
1 |H‖|Φn′

3 〉 = 0 = 〈Φn
2 |H‖|Φn′

4 〉 .
Then only four terms need consideration by hermicity, among which1686

〈Φn
1 |H‖|Φn′

4 〉 = λ‖k−|CnCn′ |
∫

dz iλ⊥t⊥[ηn( f n
+ )
∗ f n′− +ηn′( f n− )∗ f n′

+ ] = 0,

〈Φn
2 |H‖|Φn′

3 〉 = λ‖k−|CnCn′ |
∫

dz iλ⊥t⊥[ηn( f n− )∗ f n′
+ +η

n′( f n
+ )
∗ f n′− ] = 0,

as f− f+ is odd to z. Here k± = kx ± iky is defined. Then, the only remaining terms are1687

〈Φn
1 |H‖|Φn′

2 〉 =
∫

dz λ‖k−φ†(λ⊥)τxχ(−λ⊥) = λ‖k−δnn′ ,

〈Φn
3 |H‖|Φn′

4 〉 =
∫

dz λ‖k−φ†(λ⊥)τxχ(−λ⊥) = λ‖k−δnn′ ,

where the normalization condition is used. And finally we arrive at the block Hamiltonian1688

H(k) =
⊕

n
λ‖τ0(k ·σ) +mn(k)τzσz, (A.29)

as Eq. (1a). Here, notice that the spin degree of freedom is fully preserved as σ, while the1689

newly-defined τ owns different meaning from the original one.1690

To make the transformation more formal, we define the transformation matrix1691

U c(k, z) = ({{Φ}i}n)(k, z), (A.30)

where the double brackets mean that we arrange i = 1, 2, 3, 4 index inside each n = 1, 2, · · · ,1692

and by written more straightforwardly,1693

U c = (Φ1,Φ2, · · · ), Φn = (Φn
1 ,Φn

2 ,Φn
3 ,Φn

4). (A.31)

This transformation then brings the Hamiltonian of the boundary constrained topological1694

insulator film HT I(k,−i∂z) into the direct sum form of Dirac fermions by1695

H(k) =

∫
dz (U c)†(k, z)HT I(k,−i∂z)U

c(k, z). (A.32)
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A.3 Analytic expression for mass term1696

The proof has been posted separately [33], and here is a repetition. Analytic expression1697

for effective mass m(k) is obtained in the L →∞ case as a thick limit, however, notice1698

that finite-size correction to m(k) decays exponentially with thickness [38], our proof here1699

is suitable even for a thin film. Closed E − ξ equations are1700 

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

ξ2
1ξ

2
2 =

m0(k)2 − E2

t 2
⊥

E = m0(k)− t⊥
ξ2

1g+(ξ1)− ξ2
2g+(ξ2)

g+(ξ1)− g+(ξ2)

, (A.33)

where g+(ξ) = tan
�
ξL/2
�
/ξ. We shall assume λ⊥ > 0, t⊥ > 0 in the following discussion,1701

without losing generality, and m0(k) controls the expression form.1702

The classification on tan
�
ξL/2
�

leads to1703

lim
L→+∞ tan
�
ξL/2
�
=


i, Im(ξ) > 0

N.A., Im(ξ) = 0

−i, Im(ξ) < 0

. (A.34)

And three basic cases are separated as1704 
Im(ξ1) > 0 > Im(ξ2)
Im(ξ1,2) > 0

Im(ξ1) = 0, Im(ξ2) > 0

, (A.35)

while other cases could be obtained similarly.1705

Case I. (Im(ξ1) > 0 > Im(ξ2))1706

Now tan
�
ξ1L/2
�
= i = − tan
�
ξ2L/2
�

(L→ +∞ ignored), and1707 
ξ2

1 + ξ
2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

ξ2
1ξ

2
2 =

m0(k)2 − E2

t 2
⊥

E = m0(k)− t⊥ξ1ξ2

, (A.36)

where the second and third equations lead to1708

m0(k)
2 − E2 = (m0(k)− E)2, (A.37)

which offers two possible solutions E = 0 or E = m0(k).1709

I. (E = 0) This leads to1710 
ξ1ξ2 =

m0(k)

t⊥
ξ2

1 + ξ
2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

. (A.38)

69



SciPost Physics Submission

Requiring Im(ξ1) > 0 > Im(ξ2) then gives1711 ξ1 + ξ2 =

¨
2u
p

4γ− 1, γ > 1/4

2ui
p

1− 4γ, γ < 1/4

ξ1 − ξ2 = 2ui

, (A.39)

1712 ¨
γ = m0(k)t⊥/λ2

⊥
u = λ⊥/2t⊥

, (A.40)

which offers:1713

• γ > 1/4:1714 ¨
ξ1 = u(
p

4γ− 1+ i)
ξ2 = u(
p

4γ− 1− i)
; (A.41)

• γ < 1/4:1715 ¨
ξ1 = iu(
p

1− 4γ+ 1)
ξ2 = iu(
p

1− 4γ− 1)
. (A.42)

The latter condition stands only when γ > 0 as for Im(ξ2) < 0.1716

II. (E = m0(k)) This leads to1717 
ξ1ξ2 = 0

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

, (A.43)

and one of ξα = 0 is unavoidable, which fails the precondition and is abandoned, i.e.,1718

E = m0(k) is not a solution in the case.1719

Case II. (Im(ξ1,2) > 0)1720

Now tan
�
ξ1L/2
�
= i = tan
�
ξ2L/2
�

(L→ +∞ ignored), and1721 
ξ2

1 + ξ
2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

ξ2
1ξ

2
2 =

m0(k)2 − E2

t 2
⊥

E = m0(k) + t⊥ξ1ξ2

, (A.44)

then the second and third equations above leads to1722

m0(k)
2 − E2 = (m0(k)− E)2, (A.45)

which gives us two possible solutions as E = 0 or E = m0(k).1723

I. (E = 0) This condition leads to1724 
ξ1ξ2 = −m0(k)

t⊥
ξ2

1 + ξ
2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

. (A.46)

Requirement Im(ξ1,2) > 0 then gives1725 
ξ1 + ξ2 = 2ui

ξ1 − ξ2 =

¨
2u
p

4γ− 1, γ > 1/4

2ui
p

1− 4γ, γ < 1/4

, (A.47)
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which offers:1726

• γ > 1/4:1727 ¨
ξ1 = u(
p

4γ− 1+ i)
ξ2 = u(−p4γ− 1+ i)

; (A.48)

• γ < 1/4:1728 ¨
ξ1 = iu(
p

1− 4γ+ 1)
ξ2 = iu(−p1− 4γ+ 1)

. (A.49)

The latter condition stands only when γ > 0 as for Im(ξ2) > 0.1729

II. (E = m0(k)) This leads to1730 
ξ1ξ2 = 0

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

, (A.50)

and again one of ξα = 0 is unavoidable, and one concludes E = m0(k) is not a solution in1731

the case.1732

Case III. (Im(ξ1) = 0, Im(ξ2) > 0)1733

By guessing E = m0(k), we have1734 
ξ1ξ2 = 0

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ − λ2
⊥

t 2
⊥

, (A.51)

which gives1735 ¨
(ξ1 + ξ2)2 = 4u2(2γ− 1)
(ξ1 − ξ2)2 = 4u2(2γ− 1)

, (A.52)

and choosing1736 ¨
ξ1 = 0

ξ2 = 2ui
p

1− 2γ
, (A.53)

fulfills the requirement. Notice that γ < 1/2 is assumed, which should not bother the1737

self-consistent solution. Meanwhile, since ξ1 = 0 leads to degenerate eigenvalue ±ξ1, then1738

one should generally assume another solution as1739

(A+ Bz)eiξ1zϕ
��
ξ1=0,E=m0(k)

,

which, however, only gives result that B = 0 while A is arbitrary, which passes no additional1740

information.1741

Retrospecting the definition γ = m0(k)t⊥/λ2
⊥, the discussion above naturally leads to1742

the conclusion that the lowest eigenenergy of H1d reads1743

E =

¨
0, m0(k) > 0

m0(k), m0(k) < 0
, (A.54)

or by re-defining lowest E(k) as m1(k), we write1744

m1(k) = Θ(−m0(k))m0(k),

as result mention in Eq. (11)1745
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A.4 Finite-size correction to mass term1746

We could in fact conserve the lowest order correction to see the finite size gap when L is1747

not that large. For ξ1 and ξ2, one could approximately get lowest order correction for1748

tan
�
ξL/2
�

by treating β±L/2 as small quantity (depend on sign of Im(ξ))1749

tan
�
ξL/2
� ≈ ¨i(1− 2β L), Im(ξ) > 0

−i(1− 2β−L), Im(ξ) < 0
. (A.55)

Also notice that from the original E − ξ equation1750

E2 − (m0(k)− t⊥ξ2)2 − λ2
⊥ξ

2 = 0,

which could be further split into (when E = 0 as zeroth-order)1751

t⊥ξ2 ± iλ⊥ξ−m0(k) = 0, (A.56)

one solves1752

ξ =
s1iλ⊥ + s2

Ç
4m0(k)t⊥ − λ2

⊥
2t⊥

= u(i s1 + s2
p

4γ− 1), (A.57)

where s1, s2 = ± without restriction. Notice that in real calculation, one needs to specify1753

which branch ξ1,2 lie in, but such choice will not affect the final result as long as chosen1754

ξ1,2 satisfy zeroth-order solution. Now again we have two cases below:1755

• γ > 1/4, we choose1756 
ξ1 = ξ∗2
Im(ξ1) > 0 > Im(ξ2)
Re(ξ1) = Re(ξ2) > 0

, (A.58)

as main branch condition, then1757 ¨
tan
�
ξ1L/2
� ≈ i(1− 2β L

1 )
tan
�
ξ2L/2
� ≈ −i(1− 2β−L

2 )
, (A.59)

and1758

E(k) ≈ (m0(k)− t⊥ξ1ξ2) + 2t⊥ξ1ξ2
ξ1 − ξ2

ξ1 + ξ2
(eiξ1L − e−iξ2L).

Notice that first term in bracket is zeroth order as E ≈ 0. Now, it is time to utilize four1759

solutions in Eq. (A.57). By main branch condition above, accordingly we choose1760 ¨
ξ1 = u(
p

4γ− 1+ i)
ξ2 = u(
p

4γ− 1− i)
, (A.60)

considering that γ > 1/4 in this zone. Afterwards, one obtains1761

E(k) ≈ − 4m0(k)p
4γ− 1

sin
�
u
p

4γ− 1L
�
e−uL. (A.61)

Low energy surface state mass shows both exponentially decay and oscillating behavior.1762

• 0 < γ < 1/4, we choose1763 ¨
Im(ξ1) > 0

Im(ξ2) > 0
, (A.62)
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as main branch condition, then1764 ¨
tan
�
ξ1L/2
� ≈ i(1− 2β L

1 )
tan
�
ξ2L/2
� ≈ i(1− 2β L

2 )
, (A.63)

1765

E(k) ≈ (m0(k) + t⊥ξ1ξ2)− 2t⊥ξ1ξ2
ξ1 + ξ2

ξ1 − ξ2
(eiξ1L − eiξ2L),

where first term in bracket is again zeroth order energy approaching zero. Again, utilizing1766

four solutions in Eq. (A.57) with main branch condition above, we choose1767 ¨
ξ1 = iu(1+
p

1− 4γ)
ξ2 = iu(1−p1− 4γ)

, (A.64)

considering that 0 < γ < 1/4 in this zone. Again, one obtains1768

E(k) ≈ − 4m0(k)p
1− 4γ

sinh
�
u
p

1− 4γL
�
e−uL. (A.65)

Since sin(i x ) = i sinh(x ), and by γ = m0(k)t⊥/λ2
⊥, we may set γ(kc) = 0 and obtain a1769

unified expression for lowest order mass correction1770

E(k < kc) = − 4m0(k)p
4γ− 1

sin
�
u
p

4γ− 1L
�
e−uL. (A.66)

However, as a comment, in numerical calculation, E in zone 0 < γ < 1/4 is suppressed into1771

zero in a much slower manner, which is caused by exponential cancellation between sinh1772

and exp. Nevertheless, since
p

1− 4γ < 1 in the region, we conclude that the exponential1773

increasing is always slower than the decaying, which finally pushes the state to zero energy1774

for L→ +∞.1775

B Derivation of Eq. (1b)1776

To obtain an effective model, we start from solving H1d and notice that [H1d(k),σz] = 0,1777

from which we could let1778

H1d(k)ζs ⊗ |ϕ s(k)〉 = ζs ⊗Hs
1d(k) |ϕ s(k)〉 , (B.1)

where Hs
1d
(k) is split Hamiltonian that only acts on one subspace, and by definition1779

σzζs = sζs , s = ±. (B.2)

Under basis of {Ψlz ,k}lz
, Hs

1d
(k) is in its matrix form denoted as H s

1d
(k), with solution1780

defined from its eigenvalue equation1781

H s
1d(k)ϕ

s(k) = E s(k)ϕ s(k), ϕ s(k) = ⊕lz
ϕ s

lz
(k). (B.3)

To make discussion pithy, we shall omit s , k and let M ≡ M0(k) below in the section.1782

Eq. (B.3) can be written in th e recurrence form as1783

(t⊥τz + i
λ⊥
2

sτx )ϕlz−1 +Mτzϕlz
+ (t⊥τz − i

λ⊥
2

sτx )ϕlz+1 = Eϕlz
, (B.4)
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by observing which could we set trial function as ϕlz
= eiξlzϕ = β lzϕ where β = eiξ.1784

Then accordingly the equation is reduced to1785

[(t⊥τz + i
λ⊥
2

sτx )β
−1 + (Mτz − E) + (t⊥τz − i

λ⊥
2

sτx )β]ϕ = 0, (B.5)

which firstly leads to1786

E2 = (M + 2t⊥ cosξ)2 + λ2
⊥ sin2 ξ, (B.6)

requiring non-trivial ϕ. From Eq. (B.6) one solves1787 cosξp
α =
−Mt⊥ + (−1)α−1

Ç
M2t 2

⊥ − (t 2
⊥ − λ2

⊥/4)(M2 + λ2
⊥ − E2)

2(t 2
⊥ − λ2

⊥/4)
,

sinξp
α = p
p

1− cos2 ξα, p = ±,α = 1, 2,

(B.7)

which tells that1788

β
p
α = eiξp

α = cosξα + ip
Æ

1− cos2 ξα. (B.8)

Here one thing to notice is that the sign change of sinξp
α is caused by sign change of ξ,1789

rather than a phase shift like ξ → ξ + π, since the latter will lead to the sign change of1790

cosξ, too, and that is not our solution.1791

To make maximum utilization of the symmetry, we consider canonical boundary con-1792

dition in which the centre of 1-d chain sits at z = 0, then by denoting l = Lz+1, we would1793

have1794

ϕ s(± l

2
) = 0, (B.9)

and it is essential to notice that sites lz = ±Lz + 1

2
are two fictitious points where the1795

constraints take place, and true lattice stops at lz = ±Lz − 1

2
as we only have Lz sites.1796

What is more, for compensation of unifying expression regardless of odevity of Lz, lz1797

would be forced to choose different ways to be taken out as follows1798 lz = 0,±1,±2, · · · ,±Lz + 1

2
, for Lz odd,

lz = ±1

2
,±3

2
, · · · ,±Lz + 1

2
, for Lz even,

(B.10)

which conforms mirror symmetry to z = 0. Afterwards, enlightened by the idea of sym-1799

metric trial functions, we also build several functions from β
p
α considering the symmetric1800

case stated above. Denote1801 
E(β , lz) =

β lz +β−lz

β (Lz+1)/2 +β−(Lz+1)/2
=

cos
�
ξlz
�

cos
�
ξl/2
�

O(β , lz) =
β lz −β−lz

β (Lz+1)/2 −β−(Lz+1)/2
=

sin
�
ξlz
�

sin
�
ξl/2
� , (B.11)

where ‘E’ and ‘O’, namely even and odd, represent the parity of two functions about z,1802

and one should not identify E here as the energy function. From which we establish two1803

sets of factors respecting boundary condition with even or odd parity1804 ¨
f+(lz) =
∑
α(−1)α−1E(β p

α , lz)
f−(lz) =
∑
α(−1)α−1O(β p

α , lz)
, (B.12)
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where the summation is over α but without p since it only changes sign of ξ and thus does1805

not influence the value of E or O. Before proceeding, let us find some special properties1806

about those functions or factors. Let1807 
a = β +

1

β
= 2cosξ

b = β − 1

β
= 2i sinξ

, (B.13)

who weight as the lattice differential operators that lead to relation1808

f+(lz ± 1) =
∑
α

(−1)α−1
aαE(βα, lz)± ibα tan

�
ξαl/2
�
O(βα, lz)

2
≡ g±, (B.14a)

f−(lz ± 1) =
∑
α

(−1)α−1
aαO(βα, lz)∓ ibα cot

�
ξαl/2
�
E(βα, lz)

2
≡ h±. (B.14b)

One could again see that the iteration relation is also independent of p within our expec-1809

tation.1810

Now we are able to come back and solve the chain problem. Let1811

ϕlz
= c f+(lz) + d f−(lz), (B.15)

to be guessed general solution confined by boundary condition. Bring this trial solution1812

into Eq. (B.4) and requiring vanishing coefficients of E(βα, lz) and O(βα, lz), one obtains,1813

after re-organization,1814 (M − E + t⊥aα)c1 − λ⊥2 sd2bα cot
�
ξαl/2
�
= 0

−λ⊥
2

sc1bα tan
�
ξαl/2
�
+ (M + E + t⊥aα)d2 = 0

, (B.16a)

(M − E + t⊥aα)d1 +
λ⊥
2

sc2bα tan
�
ξαl/2
�
= 0

λ⊥
2

sd1bα cot
�
ξαl/2
�
+ (M + E + t⊥aα)c2 = 0

, (B.16b)

for different α. Requiring simultaneous standing with respect to α leads to four solutions1815

in pairs1816 
d2 =

i t⊥η1

sλ⊥
c1, E = E+

c1 =
i t⊥η2

sλ⊥
d2, E = −E−

,


c2 = − i t⊥η2

sλ⊥
d1, E = E−

d1 = − i t⊥η1

sλ⊥
c2, E = −E+

, (B.17)

where the formal expression for energies are1817

E± = M + 2t⊥
cosξ1g±(ξ1)− cosξ2g±(ξ2)

g±(ξ1)− g±(ξ2)
, (B.18)

with two defined functions1818

g±(ξ) =
tan±1(ξ(Lz + 1)/2)

sinξ
(B.19)

and two dimensionless factors1819 
η1 =

−2(cosξ1 − cosξ2)

sinξ1 cot
�
ξ1l/2
�− sinξ2 cot
�
ξ2l/2
� ,

η2 =
−2(cosξ1 − cosξ2)

sinξ1 tan
�
ξ1l/2
�− sinξ2 tan
�
ξ2l/2
� , (B.20)
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have been introduced. From the above discussion we seemingly have four solutions, math-1820

ematical restriction, however, tells that equations in Eq. (B.16) in the same brace must1821

stand simultaneously, which then gives us two relations as1822 1 =
���� i t⊥η1

sλ⊥
· i t⊥η2

sλ⊥

���� =⇒ |η1η2| =
λ2
⊥

t 2
⊥

,

m ≡ E+ = −E−,
(B.21)

and the latter one is also a physical result from Dirac equation. This reduces our four so-1823

lutions to two independent ones for each s . The above discussion is equivalent to requiring1824

simultaneous standing of equations in left brace of Eq. (B.16)1825

E2 = (M + 2t⊥ cosξα)
2 + λ2

⊥ sin2 ξα,

which is independent of α and matches the result of Eq. (B.6).1826

Similar arguments can be made here as in the continuum model. Counting on complex-1827

ity of ξ1,2 restricted by Eq. (B.7) and the property of trigonometric/hyperbolic function1828

leads to the conclusion that quadratic form f ∗+ f− and η (at certain (k, z, E)) are always1829

real. Essentially, f± are either real or purely imaginary.1830

In short, what we need solving to get all energy states m are the simultaneous equations1831

below1832

m = M + 2t⊥
cosξ1g (ξ1)− cosξ2g (ξ2)

g (ξ1)− g (ξ2)
, (B.22a)

cosξα =
−Mt⊥ + (−1)α−1

Ç
M2t 2

⊥ − (t 2
⊥ − λ2

⊥/4)(M2 + λ2
⊥ −m2)

2(t 2
⊥ − λ2

⊥/4)
, (B.22b)

where1833 
M = M0(k) = m0 − 4t‖

�
sin2 kx a

2
+ sin2

ky b

2

�
− 2t⊥,

g (ξ) =
tan
�
ξ(Lz + 1)
�
/2

sinξ
,

(B.23)

and sign of ξ is fixed by p = + so that1834

sinξα =
q

1− cosξ2
α, α = 1,2. (B.24)

Basically, there are three variables ξ1,ξ2 and m, together with three equations above, then1835

it is in a sense some exact system of equations but a non-linear transcendental version.1836

From this set of equations, one may expect Lz solutions mn(k), n = 1,2, · · · , Lz including1837

one surface state and Lz −1 purely trivial bulk states, if within suitable choice of parame-1838

ters. And the other set of Lz solutions are just chiral partners with −mn(k). Notice that1839

these 2Lz solutions compose eigenvalues for one H s
1d

, then by counting s = ± there are in1840

fact 4Lz solutions in total, which is expected from the matrix form of H1d .1841

Here it comes to construct basis for projection, we firstly ignore lower index for m1842

since our wavefunction solution form is universal whatever n takes. Then by counting s ,1843

we totally have four independent solutions for each m as follows1844 
φ(s) =

�
c1 f+
d2 f−

�
= C

�−i sλ⊥ f+
t⊥η f−

�
, E = m

χ(s) =

�
d1 f−
c2 f+

�
= C

�
t⊥η f−
i sλ⊥ f+

�
, E = −m

, (B.25)
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where we have ignored lower index of η1, and the norm C is the same for φ and χ states.1845

Then restoring n-indices we have 4Lz basis in certain sequence as1846

Φn
1 = ζ+ ⊗φ(+) =

�
φn(+)

0

�
, Φn

2 =

�
0

χn(−)
�

,

Φn
3 =

�
χn(+)

0

�
, Φn

4 =

�
0

φn(−)
�

,

(B.26)

with energies (mn(k),−mn(k),−mn(k), mn(k)), respectively. The (k, lz) dependence of1847

these basis states are inherited from functions f n± (k, lz) and factor ηn(k).1848

The basis here shares the same symmetry analysis as within the continuum model,1849

while here the parity and mirror symmetries can be written down explicitly in the off-1850

diagonal matrix form, with σ0τz and −iσzτz as the anti-diagonaloff-diagonal elements, re-1851

spectively. And especially, by combining the mirror and spin-z index, we assign Φn
i
= Φn

χ ,s1852

with1853
Φn
++ = Φ

n
1 , Φn

+− = Φn
2 ,

Φn−+ = Φn
3 , Φn−− = Φn

4 .
(B.27)

Now we turn to the projection, which is formally1854

〈Φ|HFilm|Φ〉 = 〈Φ|H1d |Φ〉+ 〈Φ|H‖|Φ〉 , (B.28)

where the first part, by the definition of eigenvalue equation, is just ⊕ndiag(mn,−mn,−mn, mn) = ⊕nmn(k)τzσz;1855

while in the second part, since H‖ = λ‖(sin(kx a)σxτx + sin
�
ky b
�
σyτx ) is purely off diag-1856

onal, it is easy to conclude that1857

〈Φn
i |H‖|Φn′

i 〉 = 0, i = 1, 2, 3, 4,

〈Φn
1 |H‖|Φn′

3 〉 = 0 = 〈Φn
2 |H‖|Φn′

4 〉 .
Then only four terms need consideration by hermicity, among which1858

〈Φn
1 |H‖|Φn′

4 〉 = λ‖(sin(kx a)− i sin
�
ky b
�
)
∑
lz

|C |2iλ⊥t⊥[ηn( f n
+ )
∗ f n′− +ηn′( f n− )∗ f n′

+ ] = 0,

〈Φn
2 |H‖|Φn′

3 〉 = λ‖(sin(kx a)− i sin
�
ky b
�
)
∑
lz

|C |2iλ⊥t⊥[ηn( f n− )∗ f n′
+ +η

n′( f n
+ )
∗ f n′− ] = 0,

as f− f+ is odd to z. Then, the only remaining terms are1859

〈Φn
1 |H‖|Φn′

2 〉 = λ‖(sin(kx a)− i sin
�
ky b
�
)δnn′ = 〈Φn

3 |H‖|Φn′
4 〉 ,

where normalization condition is used. Finally we arrive at the equivalent Hamiltonian1860

H(k) =
Lz⊕

n=1

�
λ‖(sin(kx a)σx + sin

�
ky b
�
σy) +mn(k)τzσz

�
=
⊕
n,χ

hn,χ(k), (B.29)

where unspecified degrees of freedom are all identity matrix. And hereto we have suc-1861

cessfully arrived at Eq. (1b) in the main text. Also notice that H is exactly equivalent1862

to original HFilm, since by counting all n, the projection we did is just a unitary basis1863

transformation, where the unitary matrix is composed of solutions of H1d .1864

The projection here is also a unitary transformation, which shares a simpler form than1865

that in the continuum model. Since now the original Hamiltonian reads1866

HFilm(k) =
∑
lz ,l′z
Ψ†

lz
HFilm(k, lz, l′z)Ψl′z , (B.30)
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then by defining Ψ = ⊕lz
Ψlz

, we identify the unitary transformation as1867

HFilm(k) = (Ψ
†U l)
�
(U l)†HFilm(k)U

l� ((U l)†Ψ), (B.31)

where1868

U l = (Φ1,Φ2, · · · ,ΦLz ), Φn = (Φn
1 ,Φn

2 ,Φn
3 ,Φn

4), (B.32)

and we recognize Φn
i
= ⊕lz

Φn
i
(lz) here so that U l is a 4Lz × 4Lz unitary matrix. And here1869

again U l is trivial in k-space. The core transformation on matrix form of Hamiltonian1870

gives rise to1871

H(k) = (U l(k))†HFilm(k)U
l(k), (B.33)

while the inverse transformation (U l)†Ψ assigns composed Fermionic operators to the new1872

basis. Essentially, the transformation to each hn,χ is done by1873

hn,χ = (U
l
n,χ)

†HFilmU l
n,χ , (B.34)

where1874

U l
n,χ = Φ

n
χ = (Φ

n
χ ,s=+,Φn

χ ,s=−), (B.35)

is a 2Lz × 2 matrix.1875
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