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Abstract

Traditional topological materials belong to different Altland-Zirnbauer symmetry classes
(AZSCs) depending on their non-spatial symmetries. Here we introduce the notion of
hybrid symmetry class topological insulators (HSCTIs): A fusion of two different AZSC
topological insulators (TIs) such that they occupy orthogonal Cartesian hyperplanes and
their universal massive Dirac Hamiltonian mutually anticommute. The boundaries of
HSCTIs can also harbor TIs, typically affiliated with an AZSC different from the parent
ones. As such, a fusion between planar quantum spin Hall and vertical Su-Schrieffer-
Heeger insulators gives birth to a three-dimensional HSCTI, accommodating quantum
anomalous Hall insulators and quantized Hall conductivity on the top and bottom sur-
faces. Such a response is shown to be stable against weak disorder. We extend this con-
struction to encompass crystalline HSCTI and topological superconductors, and beyond
three dimensions. Possible (meta)material platforms to harness HSCTIs are discussed.
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1 Introduction

Twenty first century physics thus far is heavily influenced by the topological classification
of quantum materials [1–10]. It roots back in the discovery of quantum Hall states in the
1980s [11–13]. Over the time, topological insulators (TIs), featuring insulating bulk but
gapless boundaries via a bulk-boundary correspondence, emerged as the most prominent
representative of topological phases of matter. It turned out that they can be grouped into
ten Altland-Zirnbauer symmetry classes (AZSCs), depending on their non-spatial symmetries
(time-reversal, particle-hole and sublattice or chiral) [14–16]. AZSCs also encompass thermal
topological insulators or superconductors [17–19]. Subsequent inclusion of crystal symme-
tries in the classification scheme immensely diversified the landscape of topological phases
that ultimately gave birth to topological quantum chemistry, nowadays routinely employed to
identify topological crystals in nature [20–28]. In this realm, the following quest fuels our
current venture. Can a hybridization (defined shortly) between two topological insulators from
different AZSCs foster (possibly new) topology?

We offer an affirmative answer to this question by introducing the notion of hybrid symme-
try class topological insulators (HSCTIs). Notice that all TIs (electrical or thermal) from AZSCs
can be modeled by Dirac Hamiltonian with a momentum-dependent Wilson-Dirac mass [15,
16], manifesting band inversion around a time reversal invariant momentum (TRIM) point in
the Brillouin zone (BZ). A hybridization between two TIs from distinct AZSCs occurs when they
occupy orthogonal Cartesian hyperplanes and their band-inverted massive Dirac Hamiltonian
mutually anticommute. We show that the resulting HSCTI can nurture emergent topology.

The construction of HSCTIs is showcased here from its simplest possible incarnation in
three dimensions, stemming from the hybridization between a two-dimensional (2D) x y pla-
nar quantum spin Hall insulator (QSHI) and a one-dimensional (1D) z-directional Su-Schrieffer-
Heeger insulator (SSHI). The top and the bottom surfaces of the resulting three-dimensional
(3D) HSCTI then support 1D edge states of opposite chiralities, producing integer quantized
Hall conductivity (in units of e2/h) of opposite signs on these two surfaces. Thus, a 3D HSCTI
differs from the presently known strong Z2 and higher-order TIs, respectively supporting gap-
less surface states on six faces of a cube (first-order) [29] and z-directional hinge modes along
with x y surface states (second-order) [30] or eight corner modes (third-order) [31,32]. See
Fig. 1. It is also distinct from 3D axion insulators [33–35], displaying a non-quantized surface
Hall conductivity.

The rest of the manuscript is organized as follows. In Sec. 2, we introduce the model for 3D
HSCTI, discuss its symmetries and phase diagram. Sec. 3 is devoted to the bulk-boundary cor-
respondence, surface resolved Hall conductivity, topological invariant and responses to lattice
defects (dislocation) of 3D HSCTI. The notion of hybrid symmetry class topology is extended
to encompass its crystalline and superconducting counterparts in Sec. 4. Concluding remarks,
future directions and (meta)material perspectives of our proposals are presented in Sec. 5.
Additional results and technical details are relegated to five Appendices.

2 3D HSCTI: Construction, symmetry and phase diagram

To arrive at the model Hamiltonian for the 3D HSCTI, consider first the Bloch Hamilto-
nian [5]

hx y
QSHI = d1(k)Γ1 + d2(k)Γ2 + d3(k)Γ3. (1)

The components of the d-vector for now are chosen to be d1(k) = t sin(kx a),
d2(k) = t sin(ky a) and d3(k) = m0+ t0[cos(kx a)+cos(ky a)]. Here a is the lattice spacing.
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Figure 1: Normalized local density (LDOS) of states for (a) surface localized chiral
edge states of HSCTI, (b) surface states of a first-order TI [29], (c) z-directional hinge
and x y surface state of a second-order TI [30], and (d) eight corner modes of a third-
order TI [31, 32]. The lattice models for (b), (c) and (d) are shown in Appendix A.
Throughout, LDOS on a site at position ri is defined as ρ(ri) =

∑

j ,α |Ψ
0, j
i,α
|2, where i

is the site index, summation over j is restricted within the near zero energy manifold
{
�

�Ψ0, j
�

} (indicated by the superscript ‘0’) of the corresponding Hamiltonian and α
indicates the spin, orbital and Nambu (for superconductors) degrees of freedom, for
example.

The hopping parameter t is set to be unity. Mutually anti-commuting Hermitian Γ matrices
are Γ j = σ3τ j for j = 1, 2, 3. The Pauli matrices {τµ} ({σµ}) operate on the orbital (spin)
degrees of freedom with µ = 0, · · · , 3. Then the above model describes a QSHI in the x y
plane within the parameter regime −2 < m0/t0 < 2, featuring counter-propagating helical
edge modes for opposite spin projections (class AII). When topological hx y

QSHI is implemented
on a 3D cubic lattice without any tunneling in the z direction, it supports a column of edge
modes occupying the x z and y z planes. See Fig. 2(ai).

Next consider a second Bloch Hamiltonian [36–38]

hz
SSHI = d4(k)Γ4 + d5(k)Γ5, (2)

where d4(k) = t1 sin(kza) and d5(k) = m z + tz cos(kza). We set t1 = 1. If Γ4 and Γ5 are
anticommuting Pauli matrices, hz

SSHI describes a z-directional SSHI (class BDI). Within the
parameter range |m z/tz| < 1, it supports topological zero energy modes, localized at its two
ends. If we place such z-directional topological SSHIs on the sites of a square lattice on the x y
plane without any coupling between them, the resulting system features a collection of end
point zero energy modes that occupies the entire top and bottom x y surfaces. See Fig. 2(aii).

With the ingredients in hand, we now announce the Bloch Hamiltonian for a 3D HSCTI

h3D
HSCTI = hx y

QSHI + hz
SSHI, (3)

where now Γ4 = σ1τ0 and Γ5 = σ2τ0, that together with Γ1, Γ2 and Γ3 constitute a set of
five four-component Hermitian matrices, satisfying the Clifford algebra {Γ j , Γk} = 2δ jk . Here
δ jk is the Kronecker delta function. Thus, hx y

QSHI and hz
SSHI anticommute with each other

(hybridization). The z-directional SSHI acts as a mass for the edge modes of the x y planar
QSHI and vice versa. Then one component of h3D

HSCTI gaps out the topological modes of the
other, except where both of them support topological gapless modes, namely along the edges
on the top and bottom surfaces. See Fig. 2(aiii). But, the bulk is an insulator. Therefore,
we realize a 3D TI by hybridizing two TIs, living on orthogonal Cartesian hyperplanes and
belonging to different AZSCs, that manifests a bulk-boundary correspondence: a HSCTI.

The model Hamiltonian for a 3D HSCTI h3D
HSCTI breaks (1) the time-reversal (T ) sym-

metry generated by T = σ2τ1K , where K is the complex conjugation, and (2) the parity
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Figure 2: (a) Normalized local density of states for the (i) edge modes of decoupled
QSHIs for m0/t0 = 1, (ii) endpoint modes for decoupled SSHIs for m z/tz = 0, and
(iii) chiral edge modes of HSCTI for m0/t0 = 1 and m z/tz = 0 [same as Fig. 1(a)].
(b) Phase diagram of HSCTI in the (m0/t0, m z/tz) plane. The translationally active
(inert) phase supports (is devoid of) dislocation defect modes, shown schematically
by the red circle. (c) Melting of (i) chiral edge modes [same as (aiii)] by tuning (ii)
m0/t0 to 1.75 for a fixed m z/tz = 0 and (iii) m z/tz to 0.75 for fixed m0/t0 = 1.0.

(P ) symmetry, generated by Γ3 with P : k → −k. But, it preserves the composite P T
symmetry that guarantees a two-fold degeneracy of the conduction and valence bands of
h3D

HSCTI, respectively determined by the eigenspectra ±E(k), where E(k) = [α(k)]1/2 and
α(k) = d2

1 (k) + · · ·+ d2
5 (k).

Notice that h3D
HSCTI, involving all five mutually anticommuting four-component Hermitian

Γ matrices, does not possess the sublattice or chiral symmetry, generated by a unitary operator
that anticommutes with it. Rather it enjoys an anti-unitary particle-hole symmetry, generated
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Figure 3: Layer resolved (in the z direction) band structure of a 3D HSCTI with ky
as a good quantum number and Lx = Lz = 20 for m z/tz = 0, and m0/t0 = −1.0
(upper panel) and m0/t0 = 1.0 (lower panel). Here blue (brown) and green indicate
states localized near the left (right) edge and in the bulk of the system. Therefore, the
top and bottom layers support counter-propagating chiral edge modes, while other
layers are devoid of gapless states (such as the middle one).

byA = σ0τ1K , such that {h3D
HSCTI,A} = 0 [39].

In the (m0/t0, m z/tz) plane, a 3D HSCTI occupies a rectangular region bounded by
|m0/t0| < 2 and |m z/tz| < 1, where both the parent insulators are topological. See Fig. 2(b).
Furthermore, this topological regime fragments into two sectors for −2 < m0/t0 < 0 and
0 < m0/t0 < 2, when the band inversion of the underlying QSHI takes place near the
Γ = (0, 0) point (Γ phase) and M = (1, 1)π/a point (M phase) of a 2D square lattice BZ, re-
spectively [40]. Dislocation lattice defects are instrumental in distinguishing these two regimes
about which more in a moment.

A HSCTI can be pushed out of the topological regime by tuning m0/t0 or m z/tz or both. As
only the ratio m0/t0 is tuned from the topological toward trivial regime, the edge modes living
on the opposite sides of the top or bottom surfaces start to hybridize, as shown in Fig. 2(cii).
By contrast, as we tune only m z/tz out of the topological regime the edge modes residing on
the top and bottom surfaces mix through four side surfaces of the cube, as shown in Fig. 2(ciii).
Once the system becomes a trivial insulator, there is no topological boundary modes.

3 3D HSCTI: Bulk-boundary correspondence, Hall effect, topolog-
ical invariant and lattice defects

The nature of the edge modes of the 3D HSCTI on the top and bottom surfaces can be
anchored from the effective surface Hamiltonian. For simplicity, we consider a semi-infinite
system with a hard-wall boundary at z = 0. When the region z < 0 (z > 0) is occupied
by HSCTI (vacuum), the surface at z = 0 represents the top one. By contrast, when the
region z > 0 (z < 0) is occupied by HSCTI (vacuum) the z = 0 surface corresponds to the
bottom one. A straightforward calculation, shown in Appendix B, leads to the following surface
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Figure 4: (a) Six-terminal setup for the layer-resolved Hall conductivity. (b) Layer-
resolved electrical Hall conductivity (σx y) for HSCTI, showing its integer quantiza-
tion (in units of e2/h) on the top and bottom surfaces with opposite signs. (c) Same
as (b), but for crystalline HSCTI with a parent QSHI featuring band inversion at the X
and Y points of a 2D BZ. (d) Thermal Hall conductivity (κx y) for thermal HSCTI (su-
perconductor), showing its half-integer quantization (in units of κ0 = π2k2

BT/(3h))
at temperature T = 0.01 only the top and bottom surfaces with opposite signs.

Hamiltonian
htop/bottom

surface
= d1(k)β1 + d2(k)β2 ∓ d3(k)β3, (4)

where k = (kx , ky). The newly introduced Pauli matrices {βµ} operate on the space of two
zero energy top/bottom surface states. With the chosen form of the d-vector, this Hamilto-
nian mimics the Qi-Wu-Zhang model for a square lattice quantum anomalous Hall insulator
(QAHI) [41]. Therefore, the top and bottom surfaces of the 3D HSCTI harbor two-dimensional
QAHIs with opposite first Chern numbers. On each surface the T symmetry is thus broken. In
addition, they also break the P symmetry, under which the top and bottom surfaces switch,
as they foster QAHIs of opposite Chern numbers. Boundaries of a 3D HSCTI this way manifest
the conserved compositeP T symmetry of its bulk. The surface Hamiltonian lacks the unitary
chiral or sublattice symmetry (S), under which {htop/bottom

surface
, S} = 0. It possesses an emer-

gent anti-unitary particle-hole symmetry (C), such that {htop/bottom
surface

, C} = 0, where C = β1K
and C2 = +1, since we neglected any particle-hole asymmetry, captured by d0(k)Γ0, where
d0(−k) = d0(k) and Γ0 = σ0τ0 is the four-dimensional identity matrix, in the parent state. It
plays no role in topology and only shifts all the energy eigenvalues. Inclusion of such a term
will give rise to β0d0(k) in the surface Hamiltonian, which is then devoid of the C symmetry.
Here β0 is the two-dimensional identity matrix. Therefore, htop/bottom

surface
and h3D

HSCTI belong to
class A as the T symmetry is already broken [15, 16], a distinct AZSC from its parent QSHI
(class AII) and SSHI (class BDI). Notice that the particle-hole asymmetric terms must be ab-
sent in a superconductor, which we discuss shortly, as the C symmetry then corresponds to the
microscopic charge-conjugation symmetry.
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Figure 5: (a) A z-directional Volterra cut of a line of atoms in a 3D HSCTI crystal
that creates new edges on x y plane, supporting counter-propagating chiral edge
modes only on the top and bottom surfaces. When these edges are pasted to create a
line of edge dislocations, the edge modes hybridize and produce zero energy surface
bound defect modes when the parent QSHI is in the M phase, for example. (b)
Normalized local density of states for such defect modes with a edge (anti)dislocation
pair and periodic boundary conditions in the x and y directions, for m0/t0 = 1
and m z/tz = 0. As 3D edge dislocation in (a) is constructed by stacking its 2D
counterpart from Fig. 2(b), zero-energy defect modes on the top and bottom surfaces
appear near the defect cores.

As the top and bottom surfaces host QAHIs of opposite Chern numbers, they feature
counter-propagating chiral edge states. See Fig. 3. We consider a semi-infinite system with ky
as good quantum number, and finite extensions in the x and z directions with open boundary
conditions. For every z, we compute the band structure of a 3D HSCTI. Inside the topolog-
ical regime of HSCTI, the top and bottom surfaces indeed feature counter-propagating edge
modes crossing the zero energy at ky = 0 (±π/a), when the underlying QSHI is in the Γ (M)
phase. On the other hand, the middle layer is devoid of any chiral edge state. Surface local-
ized chiral edge states also manifest through the layer-resolved integer quantized charge Hall
conductivity (σx y), which we discuss next.

To compute the layer-resolved Hall conductivity in a 3D HSCTI, we consider a six-terminal
Hall bar geometry. See Fig. 4(a). All the voltage and current leads are one-layer thick. An
electrical current Iel is passed between the leads L1 and L4. Then a transverse or Hall voltage
develops between the leads L2 and L6, and L3 and L5. We numerically compute the Hall
resistance Rel

x y = (V2+V3−V5−V6)/(2Iel) using Kwant by attaching all the leads to a specific
layer [42, 43]. Here V j is the voltage at the jth lead (L j). The Hall conductivity is given by

σx y = (e2/h)
�

Rel
x y

�−1
. The results are shown in Fig. 4(b). It shows that σx y is quantized

(in units of e2/h) on the top and bottom surfaces, where they have opposite signs. It can
be anchored by computing the first Chern number (C) of the surface Hamiltonian [Eq. (4)]
as σx y = Ce2/h. On any other layer σx y = 0. The overall sign of σx y flips between the
Γ and M phases of the parent QSHI. We also compute the two-terminal conductance (Gx x ),
but with the thickness of the leads equal to the sample thickness in the z direction, yielding
Gx x = 2e2/h, confirming that there are exactly two topological edge modes in the z direction.
These quantized responses (σx y and Gx x ) are robust against weak and moderate disorder,
while they vanish only in the strong disorder regime. Additional details of this computation
are presented in Appendix C.

Although the parent 2D QSHI of class AII and 1D SSHI of class BDI, respectively pos-
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sess non-trivial Pfaffian and Zak pahse, the resulting 3D HSCTI belongs to class A, which is
devoid of any AZSC invariant in three dimensions [15, 16]. Hence, their topological classifi-
cation demands a new invariant (beyond AZSC), which we develop now. At the TRIM points
d1(k) = d2(k) = d4(k) = 0, and h3D

HSCTI = Γ3d3(k) + Γ5d5(k) can be brought into a block
diagonal form after a suitable unitary rotation with Γ4 = σ3τ1 and Γ5 = σ3τ2. We then define
a quantity ϕ̂k = ϕk/|ϕk |, where ϕk = tan−1[d5(k)/d3(k)]. By construction, ϕ̂k = ±1. The
system then describes a TI only when

Φz = ϕ̂ j ,k⋆z,1
ϕ̂ j ,k⋆z,2

= −1 and Φx y =
∏

j

ϕ̂ j ,k⋆
z,i
= −1, (5)

for i = 1 and 2, where k⋆z = (0,π/a), j = Γ , M, X, Y are the TRIM points of a 2D BZ with
X = (1, 0)π/a and Y = (0, 1)π/a. When Φz = −1, the z-directional SSHI features band
inversion along kz at all the TRIM points on the 2D BZ. On the other hand, when Φx y = −1
the planar QSHI features band inversion at odd number of TRIM points on the 2D BZ for
kz = 0 and π/a. The TRIM band inversion point of the 2D BZ can be identified from the
Pfaffian invariant [6]. On the other hand, if Φz or Φx y becomes +1, the system is a trivial
insulator or crystalline HSCTI, which we discuss in the next section.

When the band inversion of the underlying QSHI occurs at a finite TRIM point (KQSHI
inv

), the
3D HSCTI becomes translationally active. Dislocation lattice defects, created by breaking the
local translational symmetry in the bulk of a crystal, are instrumental to identify them in terms
of topological modes bound to their cores. A screw dislocation fosters gapless modes only when
the associated Burgers vector (b) pierces gapless surfaces [44–46]. As all the surfaces of a 3D
HSCTI are gapped, screw dislocations do not host any metallic defect modes. A line of edge
dislocation is characterized by b and the stacking direction (ŝ). Only when ŝ = ẑ and b = ax̂
or aŷ , the Burgers vector points toward gapless chiral edge states on the top and bottom
surfaces. Once a line of atoms is removed, counter-propagating chiral edge states appear at
the newly created edges on these two surfaces. See Fig. 5(a). Upon reconnecting these edges
a 3D edge dislocation is created through the Volterra cut-and-paste procedure, and the edge
modes hybridize. When KQSHI

inv
·b = π (modulo 2π) [40,44–51], as is the case when the QSHI

resides in the M or XY (introduced in the next section) phase, the nontrivial π hopping phase
around the defect core binds surface localized zero energy modes. See Fig. 5(b). This outcome
can also be appreciated in the following way. When we ‘paste’ the edges, created during the
Volterra ‘cut’ process, the hybridization or level repulsion between the counter-propagating
1D modes living on these two edges is captured by a domain-wall mass, whose sign changes
across the line of missing atoms and a uniform mass with no nontrivial spatial modulation,
when KQSHI

inv
· b = π (translationally active) and 0 (translationally inert), respectively. Then

according to the Jackiw-Rebbi mechanism [52], topological zero energy modes get pinned at
the dislocation core, but only in the translationally active phase.

4 Crystalline HSCTI and superconductor

With d1(k) = Sx + Cx Sy , d2(k) = Sy + Sx Cy and
d3(k) = m0−2t ′+t0(Cx+Cy)+2t ′(Cx Cy), where S j = sin(k j a) and C j = cos(k j a), the band
inversion occurs at the X and Y points of the 2D BZ for |m0/t0| > 2 and t ′/t0 > m0/(4t0),
yielding a crystalline QSHI protected by the four-fold rotational (C4) symmetry [21]. The
resulting HSCTI is then also protected by the C4 symmetry. The layer-resolved Hall con-
ductivity σx y = ±2e2/h on the top and bottom surfaces, respectively, as they host two
counter-propagating chiral edge states. See Fig. 4(c). In this phase Φx y = +1 as the band
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inversion for the QSHI occurs at an even number of TRIM points in the 2D BZ. But, the
Pfaffian at the X and Y points are −1, protected by the C4 symmetry. Details of the model are
presented in Appendix D.

With a suitable Γ matrix representation, h3D
HSCTI can describe a hybrid symmetry class topo-

logical superconductor. For example, when Γ1 = η1σ0, Γ2 = η2σ3 and Γ3 = η3σ0, where the
set of Pauli matrices {ηµ} operates on the Nambu or particle-hole indices, Hxy

QSHI describes a
px ± ipy paired state (class DIII), occupying the x y plane and stacked in the z direction. Now
t represents the pairing amplitude and d3(k) gives rise to a cylindrical Fermi surface when
|m0/t0| < 2. In this basis H z

SSHI describes a z-directional Kitaev chain of Majorana Fermions
(class D or BDI) that couples the layers of px ± ipy superconductors. Physically, d4(k) (d5(k))
describes a pz-wave (P T symmetry breaking extended s -wave) pairing for Γ4 = η2σ1 and
Γ5 = η2σ2. The resulting 3D thermal HSCTI or superconductor belongs to class D, which
is also devoid of any invariant according to the AZSC. Nonetheless, it possesses a nontrivial
invariant, see Eq. (5), which goes beyond the AZSC.

On the top and bottom surfaces, such a topological paired state supports 2D thermal
Hall insulators of opposite Chern numbers. Their edge modes are constituted by counter
propagating chiral Majorana fermions on opposite surfaces, each of which yields a half-
quantized thermal Hall conductivity (κx y) in units of κ0 at small temperature (T → 0), where
κ0 = π2k2

BT/(3h). Layer resolved numerical computation of κx y in the six-terminal Hall bar
geometry confirms this outcome and shows that it is indeed of opposite signs on the top and
bottom surfaces. See Fig. 4(d). The two-terminal thermal conductance G t h

x x = κ0 when the
leads are attached to the entire system in the z direction, in accordance with the fact that there
are exactly two topological Majorana edge modes in the z direction. The (half-)quantized
thermal responses (κx y and G t h

x x ) are also robust against weak and moderate disorder, while
κx y , G t h

x x → 0 in the strong disorder regime. Details of this computation is shown in Ap-
pendix C. The edge dislocations with b = ax̂ or aŷ and ŝ = ẑ, in such a paired state support
surface localized endpoint Majorana modes.

5 Discussions and outlooks

We outline a general principle of realizing HSCTIs from two distinct parent TIs that occupy
orthogonal Cartesian hyperplanes and belong to different AZSCs. Explicitly discussed HSCTI,
obtained via a hybridization between x y planar QSHIs (class AII) and z-directional vertical
SSHIs (class BDI), possesses a bulk topological invariant and manifests bulk-boundary corre-
spondence by harboring surface QAHIs (class A), leaving its fingerprint on chiral edge states
and layer-resolved quantized Hall effect. Our proposal thereby offers a unique approach to
vision TIs at the boundaries of even higher-dimensional HSCTIs. For example, following the
same principle a 3D class AII TI can be found on the boundary of a four-dimensional HSCTI,
built from 3D class CII and 1D class BDI TIs, as shown in Appendix E. This route is distinct
from the “dimensional reduction" of constructing a d-dimensional TI from a fixed AZSC d+1-
dimensional one [53]. We also extend the jurisdiction of this proposal to systems, where at
least one of the constituting parent TIs is protected by crystalline symmetry and to encompass
superconducting states, featuring half-quantized surface thermal Hall conductivity. Existence
of a plethora of strong and crystalline topological phases of matter (insulators and supercon-
ductors) of various dimensions and symmetries in nature [1–28] should therefore open an
unexplored territory of HSCTIs (electrical and thermal) that in principle can be realized in
quantum crystals and engineered in classical metamaterials, as long as their following gen-
eral principles of construction are satisfied. (a) Individual insulators (electrical or thermal)
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must be in the topological phase, (b) they must occupy orthogonal Cartesian hyperplanes, (c)
their corresponding Hamiltonian must anti-commute and (d) they must describe same type of
quasiparticles (either charged or neutral).

As d5(k) breaks both P and T symmetries, layered magnetic materials with columnar
antiferromagnetic order in the stacking direction constitute an ideal platform to harness the
candidate 3D HSCTI. With the recent discovery of (anti)ferromagnetic TI MnBi2Te4 [54–57]
(possibly axionic), we are optimistic that HSCTI can be found in some available or newly
synthesized quantum materials using the existing vast dictionary of magnetic materials [58],
guided by topological quantum chemistry [24–27]. When such materials (once found) are
doped, they can harbor thermal HSCTI or superconductors from local or on-site pairings, as
by now it is well established that the local paired states often (if not always) inherit topology
from parent normal state electronic bands, even when it is a trivial insulator in the presence
of a Fermi surface, but in terms of neutral Majorana fermions [59–63]. We leave this topic for
a future investigation.

As the model Hamiltonian for HSCTI is described in terms of only nearest-neighbor hop-
ping amplitudes, it can be emulated in classical metamaterials, among which topolectric cir-
cuits [64–66] and mechanical lattices [67–69] are the two most prominent ones. In both setups
existence of chiral edge modes of 2D TIs has been experimentally demonstrated from the uni-
directional propagation of a weak (low energy) disturbance only along their edges [65,67–69].
Finally, we note that topological defect modes have been experimentally observed in quantum
crystals [70–72] and mechanical lattices [73]. Thus, our predicted counter-propagating chiral
edge modes on the opposite surfaces of the 3D HSCTI and surface localized dislocation bound
states should be within the reach of currently available experimental facilities.
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A Lattice models for 3D topological insulators

In Fig. 1, we compared the boundary modes of a 3D hybrid-symmetry class topological
insulator (HSCTI) with the ones for 3D first-order, second-order and third-order topological
insulators (TIs). Here we write down the corresponding Bloch Hamiltonian. The Bloch Hamil-
tonian for a 3D first-order TI is given by [29]

h3D
FOTI = t
�

sin(kx a)Γ1 + sin(ky a)Γ2 + sin(kza)Γ3
�

+
�

m0 − 6t0 + 2t0
�

cos(kx a) + cos(ky a) + cos(kza)
�	

Γ4.
(A.1)

The mutually anticommuting Hermitian Γ matrices, satisfying the Clifford algebra
{Γ j , Γk} = 2δ jk , are given by

Γ1 = τ1σ1, Γ2 = τ1σ2, Γ3 = τ1σ3, Γ4 = τ3σ0, Γ5 = τ2σ0. (A.2)

The Pauli matrices {τµ} and {σµ}, respectively operate on the parity and spin indices, where
µ = 0, · · · , 3. The above model is in the topological regime for 0 < m0/t0 < 12 [45], when
it features gapless topological surface states on all six surfaces of a cube. Their normalized

10
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local density of states for m0/t0 = 2 and t = 1 is shown in Fig. 1(b) of the main manuscript.

The Bloch Hamiltonian for a 3D second-order TI is given by [30]

h3D
SOTI = h3D

FOTI +∆1
�

cos(kx a)− cos(ky a)
�

Γ5. (A.3)

When h3D
FOTI is in the topological regime, a second-order TI is realized for arbitrarily weak

or strong ∆1. When m0/t0 = 2, the band inversion of the 3D first-order TI occurs at the
Γ = (0, 0, 0) point of the 3D cubic Brillouin zone (BZ). Nontrivial ∆1, then gaps out the
surface states of h3D

FOTI on the x z and y z surfaces, leaving four z-directional hinges gapless.
In addition, it also leaves the top and bottom x y surfaces gapless, as cos(kx a) − cos(ky a)
vanishes at the Γ = (0, 0) point of the top and bottom surface BZ. The normalized local
density of these modes is shown in Fig. 1(c) for m0/t0 = 2, t = 1 and ∆1 = 0.5.

The Bloch Hamiltonian for a 3D third-order TI is given by [31,32]

h3D
TOTI = h3D

SOTI +∆2
�

2 cos(kza)− cos(kx a)− cos(ky a)
�

Γ6. (A.4)

As h3D
TOTI involves six mutually anticommuting Hermitian Γ matrices, satisfying the Clifford

algebra {Γ j , Γk} = 2δ jk , their minimal dimensionality must be eight. They are now chosen to
be

Γ1 = α1τ1σ1, Γ2 = α1τ1σ2, Γ3 = α1τ1σ3, Γ4 = α1τ3σ0,

Γ5 = α1τ2σ0, Γ6 = α2τ0σ0, Γ7 = α3τ0σ0.
(A.5)

The newly introduced Pauli matrices {αµ} operate on the sublattice degrees of freedom. On
a second-order TI, any nontrivial ∆2 produces a third-order TI, featuring eight corner modes.
Their normalized local density of states is shown in Fig. 1(d) of the main manuscript for
m0/t0 = 2, t = 1, ∆1 = 1.0 and ∆2 = 1.0.

B Surface states and surface Hamiltonian for 3D HSCTI

The Bloch Hamiltonian for a 3D HSCTI, also shown in Eq. (3), reads as

h3D
HSCTI = d1(k)Γ1 + d2(k)Γ2 + d3(k)Γ3 + d4(k)Γ4 + d5(k)Γ5. (B.1)

The components of the five-dimensional d-vector are already announced and

Γ1 = σ3τ1, Γ2 = σ3τ2, Γ3 = σ3τ3, Γ4 = σ1τ0, Γ4 = σ2τ0. (B.2)

To facilitate the computation of the surface states and the subsequent derivation of the surface
Hamiltonian, we perform a unitary rotation by (without any loss of generality)

U = [σ3τ1] exp
�

−i
π

4
σ2τ1

�

exp
�

i
π

4
σ2τ2

�

exp
�

−i
π

4
σ1τ2

�

. (B.3)

Under this unitary rotation

U (Γ1, Γ2, Γ3, Γ4, Γ5)U
† = − (σ1τ0,σ2τ0,σ3τ3,σ3τ2,σ3τ1) , (B.4)

such that the part of h3D
HSCTI that only depends on kz [namely, the terms appearing with

d4(k) = t1 sin(kza) and d5(k) = m z + tz cos(kza)] becomes block diagonal. The overall

11
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Figure 6: (a) Six-terminal Hall bar geometry, employed to compute the layer-resolved
(electrical and thermal) Hall conductivity for a three dimensional system. The gray
atoms correspond to the sites belonging to the three-dimensional scattering region,
whereas the green ones indicate the sites that belong to the leads L1, L2, L3, L4, L5,
and L6. A longitudinal electrical current Iel is flowing across the leads L1 and L4
and correspondingly electrical Hall voltages are generated in the transverse leads. In
case of the thermal Hall calculation, Iel gets replaced with the longitudinal thermal
current It h, and thereby generating transverse thermal Hall voltage in the vertical
leads L2, L3, L5 and L6. (b) Two-terminal setup, employed to compute conductance
(electrical and thermal) for a three-dimensional systems, where now the leads (L1
and L2) are connected to all the sites in the z direction at the left and right edges of
the scattering region (system). A longitudinal electrical (thermal) current Iel (It h)
is flowing across the leads L1 and L2 while computing the two-terminal electrical
(thermal) conductance.

‘minus’ sign is absorbed in the unimportant overall phase of the four-component spinor. Then
the kz dependent part of h3D

HSCTI takes the explicit form

hz
SSHI = d4(k)σ3τ2 + d5(k)σ3τ1 = [d4(k)τ2 + d5(k)τ1]⊕ {(−) [d4(k)τ2 + d5(k)τ1]}

≡ hup
0 (kz)⊕ hdown

0 (kz).
(B.5)

For concreteness, we now focus on the lower two-dimensional block and ignore its overall
‘minus’ sign. Next we expand hdown

0 (kz) in powers of kz around kz = 0, and take kz →−i∂z
as we seek to find the zero energy surface states Φ0(z) on the top and bottom surfaces by
breaking the translational symmetry in the z direction. The pertinent differential equation
reads

hdown
0 (kz →−i∂z)Φ0(z) ≡

�

t1(−i∂z)τ2 +
�

m z + tz +
tz

2
∂ 2

z

�

τ1

�

Φ0(z) = 0, (B.6)

where Φ⊤0 (z) = [ϕ1(z),ϕ2(z)] is a two-component spinor. As τ3 anticommutes with
hdown

0 (kz), the surface zero energy states must be eigenstates of τ3, which allows for only
two types of solutions: Φ⊤0,1 = [ϕ1(z), 0] and Φ⊤0,2 = [0,ϕ2(z)]. The functional forms of
ϕ1(z) and ϕ2(z) are obtained by solving the following differential equations respectively

t1∂zϕ1(z) +
�

m z + tz +
tz

2
∂ 2

z

�

ϕ1(z) = 0 and − t1∂zϕ2(z) +
�

m z + tz +
tz

2
∂ 2

z

�

ϕ2(z) = 0.

(B.7)
Here we impose a hard wall boundary condition at z = 0, such that ϕ1(z = 0) = 0 and
ϕ2(z = 0) = 0. After setting t1 = tz = 1 (without any loss of generality), the solutions read
as

ϕ1(z) = A
�

exp[−z/ξ+]− exp[−z/ξ−]
�

, and ϕ2(z) = B
�

exp[z/ξ+]− exp[z/ξ−]
�

, (B.8)
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Figure 7: Disorder-averaged layer-resolved electrical Hall conductivity 〈σx y〉 for (a)
hybrid symmetry class topological insulator (HSCTI) and (b) crystalline HSCTI, and
(c) thermal Hall conductivity 〈κx y〉 for hybrid symmetry class topological supercon-
ductor (HSCTSC). Here W denotes the strength of disorder, and 〈σx y〉 (〈κx y〉) is
measured in units of e2/h (κ0). All the parameters are kept unchanged from the ones
reported for panels (b), (c) and (d) of Fig. 4 of the main manuscript, respectively, and
the system sizes for individual cases are reported in Appendix C. Disorder averaging
is performed over 20 independent realizations in the weak disorder regime W ≤ 2
and over 50 independent realizations in the strong disorder regime W ≥ 11 for (a)
and (b), and W ≥ 10 for (c). Hence, these (half)-quantized responses are robust
in the weak and moderate disorder regimes, while vanish only for strong disorder.
Here the results are shown only for the top and bottom layers, whereas 〈σx y〉 = 0
and 〈κx y〉 = 0 in all other layers for any W , as in the clean limit. See Fig. 6(a) for
the lead arrangement. Error bars correspond to the standard deviation.

where A and B are the normalization constants, and ξ−1
± = 1± i
p

1+ 2m z with ℜ(ξ−1
± ) > 0.

The bottom surface of the HSCTI at z = 0 can be modeled as a hard wall boundary therein,
such that the region z > 0 (z < 0) is occupied by HSCTI (vacuum). Then the wave function
must vanish as z→∞, implying that B = 0 and the normalizable surface zero energy states is
only ϕ1(z). An identical solution is obtained for hup

0 (kz), yielding altogether two zero energy
modes on the bottom surface, which in the four-component representation are given by
�

�Ψ0,1(z)
�⊤
= [ϕ1(z), 0, 0, 0] and

�

�Ψ0,2(z)
�⊤
= [0, 0,ϕ1(z), 0] . (B.9)

The Hamiltonian on the bottom surface (hbottom
surface

) is now obtained by computing the matrix
element of the remaining part of h3D

HSCTI which after the unitary rotation by U [see Eq. (B.4)]
takes the form

hxy
QSHI = d1(k)σ1τ0 + d2(k)σ2τ0 + d3(k)σ3τ3 (B.10)

in the two-dimensional space spanned by
�

�Ψ0,1(z)
�

and
�

�Ψ0,2(z)
�

. Explicitly,

hbottom
surface =





〈Ψ0,1(z)|h
xy
QSHI|Ψ0,1(z)〉 〈Ψ0,1(z)|h

xy
QSHI|Ψ0,2(z)〉

〈Ψ0,2(z)|h
xy
QSHI|Ψ0,1(z)〉 〈Ψ0,2(z)|h

xy
QSHI|Ψ0,2(z)〉





= d1(k)β1 + d2(k)β2 + d3(k)β3.

(B.11)

The set of Pauli matrices {βµ} operates on the subspace spanned by two zero energy surface
modes. See Eq. (4).

The top surface at z = 0 is modeled by assuming that the region with z < 0 (z > 0) is
occupied by HSCTI (vacuum). Then the zero energy surface states must vanish as z → −∞
besides at z = 0, implying A = 0 and now
�

�Ψ0,1(z)
�⊤
= [0,ϕ2(z), 0, 0] and

�

�Ψ0,2(z)
�⊤
= [0, 0, 0,ϕ2(z)] . (B.12)
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Identical calculation then leads to the following Hamiltonian on the top surface (see Eq. (4))

htop
surface

= d1(k)β1 + d2(k)β2 − d3(k)β3. (B.13)

The first Chern number for the surface Hamiltonian is given by [12]

C =

∫

BZ

d2k

4π

�

∂kx
d̂(k)× ∂ky

d̂(k)
�

· d̂(k), (B.14)

where d̂(k) = d(k)/|d(k)|. The integration is performed over the 2D surface BZ on the x y
plane. On the top and bottom surfaces d(k) = (d1, d2,−d3)(k) and d(k) = (d1, d2, d3)(k),
respectively, confirming that the first Chern numbers on these two surfaces are of equal
magnitude, but of opposite signs. When d1(k) = t sin(kx a), d2(k) = t sin(ky a) and
d3(k) = m0 + t0[cos(kx a) + cos(ky a)], C = −1 and +1 on the bottom surface respectively
for 0 < m0/t0 < 2 and −2 < m0/t0 < 0.

C Layer-resolved Hall conductivity and two-terminal conductance

In this Appendix, we present the details of the transport geometry and calculations that
we mentioned in the main manuscript. All our numerical calculations were performed using
Kwant transport package [42]. To begin with, we define a three dimensional (3D) finite system
with the Hamiltonian shwon in Eq. (3) from the main manuscript for a system size of L = 40,
W = 20, H = 10, where L, W , and H represent the length in the x direction, width in the
y direction and height in the z direction of the sample, respectively. For probing the layer
dependent electrical Hall conductivity, we attach multiple leads on the corresponding layer
that we are interested in. As shown in Fig. 6(a), for instance, we first attach all six semi-
infinite leads to the top layer of the 3D system which are indicated by L1, L2, L3, L4, L5 and
L6. A longitudinal current Iel then flows between the leads L1 and L4. We place the other four
leads (L2, L3, L5 and L6) in the transverse direction to probe the Hall voltages generated in
the system. We repeat the same lead attachment procedure as we change the layer which are
depicted by the black arrows in Fig. 6. Equipped with this scattering region and leads setup,
we can then get the scattering matrix as

S =

�

r t ′

t r ′

�

, (C.1)

where r , r ′ and t , t ′ are the reflection and transmission blocks of the scattering matrix.
Since we have six leads attached to the system, the scattering matrix in Eq. (C.1) has a 6× 6
block structure, capturing all the possible matrix elements between different leads. In our
calculation, leads have the same Hamiltonian as that of the scattering region. It is important
to note that both in electrical and thermal Hall calculations, the leads are selectively attached
to only one single layer, however, the scattering region consists of all layers, meaning that it
spans the entire 3D sample.

Let us first focus on how one can calculate six terminal electrical Hall response. As there is
a current flow across the system in presence of an applied electric field E, the current-electric
field relation reads ja =

∑

bσabEb, where σab is called the conductivity tensor. Since in our
setup [Fig. 6(a)], the current is only flowing along the x direction between the leads L1 and
L4, one can probe the off-diagonal components of the conductivity tensor from the voltage
drop between L2, L3, L5 and L6. Finally, the Hall conductivity can be written as

σH
x y =

jx Ey

E2
x + E2

y

, (C.2)
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Figure 8: Disorder-averaged two-terminal (a) electrical conductance (〈Gx x 〉) for
hyrbid symmetry class topological insulator (HSCTI) and (b) thermal conductance
(〈G t h

x x 〉) for hybrid symmetry class topological superconductor (HSCTSC). Here W
denotes the strength of disorder, and 〈Gx x 〉 (〈G t h

x x 〉) is measured in units of e2/h
(κ0). All the parameters are kept unchanged from the ones reported for panels (b)
and (d) of Fig. 4 of the main manuscript, respectively, and the system sizes for indi-
vidual cases are reported in Appendix C. The disorder averaging is performed over 20
independent realizations in the weak disorder regime (W ≤ 2) and over 50 indepen-
dent realizations in the strong disorder regime (W ≥ 12). Hence, these quantized
responses are robust in the weak and moderate disorder regimes, while vanish for
strong disorder. See Fig. 6(b) for the lead arrangement. Error bars correspond to the
standard deviation.

where, Ex = (V2−V3)/L23, Ey = (V2+V3−V5−V6)/(2W) and L23 = L/5. Here Vi=1,··· ,6 are
the voltages developed in all the leads (numbered accordingly).

Regarding the computation of the layer-resolved Hall conductivity in a crystalline HSCTI
a comment is due at this stage. It is important to emphasize that the crystalline topological
insulating phase (XY phase) is protected by the C4 rotational symmetry about the z axis, due
to which our 3D scattering region now maintains a C4 symmetric square shaped planes for
any value of H . In this case, for the calculation of the electrical Hall conductivity, we take the
system size of L = 80, W = 80 and H = 10.

For the calculation of the thermal Hall conductivity (κx y), we consider the similar transport
setup with the scattering region and leads, except the fact that now there is a longitudinal
thermal current (Ith) flows between leads L1 and L4, and thereby generating thermal Hall
voltages in the transverse leads [43]. In this case, we use the current-temperature relation
Ith = AthT, where I⊤

th
= (Ith, 0, 0,−Ith, 0, 0) and T⊤ = (−∆T/2, T2, T3,∆T/2, T5, T6). Here T

is the temperature of the scattering region, and the matrix elements of A can be written as

Ath,i j =

∫ ∞

0

E2

T

�

−
∂ f (E, T)

∂ E

�

�

δi jµ j − Tr(t†
i j

ti j)
�

dE. (C.3)

In the above equation, µ j denotes the number of conducting channels in the jth
lead, f (E, T) = [1 + exp [E/(kBT)]]−1 is the Fermi-Dirac distribution function, ti j
is the transmission part of the scattering matrix between the leads Li and L j , and
the trace (Tr) is taken over the conducting channels. Next, we obtain the ther-
mal Hall resistance as Rth

x y = (T2 + T3 − T5 − T6)/(2It h), and inverting it yields

κx y = π2k2
BT/(3h)
�

Rth
x y

�−1 ≡ κ0
�

Rth
x y

�−1
. Note that, we take the average over different
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terminals to avoid contact resistance effects. We set kB = h = 1 and T = 0.01 for all our cal-
culations. The system size for the thermal Hall conductivity computation is L = 40, W = 20
and H = 10.

Using the identical approach, we now compute layer-resolved electrical and thermal Hall
conductivities in disordered systems. We only consider pointlike random charge impuri-
ties, the dominant source of elastic scattering in any real material. The presence of random
charge impurities enter the Hamiltonian as V(r )σ0τ0 for HSCTI and crystalline HSCTI, and
as V(r )η3σ0 (in the Nambu basis) for hybrid symmetry class topological superconductor. In
both cases V(r ) couples to local density, which is uniformly and randomly distributed within
the range [−W/2, W/2] on every site belonging to the three-dimensional scattering region,
and W is the disorder strength. The results are displayed in Fig. 7, showing that layer-resolved
(half-)quantized Hall responses and thus the topology of the bulk system are robust against
weak and moderate disorder, while disappearing in the strong disorder regime. See Fig. 7.

Next, we compute two-terminal electrical (Gx x ) and thermal (G t h
x x ) conductance for hybrid

symmetry class topological insulators and superconductors. We now attach two thick leads to
all the layers of the three dimensional scattering region in the z direction [Fig. 6(b)]. An
electrical (A thermal) current Iel (It h) is then passed across the scattering region from lead L1
to lead L2, while computing Gx x (G t h

x x ) between these two leads. In this scenario, Gx x and G t h
x x

can only capture the number of modes propagated between the longitudinal leads, however
through the entire 3D system or scattering region, thereby displaying the topological invariant
or quantization. The system size is L = 40, W = 40 and H = 6 for the calculation of both Gx x
and G t h

x x . We have shown our results for a fixed m0 = 1, and rest of the parameters are kept
same as in the layer resolved electrical and thermal Hall computation.

The longitudinal two-terminal electrical conductance is given by Gx x = Tr(t †
i j

ti j). Here
i, j = 1, 2 are the lead numbers and the trace (Tr) is taken over the transmission channels.
The computation is performed at the zero temperature and within the energy window |E| ≤ 2
with 201 grid points. The disorder averaged two-terminal electrical conductance 〈Gx x 〉 is
obtained after averaging over 20 (50) independent disorder realizations for small (large) dis-
order strength W ≤ 2 (W ≥ 12). For HSCTI, we find Gx x = 2e2/h in the weak and moderate
disorder regimes, confirming that there are exactly two topological edge modes in the entire
system, localized on the top and bottom surfaces (revealed by layer-resolved electrical Hall
conductivity) which are robust against weak and moderate disorder. By contrast, the system
becomes a trivial insulator for strong disorder, where Gx x = 0. See Fig. 8(a).

In the same spirit, we compute the two-terminal thermal conductance for hybrid symmetry
class topological superconductor as G t h

x x = Tr(ti j(T)†ti j(T)), where T = 0.01 is the temper-
ature of the scattering region, and the computation is performed within the energy window
|E| ≤ 0.5 with 201 grid points. In this situation as well we find that G t h

x x = κ0 in the weak
and moderate disorder regimes, confirming that there are exactly two topological Majorana
edge modes in the entire system, localized on the top and bottom surfaces (revealed by the
layer-resolved thermal Hall conductivity) which are robust against weak and moderate disor-
der. On the other hand, the system becomes a trivial thermal insulator in the strong disorder
regime, where G t h

x x = 0. See Fig. 8(b).
For a similar calculation of Gx x in a crystalline HSCTI, the scattering region must be at least

80×80 in the x y plane (see the system size for the layer-resolved σx y), which is then needed
to be attached to at least a few layer thick three-dimensional leads. The numerical analysis
then becomes extremely unstable due to large memory requirement, which is unfortunately
far beyond our numerical resources. For this reason, at present we cannot compute Gx x even
in a clean crystalline HSCTI, leaving aside its disorder averaging. Nevertheless, based on
ample convincing evidences we present for all the other cases, we can safely conclude that
Gx x = 4e2/h in the clean system and in the weak and moderate disorder regimes, while it will
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Figure 9: (a) Phase diagram of a 2D quantum spin Hall insulator model with the
three components of the d-vector shown in Eq. (D.1). The band inversion in the
Γ phase, M phase and XY phase take place at the Γ = (0, 0), M = (1, 1)π/a and
simultaneously at the X = (1, 0)π/a and Y = (0, 1)π/a points of the 2D square
lattice BZ. (b) Layer-resolved (in the z direction) band structure of a 3D crystalline
HSCTI on the top, middle and bottom layers with ky as a good quantum number and
Lx = Lz = 20 for t = t1 = 1, m z/tz = 0, m0/t0 = 3.0, t ′/t0 = 1.0 [Eq. (D.1)].
Here blue (brown) and green indicate states localized near the left (right) edge and
in the bulk of the system. It shows that two chiral edge modes live on the top and
bottom surfaces only, while the other layers (such as the middle one) is devoid of
any boundary modes. The chiral edge modes on the top and bottom surfaces are
counter-propagating.

only vanish for strong disorder.

D Crystalline HSCTI: Details

As the HSCTI is constructed from the hybridization between a x y-planar quantum-spin-
Hall insulator (QSHI) and a z-directional Su-Schrieffer-Heeger insulator (SSHI), we can find
its crystalline version (a 3D crystalline HSCTI) when the underlying QSHI is in the crystalline
phase. Such a phase of matter can be captured by modifying the associated d-vector to the
following one [21]

d1(k) = t [sin(kx a) + cos(kx a) sin(ky a)], d2(k) = t [sin(ky a) + sin(kx a) cos(ky a)],

and d3(k) = m0 − 2t ′ + t0[cos(kx a) + cos(ky a)] + 2t ′ cos(kx a) cos(ky a). (D.1)

But, d4(k) and d5(k) are left unchanged. The phase diagram of this model is shown in
Fig. 9(a). With this choice of the d-vector, the QSHI model features band inversion simul-
taneously at the X and Y points of the 2D BZ (XY phase), when

t ′

t0
>

1

4

m0

t0
and |m0/t0| > 2.

The surface Hamiltonian of this model are same as in Eq. (B.11) and Eq. (B.13), but in terms
of the modified d1(k), d2(k) and d3(k), given in Eq. (D.1). The first Chern number of the
surface Hamiltonian C = −2 (+2) on the bottom surface when m0/t0 > 2 (m0/t0 < −2) and
t ′/t0 > m0/(4t0). Once again the Chern number on the top surface is exactly opposite of that
on the bottom surface. The layer-resolved (in the z direction) band structure with ky as good
quantum number shows the existence of two chiral edge modes crossing the zero energy at
ky = 0 and ky = π/a [Fig. 9(b)] only on the top and bottom surfaces. On these two surfaces
the chiral edge modes are counter-propagating. By contrast, the other layers is devoid of any
gapless topological modes (such as the middle one).
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E Four-dimensional (4D) HSCTI

Our construction of the 3D HSCTI can readily be generalized to four-dimensions. It allows
us to realize a 3D class AII TI on the 3D hypersurface of a 4D HSCTI constructed by hybridizing
a 3D class CII TI, occupying the x yz space and a 1D SSHI in the w direction. Note that x ,
y , z and w are four mutually orthogonal principal Cartesian axes in four dimensions. The
corresponding Bloch Hamiltonian read as [15]

hxyz
CII = t
�

sin(kx a)Γ1 + sin(ky a)Γ2 + sin(kza)Γ3
�

+
�

m0 − 6t0 + 2t0
�

cos(kx a) + cos(ky a) + cos(kza)
�	

Γ4,

and hw
SSHI = t1 sin(kw a)Γ5 + [mw + tw cos(kw a)] Γ6.

(E.1)

The mutually anticommuting Hermitian Γ matrices can be chosen from the representation
shown in Eq. (A.5). The Bloch Hamiltonian for the resulting 4D HSCTI then reads as
h4D

HSCTI = hxyz
CII + hw

SSHI.

On the top and bottom 3D hypersurfaces of such a 4D HSCTI in the w direction, we recover
class AII TIs, with the corresponding Hamiltonian analogous to the one shown in Eq. (A.1) in
terms of four-component Hermitian Γ matrices [Eq. (A.2)]. This calculation identically follows
the one shown in Appendix B.
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