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We propose energy-saving fast-forward scaling. Fast-forward scaling is a method which enables
us to speedup (or slowdown) given dynamics in a certain measurement basis. We introduce energy
costs of fast-forward scaling, and find possibility of energy-saving speedup for time-independent
measurement bases. As concrete examples, we show such energy-saving fast-forward scaling in a
two-level system and quantum annealing of a general Ising spin glass. We also discuss influence of
a time-dependent measurement basis, and give a remedy for unwanted energy costs. The present
results pave the way for realization of energy-efficient quantum technologies.

I. INTRODUCTION

Saving energy is an overriding issue in modern times. For sustainable development, limited resources should carefully
be used with mitigating sacrifiction of convenience. An idea of energy costs is also of great importance in quantum
physics. Progress in quantum technologies enables us to manufacture various quantum devices [1–3]. Energy efficienty
of these quantum devices is an important figure of merit as well as the complexity of quantum algorithms for achieving
true quantum advantage.

Implementation of quantum algorithms on given quantum devices requires fast control of dynamics because decoher-
ence causes quantum-to-classical transitions [4]. Shortcuts to adiabaticity were proposed as promising means of fast
control, which enable us to speedup intrinsically slow adiabatic time evolution [5–8]. There are various approaches.
In counterdiabatic driving, fast-forward of an adiabatic state is realized by applying control fields and/or interactions
which cancel out nonadiabatic transitions [9–11]. In invariant-based inverse engineering, we tailor a dynamical mode
by scheduling a given Hamiltonian so that the initial state and the final state coincide with these of adiabatic time
evolution [12]. In fast-forward scaling, we realize fast-forward of any dynamics in a certain measurement basis by
inverse engineering of a Hamiltonian [13]. Notably, it can also be applied to speedup of adiabatic time evolution [14].
All these methods theoretically offer arbitrary speedup.

There exists tradeoff relation between speed of dynamics and its energy [15]. Accordingly, realization of high-speed
control requires a high energy cost. It is a fair question to ask energy costs of shortcuts to adiabaticity. Evaluating
energy costs of shortcuts to adiabaticity has both practical and fundamental importance. Practically, energy costs of
shortcuts to adiabaticity represent their performance as control schemes. Fundamentally, energy costs of shortcuts to
adiabaticity can be regarded as costs of speedup. Various figures of merit for energy costs of shortcuts to adiabaticity
have been proposed and analyzed [16–20].

In this paper, we discuss energy costs of fast-forward scaling. The Hilbert-Schmidt norm of additional terms is
often used as an energy cost of quantum control [17, 18]. However, in fast-forward scaling, an original Hamiltonian
is also modulated as well as introduction of additional driving. The Hilbert-Schmidt norm of a total Hamiltonian,
which was introduced to evaluate energy costs of counterdiabatic driving [16, 20], is more suitable for an energy cost
of fast-forward scaling. We introduce an instantaneous energy cost and a total energy cost by using this quantity.
Then, we consider reducing these energy costs. We find that these energy costs can easily be minimized when a
measurement basis does not depend on time. We also study influence of a time-dependent measurement basis and
give a remedy for unwanted energy costs. Our main finding is existence of nontrivial speedup processes with reducing
the energy costs, which we propose as energy-saving fast-forward scaling.

This paper is constructed as follows. First, we introduce the simplest fast-forward scaling and general fast-forward
scaling in Sec. II. Next, we introduce the energy costs of fast-forward scaling in Sec. III. We define the energy costs of
the simplest fast-forward scaling as the standard energy costs. Then, in Sec. IV, we show that there exist nontrivial
speedup protocols, energy-saving fast-forward scaling, which require lower energy costs than the standard energy
costs. In Sec. V, we apply energy-saving fast-forward scaling to a two-level system and quantum annealing in a
general Ising spin glass. We also discuss influence of a time-dependent measurement basis on fast-forward scaling of
a two-level system. We give a way of reducing unwanted energy costs and insights into general cases. We summarize
the results in Sec. VI.
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II. FAST-FORWARD SCALING

First, we introduce fast-forward scaling. Here, we adopt formulation introduced in Ref. [21, 22]. Suppose that

dynamics |Ψ(t)⟩ is governed by a time-dependent Hamiltonian Ĥ(t) and the final state |Ψ(T )⟩ at the operation time
t = T is a target state. We discuss state preparation of this target state within a shorter time TFF, which we call the
fast-forward time.

The simplest way of fast-forward scaling is introduction of rescaled time s = s(t), where s(0) = 0 and s(TFF) = T ,
and amplification of the Hamiltonian with the rescaled time

ĤFF(t) =
ds

dt
Ĥ(s). (1)

At each time, speed of dynamics is (ds/dt)-times faster than that of the original dynamics, whereas it requires a
(ds/dt)-times higher energy cost. This is the simplest example of fast-forward scaling.

More generally, fast-forward dynamics is described by the Schrödinger equation

iℏ
∂

∂t
|ΨFF(t)⟩ = ĤFF(t)|ΨFF(t)⟩, (2)

where the fast-forward state |ΨFF(t)⟩ is given by

|ΨFF(t)⟩ = Ûf (t)|Ψ(s)⟩, (3)

and the fast-forward Hamiltonian ĤFF(t) is given by

ĤFF(t) =
ds

dt
Ûf (t)Ĥ(s)Û†

f (t) + iℏ(∂tÛf (t))Û
†
f (t). (4)

For a given measurement basis {|σ⟩}, we can obtain the same measurement outcome within a different time

|⟨σ|ΨFF(t)⟩|2 = |⟨σ|Ψ(s)⟩|2, (5)

when the unitary operator Ûf (t) is given by

Ûf (t) = ei
∑

σ fσ(t)|σ⟩⟨σ|, (6)

with an arbitrary real function fσ(t). Note that the measurement basis {|σ⟩} may depend on time. The above simplest

example corresponds with the case where the unitary operator is given by the identity operator Ûf (t) = 1̂.

III. ENERGY COSTS OF FAST-FORWARD SCALING

Next, we introduce energy costs of fast-forward scaling. In this paper, we use the Hilbert-Schmidt norm of Hamil-
tonians as a component of energy costs. We define an instantaneous energy cost of fast-forward scaling as

δC(t) =
∥ĤFF(t)∥
∥Ĥ(s)∥

, (7)

and a total energy cost of fast-forward scaling as

C =

∫ TFF

0
dt ∥ĤFF(t)∥∫ T

0
dt ∥Ĥ(t)∥

. (8)

The former quantity is the additional energy cost for (ds/dt)-times speedup, and the latter quantity is the total energy
cost compared with that of the original process.

We adopt the energy costs of the simplest fast-forward Hamiltonian (1) as the standard energy costs of fast-forward
scaling. The standard instantaneous energy cost is given by

δC$(t) =

∣∣∣∣dsdt
∣∣∣∣ , (9)

and the standard total energy cost is given by

C$ = 1, (10)

when (ds/dt) ≥ 1 for all time t. Later, we compare the energy costs of general fast-forward scaling with these standard
energy costs, and thus we use the symbol $ to emphasize these standard quantities.
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IV. ENERGY-SAVING FAST-FORWARD SCALING

Then, we discuss the energy costs of general fast-forward scaling. We find that the squared Hilbert-Schmidt norm
of the general fast-forward Hamiltonian is given by

∥ĤFF(t)∥2 =
∑
σ

(
ℏ
dfσ(t)

dt
− ds

dt
⟨σ|Ĥ(s)|σ⟩

)2

+
∑
σ,σ′

(σ ̸=σ′)

∣∣∣∣iℏ(1− e−i(fσ(t)−fσ′ (t))
)
⟨σ|∂tσ′⟩ − ds

dt
⟨σ|Ĥ(s)|σ′⟩

∣∣∣∣2 . (11)

Generally, it is not an easy task to find optimal phase fσ(t) which minimizes this quantity, but we will show an
example below.

We can find optimal phase fσ(t) when the measurement basis {|σ⟩} does not depend on time, i.e., when ⟨σ|∂tσ′⟩ = 0.
In this case, we can minimize Eq. (11) by setting the phase fσ(t) so that it satisfies

ℏ
dfσ(t)

dt
=

ds

dt
⟨σ|Ĥ(s)|σ⟩. (12)

Then, Eq. (11) is given by

∥ĤFF(t)∥2 =

(
ds

dt

)2 ∑
σ

(⟨σ|Ĥ2(s)|σ⟩ − ⟨σ|Ĥ(s)|σ⟩2), (13)

which is upper bounded as

∥ĤFF(t)∥2 ≤
(
ds

dt

)2 ∑
σ

⟨σ|Ĥ2(s)|σ⟩. (14)

Notably, the right-hand side of this inequality is the squared Hilbert-Schmidt norm of the simplest fast-forward
Hamiltonian (1), and thus general fast-forward scaling can achieve nontrivial speedup with the energy costs

δC(t) ≤ δC$(t), C ≤ C$. (15)

The former inequality says that we can obtain (ds/dt)-times faster dynamics without requiring a (ds/dt)-times higher
energy cost, and the latter inequality says that we can even save the total energy in spite of speedup. We refer to
such a time-saving and energy-saving process as energy-saving fast-forward scaling.

V. EXAMPLES

Now we show some examples of energy-saving fast-forward scaling. Hereafter, we set ℏ = 1.

A. Two-level system

As the simplest example, we first consider a two-level system

Ĥ(t) = ω(t)Ẑ + Γ(t)X̂, (16)

where ω(t) and Γ(t) are time-dependent parameters, and the Pauli matrices are expressed as {X̂, Ŷ , Ẑ}. The squared
Hilbert-Schmidt norm of this Hamiltonian is given by

∥Ĥ(t)∥2 = 2(ω2(t) + Γ2(t)). (17)

As a measurement basis, we consider the Pauli-Z basis |σ⟩ = | ± 1⟩ where Ẑ| ± 1⟩ = ±| ± 1⟩. Then, the squared
Hilbert-Schmidt norm of the fast-forward Hamiltonian is given by

∥ĤFF(t)∥2 =
∑
σ=±

(
dfσ(t)

dt
− σ

ds

dt
ω(s)

)2

+ 2

(
ds

dt

)2

Γ2(s). (18)
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It is optimized as

∥ĤFF(t)∥2 = 2

(
ds

dt

)2

Γ2(s), (19)

when the phase f±(t) satisfies

df±(t)

dt
= ±ds

dt
ω(s). (20)

Then, the instantaneous energy cost given by

δC(t) =

∣∣∣∣dsdt
∣∣∣∣
√

Γ2(s)

ω2(s) + Γ2(s)
, (21)

which is strictly smaller than δC$(t) when ω(s) is nonzero. Similarly, the total energy cost is also strictly smaller than
C$ when ω(s) is nonzero. Note that the optimal fast-forward Hamiltonian is given by

ĤFF(t) =
ds

dt
Γ(s)

[
cos

(
2

∫ s

0

ds′ω(s′)

)
X̂ − sin

(
2

∫ s

0

ds′ω(s′)

)
Ŷ

]
. (22)

B. Quantum annealing

Next, we consider application of energy-saving fast-forward scaling to quantum annealing. Here, we do not consider
full optimization of the energy costs because it results in a complicated fast-forward Hamiltonian and it would be
difficult to realize in experiments.

The quantum annealing Hamiltonian is given by

Ĥ(t) = λ(t)ĤP + (1− λ(t))V̂ , (23)

where λ(t) is a time-dependent parameter satisfying λ(0) = 0 and λ(T ) = 1, ĤP is a problem Hamiltonian, and V̂ is
a driver Hamiltonian [23, 24]. In this paper, we consider the following problem and driver Hamiltonians

ĤP = −1

2

N∑
i,j=1
(i̸=j)

JijẐiẐj −
N∑
i=1

hiẐi, V̂ = −Γ

N∑
i=1

X̂i, (24)

where Jij = Jji is the strength of interaction, hi is the strength of a longitudinal field, Γ is the strength of a transverse

field, and {X̂i, Ŷi, Ẑi}Ni=1 is the set of the Pauli matrices. The squared Hilbert-Schmidt norm of the quantum annealing
Hamiltonian is given by

∥Ĥ(t)∥2 = 2N

λ2(t)

 N∑
i,j=1
(i<j)

J2
ij +

N∑
i=1

h2
i

+N(1− λ(t))2Γ2

 . (25)

As a measurement basis, we consider the computational basis |σ⟩ = |σ1, σ2, . . . , σN ⟩ where Ẑi|σ1, σ2, . . . , σN ⟩ =
σi|σ1, σ2, . . . , σN ⟩ and σi = ±1 (i = 1, 2, . . . , N). Then, we can obtain the same measurement outcome with the
original quantum annealing process within a shorter time

|⟨σ1, σ2, . . . , σN |ΨFF(TFF)⟩|2 = |⟨σ1, σ2, . . . , σN |Ψ(T )⟩|2. (26)

The squared Hilbert-Schmidt norm of the fast-forward Hamiltonian is given by

∥ĤFF(t)∥2 =
∑
σ

dfσ(t)

dt
+

ds

dt
λ(s)

 N∑
i,j=1
(i<j)

Jijσiσj +

N∑
i=1

hiσi



2

+N2N
(
ds

dt

)2

(1− λ(s))2Γ2. (27)
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We mitigate this quantity by setting

dfσ(t)

dt
= −ds

dt
λ(s)

N∑
i=1

hiσi, (28)

and then it becomes

∥ĤFF(t)∥2 = 2N
(
ds

dt

)2

λ2(s)

N∑
i,j=1
(i<j)

J2
ij +N(1− λ(s))2Γ2

 . (29)

The instantaneous energy cost is given by

δC(t) =

∣∣∣∣dsdt
∣∣∣∣
√√√√√√√

λ2(s)
∑N

i,j=1
(i<j)

J2
ij +N(1− λ(s))2Γ2

λ2(s)

(∑N
i,j=1
(i<j)

J2
ij +

∑N
i=1 h

2
i

)
+N(1− λ(s))2Γ2

, (30)

which is strictly smaller than δC$(t) when hi is nonzero. Similarly, the total energy cost is also strictly smaller than
C$ when hi is nonzero. Here, the suboptimal fast-forward Hamiltonian is given by

ĤFF(t) = −ds

dt
λ(s)

N∑
i,j=1
(i<j)

JijẐiẐj −
ds

dt
(1− λ(s))Γ

N∑
i=1

[
cos

(
2

∫ s

0

ds′λ(s′)hi

)
X̂i + sin

(
2

∫ s

0

ds′λ(s′)hi

)
Ŷi

]
. (31)

C. Time-dependent measurement basis: lessons from a two-level system with the energy-eigenstate basis

Finally, we discuss influence of a time-dependent measurement basis. As mentioned in Sec. IV, it is generally a
hard task to find optimal phase fσ(t). Therefore, we try to find lessons from a simple example.
We consider the two-level system (16) and introduce the energy-eigenstate basis at the rescaled time as a time-

dependent measurement basis, i.e., |σ⟩ = |E±(s)⟩ where Ĥ(s)|E±(s)⟩ = E±(s)|E±(s)⟩ with E±(s) = ±
√
ω2(s) + Γ2(s).

It corresponds with fast-forward scaling applied to nonadiabatic transitions [22]. The squared Hilbert-Schmidt norm
of the fast-forward Hamiltonian is given by

∥ĤFF(t)∥2 =
∑
σ=±

(
dfσ(t)

dt
− ds

dt
Eσ(s)

)2

+ 4

(
dθ(s)

dt

)2

[1− cos(f+(t)− f−(t))], (32)

where

dθ(s)

dt
=

ds

dt

Γ(s)dω(s)
ds − ω(s)dΓ(s)ds

2(ω2(s) + Γ2(s))
. (33)

Notably, the quantity dθ(s)/dt is identical with a counterdiabatic field for the two-level system (16) (see, Refs. [9–11]).
It means that the second term becomes large when the energy gap closes, or in other words, when the system tends
to be nonadiabatic.

Now, we introduce concrete parameters. We consider magnetization reversal by assuming that the longitudinal field
and the transverse field are given by

ω(t) = ω0 −
2ω0t

T
, Γ(t) = Γ0, (34)

where ω0 and Γ0 are certain constants, and the rescaled time is given by linear rescaling

s(t) =
T

TFF
t. (35)

The system crosses the energy gap at time t = TFF/2 and the size of the energy gap is 2Γ0. We are interested in
behavior of the energy costs against the energy gap, and thus we fix other parameters as ω0 = 5, T = 10, and TFF = 1.
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FIG. 1. The instantaneous energy cost (left) and the total energy cost (right) against the standard counterparts. The instan-
taneous energy cost is plotted with respect to time for the energy gap 2Γ0 = 0.2 (red solid curve), 0.4 (green dashed curve),
and 0.8 (blue dotted curve), and the total energy cost is plotted with respect to the size of the energy gap (red circles).

That is, we consider 10-times faster control. Note that it is natural to adopt ω0 as a typical energyscale or T as a
typical timescale, but we adopt TFF = 1 as a typical timescale in numerical simulations for simplicity. Hereafter, all
the temporal and energetic quantities are dimensionless in units of TFF = 1 and T−1

FF = 1 with ℏ = 1, respectively.
We optimize first term only with Eq. (12), and then only the second term contributes to the energy costs. We depict

the instantaneous energy cost and the total energy cost in Fig. 1. Here, the instantaneous energy cost is plotted for
2Γ0 = 0.2, 0.4, and 0.8, and the total energy cost is plotted for 2Γ0 = 0.1, 0.2, . . . , 1. We notice that general fast-
forward scaling with phase (12) significantly suppress the instantaneous energy cost except for the vicinity of the
energy gap. We also find that the total energy cost is significantly suppressed.

We will additionally consider (sub)optimization of the second term to suppress the instantaneous energy cost in
the vicinity of the energy gap. It can achieved when

f+(TFF/2)− f−(TFF/2) = 2πk, (36)

with an integer k. To satisfy this condition, we modulate the phase (12) as

dfσ(t)

dt
= σ(1 + δ)

T

TFF

√(
ω0 −

2ω0t

TFF

)2

+ Γ2
0, (37)

with small δ. Then, the condition (36) says

δ =
1

T

4πω0k

ω0

√
ω2
0 + Γ2

0 + Γ2
0 log

1
Γ0

(ω2
0 +

√
ω2
0 + Γ2

0)
− 1, (38)

and we notice that it gives δ ≈ 0.00427 when k = 4 in the present parameter setting with Γ0 = 0.1. We depict
the instantaneous energy cost of fast-forward scaling with this modulation in Fig. 2. We find that the peak in the
instantaneous energy cost around the energy gap is suppressed. In this way, we can suppress the both terms in
Eq. (32).

We expect that the above lessons hold for general cases where the time-dependent measurement basis is given by
the energy-eigenstate basis at rescaled time. Indeed, for a general Hamiltonian

Ĥ(t) =
∑
n

En(t)|n(t)⟩⟨n(t)|, (39)

where En(t) is the energy eigenvalue and |n(t)⟩ is the corresponding energy eigenstate, the squared Hilbert-Schmidt
norm of the fast-forward Hamiltonian is given by

∥ĤFF(t)∥2 =
∑
n

(
dfn(t)

dt
− ds

dt
En(s)

)2

+ 2

(
ds

dt

)2 ∑
m,n

(m ̸=n)

∣∣∣∣∣ ⟨m(s)|(∂sĤ(s))|n(s)⟩
En(s)− Em(s)

∣∣∣∣∣
2

[1− cos(fm(t)− fn(t))]. (40)
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FIG. 2. The instantaneous energy cost against the standard instantaneous energy cost. The horizontal axis is time. The black
solid curve represents a scheme with modulation δ = 0.00427 and the red dashed curve represents that without modulation.
Here, the energy gap is 2Γ0 = 0.2.

Here, the coefficient of the second term is the matrix element of the counterdiabatic Hamiltonian. Therefore, opti-
mization of the first term results in the large instantaneous energy cost in the vicinity of the energy gap, but we could
mitigate it by slightly modifying the phase. Note that the fast-forward Hamiltonian with the optimization of the first
term and without modulation is given by

ĤFF(t) = i
ds

dt

∑
m,n

(m ̸=n)

(
1− ei(fm(t)−fn(t))

)
|m(s)⟩⟨m(s)|∂sn(s)⟩⟨n(s)|. (41)

VI. SUMMARY

In this paper, we introduced the instantaneous and total energy costs of fast-forward scaling, and proposed energy-
saving fast-forward scaling as a time-efficient and energy-efficient control method. We applied it to the two-level
system and quantum annealing in the Ising spin glass. We also discussed the energy costs of fast-forward scaling in
the two-level system with the energy-eigenstate basis. We found that the instantaneous energy cost can significantly
be suppressed except for the vicinity of the energy gap. Moreover, we can mitigate the instantaneous energy cost
around the energy gap by slightly modulating the phase. Notably, the total energy cost is quite low even without
mitigation of the instantaneous energy cost. We believe that the present proposal and future followup enable us to
realize energy-efficient quantum technologies.
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