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Abstract: The classification of local one parameter Coulomb branch solution of theories

with eight supercharges is given by assuming that it is given by a genus g fiberation of

Riemann surfaces. The crucial point is the fact that certain conjugacy class (so-called

pseudo-periodic map of negative type) in mapping class group determines the topological

type of the degeneration. The classification of conjugacy class has a simple combinatorial

description. Each such conjugacy class gives rise to a dual graph and a 3d mirror quiver

gauge theory can be derived, which is then used to identify the low energy theory (assum-

ing generic deformation). Some global Seiberg-Witten geometries are given by using the

topological data of the degeneration. The geometric setup unifies 4d N = 2 SCFTs (such

as Tn theory and Argyres-Douglas theory), 5d N = 1 SCFTs, 6d (1, 0) SCFTs, 4d IR free

theories, and 4d asymptotical free theories in a single combinatorial framework.
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1 Introduction

One of most important ingredient in solving the Coulomb branch of four dimensional

N = 2 theory is the electric-magnetic duality of low energy abelian gauge theory [1],

namely, when one go along the special vacua (where there are extra massless particles),

the effective photon coupling changes by an element of electric-magnetic duality group 1.

By combining the duality group element around various special vacua (solving a Riemann-

Hilbert problem), Seiberg-Witten (SW) successfully solved Coulomb branch of N = 2

SU(2) gauge theory by finding a SW curve [1, 2]: a family of genus one curves F (x, y, u) = 0,

1In the rank one case, this group is SL(2, Z).
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Figure 1: Left: The electric-magnetic duality group is given by the monodromy group M

which acts on homology group of SW curve; Right: there is one monodromy group element

around each special vacua (including the ∞ point on the Coulomb branch), and the global

constraint is M1M2M3 = I.

here u is the Coulomb branch parameter. The physical data are extracted as follows: a):

The low energy photon coupling τ(u) is given by the complex structure of smooth curve

F (x, y, u); b): The special vacua is given by the degeneration of SW curve; c): The electric-

magnetic duality group around it is given by the monodromy group which acts on homology

class of the SW curve, see figure. 1.

In practice, one usually solve the Coulomb branch by finding a SW geometry (often

using string theory construction), and then try to analyze the IR physics from SW geometry.

While the photon couplings at generic vacua can be computed using period integral, the

IR physics at special vacua is much more complicated to determine and one usually need

to use extra mathematical structure like mixed Hodge structure [3]. One of the findings in

[3, 4] is that the electric-magnetic duality (monodromy) group around the special vacua is

not enough to find the IR theory. For example, in rank two case [5], besides the monodromy

group, one also need to specify two extra set of data ( an integer m and the degeneration

type at the singularity) so that the low energy theory can be determined (by assuming

generic deformation).

While a large class of SW geometries were already found [6–11], to perform complete

classification one need to follow the original approach of SW: namely first classify the

special IR vacua and then try to solve the Riemann-Hilbert problem to get the global

solution [1, 2]. Certainly, the first and crucial step is to classify the local behavior around
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Figure 2: There is a homeomorphism action h associated with the loop around special

vacua. The action acts on every point on Riemann surface, and in particular it induces an

action on homology group.

the special vacua, which have been finished for rank one case [12–14] and rank two case [4].

The purpose of this paper is to classify the local behavior of SW geometry for theory

with arbitrary rank g. Several assumptions on SW geometry are made: a): The local

solution is described by a fiberation of principally polarized abelian varieties [15] which

can be identified with Jacobian of genus g Riemann surfaces, and so the local SW solution

is given by the fiberation of a Riemann surface and the special vacua is given by the

degeneration of Riemann surfaces; b): We take a one parameter slice of Coulomb branch

and so there is a one parameter family of Riemann surfaces; c) The theory at special vacua

is associated with the generic deformation of the degeneration. Therefore, the classification

of local theory is reduced to the problem of classification of one parameter degeneration of

Riemann surface.

This task seems quite difficult given the fact that the number of degeneration type

increases dramatically with the genus (140 for rank two [5], 1600 for rank three [16]),

and it seems to be hard to organize those degenerations even for rank two case. Luckily,

Matsumoto-Montesinos [17] (MM) gave a remarkable combinatorial description for such

classification. The crucial idea is to use the conjugacy class of mapping class group ac-

tion on the Riemann surface in going around the special vacua, see figure. 2. The mapping

class group action certainly determines the action on homology group, and therefore gives

the electric-magnetic duality group, but it contains more information, and in particular the

degeneration can be completely specified once the conjugacy class in mapping class group

is specified [17]!

In the context of degeneration of Riemann surface Σg, the conjugacy class of mapping

class group is of special type: it is the so-called pseudo-periodic map of negative type.

Those maps are classified by following data:
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Figure 3: Up: An admissible cut system for a genus two Riemann surface, and there are

two irreducible components after the cutting; there is a screw number associated with each

cutting curve, and a periodic map on each irreducible component. Bottom: A weighted

graph for the above cut system: here one draw an edge for every separating curve (which

will cut the Riemann surface into two separate components), and one write the number of

non-separating cutting curves for a vertex in the graph.

1. An admissible system of cut curves C = ∪Ci on Σg . Admissible means that the

irreducible component of B = Σg/C has negative Euler number χi = 2−2gi−ni ≥ 0,

here ni is the number of boundary curves for an irreducible component Bi of B, and

gi is the genus.

2. The action of f on the oriented graph GC induced by C.

3. The screw numbers S(Ci) around each annulus Ci. Here the screw number is required

to be negative.

4. The action f restricted on each irreducible component of B is a periodic map, which

is in turn determined by the so-called valency data: (n, g
′
, σ1λ1 + σ2

λ2
+ . . . + σs

λs
), here

n is the order of the map (fn = id), and g
′

is the genus of the base defined by the

covering map f : Σ→ Σ
′
, and σi, λi are the integral value, see section 2.1.

In summary, one get a weighted graph for first two steps, See figure. 3 for an example.

There is also an integer K ≥ −1 for every annulus (this number is determined by screw

number and the boundary data on the annulus); finally, there is a periodic map for each

irreducible component in B. Therefore, the classification can be done in a combinatorial

way!

Once the degeneration is classified, the next question is to find the low energy theory

associated with it, which is in general a quite difficult question. It turns out that the dual

graph in MM’s theory will help us solve this problem. The crucial observation is the link

between the dual graph and the 3d mirror of the low energy theory [4]. Notice that one can

not always find a 3d mirror from the dual graph, which might give a criteria to determine

whether a degeneration can appear in the SW geometry or not. Using the dual graph
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Figure 4: (1): The data for a periodic map of a genus n−1 Riemann surface, and the dual

graph for the degeneration is drawn; the dual graph is just the 3d mirror for SU(n) theory

coupled with 2n fundamental matter [21]; (2): A weighted graph for a genus n− 1 curve,

here K ≥ 1; the IR theory is SU(n) gauge theory coupled with 2n+K hypermultiplets in

fundamental representation.

(and the associated 3d mirror) for the degeneration, the low energy theory can be roughly

described as follows:

1. One find a four dimensional N = 2 SCFT for periodic map, and many familiar

theories such as (An−1, Ak−1) theory [7, 18], Tn theory [6], and free bi-fundamental

matter can be found. See table. 1 for more examples.

2. The gluing of different components in the weighted graph are interpreted as gauging

the flavor symmetry of the matter system.

See figure. 4 for a couple of examples. This type of description of low energy theory is very

much like what was used in class S theory, see figure. 25. In our case, the Argyres-Douglas

theory, Tn theory, and IR free gauge theory are described in an unified framework.

Once the local studies are finished, the global SW geometry can be studied by adding

a point∞ on the physical Coulomb branch [3]. A singular fiber F∞ would also be added at

∞ which fits into previous local study. The property of F∞ can be used to determine the

UV property. We give simple topological constraints on F∞ so that it can define the SW

geometry of a UV complete 4d, 5d or 6d theory. The results are: a): 4d theory: the dual
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graph of F∞ is a tree of rational curves; b): 5d theory: the dual graph F∞ is a chain of

rational curves with just one loop; c): 6d theory: the dual graph F∞ is a chain of rational

curves with two loops! It is interesting to note the number of loops on the dual graph

matches the number of loops in doing the compactification. Some global SW geometries

for many familiar theories in 4d, 5d and 6d are discussed, and thorough studies would be

left for separate publications.

This paper is organized as follows: section two reviews the pseudo-periodic map; sec-

tion three discusses how to attach a dual graph for a pseudo-periodic map; section four

discusses how to find the low energy theory from the dual graph and related 3d mirror;

section five discusses topological constraints on UV singular fiber, and several classes of

global SW geometries for 4d, 5d, and 6d theories are given; finally a conclusion is given in

section six.
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2 Pseudo-periodic map

Let’s first recall the definition of mapping class group, for more details, see [19]. Let’s

assume that S is the connect sum of g ≥ 0 tori with b ≥ 0 open disks removed and n ≥ 0

points removed from the interior. Let Homeo+(S, ∂S) denote the group of orientation-

preserving homeomorphisms of S that restrict to the identity of ∂S. The mapping class

group of S, denoted as Mod(S), is the group

Mod(S) = Hemeo+(S, ∂S)/Homeo0(S, ∂S)

Here Homeo0(S, ∂S) denotes the connected component of the identity in Hemeo+(S, ∂S).

For example, the mapping class group of a closed genus one Riemann surface is SL(2, Z).

There are also other equivalent definition of mapping class group, i.e. the isotopy class of

Hemeo+(S, ∂S).

We also need to consider the generalization of above mapping class group, namely, the

homeomorphism f might just keep the boundary ∂S as a set, and more generally, f could

also permute the elements in ∂S.

As discussed in the introduction, a local SW solution of the particular type 2 gives

rise to a one parameter family of genus g fiberation. If there is a special vacua, then one

can associate an element of mapping class group, see figure. 2. Actually, one associate a

conjugacy class by changing the base point of the loop around the singularity [17, 20].

Instead of starting with known SW solution and try to compute the mapping class

group element around the degeneration, we go in the opposite direction. We first try to

classify all possible topological type of one parameter degeneration of genus g fiberation 3,

and then try to determine the IR theory for each degeneration.

The classification of one parameter degeneration of Riemann surface has been found

in [17, 20], whose main results are: First, the conjugacy class realized as the monodromy

of a degeneration of curves (with genus g ≥ 2) is represented by a pseudo-periodic map of

negative type; Secondly, any conjugacy class of pseudo-periodic map of negative type is

realized as the topological monodromy of a certain degeneration of curves.

Therefore the classification of the degeneration is reduced to that of the pseudo-periodic

map f of negative type, which has a combinatorial description.

1. First there is an admissible system of cut curves C = ∪Ci. Here admissible means

that each irreducible component of B = Σg/C has negative Euler number χi =

2−2gi−ni < 0, here ni is the number of boundary curves for an irreducible component

Bi of B. One can associate a graph consists of vertices and edges: the vertex has

label of genus and the non-separating cut curves, and the edges denote the separating

curves. This graph is denoted as GC .

2. There is a finite (cyclic) group action σ on the oriented graph GC induced by the

map f . One can get a weighted graph Y by adding weights to vertices and edges of

the quotient graph of GC by σ.

2If the associated abelian variety is given by the Jacobian of a Riemann surface.
3Let’s emphasize that unlike rank one case, it appears that some degenerations can not appear in the

Coulomb branch solution.
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3. The screw numbers S(Ci) of f around each annulus Ci in the cut system. Here the

screw number S(Ci) is required to be negative.

4. The action f restricted on each component of B is a periodic map, which is in turn

determined by the so-called valency data.

Let’s now explain above ingredients in more details:

Cut system of curves: The classification of an admissible system of cut curves C is

the same as classification of the stable curves introduced by Deligne-Mumford. Such cut

systems can be represented by a weighted graph as follows: a) The vertex v represents an

irreducible component, and two integers (g(v), ρ(v)): g(v) the genus of v, ρ(v) the number

of cut curves which only belongs to v. b) The edge e represents the separating cut curves,

see figure. 5 for an example.

1 1
e1

v1 v2

Figure 5: Up: There is only one cut curve for a genus two Riemann surface; There

are two components after the cut, and each component has genus one and zero internal

(non-separating) cut curves; Bottom: The graph for the cut system.

Automorphism: Given a cut system and so a graph X. By an automorphism σ : X →
X, we mean an automorphism of the graph such that the weight (g(Bv), ρ(v)) is the same

as (g(Bσ(v)), ρ(σ(v))) for each vertex v of X. For example, for X listed in figure. 5, there

is a Z2 action exchanging v1 and v2, and fixing the edge e1. We can then get a weighted

graph Y by recording the dimension of the orbits of σ, see section. 2.2 for more details.

Screw number : For a curve ~Ci of the cut system C, there exists a minimal integer αi
such that fαi(~Ci) = ~Ci (they are equal as a set). There also exists a minimal integer Li
such that fLi |Ci is a Dehn twist of ei times (ei could be positive or negative integers). The

screw number is defined as

s(Ci) = eiαi/Li.

f is called negative type if S(Ci) < 0 for all the cut curves.

The cut curves are classified into two types. A curve Ci is called amphidrome if

αi is even and fαi/2(~Ci) = −~Ci, which means the orientation is changed. Otherwise it is

non-amphidrome.
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Dehn twist

C

Figure 6: Dehn twist along curve C, and this action is taken to be negative around the

indicated direction.

Valency data: The valency data for periodic map is more complicated to define. Let Σ

be a Riemann surface, and f : Σ→ Σ be a periodic map (namely, fn is an identity map).

For any point P on Σ, there exists an integer α(P ) such that P, f(P ), . . . , fα(P )−1(P ) are

distinct points, and fα(P )(P ) = P . If α(P ) = n, P is called simple points, and P is called

multiple point if α(P ) < n.

Let ~C be an oriented simple closed curve, and let m be the smallest positive integer

such that fm(~C) = ~C as a set, and n = mλ. The restriction of f on a ~C is then a periodic

map. Let Q be any point on C, the orbit of Q under the iteration of the action fm, and the

points are ordered as (Q, fmσ(Q), f2mσ(Q), . . . , f (λ−1)mσ(Q)), here σ is an integer which

satisfies the condition 0 ≤ σ ≤ λ − 1, and gcd(σ, λ) = 1. Finally, one introduce another

integer δ which satisfies the condition

σδ = 1(modλ), 0 ≤ δ ≤ λ− 1.

This means that the action fm on ~C is rotation with angle 2π δλ . The data (m,λ, σ) is the

valency data associated with a curve ~C. The valency data for a multiple point P is defined

as that of the closed curve around P .

Given a periodic map f , one has a n-fold cyclic covering map Π : Σ → Σ
′

associated

with f , and Σ
′

is the quotient space with respect to f (the space of orbits). The multiple

points of f gives rise to ramification points of Π. The valency data of the ramification

point is defined as that of the multiple points. So finally, a periodic map is specified by

the genus of Σ
′

and the valency data for the ramification points.

Induced action on Homology group: One of the fundamental aspects of Mod(Sg)

is its action on H1(Sg, Z), and the representation Ψ : Mod(Sg) → Aut(H1(Sg, Z)) is

the first approximation to Mod(Sg). Any φ ∈ Homeo+(Sg) induces an automorphism

φ∗ : H1(Sg, Z)→ H1(Sg, Z), and it follows that the map

Ψ0 : Mod(Sg)→ Aut(H1(Sg;Z))

has the property that

Ψ0(Mod(Sg)) ⊂ Sp(2g, Z)
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Let’s now describe the action of Dehn twist on the homology class. Let a and b be isotopy

classes of oriented simple closed curves in Sg. For any k ≥ 0, we have

Ψ0(T
k
b )([a]) = [a] + kî(a, b)[b].

Here î(a, b) are the intersection number of a, b. Using the above formula, one can see that

the Dehn twist acts trivially on separating curves, as the homology class of those curves

is trivial. Those mapping class elements which act trivially on homology groups are called

Torreli groups.

2.1 Periodic map

The periodic map of Riemann surface plays a fundamental role in the classification of the

degeneration of the Riemann surface, as they specify the data on the irreducible component

after the cut. Let’s review the basic facts about these periodic maps.

Let Σg be a closed Riemann surface of genus g ≥ 2, and f : Σg → Σg be a cyclic

analytic automorphism of order n, and Π : Σ → Σ
′

be the n-fold cyclic covering. Let g
′

be the genus of Σ
′
, and λ1, . . . , λl be the ramification indices of Π and (n/λi, λi, σi) be the

valency data. The valency data has to satisfy following conditions:

1. The Hurwitz formula: this formula relates the genus g to the valency data of ramifi-

cation points:

2g − 2 = n[2g
′ − 2 +

l∑
i=1

(1− 1

λi
)]. (2.1)

2. Nielson theorem:
∑
σi/λi is an integer. This means that the formal sum of valency

data should be integer, and the minimal number is one.

3. Wiman: This constraint means that the order of the periodic map is constrained by

the genus: n ≤ 4g + 2.

4. Havey: This constraint is more complicated to stay, and it put the constraint on the

number of ramification points. Set M = lcm(λ1, . . . , λl)
4.

(a) lcm(λ1, . . . , λ̂i, . . . , λl) = M for all i, here λ̂i denotes the omission of λi. This

constraint implies that the lcm of denominator of the valency data should be

the same by omitting just one ramification point.

(b) M divides n, and if g
′

= 0, then M = n.

(c) The number of ramification point is greater than one: l 6= 1. Moreover, for

g
′

= 0, there should be at least three ramification points.

(d) If M is an even number and so M = 2δM1 with M1 an odd number, then the

number of λi which are divisible by 2δ is even.

4Here lcm denotes the least common multiple of the numbers within bracket.
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Usually, one label the periodic map by the data (n, g
′
, σ1λ1 + σ2

λ2
+ . . . + σl

λl
). On the other

hand, given a data satisfying above condition, one can find a period map of the Riemann

surface Σg.

Example 1 : The periodic map is given by (n, g
′

= 0,
1

n
, . . . ,

1

n︸ ︷︷ ︸
a

, n−an ), a ≥ 2. If the

common divisor of n and a is b, the genus of Σg (see formula. 2.1) is

2g − 2 = n[−2 +
a∑
i=1

(1− 1

n
) + (1− 1

n/b
] =

(a− 1)n− a− b→ g =
(a− 1)n− a− b+ 2

2
.

In particular, if b = (n, a) = 1, the genus g = (a−1)(n−1)
2 .

Example 2 : The periodic map is given by (n, g
′

= 0,
n− 1

n
, . . . ,

n− 1

n︸ ︷︷ ︸
n

). The genus of

Σg is

2g − 2 = n(n− 3)→ g =
(n− 1)(n− 2)

2
.

Duality for periodic map: Given a period map, one can change the valency data
σi
λi
→ σdi

λi
= λi−σi

λi
to define another periodic map. So the following two periodic maps are

dual to each other:

(n, g
′
,
σ1
λ1

+
σ2
λ2

+ . . .+
σl
λl

)→ (n, g
′
,
λ1 − σ1
λ1

+ . . .+
λl − σl
λl

).

Periodic map for surface with boundaries: For a genus g surface with k bound-

aries, the period map is defined as the one associated with closed genus g surface by adding

disks around k boundaries. One often need to specify the transformation properties of the

boundary curves. Here is an example, let’s take the order of f to be 4, and f permute the

boundaries as (∂1, . . . , ∂4) (so m = 4 for these points), and so under the coving map, the

center of these boundaries are mapped to a single point on Σ
′
, and the associated valency

data is (m,λ, σ) = (4, 1, 1), with σ
λ = 1.

2.2 Weighted graph

Given a cut system X of Riemann surface Σg and an automorphism σ, one can define

a weighted graph Y from X as follows. We need to enlarge the action by adding an

orientation for each edge in X (one can just conveniently add arrows for the edges). Then

one have more automorphism by requiring it to perserve the orientations.

The weighted graph Y is derived from X and σ as follows. Let h : X → Y be the

quotient map defined by σ, and Y is constructed as follows: a): let v̄ be a vertex of Y ,

then h−1(v̄) consists of l vertices (their weights (g(vi), r(vi)) coincide with each other) of

X which are permuted by σ; so vertex v̄ has the triple weight (l(v̄), g(v̄), r(v̄)); b) let ē be

an edge of Y ; Then h−1(ē) consists of a finite number ζ(ē), of edges of X, so there is a
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Figure 7: The loop in the weighted graph Y is resolved to a D type graph.

weight ζ(ē) for ē. Notice that if there is an edge e in X connecting v and v
′
, and such that

h(v) = h(v
′
), then there would be a loop in Y .

Finally one need to define the resolution graph Ỹ of Y by modifying the loops in Y .

This happens in the following situation: Suppose that there is an edge of X and a positive

integer m such that

σm(e) = e, σm(v) = v
′
, σm(v

′
) = v.

Here e connects v and v
′
. Notice that this condition does not include the orientation of

the edges, namely σm(e) = e without considering the orientation. The above condition

means that σm fixes e and exchanges the vertex v and v
′
. Let m be smallest integer which

satisfies above condition, then one replace the loop in Y by a D type graph with weights

(2m,m,m), see figure. 7.

Example: Let’s consider a cut system for genus two Riemann surface, and it is given

by a graph with two vertex with genus 0 and three edges between them, see the bottom

of figure. 8, and here we choose orientations for the edges in the cut system. There are

following cyclic automorphism 5 for it:

1. σ acts trivially.

2. σ fixes v1 and v2, and exchanges e1 and e2.

3. σ fixes v1 and v2, and cyclic permute e1, e2, e3.

4. σ exchanges v1 and v2, fixes e1, e2, e3 as sets, but with their orientations reversed.

We find that σ(ei) = ei (as a set), and σ(v1) = v2, σ(v2) = v1, and so one need to do

resolutions on the loops in the weighted graph.

5. σ exchanges v1 and v2, and exchanges e1 to −e2, and e2 to −e1, e3 to −e3. Here −ei
means ei with orientation reversed.

6. σ exchanges v1 and v2, and exchanges e1 to −e2, and e2 to −e3, e3 to −e2.

So there are a total of six types of weighted graph, see the bottom of figure. 8. The

interested reader might try to match the weighted graph with above automorphism action.

5By automorphism, we mean the resulting graph after the specified action is identified with the original

graph by renaming the edges.
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1

2
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3

6

3

3

Figure 8: All possible weighted graph for genus two Riemann surface.

3 Dual graph

The pseudo-periodic map of negative type have been described in last section. One can

attach a dual graph for each conjugacy class which will play a crucial role in our later study

of physical theories.

3.1 Dual graph for period map

First, one can define a star-shaped dual graph for a period map as follows. A periodic map

is given by the data (n, g
′
, σ1λ1 + . . .+ σl

λl
), and the dual graph is constructed as follows:

1. First given the valency data σ
λ (mλ = n), one attach a linear chain of spheres with

following nonzero multiplicities a0 > a1 > a2 . . . > as = 1:

a0 = λ, a1 = σ,
ai+1 + ai−1

ai
= λi ∈ Z.

Given ai and ai−1, the above formula uniquely determines the integer ai+1 by as-

suming λi to be the minimal integer satisfying the equation. Since n = λm, the final

chain of spheres for the valency data σ
λ are

ma0 −ma1 −ma2 − . . .−mas−1 −m.
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Figure 9: The dual graph for periodic maps.

Example 1 : If the data is n = 7, σλ = 5
7 , the tail is 7− 5− 3− 1; On the other hand,

for the data n = 6, σλ = 2
3 , the tail is 6− 4− 2.

Example 2 : If the data is n−1
n . The tail would be

n− (n− 1)− (n− 2)− . . .− (2)− 1

Notice that this is the quiver tail corresponding to the so-called full regular puncture

of An−1 type [21], here we regard the multiplicity as the rank of the gauge group

of the corresponding quiver gauge theory. This identification will play an important

role later.

Example 3 : If the data is 1
n . The tail would be

n− 1

This is the quiver tail corresponding to the so-called simple regular puncture of An−1
type [21].

2. The final graph is formed as follows: one has a core component with genus g
′
, and

the multiplicities n, then attach the linear tail from each ramification point. The

gluing is simple as the first component of each tail has the common multiplicities n.

At the end, one get a star-shaped graph!

Example 1 : The data for the periodic map is (n = 6, g
′

= 0, 16 + 1
3 + 1

2), and the dual

graph is shown in figure. 9.

Example 2 : The data for the periodic map is (n = 3, g
′

= 0, 13 + 1
3 + 1

3 + 2
3), and the

graph is shown in figure. 9. Notice that the dual graph is the 3d mirror for SU(3) gauge

theory with nf = 6.

3.2 Gluing

Let’s now construct dual graph for general pseudo-periodic map. The first data is a

weighted graph Y , and the irreducible components in Y are given by genus g Riemann sur-

face with k boundary curves (Let’s use ∂i to denote them.), and r internal non-separating
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cutting curves (Let’s use Ci to denote them.). There is an associated periodic map on each

irreducible component. More explanation on the action of f on the boundary curves is

needed (Here n is the order of f):

1. First, one need to specify the action of f on boundary curves ∂i, for example f

could permute (∂1, ∂2, ∂3), this implies that branch points of Σ
′

associated with three

boundary curves has the data m = 3, and so λ = n
3 for the corresponding valency

data.

2. Secondly, one need to specify the action of f on the internal cutting curve Ci. There

are two types of action according to whether the action is amphidrome or not. Let’s

take two curves as an example: a): if C1, C2 is non-amphidrome, and the boundary

curves are C
′
1, C

′′
1 , C

′
2, C

′′
2 , then f permutes C

′
1, C

′
2 and so the branch point P1 cor-

responding to them has m = 2, similarly f also permute C
′′
1 , C

′′
2 (with m = 2), and

branch point is P2 with m = 2. One then specify the valency data for P1, P2, and

in particular λ = n
2 . In general, if 〈C1, . . . , Cs〉 is permuted by f , then there are two

branch points on Σ
′
, and the order of them is m = s.

If the action on C1 is amphidrome, then f permutes two boundary curves C
′
1, C

′′
1

and so m = 2. Similarly, if the action on C1, C2 is amphidrome, namely, f(~C1) =

−~C2, f
2(~C1) = −~C1, so the boundary curves (C

′
1, C

′′
1 , C

′
2, C

′′
2 ) is permuted by f , then

m = 4 for these boundary curves. In general, if 〈C1, . . . , Cs〉 is amphidrome under f ,

then there is just one branch point on Σ
′
, with order m = 2s.

Remark: We will use bold number for valency data for the boundary curves, and use

bracket for the valency data of the internal cutting curves (two for non-amphidrome action,

and one for amphidrome action). For exmaple, if g = 0, k = 4, r = 0, we have following

possibilities: a): f = id; b): 〈∂1, ∂2〉, f = 1+ 1
2

+ 1
2

; c): 〈∂1, ∂2〉, 〈∂3, ∂4〉, f = 1+1+ 1
2 + 1

2 ;

d): 〈∂1, ∂2, ∂3〉, f = 1 + 1
3

+ 2
3 or 1 + 2

3
+ 1

3 ; e): 〈∂1, ∂2, ∂3, ∂4〉, f = 1 + 1
4 + 3

4 .

In last subsection, one associate a dual graph for each periodic map. Now one can get

a dual graph for any pseudo-periodic map by gluing the graphs for period maps together.

Let Ai be an annular neighborhood of Ci (possibly many curves, see the discussion above).

Let’s also use (m(1), λ(1), σ(1)) and (m(2), λ(2), σ(2)) to be the valencies of the boundary

curves C
′
i and C

′′
i .

Let’s first assume Ci to be non-amphidrome. Then m(1) = m(2) = m so that one can

glue them together, and one obtain two sequences of integers a0 > a1 > . . . > au = 1

and b0 > b1 > . . . > bv = 1. Graphically, one get two quiver tails from above sequence of

integers. Define an integer

K = −s(Ci)− δ(1)/λ(1) − δ(2)/λ(2) (3.1)

where δ(j) are integers such that σ(j)δ(j) = 1(modλ(j)), 0 ≤ δ(j) < λ(j)− 1. If λ(j) = 1, one

set δ(j) = 0. K satisfies condition K ≥ −1, as s(Ci) < 0, 0 ≤ δ(j)/λ(j) < 1. The gluing for

the two quiver tails is defined as follows
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1. If K ≥ 1, the the glued tail looks as follows

(ma0,ma1, . . . ,mau,m,m, . . . ,m︸ ︷︷ ︸
K−1

,mbv, . . . ,mb1,mb0)

2. If K = 0, the the glued tail looks as follows

(ma0,ma1, . . . ,mau−1,m,mbv−1, . . . ,mb1,mb0)

3. Finally, if K = −1, then one can find u0 < u and v0 < v so that au0 = bv0 , and

(au0−1 + bv0−1)/au0 is an integer greater than one. Then the quiver tail looks like

(ma0,ma1, . . . ,mau0 ,mbv0−1, . . . ,mb1,mb0)

Let’s now assume Ci to be amphidrome, then C
′
i , C

′′
i has valency data (2m,λ, σ).

Similarly, one has a sequence of integers a0 > a1 > . . . > au = 1, from which one can get

a quiver tail. Then K = −s(Ci)/2 − δ/λ is a non-negative integer where δσ = 1(modλ).

The glued quiver tail now has u+K + 2 spheres, and it is a Dynkin diagram of D type

(2ma0, 2ma1, . . . , 2mau, 2m, . . . , 2m︸ ︷︷ ︸
K

(the tree part), m,m (the terminal part))

Example1 : Let’s take Ci to be non-amphidrome, and the valency data for both of them

is (m,λ, σ) = (1, 3, 2), so δ1 = δ2 = 2; the integer K = −S(Ci) − 2
3 −

2
3 ≥ −1. The glued

tail is shown in figure. 10.

Example2 : Let’s take Ci to be amphidrome, and the valency data is (m,λ, σ) =

(2m,n, n− 1) (σλ = n−1
n , m = 1), and the integer K = −S(Ci)− n−1

n ≥ 0. The glued tail

is shown in figure. 10.

3.3 Dual graph for arbitrary pseudo-periodic map

As discussed in last section, the conjugacy class of pseudo-periodic map is classified by

weighted graphs. There is an associated periodic map for each vertex v in the graph

Ỹ , and e1, . . . , es are the edges on v, es+1, . . . es+s′ are the loops. So a vertex of Ỹ has

data (l(v), g(v), ρ(v)) and the edges 1 ≤ i ≤ s + s
′

with weight ζ(ei), and the edge e
′′
i

(s+ 1 ≤ i ≤ s+ s
′
) has weights ζ(ei). One associate a curve with following data:

g = g(v), r = ρ(v), k =

∑s+s
′

i=1 ζ(e
′
i) +

∑s+s
′

i=s+1 ζ(e
′′
i )

l(v)

Namely there are a total of s + 2s
′

tails. Write the dual graph for the component (with

data (g(v), ρ(v), k(v)) as follows:

Sf =
∑
j

mjEj +
∑
i

ni ~Fi

Then the dual graph is found by replacing the component
∑
mjEj by

∑
l(v)mjEj . Essen-

tially, one need to multiply l for every component in the dual graph of the vertex (g, r, k).

Example: Consider weighted graph shown in figure. 12, and the data for associated

curve has g = 1, r = 0, k = 2, and f keeps ∂1, ∂2 separately (so m = 1 for them). The data

for periodic map is taken to be 3
4

+ 3
4

+ 1
2 . See the dual graph in figure. 12.
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K ≥ 1

K = 0

K = −1 3 2 321

3 2 321 1

2n (2n− 2) 4 2(2n− 4)

3 2 321 11 1

K − 1

1

2 2

K
1

Figure 10: Up: The glued tail for a cylinder with same valency data (m,λ, σ) = (1, 3, 2),

and K = −S(C)− 2
3 −

2
3 ≥ −1. Bottom: The glued tail for the amphidrome cut, here the

valency data is (m,λ, σ) = (2, n, n− 1).

ζ(e2)

ζ(e1)

l

g, ρ

ζ(e2)/l

ζ(e1)/lg, ρ

ζ(e2)/l

Figure 11: For a component in weighted graph, one get an associated genus g curve with

k boundaries, and the multiplicity of the boundary edges is divided by l.

4 IR theory

Let’s determine the 4d IR theory associated with a conjugacy class of pseudo-periodic map.

Specifying only the conjugacy class is not enough to determine the IR theory, as there

would be more than one theory associated with a single degeneration, see [12] for rank one

example. The ambiguity can be fixed if one further assume the IR theory is associated

with the generic deformation of the singularity. To identify the IR theory, one need to use

the interesting relation between the 3d mirror of the IR theory and the dual graph studied

in last section [4]. By using the dual graph and the related 3d mirror [7, 21–23], one can
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l = 2

1

2

1

1 1

f = 3
4

+ 3
4

+ 1
2

4

3, 2, 1

2

3, 2, 1

1, .., 1

8

6, 4, 2

4

6, 4, 2

2, .., 2

Figure 12: Up: A weighted graph with l = 2 and a loop with weight 2. The associated

curve with boundaries are shown on the right, and the associated periodic map is given

too; Bottom: We first write the dual graph for the periodic map, and then get the dual

graph of original theory by multiplying two on the multiplicity of all the nodes.

determine the IR theory effectively.

4.1 Dual graph and 3d mirror

Let’s explain how to define a quiver gauge theory from the dual graph corresponding to a

pseudo-periodic map. Given a conjugacy class of pseudo-periodic map, one can get a dual

graph:

F =
∑

niCi;

Here Ci is an irreducible curve and ni is the multiplicity. The intersection number Ci · Cj
and the genus gi are also specified. The self-intersection number for a component Ci can

be computed by requiring:

Ci · F = 0.

The intersection number ki = Ci · K 6 can be computed from the genus gi and self-

intersection number C2
i :

1 +
1

2
(C2

i + ki) = gi → ki = 2(gi − 1)− C2
i . (4.1)

The genus of the configuration F is expressed by the data ki as follows:

1 +
1

2

∑
niki = g.

See [24] for more details on configuration of curves.

6Here K is the canonical class of the surface, and only play a formal role here.
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1 1

n

n− 2

n− 4

1

1 1

n− 2

n− 4

1

1 1

1

n−1
2

Figure 13: Left: the dual graph for a periodic map with data (n, g
′

= 0, 1n + 1
n + n−2

n ), and

node n is a -1 curve. Middle: Contracting node n, and there would be one edge between

the three nodes connecting node n; After contraction, the node with multiplicity n − 1

becomes a −1 curve; right: Continuing the contracting process, one finally get a model

without any −1 curve.

Contracting −1 curve: The dual graph studied in last section is called normally

minimal model, since the intersections of components are all double points. There could

be −1 rational curves (self-intersection number is −1) in these models. To get information

for the low energy theory, one need to contract −1 curve to get a so-called relatively

minimal model (no −1 curve in the model). The contraction formula is given as follows.

Assuming that a −1 curve Cn is contracted, and the new intersection number and genus

are given as

C
′
i · C

′
j = Ci · Cj + (Ci · Cn)(Cj · Cn),

g(C
′
i) = g(Ci) +

1

2
((Ci · Cn)2 − Ci · Cn). (4.2)

Example: Let’s consider a periodic map with data (n, g
′

= 0, 1n + 1
n + n−2

n ), and n is

odd. The dual graph is shown in figure. 13, and all the components are rational curves.

The self-intersection number of node n is computed as:

Ci · F = 0→ Ci · (nCi + δ) = 0→ nC2
i + Ci · δ = 0→ C2

i = −1.

Here δ = F − nCi (which are the components of F minus the central node), and Ci · δ = n

is used. So the central node is a −1 curve, which can be contracted and one get a triangle

connecting nodes with multiplicity 1, 1, n−2. After contraction, the node with multiplicity

n−2 becomes a −1 curve; One continue doing the contraction until getting a model without

any −1 curve, see figure. 13. For our later purpose, we draw the contracting process using

the curves, see figure. 14.

3d Mirror from relative minimal model: Once the relative minimal model F =∑
niCi is found, a 3d N = 4 quiver gauge theory can be found as follows [4]: a): As-

sociate a quiver node Qi with gauge group U(ni) for a component Ci; b): The number
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n

1 1

n− 2

n− 4, .., 1

n− 2

n− 6, .., 1

1 1

1 1

1

Figure 14: The contracting process. At the end, the intersection number between two

red lines is n−1
2 . The intersection number of red and black lines is just one.

of bi-fundamental fields between Qi and Qj is given as nij = Ci · Cj ; c): Add gi adjoint

hypermultiplets for a node Qi. The Higgs branch dimension of the quiver gauge theory is

computed as:

rH =
∑
i<j

ninjCi · Cj +
∑

gin
2
i −

∑
n2i + 1

=
1

2
(
∑

Cini)
2 +

∑
gin

2
i −

1

2
C2
i n

2
i −

∑
n2i + 1

=
∑

n2i (gi −
1

2
C2
i − 1) + 1

=
∑ (n2i − ni)

2
ki + g. (4.3)

Here F 2 = (
∑
niCi)

2 = 0 is used, and an extra +1 is added because an overall U(1) gauge

group is decoupled.

Let’s extract a 3d mirror for the IR theory from above quiver gauge theory. The

basic match is that the above dimension formula rH should be equal to g (which is the

Coulomb branch dimension of the 4d IR theory), but in general the above formula is larger

than g. It was noticed in [4] that one can match the known 3d mirror by modifying the

proposed quiver gauge theory, and it is possible to generalize the construction in [4] to

theory of arbitrary rank (again by matching the known 3d mirror for 4d theories). Here is

the summary for the modification procedure:
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1. If a quiver node has ni = 1 or ki = 0 (this is only possible for −2 rational curve, see

formula. 4.1 by using C2
i < 0), then no modification is needed, as these nodes do not

contribute to the extra terms in the Higgs branch dimension formula. 4.3.

2. For other nodes, one need to peel off ki number of following quiver tails

ni − (ni − 1)− (ni − 2)− . . .− 2− 1

Each such tail contributes Higgs branch dimension
(n2
i−ni)
2 , and so would cancel the

contribution of the ith node in the formula. 4.3. Notice that this is not always

possible.

Example: Let’s consider the periodic map given by the data (n = 4, g
′

= 0, 34+3
4+3

4+3
4).

The quiver gauge theory derived from it is a star-shaped quiver with four maximal quiver

tails. The central node has self-intersection number C2
i = −3, and has ki = 1, so one need

to peel off one maximal quiver tail. The final quiver is the 3d mirror for T4 theory [21].

More evidence for the identification would be given later.

The rule listed above is based on the match between the 3d mirrors for known SCFTs.

It would be interesting to find a deeper reason for it, and perhaps those bad ones do

not appear as the singular fiber for the SW geometry. Indeed, one can not find physical

interpretation if above constraints are not imposed. Here let’s illustrate this point by an

interesting example. Consider a genus two example, and the weighted graph is (g = 2, r =

1), and the cut is amphidrome. The valency data is (12) + 3
4 + 3

4 (the one in the bracket

is for the cutting curve) (this is the III∗ − II∗n singularity in [4]). Now the conjugacy

class has an integral parameter n, whose physical interpretation should be a gauge theory

coupled with free hypermultiplets (see section. 4.4). However, according to our dimension

formula (see table. 4 in [4]), there are only two possible scaling dimensions (2, 32) and (4, 3)

for this degeneration. The scaling dimension (2, 32) gives the gauge theory description for

the fiber (III − II∗n), so the scaling dimension for fiber III∗ − II∗n should be (4, 3) which

implies that no gauge theory is available (there has to be a dimension two Coulomb branch

operator so that a gauge theory description is possible). This seemingly contradiction is

saved by our constraints from finding a 3d mirror. In fact, one only find a good 3d mirror

by setting n = 0, and interestingly the scaling dimension read from the 3d mirror is indeed

(4, 3). The above example gives certain justification to our procedure, and more evidence

would be given later, see section. 4.4.

Bad tail: Let’s now analyze a general tail determined by the fraction a
n with the order

mn, here (a, n) = 1. Let’s assume following decomposition of n:

n = (n− a)x+ b, 0 < b ≤ (n− a)

The quiver tail takes the following form (for a ≥ n
2 ):

n− (n− (n− a))− (n− 2(n− a))− . . .− (n− (x− 1)(n− a))− b − . . .

The node with multiplicity b is a bad node (its self-intersection number is not −2). For

a < n
2 , the quiver tail is

n− a − c− . . .
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Here the node with multiplicity a is a bad node.

Let’s now analyze the constraint on the data (a, n) so that a good tail can be defined

using our modification procedure.

• For m = 1: Let’s first assume a ≥ n
2 : 1): the tail has to take the form . . . − (n −

(x − 1)(n − a)) − b − (b − 1) − . . . − 1. To implement our modification procedure,

the self-intersection number of node b has to be −3:

3b = (b− 1) + (n− (x− 1)(n− a))→ b = n− a− 1.

2): If b = 1, then no problem arises. Similarly, if a < n
2 , the tail has to take the

form n− a− (a− 1)− . . . and a should have self-intersection number −3, which gives

a = n−1
2 . The above constraints on (n, a) can be put in following uniform way:

n = (n− a)x+ (n− a− 1) or

n = (n− a)x+ 1 (4.4)

One can associate a quiver tail from a Young Tableaux [21]. The Young Tableaux

for above cases are shown in figure. 15.

• For m > 1, one can not use the modification procedure to cure the bad node, and

so all the node has to be good. This has only following two solution: a = n − 1 or

n = 1. The associated Young Tableaux is listed in figure. 15.

• Finally, let’s point out that one must be careful if the dual graph has −1 curve as

the core, and one need to first contract the −1 curves and then decide whether the

dual graph is good or not. A case by case study is needed.
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n− a

n− a− 1

n− a

n− a

m = 1

m > 1 m

Figure 15: Up: The Young Tableaux for m = 1 which would give the good tail, and the

flavor symmetry is SU(x) × U(1) (after modifying the quiver tail), here n = (n − a)x +

(n − a − 1) or n = (n − a)x + 1; Bottom: The Young Tableaux for m > 1, and the flavor

symmetry is SU(λ), with λm = n.

4.2 Periodic map and 4d SCFTs

It is natural to associate a 4d N = 2 SCFT for the periodic map, see [12] for rank one

and [4] for rank two cases. Here let’s do it for theory with arbitrary rank, see table. 1 for

many interesting class of examples, and the main check is the relation between dual graph

and 3d mirror. Lower genus cases are studied in table. [2,3,4,5,6], and the corresponding

physical theory is studied in table. [35,36]. Let’s now point out some interesting relations

between geometric data and the physical data.

Maximal scaling dimension and order of period map: There is a relation be-

tween the order of periodic map and the maximal scaling dimension in Coulomb branch

spectrum: Assume the common divisor of the scaling dimension is u, and the maximal scal-

ing dimension takes the form umax = n
u , then the order of periodic map is n. The reason

is the relation between the scaling dimension and singularity spectrum [25]. In particular,

the maximal scaling dimension is given as

umax =
1

α0
;

Here λ0 = exp2πiα0 with λ0 the eigenvalue of the monodromy group, whose order is the

same as that of the periodic map, i.e. λn0 = 1. This implies α0n = 1(mod Z), which gives

the desired relation.

Example: Let’s consider the possible periodic map associated with the (An−1, Ak−1)

theory. The maximal scaling dimension of this theory is nk
n+k , and so the order of the
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periodic map should be nk, and indeed this is the case, see table. 1 for examples.

Generic deformation and number of A1 singularities: Let’s verify our proposal

by looking at the Tn theory, which is given by an order n periodic map, see table. 1 for the

valency data. An interesting number is the number of A1 singularities under the generic

deformation. These numbers can be computed as follows: first let’s compute central charge

c, and then use the following formulas [26]:

c =
R(B)

3
+
r

6
, R(B) =

αmaxµ

4
, → µ =

12c− 2r

αmax
.

Here µ is the number of A1 singularities, αmax is the maximal scaling dimension in the

Coulomb branch spectrum, r is the rank of theory. Since c = n3

6 −
n2

4 −
n
12 + 1

6 , r =
(n−1)(n−2)

2 , αmax = n for Tn theory [27], one get:

µ = 2(n− 1)2.

Now for the periodic map which is used to engineer Tn theory, it admits deformation

so that all the singularities are the A1 singularities [28], and the number is:

#A1 = nt + 2g − 1;

Here nt is the number of components in the dual graph of the periodic map, and is equal

to nt = n(n − 1) + 1. Since g = (n−1)(n−2)
2 which gives the rank r of theory, and finally

#A1 = 2(n − 1)2 from above formula. This is in agreement with the computation using

central charge. For the theories engineered using isolated three dimensional singularities,

the number of A1 singularities is equal to 2r+f where f is the number of mass parameters.

This relation does not hold in general, as the example with Tn theory shows.

Inverse engineering: Since the 3d mirror for a large class of 4d N = 2 theories are

known [7, 21, 23], one can try to get the periodic map by doing inverse enginneering. The

idea is following: a) if the 3d mirror is a star-shaped quiver with central node n, and the

quiver tail is constrained so that it can be derived from a ratio ai
λi

(miλi = n), see section.

3.1; then one need to add x maximal tails so that the new quiver can be described by the

dual graph of a periodic map. x is determined by following equations:

N =
x(n− 1) +

∑
miai

n
∈ Z,

N − 2 = x.

The first equation ensures the valency data satisfies integral equation for the periodic map,

and the second equation is the condition for peeling off x extra maximal tails. In conclusion,

one solve x to be

x =
∑

miai − 2n. (4.5)

The valency data is then (n, g
′

= 0,
∑ ai

λi
+ xn−1n ).

b): The 3d mirror for Argyres-Douglas is more complicated, and it is often given by

a complicated quiver core (which consists more than one quiver nodes, such as a triangle,
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Theory Data

SU(n) with nf = 2n g = n− 1, (n, g
′

= 0, 1n + 1
n + n−1

n + n−1
n )

SU(2)k linear quiver g = k, (n = 2, g
′

= 0, (12)2k+2)

Tn g = (n−2)(n−1)
2 , (n, g

′
= 0,

n− 1

n
+
n− 1

n
+ . . .+

n− 1

n︸ ︷︷ ︸
n

)

(A1, An−1), n even g = n−2
2 , (n, g

′
= 0, 1n + 1

n + n−2
n )

(A1, An−1), n odd g = n−1
2 , (n, g

′
= 0, 1

2n + 1
2 + n−1

2n )

(A1, Dn+1), n even g = n
2 , (n, g

′
= 0, 1

2n + 1
2 + n−1

2n )

(A1, Dn+1), n odd g = n−1
2 , (n, g

′
= 0, 1n + 1

n + n−2
n )

(A2, A3n−1) g = 3n− 2, (3n, g
′

= 0, 1
3n + 1

3n + 1
3n + n−1

n )

(Ak−1, Ank−1) g = (k−1)(nk−2)
2 , (nk, g

′
= 0,

1

nk
+ . . .+

1

nk︸ ︷︷ ︸
k

+n−1
n )

(An−1, Ak−1), (n, k) = 1 g = (n−1)(k−1)
2 , (nk, g

′
= 0, 1

nk + a
n + b

k )

(n = 3, k = 3x+ 1→ a = 2, b = x)

(n = 3, k = 3x+ 2→ a = 1, b = 2x+ 1)

D2SU(2n+ 1) g = n, (2n+ 1, g
′

= 0, 1
2n+1 + n

2n+1 + n
2n+1)

Dn+k(SU(n)), (n, k) = 1 g = (n−1)(n+k−1)
2 , (n(n+ k − 1), g

′
= 0, 1

n(n+k−1) + a
n + b

n(n+k−1))

n = 3, n+ k = 3x+ 1→ a = 2, b = n+ k − 2,

n = 3, n+ k = 3x+ 2→ a = 1, b = 2(n+ k)− 3

Table 1: Periodic maps and the associated SCFTs.

see [7] for details), and there are also tails attached to the core quiver nodes; To find the

periodic map, one need to do the inverse operation of contraction to get a star-shaped

quiver.

Example 1 : Let’s consider A2 class S theory which is engineered by a sphere with

a simple punctures and b full punctures [6]. The 3d mirror is a star-shaped quiver with

a simple tail 3 − 1, and b maximal tail 3 − 2 − 1 [21]. According to our formula 4.5,

x = a+ 2b− 6, and the valency data is

(
1

3
)a + (

2

3
)b + (

2

3
)a+2b−6.

A simple check is following: the rank of the SCFT is 2a+ 3b− 8. The genus formula from

the valency data is

2g − 2 = 3(−2 +
2

3
(2a+ 3b− 6))→ g = 2a+ 3b− 8,

which is consistent. The above computation can be done similarly for An−1 theory defined

by a sphere with a simple and b full punctures.

Example 2 : Consider an AD theory whose 3d mirror has a triangle core with ranks

n1, n2, n3. To get a star-shaped quiver whose contraction will give rise to the 3d mirror for
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n1

n2 n3

n1

n2
n3

N

Figure 16: Left: the 3d mirror for an AD theory whose core has three nodes and are

connected by a single edge; Right: One add a node with rank N = n1 + n2 + n3 so it

becomes a star-shaped quiver.

AD theory, one add a core node with rank N = n1 + n2 + n3, see figure. 16. The valency

data is
n1
N

+
n2
N

+
n3
N

n1, n2, n3 is chosen that the above data is legitimate to define a periodic map, and moreover

they are constrained so that one can use the modification procedure to get a 3d mirror.

Some solutions are n1 = 1, n2 = n, n3 = n (one get 3d mirror for D2SU(2n + 1) theory),

and n1 = n+ 1, n2 = n, n3 = n (here n ≤ 4).
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4.3 Other 4d SCFTs

It was noticed in [4] that many familiar rank two 4d N = 2 SCFTs are not given by the

periodic maps. The reason is following: our study is based on one parameter family of

genus g fiberation, but one can not find a one parameter scale invariant geometry for many

SCFTs, therefore a periodic map of the genus g can not be associated. However, it seems

possible to find a non-scale invariant one parameter genus g family associated with such

family, which fits in our framework. So it should be possible to discover those SCFTs using

our methods. More importantly, one always need to put a genus g degeneration at ∞ [3],

and so it is important to identify the conjugacy classes of these SCFTs. Here are some

possibilities:

1. First, let’s consider rank l version of En [29] and Hn [30] type theories. The cor-

responding weighted graph is shown in figure. 17. One might wonder whether it is

possible to find other similar rank l generalizations, namely, the weighted graph is

similar to that shown in figure. 17, and with the replacement of genus one component

by a genus g component. The search turns out to be difficult, as there are strong

constraints on original theory: a) no modification is needed for original dual graph;

b) all the valency data should be of the form n−1
n . Most likely, one can only consider

En and Hn theories.

1 1

1
1

1

l

l

ln l

T1

1

2l ln l 12l

Figure 17: Up: The weighted graph corresponding to rank l version of Hn and En theories,

and the automorphism permutes the genus one nodes. The periodic map on genus zero

component is 1 + 1
l + l−1

l , and on the genus one component is 3
4

+ 3
4 + 1

2 (we take E7 for

an example, and other cases are similar). Bottom: the dual graph for above configuration,

here K (the integer associated with the cut curves) is take to be zero; After modification

on the bad node, one get the 3d mirror for rank l theory.

2. One might also get SCFT from the geometry (g, r = 1) with the cut curve am-

phidrome. The valency data for the cut curve C1, C
′
1 is n−1

n , and the order is 2n.
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l = 2
2

2
1

3
4

+ 3
4

+ 1
2

1
4

+ 1
4

+ 1
2

2
3

+ 2
3

+ 2
3

1
3

+ 1
3

+ 1
3

1
2

+ 1
2

+ 1
2 + 1

2

8
6, 4, 2, 1

6, 4, 2, 1

4

1 2 2 1

6
4, 2, 1

4, 2, 1

42

4
2, 1

2, 1

2

2

2

2

2 1

Figure 18: Top: Weighted graph which might give a SCFT. The valency data for periodic

map is given on the left, and the 3d mirror from the dual graph is shown on the right.

The tail for the amphidrome curve is then

2n− (2n− 2)− . . .− 4− 2− (1, 1)(terminal)

One can take off one terminal node with rank one to get a good 3d mirror. So the

valency data is

(
n− 1

n
) +

∑ ai
2n

Here ai is chosen so that one has a good tail. This will produce the 3d mirror for

many known SCFT.

3. There are some other possibilities: the weighted graph has one component and the

edges are all of the D type. We leave the detailed analysis to interested reader. Here

we give a class of examples.

Example: The weighted graph is given in figure. 18. It has just one node with l = 2,

and there are two D type tails. The corresponding data is (g = 1, r = 0, k = 2), and
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the periodic map fixes each boundary map separately. There are following choices

for the periodic map

3

4
+

3

4
+

1

2
,

1

4
+

1

4
+

1

2
,

2

3
+

2

3
+

2

3
,
1

3
+

1

3
+

1

3
,

1

3
+

1

3
+

1

3

The corresponding dual graph (after the modification and so is the 3d mirror) is

shown in figure. 18. It is easy to identify them as the rank three theories listed in

table 10 of [31].

4. Finally, it might happen that the gluing parameter K takes value K ≥ 0, and only

K = 0 can be consistently to find a 3d mirror (this happens for m > 1). This often

implies that one can associate a SCFT for it.

Example: Let’s give a family of examples to illustrate this class of examples. The

weighted graph is given by two components (with genus g1 and g2 separately) con-

nected by an edge with weight 2, see figure. 19. The valency data are

1

3n + 4
+

1

6n+ 8
+

6n+ 5

6n+ 8
, 1 + (

1

2
)2n+2

The dual graph gives (after modification) a good 3d mirror if K = 0. In fact,

the 3d mirror agrees with the theory found in [7]: it is engineered by an irregular

singularity with data A2 theory on a sphere with one irregular singularity with data

Φ = T2n+4

z2n+4 +. . .+ T2
z2

+ T1
z , with T2n+4, . . . , T2 are of type [2, 1], and T1 are type [1, 1, 1],

there is also a maximal regular singularity.
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6n + 8

6n + 5, 6n + 2, .., 2, 1

1

2 2n + 2

1

2
2n + 2

2

1

1

22

1

Contraction

Modification

1

2n + 2

2n + 2

1

1

Figure 19: Up: the dual graph for a pseudo-periodic map, and the weighted graph has

one genus g1 component connected by a genus zero component. Bottom: the corresponding

3d mirror.

4.4 IR free theory

Let’s now consider IR theory associated with general pseudo-periodic map. It is expected

that the IR theory is given by gauge theory coupled with matter. Roughly, the matter is

represented by irreducible components in the cut system, and the gauge group is represented

by edges (the rank of the gauge group is given by the weights of the edge), and the number

K for the edges gives the hypermultiplets coupled with gauge group.

To begin with, let’s analyze the case where the weighted graph has only one node, so

the data is (g, r), here r denotes the non-separating cutting curves. One can find the IR

theory (with arbitrary K) as follows:

1. Let’s take r = 1 and the cut non-amphidrome, and f be the identity map on Σg/C,

the low energy theory is U(1) gauge theory with K fundamental hypermultiplets and

g − 1 free vector multiplets. This can be seen from the dual graph (and 3d mirror)

as follows: the 3d mirror consists g − 1 free hypermultiplets 7 which gives g − 1 free

vector multiplets of the original theory, and a cyclic quiver with K U(1) gauge nodes

whose mirror is just U(1) with K hypermultiplets [32], see figure. 20.

2. Again, let’s take r = 1 and the cut curve non-amphidrome, but f is now a general

periodic map. Now the low energy theory can be found as follows: Let’s assume the

7The adjoint hypermultiplets on U(1) node decouple.
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boundary curves are C1 and C2, and the theory associated with Σg−1 is T , which gives

a rank g − 1 theory. The dual graph has tail T1 and T2 corresponding to boundary

curves C1, C2 (The valency data for them has m = 1). The low energy theory is

then described as follows: it is given by diagonally gauging U(1) flavor symmetry of

the tail T1 and T2, and there is also K extra free hypermultiplets charged over U(1)

gauge group. Since the modification procedure is no longer available (as the two tails

have to be glued together), one has following constraint on the valency data (n, a):

n = (n− a)x+ 1, and examples are n−1
n or 1

n .

3. Let’s take r = 1, but this time the action is amphidrome. The boundary curve C
′
1 and

C
′′
1 now are related by the periodic map (the valency data for them has m = 2). And

the dual graph has a D type tail. To get a valid 3d mirror with arbitrary link number

K, the order of periodic map should be two, and the valency data for the cutting

curves are 1, see figure. 20. We interpret it as a SU(2) gauge theory coupled with

K + 2 fundamental flavors and a theory T represented by the periodic map on Σg−1.

One of the evidence is that by increasing K by 1, the Coulomb branch dimension of

the 3d mirror is increased by two, and so the Higgs branch of the original theory is

increased by two. This is consistent with the interpretation that K is the number of

fundamental hypermultiplets coupled with SU(2) gauge group.

4. The situation with general r is now clear: a): if the action is non-amphidrome,

and one of the orbit of f is 〈C1, . . . , Cs〉, the boundary curves after the cut are

(C
′
1, . . . , C

′
s), (C

′′
1 , . . . , C

′′
s ), then there are two tails for the cutting curves (C

′
1, . . . , C

′
s),

(C
′′
1 , . . . , C

′′
s ): the low energy theory is just gauging diagonally U(s) flavor symme-

try of T1 and T2, and the valency data for them is 1 ; b): if the action is am-

phidrome, and the orbit of f is 〈C1, . . . , Cs〉, the boundary curves after the cut are

(C
′
1, . . . , C

′
s), (C

′′
1 , . . . , C

′′
s ), then (C

′
1, . . . , C

′
s, C

′′
1 , . . . , C

′′
s ) are under the same orbit of

f (the valency data is 1), and the gauge group is conjectured to be Sp(2s) . An

example is shown in figure. 20.

Let’s now discuss the situation where weighted graph has several components. Now

each component has the label (gi, ri, ki) with ki the boundary curves connecting with other

components. The physical interpretation for the non-separating curves ri are gauging,

which is also true for separating curves. The difference for the separating curves is that

the gauge group is SU(m) (instead of U(m) ). This is due to the fact the contribution

of the edge with multiplicities m to the genus is m − 1. There are also K fundamental

hypermultiplets charged over SU(m) gauge group. In particular, if m = 1, there are

decoupled massless hypermultiplets (as the gauge group is SU(1)).

So the IR theory for a general pseudo-periodic map is given by gauging the matter

systems represented by periodic maps. Some familiar matter systems are given:

1. Free matter: A set of free matter is represented by a sphere with n boundary curves,

which are permuted by the action f . The periodic map is represented by the data

1 + 1
n + n−1

n , which gives rise to bi-fundamental matter.
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1

g − 1

1)

2)

T1

T2

3) 22
1

1

1

1
K − 1

1

T

1

K − 1

1

1

2

K

Figure 20: (1): Dual graph for (g, r = 1): the cut curve is non-amphidrome, and the

corresponding periodic map is trivial; The IR theory is U(1) coupled with K free hyper-

multiplets and g − 1 free vector multiplets; (2): Dual graph for (g, r = 1): the cut curve

is non-amphidrome and the corresponding periodic map is generic; (3): Dual graph for

(g, r = 1), the cut curve is amphidrome and the corresponding periodic map has order

two. The IR theory is SU(2) gauge theory coupled with K + 2 free hypermultiplets and

an interacting theory.

More generally, one can consider a sphere with 2n boundary curves, and f permutes

n components separately. The periodic map is given by the data 1 + 1 + 1
n + n−1

n .

The dual graph is shown in figure. 21. The self-intersection number for the core

component is −3, and so one need to take off a maximal quiver tail, and the 3d

mirror is shown in figure. 21. It is then easy to see that this corresponds to the

mirror of bi-fundamental matter with flavor group SU(n)× SU(n)× U(1).

2. Tn matter: It is represented by a genus (n−1)(n−2)
2 curve with 3n boundary compo-

nents, with f permuting n components each. The periodic map is given by the data

1 + 1 + 1 +
n− 1

n
+ . . .+

n− 1

n︸ ︷︷ ︸
n

. The dual graph and the corresponding 3d mirror

are shown in figure. 21. It is then natural to identify it as the Tn matter, with three

SU(n) flavor symmetry groups gauged.

3. General matter: It is now clear how to get general matter system. Let’s start with

a periodic map with order n, so that it can be interpreted as a SCFT. Now assume

that there is still maximal tail left (with the valency data n−1
n ) in the 3d mirror,

then one can consider the following configuration: a genus g curve with n boundary

curves which are permuted by periodic map. Then the data for the periodic map
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1
1

Figure 21: Up: the dual graph for bi-fundamental matter, and after modification it

becomes a good 3d mirror (part of a larger quiver); Bottom: the dual graph for Tn matter,

and after modification it becomes a good 3d mirror. Here Ti denotes the quiver tail

corresponding to maximal regular puncture.

of this configuration is 1 + . . ., where 1 represents the n boundary curves. To get

the good dual graph, one simply remove a maximal tail for the modified dual graph,

and replace it with a tail with one node n . The gluing of this matter system with

other parts can be interpreted physically as gauging the SU(n) flavor symmetry of

the original matter system.

4. Special case: The following matter system deserves special treatment: The periodic

map is given by
∑ σi

λi
+ 1, here

∑ σi
λi

= 1. The order is n, and there are n boundary

curves which are permuted by the period map. The matter system is interpreted as

the class S theory with regular punctured labeled by σi
λi

, and a full regular puncture.

The gluing is interpreted as gauging the SU(n) flavor symmetry.

Using above matter system, one can easily construct familiar IR free theory and the asso-

ciated pseudo-periodic map, see figure. 22. The 3d mirror for such IR free theory has been

found in [22].

Constraints on gluing: Important rule on gluing is that the dual graph can be

interpreted as the 3d mirror for the low energy theory (with possible modification). This

puts constraints on possible gluing pattern, and a detailed analysis will be provided.

Let’s look at the formula in section. 3.2 for gluing dual graphs, and one can make

following observations. If the curves Ci are non-amphidrome, then

1. If m = 1, since it is no longer possible to do the surgery to modify the quiver tails,

the two tails T1, T2 have to be good by itself (all the quiver nodes on the tail has

– 33 –
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g − SU(g)− SU(g)− ...− SU(g)− g

n1 n2 ns

3)

TgSU(g) SU(g)

SU(g)

n1 n2

n3

g

g

g

g g

2g
2g Sp(2g) SU(2g)

K + 2

Figure 22: Some IR free gauge theories.

self-intersection number −2 and no modification is needed). This puts the constraint

on valency data: it can only take the form a
n , with n = (n− a)x+ 1. The glued tail

would be

(n1 − . . .− 1− 1− . . .− 1︸ ︷︷ ︸
K−1

−1− . . .− n2), K ≥ 1

(n1 − . . .− 1− 1− . . .− n2), K = 0

For K = −1, one need to verify the condition case by case.

2. If m > 1, the only solution would be

(m−m− . . .−m︸ ︷︷ ︸
K−1

−m)
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then there would be no bad component; the boundary valency data is actually (1,1),

and K ≥ 1;

If the curve Ci is amphidrome (the valency data for the cutting curves are a
λ with

n = 2mλ), by looking at the glued quiver, one find that:

1. 2m = n (n the order of the periodic map, and the valency data is (1)), then there

would be no bad node as the tail takes the form

2m− 2m− . . .− 2m︸ ︷︷ ︸
K

−(m,m)(terminal node)

2. m = 1, K = 0, and au−1 = 2 or 3. Since the tail takes the form

. . .− 2au−1 − 2− (1, 1),

and the bad node 2 has k = au−1 − 1, so if au−1 = 2, 3, one can peel off one or two

maximal tails to get a good tail.

The above constraints then significantly reduce the possibilities for the gluing:

• If two components in weighted graph are connected by an edge with weight m, then

physically it is interpreted as gauging a SU(m) flavor symmetry of the matter. There

are also K fundamental hypermultiplet charged with SU(m). In particular, if m = 1,

there is no gauging, and the IR theory is the direct sum of the theory associated

with each component; there are also K free hypermultiplets which do not carry any

electric-magnetic charge.

• For the cuts corresponding to non-separating curves, the gluing is interpreted as a

U(m) gauge group, or Sp(2m) gauge group depending whether the cut is amphidrome

or not. For m > 1, there is only SU(m) flavor symmetry for the matter associated

with theory defined using period map, but there is an extra U(1) gauge theory, so

that total rank of the IR theory is the same as the genus of the Riemann surface.

• When the periodic map of one component is special (namely the sum of valency data

is one), one should be careful about the gluing, and a case by case analysis is needed.

The physical interpretation is more complicated, many gauge theory coupled with

two Argyres-Douglas matters can be described in this way.

• If the vertices form a loop in the weighted graph, then the gauge groups take the form∑
SU(mi)⊕ U(1). The extra U(1) is needed as the contribution to the genus of the

edges in the loop is
∑

(mi − 1) + 1. Here mi are the weights of the edges connecting

the vertices in the loop.

Example 1 : Let’s verify above proposal by looking at an example. The weighted graph

has only one node and the data is (g, r = g), and the periodic map permutes the curve

〈C1, . . . , Cg〉. The valency data is (1) + (1) + 1
g + g−1

g , and the dual graph is shown in
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f = (1) + (1) + 1
g + g−1
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g

1

g

g

Figure 23: Left: The weighted graph has just one vertex and the data is (g, r = g), and

the periodic map data is also given. Right: The dual graph for the pseudo-periodic map.

figure. 23. It is then easy to recognize that it is the 3d mirror for U(g) gauge theory with

an adjoint and K fundamental [33] (K ≥ 1).

Example 2 : The weighted graph is given by two genus one curves connected by a

weight two edges, so the genus is three. The valency data on each component is 1
4 + 1

4 + 1
2

,

and K = −S(C) − 1/2 − 1/2 ≥ 0. The dual graph is drawn in figure. 24. One recognize

that it is the 3d mirror for a gauge theory: SU(2) gauge theory coupled with two D2(SU(3)

matter and K + 2 fundamental hypermultiplets. Notice that the limit K = −1 is actually

a SCFT, which is represented by a periodic map with data (n = 4, g
′

= 0, 14 + 1
4 + 1

4 + 1
4).

2

1 1

f = 1
4

+ 1
4

+ 1
2

f = 1
4

+ 1
4

+ 1
2

4

1

1

2 42

K + 1
1

1

K = −S(C)− 1
2
− 1

2
≥ 0

1

1

2 2

K + 1
1

1

SU(2) D2(SU(3))D2(SU(3))

K + 2

Figure 24: Up: the data for a pseudo-periodic map which would give the gauge theory

coupled with AD matter; Middle: the dual graph and the corresponding 3d mirror; Bottom:

The corresponding 4d gauge theory which is given by SU(2) gauge group coupled with AD

matters.

Relation with class S theory: Let’s recall the geometric representation of a theory
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in class S theory [6, 7]. The theory can be either a SCFT or an asymptotical free gauge

theory. The theory is represented by a Riemann surface Σ with regular punctures and

irregular punctures, and the gauge theory is given by finding a pants decomposition of

Σ. Notice that the AD matter is represented by a sphere with one irregular and one

regular singularity, and the component of AD theory is living at the boundary of the pants

decomposition [7]; Tn matter are represented by a punctured three sphere, see figure. 25.

The picture of the IR theory found above is very similar to class S theory: the weighted

graph is similar to the pants decomposition of the Riemann surface Σg, and the difference is

that: a): We get SCFT and IR free gauge theory; b): The matter is represented by periodic

map on an irreducible component in the cut system; c): The gauge group is also represented

by edges, but there is an extra integer K, which gives rise to free hypermultiplets coupled

with gauge group. In the next section, we will show how to use our result to describe UV

complete theories.

T1 G1 T2 G2 T3

g1 g2 g3
m1

k1

m2

k2
f1 f2 f3

T1 G1 T2 G2 T3

k1 k2

Figure 25: Up: The representation of a UV complete theory in class S description: it is

given by a Riemann surface with regular and irregular singularities; and the gauge theory

is given by the pants decomposition of the punctured Riemann surface and the irregular

singularity stays at the boundary; Bottom: The representation of a IR free theory by a

pseudo-periodic map, here one need to specify a weighted graph and the corresponding

periodic map; there is an extra integer on the edges of the weighted graph.
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5 UV theory

In last fewer sections, the IR theory associated with the degeneration is studied. In this

section, we will study the global SW geometry (on a one parameter slice on the whole

Coulomb branch). A point is added at ∞ to make the Coulomb branch compact, i.e. the

Coulomb branch is now P1. The property of UV theory is then reflected by the singular

fiber at ∞ [3], see figure. 26.

∞

Figure 26: The global structure of SW geometry at Coulomb branch.

Geometrically, we now have a compact surface S fibered over P1: f : S → P1, and there

are singular fibers at ∞ and bulk. Two further assumptions on the fiberation are made:

a) First the surface S is a rational surface; b): the bulk singularities are atomic, which

means it can no longer be deformed. In our case, the atomic singular fiber are classified

into following kinds:

1. There is a single non-separating curve. The weighted graph for it has a single node

with r = 1 (non-amphidrome and K = 1), and the periodic map is trivial. The low

energy theory is U(1) gauge theory coupled with one massless hypermultiplet, and

g − 1 free vector multiplets. This is denoted as A1 singularity.

2. There is a single separating curve, and it separates a genus g curve into a genus h

and a genus g − h curve, see figure. 27 for the illustration. The link number is also

K = 1, and this singularity is denoted as Ah1 singularity. The low energy theory is

g free vector multiplets, and one free hypermultiplet (which does not charged under

any low energy U(1) gauge group).

In the following, we mainly consider the case where the bulk singularities are all of the

A1 type, and the study of general atomic singularities is left for separate publications.

Topological invariants: We’d like to study the global topological constraint on the

singular fiber at ∞ for the UV theory in dimension 4, 5, 6. Crucially, one can define two

invariants dx, δx for a singular fiber. dx is defined using holomorphic data, and δx is the

topological invariant. dx is defined for genus one and genus two cases [34], and it might be

defined for arbitrary genus. However, dx is in general not easy to compute, and details will

be discussed elsewhere. On the contrary, the topological invariant δx can be computed from

the dual graph (the normally minimal model). In general, dx is not equal to δx (Though

they are equal for a large class of singular fibers). Given a singular fiber F with its normally

minimal model, first one one get a reduced curve Fred, and its topological Euler number

δx is computed from Fred as follows [35]:

δx = 2(g − pa(Fred)) + #intersections (5.1)
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1)

2)

Figure 27: Up: The atomic singularity corresponding to non-separating curve; Bottom:

The atomic singularity corresponding to separating curve.

here pa denotes the geometric genus, which is given as pa(Fred) = 1 + 1
2(F 2

red + Fred ·K).

Let’s now examine the behavior of pa(Fred), which will have interesting implications for

the UV singular fiber. Given Fred =
∑k

i=1Ci, then

pa(Fred) = 1 +
1

2
(F 2

red + Fred ·K) =
∑
i

[1 +
1

2
(C2

i +Ki)] +
∑
i<j

Ci · Cj − k + 1

=
∑
i

(pa(Ci)) +
∑
i<j

Ci · Cj − k + 1.

Since pa(Ci) ≥ 0 and
∑

i<j Ci · Cj ≥ k − 1, and the equality holds when: a) all the curves

Ci is a rational curve; b): all the curves intersect transversely and they form a tree!

One actually need to compute the topological Euler number for relative minimal model

(no −1 rational curve). The way of computing is following: first one compute δx for normal

model, and each contraction of −1 curve would reduce the Euler number by 1. Here are

some comments on the Euler number δx:

1. If the dual graph (normal minimal model) consists of only spheres, and it has k loops,

then the topological Euler number is given as

δx = nt + 2g − 1− k;

Here nt is the number of components in the dual graph. This relation still holds after

contracting −1 curve.

2. If the dual graph can be regarded as the 3d mirror for a 4d theory (a tree graph

and no modification is needed), the Euler number is related to the physical data as

follows

δx = f + 2g;

Here f is the rank of flavor symmetries. If the modification on dual graph is needed,

the rank of flavor symmetry is smaller than the number δx − 2g.
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For our purpose, an invariant which is preserved under splitting of singularity is needed.

Indeed, such invariant exists, and is called local signature [37]:

σ(F ) =
1

2g + 1
(ghx − (g + 1)δx).

hx
8 is an invariant which measures the number of Ah1 type singularities under deformation.

hx = 0, δx = 1 for a A1 singularity, and so σ(F ) = − g+1
2g+1 . The signature is preserved for

the splitting of singularity, i.e. if F is split into several singularities F1, . . . , Fs, then

σ(F ) =
∑
i

σ(Fi).

In particular, if hx = 0 for a singular fiber F , then the number of A1 singularities under

the generic splitting is equal to δx! On the other hand, if a singular fiber F is split into

only A1 singularities under generic deformations, then hx = 0.

Let’s now consider global topological constraints for the fibered surface. Given a genus

g fiberation f : S → P1, one can define the following relative invariants

K2
f = c21(S) + 8(g − 1),

ef = c2(S) + 4(g − 1),

χf = χ(OS) + (g − 1),

qf = q(S).

Here c1(S) (c2(S)) are the first (second) Chern class, OS is structure sheaf, and q(S) is

the irregularity of S. The relative invariants can be expressed by the local data of singular

fibers [36]:

K2
f = κ(f) +

∑
i

c21(Fi),

ef = δ(f) +
∑
i

c2(Fi),

χf = λ(f) +
∑
i

χ(Fi).

Here c2(F ) and c1(F ) are the local Chern numbers, and κ(f), δ(f), λ(f) are modular in-

variants which are zero for isotrivial family. We are interested in rational surface which

has q = pg = 0, and so according to Noether’s theorem: c2(S) + c21(S) = 12. The local

data satisfies the following equation:

K2
f + ef = 12g → κ(f) + δ(f) +

∑
i

(c21(Fi) + c2(Fi)) = 12g. (5.2)

8This number is equal to dx − δx for rank one and rank two case, and we conjecture that it holds for

general case.
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The crucial data for the singular fiber is χ(F ) = 1
12(c21(Fi)+c2(Fi)), which can be computed

using the normal minimal model F =
∑
niCi:

χ(F ) =
1

2
(g − pa(Fred)) +

∑
i<j

χ(ni, nj)Ci · Cj ,

χ(ni, nj) = 3− (ni, nj)
2

ninj
− nj
ni
− ni
nj

(5.3)

Here the bracket (ni, nj) denotes the greatest common divisor for ni, nj . Notice that this

invariant is not changed by blow-up or contraction, and so it is the same for relative minimal

model. The above formula 5.2 has limited use for us as: a): It involves global modular

invariants κ(f), δ(f), λ(f) which are not easy to compute; b): The local Euler number χ(F )

is not conserved on deformation.

One can get more information if the fiberation is hyperelliptic, i.e. the generic fiber

is a hyperelliptic surface. Now signature of surface S is the just the sum of that of local

singular fibers [37]:

σ(S) =
∑
i

σ(Fi).

For a rational surface, the Hodge index theorem gives the signature of the surface as

(1, ρ − 1) with ρ the Picard number, and so σ(S) = 2 − ρ. Therefore, one get following

equation:

2− ρ(S) =
∑
i

σ(Fi) . (5.4)

The Picard number for a rational surface is related to relative invariant as follows (using

Noether’s theorem):

ρ(S) = 8g + 2−K2
f .

and K2
f has a lower bound 4g − 4 which implies an upper bound for ρ(S) ≤ 4g + 6.

Flavor symmetry and Mordell-Weil lattice: Given a higher genus fiberation of

an algebraic surface, one can define a Mordell-Weil (MW) lattice [38]. This lattice is closed

related to flavor symmetry of the physical theory, which is studied in rank one [39, 40] and

rank two case [4]. Here we summarize some important properties of this lattice. First, the

rank is equal to [38]:

rMW = ρ− 2−
∑

(nt − 1). (5.5)

Here ρ is the Picard number of S. For the rational fibered surface S which is hyperelliptic

[41], the Picard number is ρ = 4g + 6 for K2
f = 4g − 4, and the MW rank is

rMW = 4g + 4−
∑

(nt − 1). (5.6)

The maximal MW rank is 4g+ 4 if all the singular fiber has nt = 1, and the corresponding

surface is constructed in [41], see figure. 28 for the dual graph for the lattice.
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2

Figure 28: The maximal Mordell-Weil lattice for a rational surface with genus g fiberation.

The first node has self-intersection number g + 1, and other node has self-intersection

number 2.

5.1 4d theory

Let’s make following assumptions for the generic deformation of a 4d theory: a): there is

one special singular fiber at z =∞; b) there are only A1 singularities at the bulk. We’d like

to determine the topological constraint on the fiber at ∞ so that it can define a sensible

UV theory in dimension 4.

Let’s first assume that the fiberation is hyperelliptic and the Picard number is ρ(S) =

4g + 6. Following the same argument in [4], the topological constraint for F∞ so that it

defines a 4d theory is

δ∞ − n∞ = 2g − 1 . (5.7)

Let’s recall the argument leading to above equation. The basic assumption is that there

is one BPS particle associated with each bulk A1 singularity, and they generate the whole

charge lattice 9, and so

f + 2g = #A1; (5.8)

Here f is the number of ”mass” parameters. Now the number of mass parameters is given

by the rank of Mordell-Weil lattice (see formula. 5.5):

f = rMW = ρ− 2− (n∞ − 1). (5.9)

Finally, the number of bulk A1 singularities and the topological invariant δ∞ (assuming

h∞ = 0) satisfy the equation (see formula. 5.4) 10:

g + 1

2g + 1
(#A1 + δ∞) = ρ− 2. (5.10)

Combine the above three equations to eliminate #A1 and f , we have the following equation

(ρ− 2)− (n∞ − 1) + 2g = (ρ− 2)
2g + 1

g + 1
− δ∞,

9Notice that in general only a subset of these BPS particles are needed to generate the full charge lattice.
10In the general case, the left hand side of this equation should include a global contribution σf of the

fiberation. If ρ = 4g + 6 and the fiberation is hyperelliptic, one get a total of 8g + 4 A1 singularities.
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and so we have

δ∞ − n∞ = (ρ− 2)
g

g + 1
− 2g − 1.

Take ρ(S) = 4g + 6 for the hyperelliptic fiberation, we have

δ∞ − n∞ = 2g − 1.

In the general case, f is not the rank of physical flavor symmetry, but is given by rank of

MW group, see formula 5.5. Then one has the same constraint for the fiber at ∞. The

above result then implies that the dual graph for F∞ has to be a tree of rational curves!

Motivated by the above results for hyperelliptic fiberation with maximal Picard num-

ber, we conjecture that the singular fiber at ∞ for 4d theory has to satisfy the condition

5.7.

Comments: We have used the correspondence of dual graph and 3d mirror to constrain

the possible IR theory. In the UV case, this constraint might still be imposed on the dual

fiber for F∞! The dual fiber is defined for periodic map, and one can define it for general

fiber by taking the dual of the periodic part of the map.

SCFT: Let’s consider 4d SCFT which is given by a periodic map with singular fiber F .

There is a natural candidate for the fiber at∞: the dual periodic map F
′
. We first consider

a fibered surface with just two singular fibers F and F
′
, and the topological constraints

are automatically satisfied, see equation. 5.2. Then one can deform the fiber F into A1

singularities to get the global SW geometry.

Example: Let’s consider (A1, An−1) theory with n even, and the corresponding periodic

map for fiber F is (n, g
′

= 0, 1n + 1
n + n−2

n ), g = n−2
2 (the Euler number is δx = n− 1), the

dual fiber is given by the data (n, g
′

= 0, n−1n + n−1
n + 2

n) (the Euler number is δx = 3n−3).

The total Euler number satisfies the condition δx(F ) + δx(F
′
) = 4n − 4 = 8g + 4. This

implies that: a): The global curve can be given by the fiberation of hyperelliptic curves; b):

dx = δx for F and F
′
; c): The generic deformation of the theory has only A1 singularities,

which agrees with the result using the singularity theory (one can engineer the SCFT by

an isolated hypersurface singularity [10], and generic deformation of singularity has only

A1 singularities).

One can similarly find the singular fiber at ∞ for other SCFTs discussed in section.

4.3: one simply choose the dual periodic map in the decomposition of F . See figure. 29 for

an example.

Global curve: The global curves for various SCFTs have been found for many class of

theories, and they are useful to verity our general strategy of classifying theories. Here we

give the global curve for D2(SU(n+ 1) theory: when n is odd, it is just SU(n+1
2 ) coupled

with n+ 1 fundamental flavor; When n is even, it is an interacting AD theory with flavor

symmetry group SU(n+ 1) [7, 42]. The global curve takes the following simple form

y2 = xn+1 + p2x
n−1 + . . .+ pnx+ pn+1 + t2.

Here t is the Coulomb branch operator (the scaling dimension is [t] = n+1
2 ). The Mordell-

Weil lattice is An (An⊕U(1)) for n even (n odd) [38], which is in consistent with the flavor

symmetry of the physical theory.
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=
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Figure 29: (1): Left: The global geometry of a SCFT defined by periodic map F , and

F
′

is the dual map; They can sit together to get an isotrivial family; Right: F can be

deformed into several A1 singularities which give rise to global SW geometry for the theory

F . (2): A SCFT is represented by a fiber F , and the fiber at infinity is given by its dual

F
′
.

Asymptotical free theory: Let’s now give some global SW geometries for asymp-

totical free theory.

SU(n) gauge theory coupled with nf flavor : The singular fiber at ∞ is given by the

data shown in figure. 30. This gives the SW geometry for SU(n) gauge theory coupled

with nf = 2n−K, K ≥ 1 hypermultiplets in fundamental representation. A simple check

is to compute the topological Euler number δx (which is conjectured to be the same as the

holomorphic invariant dx), and the answer is

dx = δx = 2n+K + 2(n− 1) = 4n+K − 2.

So the number of A1 singularities at the bulk are given as (since the global SW curve is

hyperelliptic):

8(n− 1) + 4− (4n+K − 2) = 2(n− 1) + 2n−K = 2r + f.

The singular fiber for Sp(2n) gauge theory coupled with nf = 2n+ 2−K hypermultiplets

in fundamental representation is also shown in figure. 30.

Pure SU(n) gauge theory : Let’s consider pure SU(n) gauge theory in more detail,

and there are a total of 2n − 2 A1 singularities at the bulk. We’d like to determine other

special vacua by simple topological constraints: a) The Euler number is less than 2n − 2;

b) There is no flavor symmetry so the dual graph has just one node. Here are some obvious

possibilities:

– 44 –



n
n n n n

1, 2, .., n− 1
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n− 1, .., 2, 1
K-1

n

r = n

f = 1 + 1
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n

f = (1) + 1
2n

+ 2n−1
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2n 2n 2n 2n
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n 1

2n− 1, .., 2, 1
K-1

Figure 30: Upper: The singular fiber at ∞ for SU(n) gauge theory with 2n−K flavors;

The weighted graph is given by two genus zero curve connected by an edge with multiplicity

n. The periodic map on each genus zero component is 1
n + n−1

n + 1. Bottom: The singular

fiber at∞ for Sp(2n) gauge theory with 2n+ 2−K flavor; The weighted graph is given by

a single component with r = n cutting curves, which are amphidrome. The periodic map

on the irreducible components are (1) + 1
2n + n−1

2n .

1. The degeneration is given by the weighted graph (g = n − 1, r = g), namely there

are n − 1 non-separating cutting curves, see figure. 31. The periodic map on the

component Σ/C is trivial. To have no flavor symmetry, the linking number K = 1,

so the IR theory is direct sum of U(1) with one hypermultiplet: (U(1)⊕ 1)n−1. The

Euler number of this vacua is n − 1. This particular vacua is important as it gives

the confining vacua for the corresponding N = 1 theory.

2. The degeneration gives AD theory and free vector multiplets. Depending n, the AD

theory might have a U(1) global symmetry which would be gauged.

N = 2∗ SU(n) gauge theory : Although we mainly focus on the case where the bulk

singularities are just A1 singularities. It is actually possible to get the SW solution for

other theories by considering more general un-deformable singularities. Notice that the

local structure of the singularities are still classified by the result of this paper: one just do

not deform those singularities into A1 type. We leave the general discussion to a separate

publication, and here give the results for N = 2∗ SU(n) gauge theory. The fiber at ∞
should give a periodic map, which gives the scaling dimensions 2, 3, . . . , n [3]. The natural

candidate is the one for SU(n) with nf = 2n, namely, it is given by the period map

with data (n, g
′

= 0, 1n + 1
n + n−1

n + n−1
n ). For the bulk singularities, there are following

two constraints a): The topological constraints, namely,
∑

bulk δx = 4n − 2; b): Dirac

quantization [12]; c): The rank of charge lattice is 2n − 1 and so there would be at least
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Figure 31: (1): The special vacua for pure SU(n) theory, and there are g non-separating

curves in the cut system and all the associated integers K = 1. The IR theory is just g

copies of U(1) coupled with one hypermultiplet; (2) The singular fiber corresponding to

AD theory plus free vector multiplets.

2n−1 singularities. It would be interesting to find out the type of these local singularities.

N = 2∗ Sp(2n) gauge theory : The fiber at ∞ is given by periodic map with data

(n, g
′

= 0, 1
2n + 1

2 + 1
2 + 2n−1

2n ), and its topological Euler number is 4n + 2. It would be

interesting to find out the type of bulk singularities.

Linear quiver : Let’s consider the UV complete linear quiver n1−SU(n)−SU(n)−n2,
here n1, n2 < n. It is natural to state that the degeneration at ∞ should be the one shown

in figure. 32, the data is n1 = n−K1, n2 = n−K2. Since the SW geometry is no longer

hyperelliptic and the Picard number is not known, and so one do not know the number of

A1 singularities at the bulk. We notice that there is a SCFT by taking n1 = n2 = n, and the

total Euler number on the global SW geometry can be easily computed: the corresponding

periodic map is self-dual (with valency data ( 1
n)3 + (n−1n )3, and δx = 7n− 4), so the total

Euler number is etotal = 14n−8. We assume that the total Euler number should be still the

same for the general n1, n2 case, and this gives rise to the number of bulk A1 singularities
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Figure 32: Up: the pseudo-periodic map for a UV complete linear quiver theory; Bottom:

the dual graph and the topological Euler number is δx = 7n+K1 +K2 − 4.

as

#A1 = 14n− 8− δ∞ = 14n− 8− (7n+ 2n− n1 − n2 − 4)

= 5n+ n1 + n2 − 4 = 2r + f + (n− 1).

Here r = 2n − 2 is the rank of the theory, f = n1 + n2 + 1 are the number of mass

parameters.

5.2 5d theory

Let’s now turn to the SW geometry for 5d KK theory: the Coulomb branch solution for 5d

N = 1 theory compactified on a circle with finite size. The difference with 4d SW geometry

is that the charge lattice has dimension Γ = 2r+f+1, where the extra one denotes the KK

charge. Following similar argument as 4d theory, the topological constraint for a singular

fiber at ∞ of a 5d theory is:

δ∞ − n∞ = 2g − 2.

Hence the dual graph of F satisfies following condition: a) All the components are all

rational curves; b) It has just one loop; c): The dual fiber is good in the sense that one

can get a good 3d mirror.

Example: Let’s consider several class of possible UV singular fibers for 5d rank 3 KK

theory, see figure. 33. Some of them might be related to 5d theory engineered using toric

diagram (such that there is a SU(4) gauge theory interpretation along certain special locus.)

[43]. A check is that one can compute the eigenvalues of monodromy around infinity using

the method explained in [4], and there are two eigenvalues 1, and other eigenvalues are

roots of order 3; on the other hand, for the pseudo-periodic map shown in figure. 33, the

induced monodromy on homology cycles also has two eigenvalues 1, and other eigenvalues

are of order 3 (the order of the periodic map is 3.).
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Dual graph G

A5 ⊕AK−1 ⊕ δ2

A4 ⊕AK−1 ⊕ δ ⊕ δ21

A3 ⊕AK−1 ⊕ δ41

Figure 33: Singular fiber which might give rise to Coulomb branch geometry for 5d N = 1

KK theories. Here δ has self-intersection number −4, and δ1 has self-intersection number

−3.

5.3 6d theory

Let’s now turn to the SW geometry for 6d KK theory: the Coulomb branch solution for 6d

(1, 0) theory compactified on a torus with finite size. The difference with 4d SW geometry

is that the charge lattice has dimension Γ = 2r + f + 2, where the extra two denotes the

KK charge along two cycles of the torus. Following similar argument as 4d theory, the

topological constraint for a 4d theory is

δ∞ − n∞ = 2g − 3.

Hence the dual graph of F satisfies following condition: a) All the components are all

rational curves; b) It has just two loops; c): The dual fiber is good in the sense that one

can get a good 3d mirror for it.

Example: A class of possible UV singular fiber for 6d rank 3 KK theory are shown in

figure. 34.
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Figure 34: Singular fiber that might give rise to the SW geometry for rank three 6d (1, 0)

KK theories.

6 Conclusion

We give a classification of IR and UV behavior for Coulomb branch geometry of theories

with eight supercharges, with the following assumptions: a) the local SW solution is given

by the fiberation of genus g curves; b): The theory is associated with the generic defor-

mation of the singularity; c): A one parameter slice of SW geometry is taken. The crucial

fact is that such degeneration is classified by the conjugacy class of mapping class group

[17], which are the so-called pseudo-periodic map of negative type. The description of such

conjugacy class is combinatorial, which makes a systematical study possible.

To determine the IR theory (associated with the singular fiber at bulk) or the UV

theory (associated with the singular fiber at ∞), we find the dual graph from the pseudo-

periodic map play a crucial role: they are closed related to 3d mirror for these theories.

Using the dual graph and the related 3d mirror, we can identify SCFTs (such as Argyres-

Douglas theories, Tn theories), IR free theories, and UV complete theories with certain

conjugacy class of mapping class group! Given the simplicity of the description, we believe

that many physical questions about theories with eight supercharges can be solved! In this

paper, it helps us explain the number of A1 singularities in the generic deformation of Tn
theories, and confirms the 3d mirror proposal for Argyres-Douglas theories [23].

There are several further interesting questions that one can study:

1. The usual electric-magnetic duality group acts on photon coupling, and it turns out

that this action along is not enough to determine the IR theory. The duality group

is interpreted geometrically as the action on homology groups. Now if one look at

enlarged action and consider the conjugacy class in mapping class group, then the IR

theory can be completely determined. The question is the physical objects that the

mapping class group acts on. Since mapping class group naturally acts on the simple

closed curves on Riemann surface, which is in turn gives the IR line operators, this
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suggests that one need to study the action on the set of IR line operators when one

go along the special vacua!

2. It would be interesting to give an interpretation for the mysterious relation between

the dual graph and the 3d mirror. We have used the identification of 3d mirror to

constrain the possible appearance of singular fiber. It would be interesting to study

the physical meaning of these constraints.

3. We have studied one parameter slice of the full Coulomb branch geometry, and it is

certainly useful to study the full parameter space of SW geometry, for instance, one

can not find a one parameter scale-invariant geometry for a SCFT, but it is possible to

find a scale-invariant geometry for a multiple parameter family [44]. More generally,

one might find more constraints on the appearance of singular fibers by looking at

the full deformation space of the physical theory.

4. Certainly, the next major question is the classification of global SW geometry (see

[45] for rank one case). We hope to report the progress on this question in the near

future.

5. In our study, the IR theory is assumed to be associated with generic deformation.

To give a complete classification, one need to classify the theory associated with the

so-called non-generic deformation.

6. We also assume the SW geometry is given by a family of Riemann surfaces. This

condition can be relaxed in following way: one can consider a finite group action

on the local family, and study the quotient. In particular, it is possible to define

a so-called “orientifold” action on the conjugacy class to get quiver theories with

orthosymplectic gauge groups. Details will appear in a separate publication.
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A Periodic maps for 1 ≤ g ≤ 5

Non-identical conjugacy classes of periodic maps of closed surfaces of genus 1 ≤ g ≤ 5 are

listed in table. 2,3,4,5,6.

Order Data

n = 6 (16 + 1
3 + 1

2 ,
5
6 + 2

3 + 1
2)

n = 4 (14 + 1
4 + 1

2 ,
3
4 + 3

4 + 1
2)

n = 3 (13 + 1
3 + 1

3 ,
2
3 + 2

3 + 2
3)

n = 2 1
2 + 1

2 + 1
2 + 1

2

Table 2: The periodic maps for genus g = 1. The genus g
′

= 0 is ignored.

Order Data

n = 10 ( 1
10 + 2

5 + 1
2 ,

9
10 + 3

5 + 1
2), ( 3

10 + 1
5 + 1

2 ,
7
10 + 4

5 + 1
2),

n = 8 (18 + 3
8 + 1

2 ,
7
8 + 5

8 + 1
2)

n = 6 (16 + 1
6 + 2

3 ,
5
6 + 5

6 + 1
3), (13 + 2

3 + 1
2 + 1

2)

n = 5 (15 + 1
5 + 3

5 ,
4
5 + 4

5 + 2
5), (15 + 1

5 + 2
5 ,

4
5 + 4

5 + 3
5)

n = 4 1
4 + 3

4 + 1
2 + 1

2

n = 3 1
3 + 1

3 + 2
3 + 2

3

n = 2 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2

g
′

= 1, n = 2 1
2 + 1

2

Table 3: The periodic maps for genus g = 2.
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Order Data

n = 14 ( 3
14 + 2

7 + 1
2 ,

11
14 + 5

7 + 1
2), ( 1

14 + 3
7 + 1

2 ,
13
14 + 4

7 + 1
2) ( 5

14 + 1
7 + 1

2 ,
9
14 + 6

7 + 1
2)

n = 12 ( 1
12 + 5

12 + 1
2 ,

11
12 + 7

12 + 1
2), ( 1

12 + 1
4 + 2

3 ,
11
12 + 3

4 + 1
3) ( 5

12 + 1
4 + 1

3 ,
7
12 + 3

4 + 2
3)

n = 9 (19 + 5
9 + 1

3 ,
8
9 + 5

7 + 1
2), (19 + 2

9 + 2
3 ,

8
9 + 7

9 + 1
3) (29 + 4

9 + 1
3 ,

7
9 + 5

9 + 2
3)

n = 8 (18 + 5
8 + 1

4 ,
7
8 + 3

8 + 3
4), (18 + 1

8 + 3
4 ,

7
8 + 7

8 + 1
4) (38 + 3

8 + 1
4 ,

5
8 + 5

8 + 3
4)

n = 7 (17 + 1
7 + 5

7 ,
6
7 + 6

7 + 2
7), (17 + 2

7 + 4
7 ,

6
7 + 5

7 + 3
7) (17 + 3

7 + 3
7 ,

6
7 + 4

7 + 4
7)

(27 + 2
7 + 3

7 ,
5
7 + 5

7 + 4
7)

n = 6 (56 + 1
6 + 1

2 + 1
2), (56 + 1

3 + 1
3 + 1

2 ,
1
6 + 2

3 + 2
3 + 1

2)

n = 4 (14 + 1
4 + 1

4 + 1
4 ,

3
4 + 3

4 + 3
4 + 3

4), (14 + 1
4 + 1

2 + 1
2 + 1

2 ,
3
4 + 3

4 + 1
2 + 1

2 + 1
2), (34 + 3

4 + 1
2 + 1

2)

n = 3 (23 + 2
3 + 2

3 + 2
3 + 1

3 ,
1
3 + 1

3 + 1
3 + 1

3 + 2
3)

n = 2 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2

g
′

= 1, n = 4 1
2 + 1

2

g
′

= 1, n = 3 1
3 + 2

3

g
′

= 1, n = 2 1
2 + 1

2 + 1
2 + 1

2

g
′

= 2, n = 2 f : Π→ Π
′

is an umramified covering.

Table 4: The periodic maps for genus g = 3.

B Rank 4 and rank 5 4d SCFTs from periodic map

We list the SCFTs associated with the periodic maps for genus 4 case (figure. 35) and

genus 5 case (figure. 36).
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Order Data

n = 18 (12 + 1
9 + 7

18 ,
1
2 + 8

9 + 11
18), (12 + 2

9 + 5
18 ,

1
2 + 7

9 + 13
18) (12 + 4

9 + 1
18 ,

1
2 + 5

9 + 17
18)

n = 16 (12 + 3
16 + 5

16 ,
1
2 + 13

16 + 11
16), (12 + 7

16 + 1
16 ,

1
2 + 9

16 + 15
16)

n = 15 (13 + 1
5 + 7

15 ,
2
3 + 4

5 + 8
15), (13 + 2

5 + 4
15 ,

2
3 + 3

5 + 11
15) (15 + 2

3 + 2
15 ,

4
5 + 1

3 + 13
15)

(35 + 1
3 + 1

15 ,
2
5 + 2

3 + 14
15)

n = 10 (12 + 1
2 + 2

5 + 3
5), (25 + 3

10 + 3
10 ,

3
5 + 7

10 + 7
10) ( 1

10 + 3
10 + 3

5 ,
9
10 + 7

10 + 2
5)

( 1
10 + 7

10 + 1
5 ,

9
10 + 3

10 + 4
5) ( 1

10 + 1
10 + 4

5 ,
9
10 + 9

10 + 1
5)

n = 9 (19 + 4
9 + 4

9 ,
8
9 + 5

9 + 5
9), (19 + 1

9 + 7
9 ,

8
9 + 8

9 + 2
9) (29 + 2

9 + 5
9 ,

7
9 + 7

9 + 4
9)

n = 8 (12 + 1
2 + 1

8 + 7
8), (12 + 1

2 + 3
8 + 5

8)

n = 6 (12 + 1
2 + 1

2 + 1
3 + 1

6 ,
1
2 + 1

2 + 1
2 + 2

3 + 5
6), (16 + 1

6 + 1
3 + 1

3 ,
5
6 + 5

6 + 2
3 + 2

3), (56 + 1
6 + 2

3 + 1
3)

(16 + 1
6 + 1

6 + 1
2 ,

5
6 + 5

6 + 5
6 + 1

2), (13 + 1
3 + 1

3 + 1
2 + 1

2 ,
2
3 + 2

3 + 2
3 + 1

2 + 1
2)

n = 5 (15 + 1
5 + 1

5 + 2
5 ,

4
5 + 4

5 + 4
5 + 1

5), (25 + 2
5 + 2

5 + 4
5 ,

3
5 + 3

5 + 3
5 + 1

5)

(25 + 2
5 + 3

5 + 3
5)), (45 + 4

5 + 1
5 + 1

5)

n = 4 (14 + 1
2 + 1

2 + 1
2 + 1

2 + 3
4), (14 + 1

4 + 1
4 + 1

2 + 3
4 ,

3
4 + 3

4 + 3
4 + 1

2 + 1
4)

n = 3 (13 + 1
3 + 1

3 + 1
3 + 1

3 + 1
3 ,

2
3 + 2

3 + 2
3 + 2

3 + 2
3 + 2

3), (23 + 2
3 + 2

3 + 1
3 + 1

3 + 1
3)

n = 2 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2

g
′

= 1, n = 6 1
2 + 1

2

g
′

= 1, n = 4 1
4 + 3

4

g
′

= 1, n = 3 (13 + 1
3 + 1

3 ,
2
3 + 2

3 + 2
3)

g
′

= 1, n = 2 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2

g
′

= 2, n = 3 Unramified covering

g
′

= 2, n = 2 1
2 + 1

2

Table 5: The periodic maps for genus g = 4.
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Order Data

n = 22 (12 + 1
11 + 9

22 ,
1
2 + 10

11 + 13
22), (12 + 2

11 + 7
22 ,

1
2 + 9

11 + 15
22) (12 + 3

11 + 5
22 ,

1
2 + 8

11 + 17
22)

(12 + 4
11 + 3

22 ,
1
2 + 7

11 + 19
22), (12 + 5

11 + 1
22 ,

1
2 + 6

11 + 21
22)

n = 20 (12 + 1
20 + 9

20 ,
1
2 + 11

20 + 19
20), (12 + 3

20 + 7
20 ,

1
2 + 17

20 + 13
20)

n = 15 (13 + 2
15 + 8

15 ,
2
3 + 13

15 + 7
15), (23 + 1

15 + 4
15 ,

1
3 + 14

15 + 11
15)

n = 12 (16 + 5
12 + 5

12 ,
5
6 + 7

12 + 7
12), ( 1

12 + 1
12 + 5

6 ,
11
12 + 11

12 + 1
6)

n = 11 ( 1
11 + 1

11 + 9
11 ,

10
11 + 10

11 + 2
11), ( 1

11 + 2
11 + 8

11 ,
10
11 + 9

11 + 3
11) ( 1

11 + 3
11 + 7

11 ,
10
11 + 8

11 + 4
11)

( 1
11 + 4

11 + 6
11 ,

10
11 + 7

11 + 5
11), ( 1

11 + 5
11 + 5

11 ,
10
11 + 6

11 + 6
11) ( 2

11 + 2
11 + 7

11 ,
9
11 + 9

11 + 4
11)

( 2
11 + 4

11 + 5
11 ,

9
11 + 7

11 + 6
11), ( 3

11 + 3
11 + 5

11 ,
8
11 + 8

11 + 6
11) ( 2

11 + 3
11 + 6

11 ,
9
11 + 8

11 + 5
11)

( 3
11 + 4

11 + 4
11 ,

8
11 + 7

11 + 7
11)

n = 10 (12 + 1
2 + 1

10 + 9
10), (12 + 1

2 + 3
10 + 7

10)

n = 8 (18 + 1
8 + 1

2 + 1
4 ,

7
8 + 7

8 + 1
2 + 3

4), (12 + 5
8 + 1

8 + 3
4 ,

1
2 + 3

8 + 7
8 + 1

4)

(12 + 3
8 + 3

8 + 3
4 ,

1
2 + 5

8 + 5
8 + 1

4)

n = 6 (16 + 1
3 + 1

3 + 2
3 + 1

2 ,
5
6 + 2

3 + 2
3 + 1

3 + 1
2), (16 + 1

6 + 1
2 + 1

2 + 2
3 ,

5
6 + 5

6 + 1
2 + 1

2 + 1
3)

(13 + 2
3 + 1

2 + 1
2 + 1

2 + 1
2), (16 + 1

6 + 5
6 + 5

6)

n = 4 (14 + 1
4 + 1

4 + 1
4 + 1

2 + 1
2 ,

3
4 + 3

4 + 3
4 + 3

4 + 1
2 + 1

2), (14 + 1
4 + 1

2 + 1
2 + 3

4 + 3
4)

(14 + 1
4 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 ,
3
4 + 3

4 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2)

n = 3 (13 + 1
3 + 1

3 + 1
3 + 1

3 + 2
3 + 2

3 ,
2
3 + 2

3 + 2
3 + 2

3 + 2
3 + 1

3 + 1
3)

n = 2 (12)12

g
′

= 1, n = 8 1
2 + 1

2

g
′

= 1, n = 6 1
3 + 2

3

g
′

= 1, n = 5 1
5 + 4

5

g
′

= 1, n = 4 (14 + 1
4 + 1

2 ,
3
4 + 3

4 + 1
2), (12 + 1

2 + 1
2 + 1

2)

g
′

= 1, n = 3 1
3 + 2

3 + 1
3 + 2

3

g
′

= 1, n = 2 (12)8

g
′

= 2, n = 4 Unramified covering

g
′

= 2, n = 2 (12)4

g
′

= 3, n = 2 Unramified covering

Table 6: The periodic maps for genus g = 5.
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1
2

+ 4
9

+ 1
18

1

4

(A1, A8)

1
2

+ 1
16

+ 9
16

1

3

(A1, D9)

3
5

+ 1
15
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4

1
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5 1 2

1

3

1
10

+ 1
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+ 4
5

1 1
5

1
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+ 4
9

+ 4
9

1

4, 3, 2, 11, 2, 3, 4

2
9

+ 2
9

+ 5
9

1

22

1
5

+ 1
5

+ 1
5

+ 2
5

1

11, 2

1

4

1 3, 2, 1

2

(
10
3
, 7
3
, 5
3
, 4
3

)

(
5
2
, 7
4
, 6
4
, 5
4

)

(A1, A9)

D2(SU(9))

1
9

+ 1
9

+ 7
9 1 1

1

4
(A1, D10)

2

(
3, 8

3
, 5
3
, 4
3

)

1 (
2, 7

2
, 5
2
, 3
2

)

Figure 35: Rank 4 SCFTs and periodic map. Left: the data for periodic map; Middle:

3d mirror from dual graph; Right: the name for known theories or the scaling dimensions.
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1
2

+ 5
11

+ 1
22

1

5

(A1, A10)

1
2

+ 1
20

+ 9
20

1

4

(A1, D11)

2
3

+ 1
15

+ 4
15

1

3

(J4
3 , S)

1

2

1

3

1
12

+ 1
12

+ 5
6 1 1

6
(A1, A11)

1
11

+ 1
11

+ 9
11 1 1

5
(A1, A11)

1

1
11

+ 2
11

+ 8
11 1 2

2

1

3
11
4
, 10

4
, 9
4
, 7

4
, 6
4

1
11

+ 3
11

+ 7
11

1 3

3

2

2

1

1
11
3
, 8
3
, 7
3
, 5

3
, 4
3

1
11

+ 4
11

+ 6
11

1
2

1
1

3

1 11
5
, 9
5
, 8
5
, 7

5
, 6
5

1
11

+ 5
11

+ 5
11

1

5, 4, 3, 2, 11, 2, 3, 4, 5

1

D2(SU(11))

1
8

+ 1
8

+ 1
4

+ 1
2

1

12

8
3
, 6
3
, 5
3
, 4

3
, 4
3

Figure 36: Rank 5 SCFTs and periodic maps. Left: the data for periodic map; Middle:

3d mirror from dual graph; Right: the name for known theories or the scaling dimensions.
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