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Abstract: 3d mirrors for all 4d N = 2 Argyres-Douglas (AD) theories engineered using

6d (2, 0) theory are found. The basic steps are: 1): Find a punctured sphere representation

for the AD theories (this is achieved in our previous studies of S duality); 2): Attach a 3d

theory for each puncture; 3): Glue together the 3d theory for each puncture. We found

the 3d mirror quiver gauge theory for the AD theories engineered using 6d A and D type

theories. These 3d mirrors are useful for studying the properties of original 4d theory such

as Higgs branch, S-duality, etc; We also construct many new 3d N = 4 SCFTs.
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1 Introduction

Three dimensional (3d) N = 4 SCFT has very interesting mirror symmetry properties [1],

and there are nontrivial maps between physical quantities of two mirror theories A and B;

For example, the Coulomb branch of theory A is identified with the Higgs branch of theory

B, and vice versa 1. This mirror symmetry is quite useful as the physical properties are

easier to compute in one theory than the other one.

The mirror pairs studied in [1] have purely 3d description: theories A and B could arise

from the IR limit of purely 3d theories. Another way of getting 3d N = 4 SCFT is to start

with a higher dimensional theory with eight supercharges and study its compactification

down to 3d. For example, if a four dimensional (4d) N = 2 superconformal field theory

(SCFT) is compactified on a circle, one can get three dimensional (3d) N = 4 SCFT [2] in

the IR limit, which we call it theory A. It would then be interesting to find the 3d mirror

theory B. If theory B has a simpler description, i.e. it is given by the IR limit of a 3d

1The moduli space of 3dN = 4 SCFT could have two different branches depending on the transformation

properties under the SU(2)1×SU(2)2 R symmetry. The name “Coulomb” branch comes from the fact that

the theory could be given as the IR limit of a quiver gauge theory and this branch is identified with the

limit of the Coulomb branch of the quiver gauge theory; Similar meaning is applied to the name “Higgs”

branch.
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quiver gauge theory, then B is very useful to learn interesting properties of theory A (and

original 4d theory) which is hard to obtain through other methods. For example, one can

find the Higgs branch of the original 4d theory by studying the Coulomb branch of theory

B.

In general, there is no systematic way to find 3d mirror pairs. Type IIB Brane con-

struction is powerful in finding mirror for 3d linear (or cyclic) quivers [3–6]. The mirror

theory for 3d abelian gauge theories was studied in [7]. One can also find mirror pairs

by studying circle compactification of 4d N = 2 class S theories, where theory B is given

by the IR limit of star-shaped quiver [8]. The mirror for circle compactification of some

4d Argyes-Douglas (AD) theories are found in [9, 10] (see [11] for related mathematical

study). These 3d mirrors are important tools to study properties of 4d theory, i.e. the

Higgs branch of 4d theory [12] and the S duality property [13].

The 3d mirrors of most AD theories found in [10, 14, 15] are not found 2. The purpose

of this paper is to fill this gap and find the 3d mirror for all the AD theories constructed

from 6d (2, 0) theories. The punctured Riemann surface construction [21] for class S theory

is very useful to find its 3d mirror [8]: one associates a quiver tail for each puncture and

the full mirror quiver is derived by gluing these quiver tails. The most important discovery

of this paper is that similar strategy works for all the other AD theories, and the crucial

ingredient is the punctured sphere representation used in studying S duality [22, 23]. Given

the punctured sphere representation of AD theories, one associates a quiver tail for each

puncture and the mirror quiver B is constructed by gluing these quiver tails! We summarize

the detailed strategy of finding 3d mirror for AD theories 3:

1. Find a punctured Riemann sphere representation of AD theory [22, 23]. There are

typically three kinds of punctures: black, blue, and red. Each puncture has a label,

i.e. a Young Tableaux for A type, see section 2 for more details. See figure. 1 for an

example 4.

2. Attach a quiver tail for each puncture. The quiver tail of red and black puncture

is quite similar to that of [8], which is often a linear quiver. The quiver tail for the

black puncture is more subtle: the adjoint matters are needed. See figure. 1.

3. Glue above quiver tails together. This is the most difficult part of the construction,

and the rule is found by using various predictions from 3d mirror: the match of Higgs

(Coulomb) branch of theory A and Coulomb (Higgs) branch of theory B, etc. See

the rule listed in figure. 2.

Several examples are listed in the figure. 3. The above strategy is similar to what is

used in finding 3d mirror for class S theories [8], and the stories presented here is much

more general and the case [8] can be regarded as a special case. If the AD theories are

constructed using 6d (2, 0) theory of A and D type, the 3d mirror has a quiver gauge theory

2The author proposed 3d mirror for (A1, A2) theory in [9], some other examples are found in [12], and

see [16] for discussion of the 3d mirror of (A1, A2N ) and (A1, D2N+1) theories. See also [17–20] for 3d mirror

of some AD theories.
3When we talk about 3d mirror for AD theories, we always mean the corresponding 3d N = 4 SCFT

derived by compactifying 4d AD theory on a circle.
4Notice that this is not the punctured sphere where one uses to engineer AD theory from 6d (2, 0) SCFT.
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Figure 1. 1): A 4d Argyres-Douglas theory engineered using 6d AN−1 (2, 0) theories can be

represented by a punctured sphere, and there are three types of punctures: blue, black, and red;

Here the black puncture is taken to be the simplest one (with Young Tableaux [1]), and blue and

red puncture are taken to be the maximal ones: the blue one has flavor symmetry U(n1) and the

red one has SU(N) flavor symmetry. There is also an extra label (k, n) on the punctured sphere.

2): The quiver tail for each type of puncture; and there is adjoint matter for black puncture. The

numeric numbers are related as N = na+ n1, with a the number of simple black punctures, so the

theory is specified by four numbers (a, n1, n, k).

description, and more generally the 3d mirror is constructed by gauging strongly coupled

3d SCFTs. It is quite satisfactory that there is a simple and uniform way of finding 3d

mirror for all 4d N = 2 theories constructed using 6d (2, 0) theories.

The 3d mirror of AD theory is quite useful in studying the properties of 4d AD theory:

a): it confirms the S duality conjectures of these theories [22, 23]: the S duality could be

found by decomposing the 3d mirror into various pieces corresponding to the mirror of AD

matter, see [13] for how to use 3d mirror to find S duality of AD theory; b): it predicts the

Higgs branch of 4d theories: the Coulomb branch of the mirror quiver can be computed and

they agree with the Higgs branch result of AD theories found in [24]. It also has interesting

applications for the study of 3d N = 4 SCFTs: we find a large class of new interesting

theories and some of them can be useful to construct new Chern-Simons matter theory.

This paper is organized as follows: section 2 reviews the 4d AD theory constructed in

[10, 14, 15]; section 3 discusses the 3d mirror for general AD theories; section 4 discusses

some applications of 3d mirror of AD theories; finally, a conclusion is given in section 5.

– 3 –



1

1

1
n11

1n1 1 1

k
k

k

n n n

nk
nk

nk

l

l

l

1

1

l

l

l

nk

nk
nk

nn
n

k
kk

1 n1

1

1

1

Figure 2. Left: the gluing rule for the quiver tails listed in figure. 1: a) there are nk edges between

black tails; b): there are k edges between a blue tail and a black tail; c): We spray the flavor quiver

node for the red tail so the flavor symmetry is U(n1)×U(1)a, and there are n edges for every U(1)

flavor node; the U(n1) flavor node is glued with the blue tail, and U(1)s are glued with black tail.

Right: the final mirror quiver. l is given by (n−1)(k−1)
2 .

trivial(k, n)trivial

(An−1, Ak−1) theory

1

l = (n− 1)(k − 1)/2

full(k, n)trivial

Dn+k(SU(n)) theory

1

l = (n− 1)(k − 1)/2

1 2 n− 1
n

1)

2)

Figure 3. 1): The 3d mirror for (An−1, Ak−1) theory, here n, k is coprime ((n, k) = 1). 2): The

3d mirror for Dn+k(SU(n)) theory with (n, k) = 1 and k > 0, the 3d mirror for the case k < 0 is

given in section 3. In both examples, the black puncture is the simplest one with label [1].
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g = ADE
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Figure 4. A 4d Argyres-Douglas theory is constructed by putting a 6d (2, 0) theory of type g

on a sphere with one irregular singularity and one regular singularity. The irregular singularity is

labeled by Φ, see 2.1, and the regular singularity is labeled by f .

2 AD theories from 6d (2, 0) SCFT

2.1 Basic construction

We give a review for the construction of AD theory from 6d (2, 0) theory, see [25] (which I

take some parts from) for more details. One can engineer a large class of 4d N = 2 SCFTs

by putting a 6d (2, 0) theory of type j = ADE on a sphere with an irregular singularity and

a regular singularity [10, 14, 15, 21, 26], see figure. 4. The Coulomb branch is captured by

a Hitchin system with singular boundary conditions near the singularity. The Higgs field

of the Hitchin system near the irregular singularity takes the following form,

Φ =
T

z2+
k
b

+ . . . . (2.1)

Here T is determined by a positive principle grading of Lie algebra j [27], and is a regular

semi-simple element of j. k > −b and is an integer. Subsequent terms of the Higgs

field are chosen such that they are compatible with the leading order term (essentially the

grading determines the choice of these terms). We call them J (b)[k] type irregular puncture.

Theories constructed using only above irregular singularity can also be engineered using a

three dimensional singularity in type IIB string theory as summarized in table 1[28]. One

can add another regular singularity which is labeled by a nilpotent orbit f of j (We use

Nahm labels such that the trivial orbit corresponding to regular puncture with maximal

flavor symmetry). A detailed discussion about these defects can be found in [29]. So a

theory is specified by four labels < j, b, k, f >, here j denotes type of 6d (2, 0) SCFT, b, k

denotes irregular singularity, and f denotes regular singularity.

To get non-simply laced flavor groups, we need to consider the outer-automorphism

twist of ADE Lie algebra and its Langlands dual. A systematic study of these AD theories

was performed in [15]. Denoting the twisted Lie algebra of j as g∨ and its Langlands dual as

g, outer-automorphisms and twisted algebras of j are summarized in table 2. The irregular

singularity of regular semi-simple type is also classified as in table 3 with the following
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j b Singularity

AN−1 N x21 + x22 + xN3 + zk = 0

N − 1 x21 + x22 + xN3 + x3z
k = 0

DN 2N − 2 x21 + xN−12 + x2x
2
3 + zk = 0

N x21 + xN−12 + x2x
2
3 + zkx3 = 0

E6 12 x21 + x32 + x43 + zk = 0

9 x21 + x32 + x43 + zkx3 = 0

8 x21 + x32 + x43 + zkx2 = 0

E7 18 x21 + x32 + x2x
3
3 + zk = 0

14 x21 + x32 + x2x
3
3 + zkx3 = 0

E8 30 x21 + x32 + x53 + zk = 0

24 x21 + x32 + x53 + zkx3 = 0

20 x21 + x32 + x53 + zkx2 = 0

Table 1. Three-fold isolated quasi-homogenous singularities of cDV type corresponding to the

J (b)[k] irregular punctures of the regular-semisimple type in [14]. These 3d singularity is very

useful in extracting the Coulomb branch spectrum, see [28].

j A2N A2N−1 DN+1 E6 D4

Outer-automorphism o Z2 Z2 Z2 Z2 Z3

Invariant subalgebra g∨ BN CN BN F4 G2

Flavor symmetry g C
(1)
N BN C

(2)
N F4 G2

Table 2. Outer-automorphisms of simple Lie algebras j, its invariant subalgebra g∨ and flavor

symmetry g from the Langlands dual of g∨.

form,

Φ =
T t

z
2+

kt
bt

+ . . . (2.2)

Here T t is an element of Lie algebra g∨ or other parts of the decomposition of j under

outer automorphism. kt > −bt, and the novel thing is that kt take half-integer value or

in thirds (g = G2). We could again add a twisted regular puncture labeled by a nilpotent

orbit f of g. A theory is then labeled by following data < j, o, bt, kt, f >. Here j is the type

of 6d (2, 0) SCFT, o is the outer automorphism twist we use, bt, kt denotes the irregular

singularity, and f denotes regular singularity.

2.2 Two generalizations and geometric representation

It was found in [22] that one can find more SCFTs by using other kinds of irregular sin-

gularities which are different from those listed in last subsection. This class of theories are

necessary for studying S dualities of these theories. The generalizations are the following:
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j with twist bt SW geometry at SCFT point ∆[z]

A2N/Z2 2N + 1 x21 + x22 + x2N+1 + zk+
1
2 = 0 4N+2

4N+2k+3

2N x21 + x22 + x2N+1 + xzk = 0 2N
k+2N

A2N−1/Z2 2N − 1 x21 + x22 + x2N + xzk+
1
2 = 0 4N−2

4N+2k−1
2N x21 + x22 + x2N + zk = 0 2N

2N+k

DN+1/Z2 N + 1 x21 + xN2 + x2x
2
3 + x3z

k+ 1
2 = 0 2N+2

2k+2N+3

2N x21 + xN2 + x2x
2
3 + zk = 0 2N

k+2N

D4/Z3 4 x21 + x32 + x2x
2
3 + x3z

k± 1
3 = 0 12

12+3k±1
6 x21 + x32 + x2x

2
3 + zk = 0 6

6+k

E6/Z2 9 x21 + x32 + x43 + x3z
k+ 1

2 = 0 18
18+2k+1

12 x21 + x32 + x43 + zk = 0 12
12+k

8 x21 + x32 + x43 + x2z
k = 0 8

12+k

Table 3. SW geometry of twisted theories at the SCFT point. Here we also list the scaling

dimension of coordinate z. All k’s in this table are integer valued and the power of z coordinate in

singularity is equal to kt used in equation 2.2.

1. The irregular singularity takes the following block diagonal form

Φ =

[
Φ1 0

0 Φ2

]
=

[
T1
z 0

0 T2

z2+
k
n

]
+ . . . (2.3)

Here Φ1 has regular singularity, and Φ2 is an irregular singularity listed in last sub-

section. This type of singularity can be regarded as the combination of regular and

irregular singularity.

2. For the irregular singularity listed in the last subsection, if k and b are not co-prime, it

is possible to consider the degenerating case, i.e. some of the coefficients of the higher

order pole is set to be the same. For example, let’s consider j = A3, k = 6, b = 4. The

generic coefficients of Higgs field considered in last section take the from

Φ =


a1

(
1 0

0 −1

)
0

0 a2

(
1 0

0 −1

)
 1

z1+
6
4

+ . . . (2.4)

The leading order term has two different coefficients a1 and a2. For the degenerating

case, the leading order coefficients take the following form instead:

Φ =


a

(
1 0

0 −1

)
0

0 a

(
1 0

0 −1

)
 1

z1+
6
4

+ . . . (2.5)
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and here the leading order term has only one coefficient. If we’d like to get a confor-

mal field theory, it was shown in [22] that the irregular part should have the same

pattern of degeneracy. The first order part, on the other hand, could take arbitrary

degenerating form.

Given the generalizations of irregular singularities, it is possible to represent our theory

by an auxiliary punctured Riemann sphere (notice that this is an extra sphere), see figure.

5. Here we take j = AN−1 type as example, other cases are similar. The original sphere in

the (2, 0) construction involves an irregular singularity and a regular singularity. The basic

idea of finding an auxiliary sphere is to represent a single irregular singularity by several

punctures of an extra sphere. We use a red puncture to denote the regular singularity, a

blue puncture for the regular part inside the irregular singularity 3.6, and several black

punctures for the irregular blocks in irregular singularity. Each puncture has a Young

Tableaux with different size. The rule for assigning a Young Tableaux to a red and blue

puncture is the same as that found in [21], as they are both just regular singularities. For

the irregular singularity, they take the following general form

Φ =
1

z
2+np

nq

diag(a1jq, . . . , a1jq︸ ︷︷ ︸
n1

, . . . , . . . , asjq, . . . , asjq︸ ︷︷ ︸
ns

) + . . . (2.6)

Here jq is a standard diagonal matrix depending on integer q, and the detailed form is not

important here (see [10]). We represent this irregular singularity by s black punctures, and

each puncture has a size n1. The detailed form of the Young Tableaux at each puncture is

determined by the form of first order coefficients!

The above representation is similar to the Class S theory where there are only one

type of puncture (red puncture) [21]. Here we need three kinds of punctures, and there are

some further important differences:

1. There is only one red and one blue puncture (both of them could be trivial), and

arbitrary number of black puncture (there should be at least one nontrivial black

puncture).

2. One need an extra pair of co-prime integers (p, q) to indicate the theory type, this

pair gives the slope of the irregular part of the irregular singularity (kb = p
q ), see 2.1.

3. When (p, q) = (k, 1), k > 0, the blue puncture and black puncture are of the same

type. When (p, q) = (0, 1), all three punctures are of the same type, this actually

represents class S theory engineered using only regular punctures on sphere [21].

4. The size of Young tableaux is related as follows

Yred = Yblue + q
∑
black

Yi (2.7)

The basic theory (called AD matter in [22]) is represented by a sphere with three punctures:

one red, one blue and one black puncture.

– 8 –



(p, q)

j

Figure 5. A configuration shown in figure. 4 is now represented by a different punctured sphere:

here the red puncture represents the regular singularity, the blue puncture represents the regular

part in irregular singularity, and the black punctures represent the irregular blocks inside irregular

singularity.

The weakly coupled gauge theory description of general AD theory is found by degen-

erating above punctured Riemann surface into three punctured spheres [22, 23]: the rule is

that the blue puncture of one three sphere is connected with the red puncture of the other

sphere, and each degenerating three sphere should be the allowed type: in the general case,

it should have one blue, one red and one black puncture.
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Figure 6. The basic feature of 3d mirror symmetry: the Higgs branch of theory A is identified

with the Coulomb branch of theory B, and vice versa.

3 3d mirror for AD theories

Let’s now put 4d N = 2 theory discussed in last section on a circle with finite radius. The

resulting low energy theory on the Coulomb branch can be described by the moduli space of

the Hitchin systemMHit [30]. The Hitchin moduli space has a Hitchin map π :MHit → B

[31], where the generic fibre of this map is an open set inside an abelian variety (the abelian

variety has half dimension of the Hitchin moduli space) [31]. The Coulomb branch of both

4d and 3d theory can be described by Hitchin fiberation. For four dimensional theory, only

the base B describes the Coulomb branch moduli, and the low energy photon coupling is

given by the complex structure of the abelian variety. For three dimensional theory, the

fibre is also regarded as the vacua moduli (the reason is that in three dimension, one can

perform duality on abelian gauge fields to get scalar fields which parameterize the fibre).

The Higgs branch of 3d theory does not receive quantum corrections and is the same as

the Higgs branch of the parent 4d theory.

We are interested in the most singular point of MHit which should be a three dimen-

sional N = 4 SCFT, and we call it theory A. One might get the properties of this 3d

SCFT by taking the radius of the compactified circle to be zero, and flow to the deep IR.

Conjecturally, the Coulomb branch of this 3d SCFT A is given by the dense open setM∗Hit

ofMHit. We would like to find a 3d SCFT B which is a mirror theory of theory A. In some

cases, the mirror SCFT can be described as the IR SCFT of a quiver gauge theory (We

want to emphasize that this is not always possible); If this is the case, the Higgs branch

of theory B has a classical description as the hyperkahler quotient, which is often called

Nakajima quiver variety [32]. In this case we have following useful map:

M∗Hit = quiver variety (3.1)

Mathematically, some examples of above equivalence were shown in [33]. Physically, the

results in [33] is interpreted as 3d mirror symmetry [8, 10].

Let’s recall some basic maps of 3d mirror symmetry [1]:

1. The Coulomb branch of theory A is identified with Higgs branch of theory B, and vice

verse. The simple checks are: the dimension should match, and the flavor symmetries

should also match.

– 10 –



(0, 1)

glue

Figure 7. Left: a 4d N = 2 theory is engineered by putting AN−1 (2, 0) theory on a three

punctured sphere. Middle: We associate a linear quiver tail for each red puncture, whose form

is given in 3.2, and the flavor node of the quiver tail is U(N). Right: the quiver tails are glued

together by gauging diagonally the flavor nodes of the quiver tails, and this gives the 3d mirror for

the left theory.

2. The mass deformation which would deform the Coulomb branch (usually lift the Higgs

branch), mapped to the FI parameters on the Higgs branch of the mirror theory.

The map is shown schematically in figure. 6. Notice that it is possible that the theory A has

just one type of moduli space, and it is still possible to find its mirror theory. An example

is the IR SCFT of U(1) gauge theory coupled with a single hypermultiplet, which has only

Coulomb branch but no Higgs branch; its mirror theory is just a free hypermultiplet, which

has only a Higgs branch but no Coulomb branch.

The 3d mirror for class S theory is successfully found in [8] (This corresponds to (0, 1)

class of theories discussed in last section). The idea is the following (here we take j = AN−1
as examples). Recall that the geometric representation for this type of theories has only

regular singularities and so there are only red punctures (see 2.2); and the 3d mirror is

found as follows:

• For each puncture with label Y , one associates a linear quiver tail whose structure is

determined by Y . There is a U(N) flavor node at the end. For example, if the red

puncture has the label [h1, h2, . . . , hs], then the quiver tail would be

U(N) − U(r1)− U(r2)− . . .− U(rs−1) (3.2)

with ri =
∑j=s

j=i+1 hj .

• The mirror is formed by gauging the diagonal U(N) of the flavor quiver nodes of

these quiver tails, and we get a star-shaped quiver.

See figure. 7 for an example.

The 3d mirror for (k, 1) class of theories is found in [10]. The 3d mirror is found as

follows: first attaching a complicated quiver for the irregular singularity, and a quiver tail

for the regular singularity; second, the 3d mirror is found by gluing the above two quivers

– 11 –



(k, 1)

glue

n1 n2

n1 n2

n1 n2

k

Figure 8. Left: a three punctured sphere of (k, 1) type theories. Middle: Attach a quiver tail for

each puncture. There is a flavor U(N) node for the quiver tail of red puncture and we decompose

it into U(n1) × U(n2); notice that the flavor node U(ni) for the quiver tail of the black puncture

is gauged. Right: the gluing rule is following: a): there are k edges between the end nodes of the

black punctures; b): the U(N) flavor node of the red puncture is sprayed as U(n1) × U(n2), and

we identify the flavor nodes with the end nodes of black punctures.

together. The 6d construction shown in figure. 4 is very useful in extracting the 3d mirror.

One might try to generalize the above construction to other AD theories: assigning a

quiver for the general irregular singularity and regular singularity, and then glue the quiver

together. However, we find it quite difficult to do so as there is no simple rule for assigning

a quiver for an arbitrary irregular singularity. To overcome the difficulty of assigning a

quiver for general irregular singularity, we found that re-interpreting the result in [10] by

using the geometric representation of figure. 5 is very illumilating. This class of theory

(type (k, 1)) is represented by a punctured sphere with two kinds of punctures: red one

and black one. We reinterpret the rule of finding its 3d mirror as follows:

• One has a quiver tail for a red puncture, and the rule is the same as 3.2. One has a

quiver tail for black puncture according to its Young Tableaux. The rule is also the

same as that listed in 3.2, and the difference is that the flavor quiver node in 3.2 is

also gauged: for instance, if a black puncture has label [1], the associated quiver is a

gauged U(1) node.

• The gluing rule is following: there are k edges between the end nodes of quiver tails

of black puncture. For the red puncture, we choose following subgroup of its flavor

quiver node
∏

i U(ni) where ni is the size of Young Tableaux of ith black puncture;

Here we have
∑
ni = N . and the gluing is simply identifying these flavor nodes with

the end quiver nodes of black punctures.

• The gluing rule is consistent due to the constraint shown in equation 2.7 5.

An example is shown in figure. 8.

5Since there is no blue puncture and q = 1 in formula 2.7, we have N =
∑

ni, here N is the size of the

Young Tableaux of red puncture, and ni is the size of the Young Tableaux of the ith black puncture.
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The construction of 3d mirror of above two class of theories are quite suggestive, since

it shows the following pattern:

1. Find the quiver tails for the red, blue, and black punctures.

2. The 3d mirror is formed by finding appropriate gluing rules, which would glue to-

gether the quiver tails of each puncture.

Once we realize the above patterns, it is quite natural to try to implement above strategy

for other type of AD theories. Very amusingly, the above ideas work perfectly for all the

AD theories constructed using 6d (2, 0) theories.

3.1 A type theories

Let’s now try to find the 3d mirror for general A type AD theory. These theories are

represented by a punctured sphere with three kinds of punctures: red, black and blue.

Each puncture has a Young Tableaux and there is also an extra label (k, n) for this class

of theories.

To find its 3d mirror, we need to find the quiver tail for each puncture, and then find

a gluing rule. The quiver tail for the red puncture is the one given in formula 3.2. The

quiver tail for the blue puncture is the same as the tail for the red puncture with only

one difference: the end node is gauged. The extra gauging can be understood as follows:

the flavor symmetry for the blue puncture is actually U(m) while that of red puncture

is SU(N). Since the number of U(1) factors (this gives the number of FI parameter) of

the mirror should be the same the number of mass parameters of the original theory, the

quiver tail for the blue puncture should have an extra gauged U(1), which explains the fact

that the end node of blue puncture should be gauged. To match with Coulomb branch

contribution of the blue puncture, we also need to add extra hypermultiplets on the U(m)

node, and the number is given by

k
∑

ni (3.3)

Here ni is the size of the Young Tableaux of the ith black puncture.

So what is the quiver tail for the black puncture? To answer this question, we consider

the simplest AD theory which is represented by a sphere with just one black puncture

whose Young Tableaux is [1] (the blue and red puncture are trivial), and the type of the

theory is labeled by (k, n). This theory is engineered by a six dimensional An−1 (2, 0)

theory on a sphere with only an irregular singularity of the type:

Φ =
T

z2+
k
n

+ . . . (3.4)

Here T is regular semi-simple, and here we assume n ≥ 0, and k, n are co-prime. This class

of theory is also called (An−1, Ak−1) theory [34]. This theory has no Higgs branch, and the

Coulomb branch dimension is equal to (k−1)(n−1)
2 [10]. If there is indeed a mirror quiver

for this theory, it must have just a single U(1) quiver node 6 . Now to match the Coulomb

6If there is no fundamental matter, the overall U(1) of the quiver gauge theory is decoupled, so if the

quiver has only one quiver node, its Coulomb branch is empty.
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branch dimension of the original theory, we must add extra l = (k−1)(n−1)
2 adjoint on the

U(1) quiver node, see figure. 9. We now propose that the quiver shown in figure. 9 is

indeed the 3d mirror for the black puncture with Young Tableaux [1]. A simple check is

that it gives the correct answer for n = 1. More checks would be given later.

[1]

(k, n)

1

l =
(n−1)(k−1)

2

Figure 9. The quiver tail for a black puncture with label [1]. The punctured sphere has the label

(k, n).

For the general black puncture, we can form a quiver tail (the end node is gauged)

according to its Young Tableaux, and the only difference is to add an extra l = (n−1)(k−1)
2

adjoints on the end node. See figure. 10. With this proposal, we now have the quiver tails

for all kinds of punctures, see figure. 10.

(k, n)

l =
(n−1)(k−1)

2

Figure 10. Quiver tails for three kinds of punctures of type (k, n) theories. The flavor node of the

red tail is N , and the flavor tail of the blue tail is k
∑
ni with ni the size of Young Tableaux of the

ith black puncture. We also have the relation N = m+ n
∑
ni.

The next question is the gluing rule. Let’s denote the rank of the end node of the red

tail as N , that of the blue tail as m, and the ranks of the black tails as n1, . . . , ns. There

is a constraint on these numbers (see formula 2.7):

N = m+ n

s∑
i=1

ns (3.5)

Now let’s state the gluing rule:

• The Higgs branch dimension of the mirror should be equal to the Coulomb branch

of the original theory, which is computed in [10]. By computing some examples, we
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find following rules: 1) there are nk edges between end nodes of black tails; 2) there

are k edges between end nodes of blue and black nodes. See figure. 11.

• We decompose the flavor node of the red puncture as U(N) = U(m)×U(n1)× . . .×
U(ns), and the number of edges for black flavor symmetries are n. The gluing rule

is to simply gauge these nodes with the end nodes of black and blue tails.

l l

l

nk

k

n
n

A

B

C

Figure 11. The gluing rule for (k, n) type theory: a): There are nk edges between black quiver

tails; b): There are k edges between black and blue tails. c): The flavor node of the red tail is

decomposed as U(m)× U(n1)× . . .× U(ns), and the multiplicity of the black flavor node is n.

Using above rules ,we can find 3d mirror for several interesting class of theories, see

figure. 12.

1 1nk

nk nk

l l

l

1

nk

nk nk

l l

l

n1

n2

n3

Figure 12. Here l = (n−1)(k−1)
2 . Left: The 4d theory is represented by a sphere with three black

punctures with type [1], and one trivial red puncture, and one trivial blue puncture. This theory

is actually (A3n−1, A3k−1) theory, and the 3d mirror was found here. Right: The original theory is

represented by a sphere with three generic black punctures of type (k, n), and here the 3d mirror

is given.
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A A

A
(k, n)

N − 1n1

1

l = (n−1)(k−1)
2

k n

11

Figure 13. This theory has flavor symmetry SU(N)×U(n1), and is represented by a sphere with

one maximal blue puncture (Y = [1n1 ]), one maximal red puncture (Y = [1N ]), and one simple

black puncture (Y = [1]). The 3d mirror is shown on the right. Here N = n1 + n.

As an important example, we found the 3d mirror for AD matter found in [22]. This

class of theory is engineered using the irregular singularity (here g = AN−1):

Φ =

[
Φ1 0

0 Φ2

]
=

[
T1
z 0

0 T2

z2+
k
n

]
+ . . . (3.6)

Here T1 has size n1, and there is a maximal regular singularity f , see figure. 4. This theory

has flavor symmetry U(n1)×SU(N). It is represented by a sphere with one maximal blue

puncture, one maximal red puncture, and one black puncture of type [1]. This is a type

(k, n) theory. According to our proposal, its 3d mirror is found in figure. 13. Let’s now

make several checks for the mirror quiver shown in figure. 13:

1. The Coulomb branch dimension of original 4d theory is (see page 28 of [35]):

nC =
(n+ k − 1)(2n1 + n+ 1)

4
(3.7)

This equals to the Higgs branch dimension of the quiver shown in figure. 13. We

assume the mirror quiver has a pure Higgs branch, and its dimension is given by the

the difference of hypermultiplets and vectormultiplets. There is no flavor symmetry

on the Coulomb branch of original theory, and so there is no flavor symmetry on the

Higgs branch of the mirror theory. This implies that the mirror quiver should have

no flavor quiver node, which is the case for the quiver shown in figure. 13.

2. The Higgs branch of 4d AD matter theory is in general a mixed branch, i.e. the

generic point of the Higgs branch consists of free hypermultiplets and an interacting

AD theory which has no Higgs branch [24]. The Higgs branch part are described by

following variety:

Oq ∩ Sf ; (3.8)
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Here Oq is the nilpotent orbit with partition [n+ k, . . . , n+ k︸ ︷︷ ︸
n1

, n], and f = [(n+ k −

1)n1 , 1n+n1 ]. The dimension of Higgs branch is simply the difference of the dimension

of Oq and Sf , and direct computation gives us that

nH = n21 + nn1 +
n2

2
− n

2
. (3.9)

The interacting theory part is given by (An−1, Ak−1) theory, and this theory has only

a Coulomb branch with dimension (n−1)(k−1)
2 .

We now show that the mirror theory of the quiver shown in figure. 13 recovers the

mixed branch structure found in [24]. Firstly, one can check that the Coulomb branch

dimension of the mirror shown in figure. 13 is the same as the number in 3.9. The

mirror theory does not have a pure Coulomb branch, as the adjoint matter on U(1)

quiver node decouples; One can give the vevs to these matter at the generic point of

Coulomb branch, and the dimension of the Higgs factor is just (n−1)(k−1)
2 , which is

the same as the Coulomb factor of the mixed branch of original 4d theory.

3. In fact, the above proposal can be checked using the known information of Higgs

branch of original 4d AD theory when k = 1. The idea is following: for the 4d

theory, the Higgs branch is pure and is given by the following variety

Oq ∩ Sf (3.10)

One can find a 3d quiver whose Coulomb branch is the same as above variety using

the brane construction [3, 36] (See [35] for the detailed computation of this example),

and the result agrees with the mirror shown in figure. 13.

Case k < 0: The above proposal for the mirror quiver is only good for k ≥ 0. To

find the mirror for theories with −n < k < 0, we look at the AD matter again. The Higgs

factor of the mixed branch of original 4d theory is given by Oq ∩ Sf [35, 37]. Here

Oq = [n+ k, . . . , n+ k︸ ︷︷ ︸
n1

, n+ k, . . . , n+ k︸ ︷︷ ︸
a

, b], f = [(n+ k − 1)n1 , 1n+n1 ]; (3.11)

and we have a(n+ k) + b = n with b < (n+ k). Notice that a, b is uniquely determined by

the pair of numbers (n, k).

To find the 3d mirror, we use following strategy: firstly, we use brane construction of

[3, 36] to construct a quiver so that its Coulomb branch is given by Oq ∩ Sf , see formula

3.11, and the quiver is given in figure. 14 (without the adjoint matter). Then we look

at the Higgs branch of the mirror quiver, whose dimension should match the Coulomb

branch dimension, see formula. 3.7. Similarly to our previous case, we conjecture that this

requires the addition of extra adjoint matter on U(1) node, and the number can be easily

computed. The mirror then takes the form shown in figure. 14 7.

7For n + k = 1, we have z = 0, but there are still a quiver nodes with rank n1 on the blue tail.
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1

xn1 + az

1

b

(b−1)(n+k−b−1)
2

2
n1

n + k − b

1

2

n1 + z

n1 + (a− 1)z

Figure 14. The 3d mirror for AD matter of type (k, n) with k < 0. The flavor symmetry

of AD matter is U(n1) × SU(n + n1). We have a(n + k) + b = n, with b < (n + k). Here

x = n+ n1 − (a+ 1), z = n+ k − 1.

Example: Let’s take n+ k = 2, and the corresponding 4d theory has enhanced flavor

symmetry SU(n + 2n1), and is actually equivalent to D2(SU(n + 2n1) theory (This can

be verified by comparing the Coulomb branch spectrum). The mirror of this theory was

found in [38]. Now look at our quiver in figure. 14, we have b = 1, a = n−1
2

8, and

z = 1, x = n−1
2 + n1. Using these numbers, the quiver in figure. 14 is the same as that

given in [38].

For general case, it is now easy to get the rules for finding the 3d mirror (assuming

there is m simplest black punctures, a maximal blue and red puncture): a) The quiver tail

for red and blue puncture are the same as the bottom part of quiver. 14 (removing the

U(1) quiver node with adjoint matter), with the red and blue quiver nodes as the maximal

ones, the parameters are changed as follows: x = n1 + mn − (a + 1), z = m(n + k) − 1;

b): For each black puncture, there is a quiver tail, and the number of adjoints are modified

as (b−1)(n+k−b−1)
2 . Finally, there are b edges between black and red nodes, and n + k − b

edges between blue and black nodes, and b(n+ k − b) edges between black nodes.

Degenerating case: Up to this point, we have only considered the simplest black

puncture. We now verify our proposal for the degenerating case. The example is repre-

sented by a (3, 2) type sphere with one trivial red puncture, and one trivial blue, and a

black puncture of type [1, 1]. This theory is studied in [22] (see section 5 of that paper and

it is claimed that this is the rank two H0 theory), and its Coulomb branch has dimension

2. The 3d mirror for the theory is shown in figure. 15 and its Higgs branch indeed has

dimension 2.

8n, k coprime, and n + k = 2 implies that n,k are both odd integers.
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(3,2)

[1, 1]

12

Figure 15. Left: a type (3, 2) theory with one trivial red, one trivial blue and one black puncture

with Young Tableaux [1, 1]; Right: the 3d mirror for the theory on the left.

3.2 DN type theory

Let’s now discuss the 3d mirror for AD theories engineered using 6d D type (2, 0) SCFTs.

These theories are called DN type theories. For these theories, the flavor symmetry could

be of A,B,C,D type. Here we list the quiver tail whose Higgs branch has a flavor symmetry

G = ABCD, see figure. 16. The corresponding 3d SCFT is called T (G) theory [36]. The

flavor symmetry group on the Coulomb branch is GL, which is the Langlands dual group

of G. These quiver tails would be useful for our studies later.

U(1)

SO(2)

SO(2)

O(1)

U(2) U(3)

Sp(2)

Sp(2)

Sp(2)

SO(4)

O(3)

SO(4)

Sp(2n− 2) SO(2n)

SO(2n + 1)

Sp(2n)

Sp(2n)

SO(2n)

U(n− 1) SU(n)

Figure 16. The quiver tails for 3d T (G) theory, here G is given by the group staying at the last

square node. This class of theories has a G type flavor symmetry on Higgs branch, and a GL (the

Langlands dual group of G) flavor symmetry on Coulomb branch.

The T (SU(N)) theory and T (SO(2N)) type quiver tails are self mirror: the mirror

quiver is the same as the original quiver. While T (SO(2N + 1)) type and T (Sp(2N)) type

tails are mirror to each other. There is one more interesting self-dual mirror tail which

would be also useful to us later, see figure. 17, and we call it T (Sp
′
(2N)) theory.

O(1) Sp(2) O(3) Sp(2n)SO(2n− 1)

Figure 17. A quiver tail whose Higgs branch has flavor symmetry Sp(2n), and its Coulomb branch

also has flavor symmetry Sp(2n).

Let’s now discuss D type AD theories, which is constructed using 6dD type (2, 0) SCFT
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on a sphere with one irregular and one regular puncture. We also need to consider theories

constructed using outer automorphism [15]. They can be represented by a punctured sphere

with three kinds of punctures: a red, a blue, and a black puncture; and there is a Young

Tableaux for each puncture 9. We do have an extra label (p, q) for the punctured sphere.

There are some differences with A type theories though. Firstly, the blue and red punctures

can be either D or C type. If the red puncture is of the D type, it is called untwisted

theory; and if the red puncture is of the C type, it is called twisted theory. Secondly, they

are two class of theories:

Class I: The first class of theories is labeled by a pair of co-prime integers (k, n), here

n is even. There are some new features of this class of theories:

1. The red and blue puncture is of the same (opposite) type if there are even (odd)

number of black punctures.

2. The black puncture with Young Tableaux [1] does not carry flavor symmetry.

Again, the size of Young Tableaux of these punctures are related as follows:

Yred = Yblue + n
∑
black

Yi (3.12)

Here for a C type puncture, Y shifts by two: Y = Y
′
+2 (Y

′
the size of its Young Tableaux).

Class II: This class is labeled by a pair of integers (2k, 2n), here (k, n) is co-prime

and n is odd. The properties are:

1. The red and blue puncture is of the opposite (same) type if there are odd (even)

number of black punctures, notice that the rule is opposite to that of the (k, n) class.

2. Each black puncture of the type [1] carries a U(1) flavor symmetry.

Again, the size of Young Tableaux of these punctures are related as follows:

Yred = Yblue + 2n
∑
black

Yi (3.13)

Here for a C type puncture, Y shifts by two: Y = Y
′
+ 2 with Y

′
the size of its Young

Tableaux.

To find 3d mirror of these theories, we follow the same strategy that we use for A type

theories: We first assign a quiver tail for each puncture, and then find the gluing rules for

them. The basic ideas are the same as what we did for A type theories, but because of the

new features of D type theories, the details are a lot more complicated.

Let’s first consider 3d mirror for D type class I theories, which are labeled by a pair

of integer (k, n) with n even. The rules for assigning quiver tails to punctures are:

9A CN type puncture is labeled by a Young Tableaux [n1, . . . , nr] with
∑

ni = 2N , and even partition

appear odd times; A DN type puncture is labeled by a Young Tableaux [n1, . . . , nr] with
∑

ni = 2N , and

even partition appears even times.
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1. For each C type puncture, we assign a B type quiver tail (the end node has B type

flavor symmetry), see figure. 16. The reason is: C type maximal puncture carries

a Sp type flavor symmetry acting on Higgs branch, which should be mapped to the

Coulomb branch symmetry of the mirror quiver, which gives the B type quiver.

2. For each D type puncture, we assign a D type quiver tail (the end nod has D type

flavor symmetry).

3. For each A type puncture, we assign a A type quiver tail. In particular, for the simple

black puncture with label [1], the quiver is just a U(1) node with certain number of

adjoints which depend on k and n. The method of determining the number is the

same as the type A case: by matching the dimension of the moduli space.

The quiver tails for various punctures are shown in figure. 18.

SO(2N)

SO(n1 + 1)

l = n(k − 1)/4

D

C

A

SO(n1 + 2)D

SO(2N − 1)

SO(n1 + 1)

l = n(k + 1)/4

C

C

A

SO(n1)D

Figure 18. Left: Quiver tail for untwisted D type theories of type (k, n); Right: Quiver tail for

twisted D type theories of type (k, n).

For the blue tail, we need to add some fundamental hypers to the last gauged node so

that the Higgs branch of the quiver tail matches with the contribution of the blue puncture

to the Coulomb branch of 4d theory. The rule is following: a): for the D type blue puncture

whose quiver tail has an ending node SO(m), only a SO(m− 1) subgroup is gauged; b): if

there is an odd number of black punctures, the number of hypermultiplets on the ending

node is k
∑

ni−1
2 , here ni is the size of the black puncture; if there is an even number of

black punctures, the number of hypermultiplets are k
∑

ni−2
2 .

The next step is the gluing rule, which is a lot more complicated comparing with that

of type A theories. It is possible to guess the rules by following computations: a) The flavor

symmetry of the mirror quiver should math that of the original theory; b): The dimension

of Higgs (Coulomb) branch of the mirror should be the same as that of Coulomb (Higgs)

branch of the original theory 10. After some computations, we find:

10There are some subtle points: sometimes the naive computation from the mirror does not match with

that of the original theory.
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1. For the D type quiver whose end nodes are of the type SO(2n), only a SO(2n − 1)

subgroup is gauged.

2. There are (k−1)
2 edges between blue tail and black tail.

3. There are n
2 edges between red tail and black tail.

4. There is one edge between the red tail and blue tail. Here an edge represents a

half-hypermultiplet.

Using above rules, we find the 3d mirror for a AD matter studied in [35] (labeled

as class B in that paper). This theory has flavor symmetry Sp(n1) × SO(2N), and is

represented by a (k, n) type sphere: there is one red D type puncture, one blue C type

puncture, and one black puncture. The 3d mirror is shown in figure. 19. The basic numeric

relation between these integers is 2N = n+ n1 + 2, and so our theory is specified by three

integers (k, n, n1). One can make following checks for our mirror proposal:

1. The Coulomb branch dimension of original 4d theory is:

nC =
(n+ k − 1)(2n1 + n+ 1)

4
(3.14)

One can compute the Higgs branch dimension of the mirror quiver in figure. 19,

which agrees with above number.

2. The Higgs factor of the mixed branch of original theory is Oq ∩ Sf [35], here Oq is a

Nilpotent orbit of D type, and Sf is the Slodowy slice associated with the a nilpotent

orbit f . The data for two nilpotent orbits are

Oq = [n+ k, . . . , n+ k︸ ︷︷ ︸
n1

, n+ 1, 1], f = [(n+ k − 1)n1 , 1n+n1+2] (3.15)

One can compute the dimension of this variety, which is equal to the Coulomb branch

factor of the mixed Coulomb branch of the mirror theory.

3. One can find the mirror quiver for k = 1 using brane construction introduced in [36].

In this case, Oq = [n+ 1, . . . , n+ 1︸ ︷︷ ︸
n1+1

, 1], f = [nn1 , 1n+n1+2]. One find that the mirror

is the same as that of figure. 19.
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1

Sp(a)O(b)

SO(2)

n
2

n(k−1)
4

k−1
2

O(1)

(k, n)C D

A
1

Figure 19. The flavor symmetry for the left theory is SO(2N) × Sp(n1), this is the type B AD

matter studied in [35]. The 3d mirror is shown on the left. Here a = 2N−2, b = n1 +1, n+n1 +2 =

2N . The left tail is a TSO(n1 + 1) (B type) tail, while the right one is a TSO(2N) (D type)

tail. Here the extra fundamental matter on Sp(a) gauge group is a half-hyper, so there is no flavor

symmetry on Higgs branch of this quiver. If n1 = 0, so the blue puncture is trivial. The mirror is

modified as follows: there are (n+2)(k−1)
4 adjoints on the U(1) node.

Example: Let’s use the brane construction to confirm our mirror proposal. We take

k = 1, n = 4, n1 = 2, and so the Higgs branch of the theory is given by Oq ∩ Sf with Oq =

[5, 5, 5, 1], f = [4, 4, 18]. To find a quiver whose Coulomb branch is given as Oq ∩Sf , we use

the following method: we first find the dual partition of Oq: OD
q = [3, 3, 3, 3, 3, 1]; and then

we construct a NS5−D5−D3 configuration: on the left we have a D5−D3 configuration

which is determined by OD
q , and on the right we have a NS5 − D3 configuration which

is determined by f , see figure. 20. Notice that here we need to use half-D5 and half NS5

brane. To find the quiver gauge theory from the brane description, we do the brane moves

using the rule introduced in [36]. Finally, we find the configuration in figure. 20. The

quiver read from the final configuration of figure. 20 is given there, and agrees with our

proposal in figure. 19.
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28 4466 21216
13

10

7

41

2446 2

6

321

SO(2)Sp(2)SO(4)Sp(4)SO(6)Sp(6)SO(3)Sp(2)O(1)

5

A)

B)

C)

D5 NS5

Figure 20. A): The brane configurations whose Coulomb branch would be Oq ∩ Sf , here Oq =

[5, 5, 5, 1] and f = [4, 4, 18], and they are both nilpotent orbits of D8 algebra. B): To find a quiver

description, we move the D5 brane according to the rule given in [36]; C): The quiver description

from the brane configuration in part B.

Similarly, one can find the 3d mirror for AD matter with flavor symmetry Sp(2N −
2)× SO(n1) (labeled as class C theory in [35]). This class of theory is represented by one

red C type puncture, and one blue D type puncture, and one simplest black puncture, see

figure. 21. The 3d mirror of this class of theories is shown in figure. 21. One can make

similar checks as we did before, and we leave the details to interested reader.
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D C

A
(k, n)

Sp(a)SO(b)

1

l = n(k+1)
4

k−1
2

n
2

O(1)SO(2)

1

Figure 21. The flavor symmetry for the left theory is Sp(2N − 2)× SO(n1), which is the type C

AD matter studied in [35]. We have n + n1 = 2N , both n and n1 > 2 are even. The 3d mirror

is shown on the left. The numbers a and b are given as a = 2N − 2, b = n1 − 1.The left tail is a

TSO(n1) tail (D type tail), while the right one is a TSO(2N − 1) tail (B type tail). If n1 = 0, now

b = −1, but if we formally subtract the extra fundamentals to the adjoints of U(1), we would get

the right answer. So in this case, the number of adjoints on U(1) is changed to n(k+1)
4 − 1

2 (k − 1).

If n1 = 2, we change the SO(1) node to be a U(1) node, and the adjoints on U(1) is changed to
(n−2)(k+1)

2 , moreover the number of edges between these two U(1)s is changed to k + 1.

If there are more than one simple black punctures, the 3d mirror is more subtle to find.

First, we can not assign a U(1) quiver node for each black puncture, as there is no flavor

symmetry associated with black punctures. To find the mirror, we follow the following

strategy: these theories has weakly coupled gauge theory description: it is decomposed

into AD matter coupled with gauge groups. Since we know the 3d mirror for the AD

matter, the 3d mirror can be found by gluing the 3d mirror of the AD matter. Here the

new feature is that we need to use Coulomb branch gluing.

The implementation of this idea is shown in figure. 22. We start with a fourth punc-

tured sphere with one maximal red D type puncture, one maximal blue D type puncture,

and two simple black punctures. This theory has a gauge theory description [23], which is

interpreted as degenerating fourth puncture sphere into two three punctured spheres. The

gauge theory description can be interpreted from gluing 3d mirrors of the quivers for two

three punctured spheres, see figure. 22. The glued quiver has two U(1) quiver nodes. To

match the flavor symmetry of original theory, we merge the U(1) node, and finally, the

mirror is shown in the bottom of figure. 22. The merging can be understood from matching

Coulomb and Higgs branch dimension of the mirror to that of original 4d theory, see the

discussion on the Coulomb branch gluing in next section.

Remark: The gauge group at the top of figure. 22 is of the C type, and the gluing

works perfectly. If the gauge group is of the D type, the gluing of the mirror quiver for the

AD theory is more complicated: firstly one need to add more adjoints on the U(1) node;

secondly each D type gauge group in original 4d theory would create an issue in matching

the Coulomb branch dimension of the mirror with the Higgs branch of the original theory.

These two issues appear in the class S theory too. The second problem can be solved as

follows: Higgs4d = Colmirror + x, here x is the number of D type gauge groups in the 4d
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theory.
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Figure 22. Up: A fourth punctured sphere is decomposed into two three punctured spheres, and

this is the S-duality picture found in [23]; Middle: The gauge theory description is interpreted as

gluing mirror quivers of two three punctured sphere [13]; Bottom: We merge the U(1) nodes to get

the 3d mirror for the fourth punctured theory; The number of adjoints are calculated as follows:

first we sum the number of adjoints of previous two nodes, and add the number of bi-fundamental

between them, finally, we subtract the previous number by one as the rank of gauge group is reduced

by one after we merge two U(1)s.

For the general case, the 3d mirror should take the form shown in figure. 23. Here

the polynomial f(a, k, n) can be computed by matching the Higgs branch dimension of the

mirror with that of the Coulomb branch dimension of the original 4d theory (this can be

easily computed using the method developed in [28]). We leave the details to the interested

– 26 –



an
2ak−x
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f(a, k, n)

(k, n)

a

Figure 23. The 3d mirror for general D type theory of class (k, n). We assume the blue and red

puncture has maximal flavor symmetry, and the black puncture is the simplest one. The theory

depends on the data (a, k, n, n1). If a is even (odd), the red and blue puncture are of the same

(different) type. Right: the 3d mirror for the theory listed on the right, and f(a, k, n) is a polynomial

which can be computed using the Coulomb branch data of original 4d theory. x = 1 if a is odd,

and x = 2 for even a.

reader.

Finally, let’s briefly consider 3d mirror for class II theory with label (2k, 2n) (Here n

is odd, and (n, k) = 1). The assignment for a quiver tail for the blue and red punctures

are the same as class I theory. The major difference here is that there is a U(1) flavor

symmetry for a single black puncture. The naive guess is to assign a quiver with two U(1)

nodes for a simple black puncture. To figure out the edges between these two nodes and

the number of adjoints on the U(1) node, We choose special value for n and k so that

the theory can be engineered using other 6d (2, 0) theory, from which we can read the 3d

mirror using previous results.

Consider three punctured sphere with trivial (untwisted) red and blue puncture, and

this theory can be engineered by the type IIB string theory on the singularity x2 + yn−1 +

yz2+zwk = 0 (The Coulomb branch dimension of this class of theory is 1
2(2kn−2k−n−1)).

We have following isomorphisms:

• If we take n = 3, the singularity takes the form x2 + y2 + z4 + zwk = 0, then this

theory is equivalent to A3 theory on a punctured sphere with label (k, 3), and blue

puncture with label [1], the red and black puncture is trivial. and we know its mirror:

which has one two U(1) quiver nodes with k edges connecting them, and there is also

a k − 1 adjoints on the other U(1) node.

• If we take k = 1, then this theory is equivalent to (A1, An−2) theory (n is odd), and

its mirror has two U(1) nodes with n−1
2 edges connecting them.

To fit above data, we have the following mirror for the simple black puncture of (2k, 2n)

theory (with trivial blue and red puncture). One can check that this gives the correct Higgs

branch and Coulomb branch dimension based on the prediction of 3d mirror symmetry.
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(n−1)(k−1)
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Figure 24. 3d mirror for the theory engineered by the singularity x2 + yn−1 + yz2 + zwk = 0.

We now consider the theory which is represented by a sphere with one simplest black

puncture, one trivial (untwisted) red puncture, and one simple blue puncture (with SO(2)

flavor symmetry) (type (2k, 2n) theory). This theory is engineered by the singularity

x2 + yn + yz2 +w2k = 0 (The Coulomb branch dimension is 1
2(2kn+ 2k−n− 3)). We have

following isomorphism:

• If we take k = 1, then this theory is equivalent to (A1, Dn+1) theory. Its mirror is

given by two U(1) nodes with n−1
2 edges connecting them, and an extra U(1) node

connected with above two U(1) quiver node with a single edge.

• If we take n = 1, then this theory is equivalent to two copies of (A1, A2k−1) theory,

and one knows the mirror of it: the mirror is given by two U(1) node with k edges

between them.

To fit above data, we have the following mirror for the simple black puncture of (2n, 2k)

theory (with a simple blue puncture and a trivial red puncture).

(n−1)k
2

(n−1)(k−1)
2

1 1

1

k k

Figure 25. The 3d mirror for theory engineered by the singularity x2 + yn + yz2 + w2k = 0.

Given above two class examples, we can now figure out the quiver for the simple black

puncture, which is given by the quiver in figure. 24. Once we know the quiver tails for all

three types of punctures, we can find out the 3d mirror for general class II theories. We

show an example in figure. 26. If there are more than one black punctures, one can find its

3d mirror by using the gluing method of the 3d mirror corresponding to three punctured

sphere.
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Figure 26. The flavor symmetry for the left theory is SO(2N)×SO(n1)×U(1). Here n1 is even and

2n+n1 = 2N , we also take k odd. The 3d mirror is shown on the left. Here a = 2N−2, b = n1−1.The

left tail is a TSO(n1) tail (only a SO(n1−1) subgroup is gauged), while the right one is a TSO(2N)

tail. The addition of a blue puncture (the flavor symmetry is SO(n1) change the Coulomb branch

dimension of 4d theory by the number −k + kn1 − n2
1

4 , which is accounted by the blue quiver tail,

and there should be a total of k−1 bi-fundamental hypermultiplets on the blue SO(b) quiver node.

Here we guess the rule for the gluing of the blue tail to that of the black puncture, and it would be

interesting to find other ways to verify it.

3.3 Twisted A2N−1 and A2N type theory

Let’s now consider 3d mirror for twisted A type theories [15]. Here we consider the class

of theories labeled by pair (k + 1
2 , n), and n is constrained to be odd. For these theories,

we have B type and C type punctures (blue or red). The black puncture is of the A type.

The quiver tail for the punctures are:

1. The quiver tail for B type puncture is T (Sp(2n)) tail.

2. The quiver tail for C type puncture is different: we attach the self-dual quiver tail

T (Sp
′
(2n)) theory for it.

3. For the simple black puncture, we attach a U(1) quiver tail with certain number of

adjoints (The number can be figured out by matching with the Coulomb branch data

of the 4d theory [15]).

The gluing rule is also similar to theories considered above, here we do not try to repeat

them. We only list some mirror pairs in figure. 27 and 28. These theories are important

as they are the basic AD matter, which can be used to build more complicated conformal

theories.
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Figure 27. Here n is odd and n1 is even, and the flavor symmetry is SO(2N + 1) × Sp(n1). We

have n+ n1 + 1 = 2N . Here b = n1 and a = 2N .
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Figure 28. Here n is odd and we have n + n1 = 2N . The flavor symmetry for the left theory is

Sp(2N)× SO(n1 + 1). The 3d mirror is shown on the left. Here a = 2N − 1, b = n1.The left tail is

a TSp(n1) tail, while the right one is a T
′
Sp(2N) tail.

To find the mirror for more general theories, we can use the similar strategy that we

have done for D type theories: i.e. the 3d mirror for more general case is found by gluing

the quiver of the AD matter.

3.4 Exceptional type theories

Let’s now discuss the 3d mirror for 4d N = 2 SCFT engineered using 6d E type (2, 0)

theory. While in general we could not find a quiver gauge theory description, we can use

known components and get the mirror by gluing construction. The basic building block is

the T (G)) theories constructed in [36]. Although these theories do not have a Lagrangian

description, we still know many of their properties:

1. The Higgs branch is identified with closure of the maximal nilpotent orbit of the Lie

algebra g associated with G. The Coulomb branch is identified with the closure of

maximal nilpotent orbit of G∨, here G∨ is the Langlands dual of G. The compelx

dimension of the moduli space is given by dim(G)− rank(G).
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We can again represent our theory by a sphere with three kinds of punctures, and an extra

label (k, n). For the blue and red puncture, we assume it takes the maximal form. The

theory for the blue and red marked puncture is given by T (G∨) if the flavor symmetry is

G. The quiver for the black puncture can be figured out using the Coulomb branch data

of original theory. For the simplest black puncture, it is simply a U(1) gauged node with

certain number of adjoints. The gluing rule is again similar to what is discussed above.

Here we give an example in figure. 29. The interested reader can work out the mirror for

other cases.

E6

(k, 12) T (E6) 1

3(k − 1)

6

Figure 29. Left: a E6 type theory which is represented by a trivial blue and a maximal red

puncture (with E6 flavor symmetry), and the black puncture is simple, here k is co-prime with 12.

The physical data for the theory on the left (we take k > 0): The Coulomb branch has dimension

nc = 3k + 33; The mixed branch has dimension nh = 36, nc = 3k − 3. The mirror theory is

shown on the left: here we gauge U(1)6 subgroup of E6 flavor symmetry diagonally, and there are

3k − 3 adjoints on U(1) node. The mixed Coulomb branch of the mirror theory has dimension:

nc = 36, nh = 3k − 3, which matches with the mixed Higgs branch of the original theory; and the

Higgs branch of the mirror theory is 3k − 3 + 36 = 3k + 33, which is the same as the Coulomb

branch of original 4d theory.
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4 Some applications

In this section, we will give several applications of the 3d mirror found above.

4.1 Higgs branch of 4d AD theory

The low energy physics on Coulomb branch of 4d AD theory is nicely described by the

spectral curve of the Hitchin system, which can be written down explicitly if 6d configu-

ration is given [10]. The Higgs branch is more complicated and typically it consists of a

Higgs branch component and an interacting SCFT which does not have a Higgs branch

[24]. One method of identifying the Higgs branch is through the 4d N = 2/2d vertex

operator algebra (VOA) correspondence. The Higgs branch component was found in [24]

if one can find the associated 2d vertex operator algebra: the Higgs branch is identified

with the associated variety of the VOA [12, 39]. This method has some limitations: a):

We only know the VOA for a subset of AD theories; b): Even if we have the description of

VOA, it is difficult to find the associated variety. Here by using 3d mirrors found above,

we can evade above difficulties and found the Higgs branch of original 4d theories.

According to the basic map of 3d mirror, the Coulomb branch of 3d mirror SCFT is

equal to the Higgs branch of original 4d AD theory. Since the Higgs branch of 4d theory has

a Higgs component and a Coulomb component, the Coulomb branch of 3d mirror should

have a Coulomb and Higgs component. Once we know 3d mirror, we can study its mixed

Coulomb branch and then find the mixed Higgs branch of original 4d theory.

Let’s illustrate this point using the type A theory. We start with a 6d AN−1 (2, 0)

SCFT on a sphere with following irregular singularity:

Φ =
T

z2+
ak
an

+ . . . (4.1)

Here (n, k) = 1, and T is regular semi-simple element, and an = N . This is also called

(Aak−1, Aan−1) theory. This theory can be represented by a sphere with a simple black

puncture, one trivial blue and one trivial red puncture, see figure. 30. The 3d mirror is

shown in figure. 30. Using the proposal of 3d mirror in last section, we find that: the 3d

mirror has a U(1) quiver nodes, and each U(1) quiver node has l = (n−1)(k−1)
2 adjoints

(which is in trivial representation for U(1) gauge group), there are also nk edges between

the U(1) quiver node, see figure. 30. The 3d mirror suggests the Higgs branch of original

AD theory has two components:

1. A Higgs component which is described by the Coulomb branch of the quiver with a

U(1) quiver nodes and nk edges between them. An overall U(1) of the mirror quiver

is decoupled, so the Coulomb branch dimension of the mirror theory is just a − 1,

which gives the dimension of the Higgs component of the Higgs branch of original 4d

AD theory.

2. The Coulomb branch of 3d mirror has a(n−1)(k−1)
2 free hypers. This suggests that the

Higgs branch of original 4d theory has an interacting theory part which do not have

a Higgs branch. The structure of 3d mirror implies that the the interacting theory

consists of a copies of (An−1, Ak−1) theory.
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Figure 30. Left: punctured sphere representation of (Aak−1, Aan−1) theory, there are a simple

black punctures, one trivial red puncture and one trivial blue puncture. Right: 3d mirror for

(Aak−1, Aan−1) theory: there are a U(1) quiver nodes, and nk edges between each pair of U(1)

node. Here l = (n−1)(k−1)
2 .

Let’s verify above proposal of Higgs branch of 4d theory by using anomaly matching of

(a − c). First, we can compute a − c using Coulomb branch data of 4d AD theory [28],

and we express it in terms of a growth function as − G
48 = a − c. The anomaly matching

condition [24] is

GUV = 2nh +GIR (4.2)

Here GIR is the growth function of IR interacting theory. Let’s verify our proposal by

looking at the theory with a = 2, n = 2, k = 3 ((A5,3 ) theory), and the mixed Higgs branch

of 4d theory should have nh = 1 and the IR theory has 2 copies of (A1, A2) theories, which

is derived using 3d mirror. We find GUV = 14
5 , nh = 1, and GIR = 2×G(A1,A2) = 4

5 , and

the above equality is correct! One can verify that the above equality is always true for the

above stated Higgs branch proposal.

4.2 Coulomb branch gluing

One can get new 3d N = 4 theory by performing a Higgs branch gluing: we start with two

matter systems, and both of them has flavor symmetry groupG acting on Higgs branch; and

we can form a new theory by gauging diagonally the symmetry group G. Mathematically

it is just the hyperkahler quotient studied in [40], which gives the Higgs branch of the glued

theory. If our theory admits a quiver gauge theory description, the Higgs branch gluing

is quite simple, see figure. 31. The Coulomb branch and Higgs branch dimension of the

glued theory is following

dC = Col1 + Col2 +N − 1, dH = Hig1 +Hig2 − (N2 − 1) (4.3)

here Coli, i = 1, 2 are the Coulomb branch dimension of the matter, and Higi, i = 1, 2 are

the Higgs branch dimension of the matter. Here we assume that we gauge a SU(N) flavor

symmetry of two quivers (diagonal gauging) 11. The Higgs branch of the gauged system

is given by the hyperkahler quotient of original two systems, and the Coulomb branch of

gauged system is more complicated and does not have simple description.

11More generally, if we gauge diagonally a simple group G of Higgs branches of two matter systems, we

have dC = Col1 + Col2 + rank(G), dH = Hig1 + Hig2 − dim(G).

– 33 –



N N

N

Gauging

Figure 31. Higgs branch gauging: here we diagonally gauge SU(N) flavor symmetry of two quivers

In this paper, the gluing we use is the Coulomb branch gauging, namely, the flavor

symmetry which is gauged acts on Coulomb branch. The corresponding current of the

flavor symmetry on the Coulomb branch can be constructed using monopole operators, see

[36]. Here we use a simple result for the quiver gauge theory with unitary gauge groups:

for a balanced 12 subquiver of ADE type, the flavor symmetry would be the corresponding

ADE type.

The Coulomb branch gluing is the mirror of Higgs branch gluing, see figure. 32. Let’s

consider the coulomb branch gluing for the quivers, namely, we would like to glue two

quivers to form a new quiver such that the Coulomb branch of the new quiver is the

hyperkahler quotient of the Coulomb branch of original quivers! In particular, we would

like to ensure that the Coulomb branch dimension of the glued quiver is given by the

following formula

dmirror
C = Col1 + Col2 − (N2 − 1) (4.4)

(here we assume that we gauge a SU(N) flavor group). To match the Higgs branch gluing,

we also require that the Higgs branch of the combined system has the following dimension

formula

dmirror
H = Hig1 +Hig2 + (N − 1) (4.5)

It is this requirement which makes the Coulomb branch gluing much more complicated.

Amazingly, such a procedure is possible, and see figure. 32 for an example.

Let’s verify that the Coulomb branch and Higgs branch dimension formula in 4.4 and

4.5. In figure. 32, we gauge a SU(n1) group on the Coulomb branch. The change of

Coulomb branch dimension of the glued quiver is

δdC = −[
n21 − n1

2
+ (

n21 − n1
2

+ n1)− (1)] = −(n21 − 1) (4.6)

The origin of three terms in the equation is: the first term is due to the elimination of the

circled subquiver of the left quiver, and the second term is due to the circled subquiver

on the right (notice an extra n1 contribution; the extra −1 is due to the fact one need to

subtract an overall decoupled U(1) for the quiver). This agrees with the expectation in

equation 4.4. The change of Higgs branch dimension of the combined mirror quiver is the

following

δdH = −(
n21 − n1

2
)− (

n21 − n1
2

− n21)− (a+ k)n1 + (bk + ab+ an+ nk) + 1 (4.7)

12The number of flavors on a quiver node of this subquiver is equal to twice of rank: Nf = 2Nc.
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Here the first term comes form left circled subquiver, and the second term comes form

right circled subquiver, the third term is the hypermultiplets attached on the n1 node of

the circled quiver tail; the fourth term comes from added hypermulteplets in the glued

quiver, finally there is an extra 1 comes from the overall decoupled U(1)s. Using the

relation n+ b = n1, we find

δdH = n1 − 1 (4.8)

which gives the desired formula, see 4.5.

The same computations can be done for ortho-symplectic quivers studied in last sec-

tion, and we leave the details for the interested reader.
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Figure 32. Up: Diagonal gauging SU(n1) flavor symmetry on Coulomb branch of two quivers,

here n + b = n1 so that the left circled sub-quiver carries SU(n1) flavor symmetry. Bottom: The

gauging is achieved by eliminating two sub-quiver carrying flavor symmetry SU(n1) on the Coulomb

branch, and 1): connecting nk edges between two U(1) nodes, 2) one edge between blue and red

node, 3) k edges between blue node and U(1) node; 4) n edge between red node and U(1) node.

4.3 S duality for AD theory

Some 4d AD theories admit exact marginal deformations and it is an interesting question

to find its weakly coupled gauge theory descriptions. For a given AD theory, it is possible

to find more than one such description, and these theories are S-dual to each other. The

S-duality property of some AD theories were found in [13] by using 3d mirror: we start

with the 3d mirror of AD theory and decompose it into various pieces representing AD

matter, the weakly coupled gauge theory description is found from this decomposition.

The gauging process is interpreted as gluing quiver tail (Coulomb branch gluing) in the 3d

mirror picture. This method works for theories whose 3d mirrors were found [10]. More

generally, the S duality property is found by using an extra punctured sphere representing
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our AD theory, and weakly coupled theory is found by finding pants decomposition of it

[22, 23].

Since we now has the 3d mirror for other AD theories, we would like to confirm the

S-duality found in [22, 23] by using the decomposition of 3d mirror. Here we give a simple

example, and the general case is quite similar. We consider (A3, A5) theory which can

be engineered by putting 6d A3 theory on a sphere with following irregular singularity:

Φ = T

z2+
6
4

, and the regular singularity is trivial. It is a (3, 2) type theory, and can be

represented by a sphere with four punctures (two simple black punctures, one trivial red

puncture and one trivial blue puncture). The weakly coupled gauge theory description is

found by decomposing fourt punctured sphere into two three punctured spheres [13].

Now we would like to understand this operation in terms of 3d mirror. We start

with the 3d mirror of the original theory (see figure. 33), and decompose it into two

subquivers. These two subquivers representing the AD matter. The sub-quiver indeed

gives the 3d mirror for the AD matter represented by two three punctured spheres. The

use of 3d mirror to study S-duality has some nice consequences, i.e. the 3d mirror and

its decomposition in figure. 33 shows that there is only one weakly coupled gauge theory

description of this theory.

trivial
(3, 2)

trivial

(4, 0)

(0, 6) 1 16

2 11 1 2 13= (3, 2) (3, 2)

Figure 33. Left: punctured sphere representation for (A3, A5) theory: it is a fourth punctured

sphere with two simple black punctures, one trivial blue and one trivial red puncture. Right: We

start with the 3d mirror of the original theory (which can be read from the fourth punctured sphere);

the full quiver is decomposed into two sub-quivers glued together; each subquiver represents the

mirror of AD matter described by two three punctured spheres.

4.4 New 3d N = 4 SCFTs

We can get a large class of new N = 4 SCFTs by compactifying 4d AD theory on a circle.

Among these 3d N = 4 SCFTs, there are a very interesting class of new theories, which

could be thought of the generalization of bi-fundamental matter. These theories can be

used to build a large class of new 3d N = 4 SCFTs. These new matters are the dimensional
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reduction of four dimensional AD matter, and the interesting feature is that they carry two

non-abelian flavor symmetries. In the literature, we already know following SCFT which

has interesting flavor symmetries on the Higgs branch:

1. T (G) theory [36]: these theories have a Higgs branch and a Coulomb branch. The

flavor symmetry on the Higgs branch is G while the flavor symmetry on the Coulomb

branch is G∨. This theory can be constructed using the boundary condition of 4d

SYM theory.

2. TN theory and its ADE generalization [21, 41]: TN theories have a Higgs branch with

flavor symmetries SU(N)× SU(N)× SU(N) (The ADE generalizations have flavor

symmetry group G×G×G). The Coulomb branch does not have flavor symmetry.

This theory is constructed using the dimensional reduction of 4d TN theory

We can use these matter to construct quiver gauge theory and in the IR one find 3d N = 4

SCFTs. In this paper, we found an infinite class of new 3d N = 4 SCFTs (labeled by

pair of integers (k, n)), and they are represented by a sphere with one black puncture,

one blue puncture, one one red puncture, see figure. 34. The flavor symmetry on Higgs

branch is SU(N1) × SU(N2) × U(N3) (for A type theory). One could use these matters

to construct new interesting 3d N = 4 SCFT (some of them can be described as the

dimensional reduction of 4d N = 2 AD theories). More interestingly, one could use these

matter to construct new N = 4 Chern-Simons matter theory, and the results would appear

in a separate publication.

(k, n)

u = n + k

SU(N)SU(n1)

U(1)

Figure 34. Left: 4d AD matter which has flavor symmetry U(n1) × SU(N) × U(1), and it is

represented by a sphere with one red puncture, one blue puncture, and one simple black puncture.

When u = n + k = 1, the theory is just bi-fundamental matter, so this class of theory can be

thought of as the generalized bi-fundamental matter.

5 Conclusion

We found the 3d mirror for the 3d SCFT derived by compactifying 4d Argyres-Douglas

theory on a circle. These AD theories are constructed using 6d (2, 0) SCFTs on a sphere

with one irregular and one regular singularity. The crucial insight is that one can represent

AD theory by a different punctured sphere, which is ued to find the S duality property of

the AD theory, and in this paper we show that it is also very useful to find the 3d mirror

of the AD theory.
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The punctured sphere representation of the AD theory has three types of punctures,

which we called blue, red, and black. The method of finding 3d mirror for the AD theory

is following: first we attach a quiver tail for each puncture; then we glue these quiver tails

together. It is relatively easy to find the quiver tail for each puncture, and it is rather

difficult to find the gluing rule. We use various consistent checks to find the gluing rule,

and therefore find the 3d mirror for all the AD theories constructed using 6d (2, 0) theory.

The results are also consistent with all the known examples in the literature [17–20].

The 3d mirror is very useful to study the properties of original 4d AD theory: a) One

can find the Higgs branch of the 4d theory by studying the Coulomb branch of the mirror

theory. The Higgs branch of the 4d theory is in general difficult to obtain and so the 3d

mirror is a very useful tool for this purpose; b) One can use the decomposition of 3d mirror

to find the weakly coupled gauge theory description, and this has some advantage over the

method used in [22, 23].

The quiver gauge theory found in this paper seems to have interesting applications

in the study of purely 3d theories, and it would be interesting to further study them, i.e

compute its Hilbert series on the Higgs and Coulomb branch. Moreover, we have found

a large class of new 3d mirror pairs, and we believe the study of them would help us

understand better 3d mirror symmetry.

It would be also interesting to study 3d mirror for other 4d N = 2 SCFT constructed

using three-fold singularity [28].

Our work is motivated in understanding the related mathematical work [42], but our

construction is mainly based on physical considerations and it would be interesting to

compare our results with [42].
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