
QArray: a GPU-accelerated constant capacitance model simulator for large quantum
dot arrays

Barnaby van Straaten,1, ∗ Joseph Hickie,1 Lucas Schorling,2 Jonas Schuff,1 Federico Fedele,2 and Natalia Ares2, †

1Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
2Department of Engineering, University of Oxford, Oxford OX1 3PH, United Kingdom

(Dated: April 8, 2024)

Semiconductor quantum dot arrays are a leading architecture for the development of quantum
technologies. Over the years, the constant capacitance model has served as a fundamental frame-
work for simulating, understanding, and navigating the charge stability diagrams of small quantum
dot arrays. However, while the size of the arrays keeps growing, solving the constant capacitance
model becomes computationally prohibitive. This paper presents an open-source software package
able to compute a 100 × 100 pixels charge stability diagram of a 16-dot array in less than a second.
Smaller arrays can be simulated in milliseconds - faster than they could be measured experimentally,
enabling the creation of diverse datasets for training machine learning models and the creation of
digital twins that can interface with quantum dot devices in real-time. Our software package imple-
ments its core functionalities in the systems programming language Rust and the high-performance
numerical computing library JAX. The Rust implementation benefits from advanced optimisations
and parallelisation, enabling the users to take full advantage of multi-core processors. The JAX
implementation allows for GPU acceleration.

I. INTRODUCTION

Semiconductor quantum dot arrays are one of the lead-
ing platforms for the realisation of large-scale quantum
circuits. As they grow in size and complexity, these ar-
rays present exciting opportunities and significant chal-
lenges. In particular, efficient simulation tools are be-
coming increasingly crucial for tuning and practical ex-
perimental design.

The constant capacitance model is a widely-used
equivalent circuit framework that models the electro-
static characteristics of quantum dot arrays [1–7]. This
model has proven to be a valuable resource for gaining in-
sights into charge stability diagrams and for training neu-
ral networks for automated tuning strategies [2, 5, 8–11].
However, it encounters scaling limitations, making the
simulations of arrays larger than four dots slow and im-
practical. Specifically, the problem of computing the low-
est energy charge configuration in a brute force manner,
as implemented in Refs. [2, 8], scales with (nmax +1)ndot ,
where nmax ≥ 1 is the maximum number of charges con-
sidered at any of the quantum dots, and ndot is the num-
ber of quantum dots being simulated.

We introduce QArray, an open-source software pack-
age for ultra-fast constant capacitance modelling, open-
ing the path to the creation of ever larger datasets for
neural network training, as well as the realisation of digi-
tial twins, the use of machine-learning-informed tuning
strategies, and the use of these simulators for tuning and
characterisation in real-time. Our package contains two
new algorithms to compute the ground state charge con-
figuration, which we call QArray default and thresholded.

∗ barnaby.vanstraaten@kellogg.ox.ac.uk
† natalia.ares@eng.ox.ac.uk

These algorithms greatly reduce the number of calcula-
tions needed to find the ground state charge configura-
tion by computing the energies of only the most likely,
rather than the full, set of possible configurations. Our
default algorithm’s complexity scales with 2ndot . The
thresholded algorithm sacrifices some accuracy to fur-
ther reduce the number of charge states considered to
(1 + t)ndot , where t ∈ [0, 1] is a threshold defining which
charge states must be considered and which can be ne-
glected. Both our algorithms considerably reduce com-
putational time, especially for larger arrays containing
more charges. For example, our default algorithm, in the
case of a five-dot array containing five charges, reduces
the number of change states considered by at least 243
times compared to a brute-force approach.

Within QArray, the brute-force approach and our de-
fault algorithm are implemented in Python, Rust and
JAX. The threshold algorithm is implemented in Python
and Rust. The Rust implementations are optimised for
parallel computation on a CPU, using rayon [12–14]. At
the same time, a GPU can accelerate the JAX implemen-
tations through just-in-time (jit) XLA compilation [15].
The Python implementations offer no practical advan-
tages over the ones in Rust or JAX but are maintained
for benchmarking and comparison testing. The Rust and
JAX implementations of our algorithms can model arrays
with 16 or more dots in seconds and simulate the charge
stability diagrams of smaller arrays in milliseconds.

The following section details the matrix formulation of
the constant capacitance model. In Section III, we dis-
cuss our algorithms and how they compute the charge
ground state in both open and closed quantum dot ar-
rays. Then, Section IV covers how realistic features can
be incorporated into the simulation and some useful an-
alytical results. Section V provides a step-by-step exam-
ple of using our software package to simulate a double
quantum dot and demonstrates that Qarray can be used

mailto:barnaby.vanstraaten@kellogg.ox.ac.uk
mailto:natalia.ares@eng.ox.ac.uk

2

to recreate experimentally measured charge stability di-
agrams of open quadruple dot and closed five dot arrays.
In Section VI, we discuss the details of our software im-
plementations and how we optimised for speed. Finally,
in Section VII, we benchmark our implementations of
each algorithm.

II. THE CONSTANT CAPACITANCE MODEL

The constant capacitance model describes an array of
quantum dots and their associated electrostatic gates as
nodes in a network of fixed capacitors [1–7]. Each node i
has an associated charge Qi, an electrostatic potential Vj ,
and its capacitive coupling to every other node k given by
Cjk. The capacitor Cij stores a charge qij := Cij(Vi−Vj).
The total charge on node i is therefore related to its and
other nodes’ potentials according to

Qi =
∑

j

qij =
∑

j

Cij(Vi − Vj). (1)

Using the Maxwell matrix formulation, we express this
as Q⃗ = cV⃗ , where c is the Maxwell capacitance ma-
trix. In this framework, the c matrix’s diagonal elements
give each node’s total capacitance, and the off-diagonal
elements are the negative of the capacitive coupling be-
tween the respective nodes. We now distinguish between
quantum dots and electrostatic gate nodes by separating
the matrix equation into[

Q⃗d

Q⃗g

]
=
[
cdd cgd

cdg cgg

] [
V⃗d

V⃗g

]
, (2)

where Q⃗d(g) represents the charge on the quantum dots
(gates) and V⃗d(g) denotes the potential on the quantum
dots (gates). And the matrices cdd, cgd, cdg, cgg encode
dot-dot, gate-dot, dot-gate and gate-gate capacitive cou-
plings, respectively, in the Maxwell format. The poten-
tial on the quantum dots can then be computed by

V⃗d = c−1
dd (Q⃗d − cgdV⃗g). (3)

The free energy of the system can then be written as

F (Q⃗d; V⃗g) = 1
2 Q⃗T

d c−1
dd Qd − (c−1

dd cgdV⃗g)T Q⃗d, (4)

where we have dropped the terms without dependence
on Q⃗d. This free energy function is convex since cdd is
positive definite (for proof, see Appendix B). Since the
charge on the gates is not of interest, in the remainder of
this paper, we drop the subscript and refer to the charge
on the quantum dots as Q⃗.

The allowed charge states Q⃗ = ±eN⃗ (for holes and
electrons respectively) are heavily constrained in a quan-
tum dot array. In particular, for an open quantum dot ar-
ray, i.e. when the array is coupled to fermionic reservoirs
from which it can draw an arbitrary number of charges
(see Fig. 1 (c)), the constraints are:

(i) The number of charges must be integers, repre-
sented as N⃗ ∈ Zndot .

(ii) The number of charges on any given quantum dot
must be non-negative, meaning Ni ≥ 0 for all i.

For a closed quantum dot array, i.e. when the leads are
decoupled from the array, and the number of charges is
fixed to a finite value N̂ [16, 17] (see Fig. 1 (d)), we
impose the additional constraint:

(iii) The sum of all charges in the array must equal N̂ .

At T = 0 K, the system will adopt the charge state,
N⃗∗, which minimises the free energy whilst obeying the
appropriate constraints, such that

N⃗∗ = arg min
N⃗∈N

F (N⃗ ; V⃗g), (5)

where N is the set of all admissible charge configura-
tions for the open or closed regimes of the quantum dot
arrays. Due to the constraints, finding the lowest energy
charge configuration is an example of a class of optimisa-
tion problems called constrained convex quadratic integer
problems, also called Mixed-Integer Quadratic Program-
ming (MIQP) problems, which are NP-hard [18–20].

By computing the ground state charge configuration
as a function of the gate voltages, the constant capac-
itance model captures the charge stability diagrams of
such quantum dot arrays when the tunnel couplings be-
tween quantum dots are weak. In the following section,
we discuss our algorithms for computing the charge con-
figuration ground state.

III. THE QARRAY ALGORITHMS

The QArray-default and thresholded algorithms can be
broken down into two stages. First, we neglect the inte-
ger charge constraint, (i), and compute the continuously-
valued charge state that minimises the free energy. We
will refer to this state as the continuous minimum. In
the second stage, we reintroduce the integer charge con-
straint by evaluating the energy of each discrete charge
state that neighbours the continuous minimum and se-
lecting the state with the lowest energy (Fig. 2 (a)).

The QArray-default and thresholded algorithms dif-
fer in which charge states they define as neighbouring
the continuous minimum. The thresholded algorithm is
much more selective (Sec. III B, Fig. 2 (b)). We formally
justify considering only the nearest neighbouring discrete
charge states in Appendix E. The fundamental idea is
that the free energy is a convex function minimised at
the continuous minimum. Therefore, the lowest-energy
discrete charge states must lie close to the continuous
minimum.

In the next section (Sec. III A), we will discuss how
the continuous minimum is computed for both open and

3

a)

b) Algorithms

Brute-force

QArray-default

Rust

QArray-thresholded

Rust

Optional

Capacitance
Matrices

DotArray

ndots ngates

Gate Voltage
Composer

Threshold

nmax

Temperature

Inputs

Outputs

Vg1

V g
4

Vg1

V g
4

c)

d)Compted in Rust

Accelerated by JAX

Computed in Python

Figure 1. (a) Schematic of a generic array of quantum dots: The diagram illustrates the representation of a quantum dot device
as a system of capacitively coupled electrostatic gates and quantum dots. Solid black lines represent the direct dot-to-gates
couplings, while capacitors representing the interdot capacitance are modelled with grey lines respectively. From the choice
of the capacitance matrix (stored in the DotArray class), the user can define an array with an arbitrary number of dots and
geometry. For given gate voltages, a discrete integer number of charges minimises the system’s free energy. (b) The structure
of the Qarray package featuring the multiple software implementations, represented as colour-coded boxes denoting Python
(blue), Rust (yellow), and JAX (green), of the brute-force, default and thresholded algorithms. The gate voltage composer
class generates voltage vectors for native sweeps (e.g., Vg1 against Vg2), or it can be used to define arbitrary virtual gate
sweeps. DotArray offers methods for computing charge stability diagrams for open or closed regimes with any core choice.
Optionally, the charge stability diagram can be coupled with simulated charge sensors to model their response. (c) Charge
stability diagrams (computed with our default algorithm implemented in Rust) for a hole-based linear array of four quantum
dots in the open regime. The black lines denote transitions separating regions in the charge stability diagram with a fixed dot
occupation. (d) Charge stability diagrams (computed with our default algorithm implemented in Rust) for the same linear
four-dot array of quantum dots in the closed regime where the total number of charges in the array is fixed to four.

closed arrays, then how the default and thresholded al-
gorithms find the discrete charge state lowest in energy
from the nearest neighbours to the continuous minimum
(Sec. III B).

A. Computing the continuous minimum

To compute the continuous minimum charge configu-
ration for both open and closed quantum dot arrays, we
initially try the analytical solution for the charge config-
uration derived by neglecting constraints that the charge
state must take integer, non-negative values, i.e. con-
straints (i) and (ii) respectively. If this solution satis-
fies constraint (ii), such that no dot contains a negative
number of charges, we accept it and use it. Otherwise,
we compute a solution using a numerical solver, which

explicitly applies constraint (ii). We try the analytical
solution before resorting to the numerical solver because
it is inexpensive to compute compared to the solver, and
trying it first offers an overall time advantage.

1. The analytical solutions

The continuous minimum for an open quantum dot
array is

Q⃗∗cont open = cgdV⃗g, (6)

see Appendix C for a formal derivation.
For closed quantum dot arrays, we use Lagrangian mul-

tipliers to account for the fixed number of charges in the
array (imposed by constraint (iii)). As derived in Ap-

4

a) b)

0 1 2 3
0

1

2

3
2

1

1 2

N
2

N1 N1

N
2 1/3

0 8.1F(N) (a. u.) 0 4.0F(N) (a. u.) 0 4.0F(N) (a. u.) 4.

Figure 2. (a) Diagram depicting the default algorithm ap-
plied to an open double dot. The algorithm first finds the con-
tinuous minimum (marked with a red cross), which minimises
the free energy. The free energy landscape, as a function of
the charge on each dot, is shown with contour lines. After
computing the continuous minimum, the algorithm evaluates
the nearest neighbour discrete charge states (marked as red
dots) to determine which is lowest in energy. By comparison,
the brute force implementation considers all charge states,
leading to it also having to consider the charge states marked
as black dots. In this case, (1, 2) is the discrete charge state
lowest in energy. (b) Diagram depicting the thresholded al-
gorithm applied to an open double dot. The algorithm com-
putes the continuous minimum (red cross) as in the default
algorithm. However, rather than just considering all near-
est neighbour discrete charge states, thresholding is used to
reduce further the number of charge states needing to be eval-
uated compared to the default version of the algorithm. As
the continuous minimum does not lie within the vertical grey
rectangle, for which the width equals the threshold t = 1/3,
it is unnecessary to consider both the floor and ceiling val-
ues for N1. Instead, it can be rounded down. By contrast,
the continuous minimum does lie in the horizontal rectangle,
so both floor and ceiling values for N2 must be considered.
The discrete charge states, considered by the thresholded al-
gorithm, are shown as red dots.

pendix D, the continuous solution can therefore be writ-
ten as

Q⃗∗cont closed = cgdV⃗g +
(

Q̂ − 1⃗T cgdV⃗g

) cdd1⃗
1⃗T cdd1⃗

, (7)

where 1⃗ = (1, 1, . . . , 1)T ∈ Rndot is the one vector and Q̂
is the confined charge.

In both the open and closed cases, one or more of the
elements of Q⃗∗cont open/closed may correspond to a nega-
tive number of electrons/holes. As mentioned before, if
this occurs, we must fall back on the numerical solver to
implicitly apply the constraint. The numerical solver is
discussed next.

2. The numerical solver

The numerical solver computes the continuous mini-
mum for open and closed dot arrays as a constrained con-

vex quadratic optimisation problem. The general form of
these problems is

minimise x⃗T Mx⃗ + v⃗T x⃗

subject to l⃗ ≤ Ax⃗ ≤ u⃗. (8)

In our case M = c−1
dd and v⃗ = −c−1

dd cgdV⃗g. Constraint
(ii) can be encoded in this form by setting the constraint
matrix A to the identity, and the lower and upper bound
vectors (⃗l and u⃗) to vectors of all zeros and infinities,
respectively. For a closed array, constraint (iii) can be
encoded by setting the constraint matrix as a row matrix
with all terms equal to one and upper and lower bound
vectors as single value elements equal to N̂ . Combin-
ing constraints for open and closed quantum dot arrays
involves concatenating the associated constraint matrix
and bound vectors.

B. Evaluation of the nearest neighbour discrete
charge states

With the continuous minimum in hand, the QArray
algorithms iterate over the nearest neighbouring discrete
charge states to find which one is the lowest in energy.
The algorithms differ in how they define the nearest
neighbouring discrete charge states. In the following sub-
section, we discuss precisely which charge states default
and thresholded algorithms iterate over.

1. The default algorithm

The default algorithm will consider all the different
charge configurations obtained by the element-wise floor-
ing and ceiling of the values in the continuous minimum.
Therefore, the default algorithm iterates over all 2ndot

possible ways of rounding the elements of the continu-
ous minimum up or down to the nearest integer. The
charge states considered by the default algorithm when
computing the lowest energy charge state of a double dot
are highlighted in red in Fig. 2 (a). This considerably
reduces the number of charge states that need to be con-
sidered compared to the brute force approach. As men-
tioned previously, we formally justify considering only
the neighbouring discrete charge states in Appendix E.
If the quantum dot array is closed, we eliminate the con-
figurations that lead to the wrong number of charges in
the array.

2. The thresholded algorithm

The motivation behind the thresholded algorithm was
the observation that it was sometimes unnecessary to
consider every one of the 2ndot possible charge combi-
nations. Only if the decimal part of each element of

5

the continuous minimum charge state, N⃗∗cont, is close
to 1/2 should we consider both charge configurations ob-
tained by rounding up and down to the nearest integer.
Otherwise, we can round to the closest charge configu-
ration. As an example, the charge states considered by
the thresholding algorithm when computing the lowest
energy charge state of a double dot, with a threshold of
1/3, are highlighted in red in Fig. 2 (b)).

If we define the threshold as t ∈ [0, 1], then the con-
dition for having to consider both the floor and ceiling
charge configurations on the ith quantum dot is∣∣frac[N∗cont

i] − 1/2
∣∣ ≤ t/2. (9)

The total number of charge states needed to be evalu-
ated after the thresholding scales with (t + 1)ndot (see
Appendix G for deviation).

When considering closed arrays, we found that apply-
ing the threshold may produce no charge states with the
correct number of charges. In this case, we double the
threshold and recompute. This threshold is left to the
user’s discretion; however, in Appendix F, we try to mo-
tivate a good choice of threshold.

IV. ADDITIONAL FUNCTIONALITY

This section discusses features of QArray that are ad-
joint to the main algorithms. In particular, how we simu-
lated charge sensing measurements (Sec. IV A) and ther-
mal broadening (Sec. IV B), and present analytical re-
sults regarding optimal choice of gate voltages and vir-
tual gates (Sec. IV C).

A. Charge sensors

To simulate charge sensing measurements, we compute
the charge state, N⃗∗, of non-charge sensing dots, neglect-
ing the existence of the charge sensing dots but account-
ing for cross-talk due to the charge sensor gates. Fix-
ing the non-charge sensing dot charges, we compute the
number of carriers required to minimise each charge sen-
sor’s electrostatic energy. From here, we calculate the
charge sensors’ potential using this charge state, accord-
ing to Eq. (3). Finally, we compute the charge sensor’s
response based on Lorentzian or an approximately Gaus-
sian profile in the weak and strong coupling regimes, re-
spectively [21]. This method recreates a Coulomb peak
sensitivity profile, whilst white, 1/f , and sensor jump
noise can be added on top [11].

B. Thermal Broadening

For a finite temperature, the quantum dot system will
not adopt the lowest energy charge state. This can be
accounted for by replacing the arg min function in Eq.

(5) with a soft arg min function, which computes a Boltz-
mann weighted sum of the applicable charge states, such
that

N⃗∗ = soft arg min
N⃗∈N

F (N⃗ ; V⃗g) , where

soft arg min
N⃗

F (N⃗) =
∑

N⃗ N⃗ exp[−F (N⃗)/kBT]∑
N⃗ exp[−F (N⃗)/kBT]

. (10)

The summation runs over all the allowed charge config-
urations. For a closed array, this means eliminating the
charge states with the total number of charges different
than N̂ .

C. Optimal gate voltages and virtual gates

In developing QArray, we derived and implemented
analytical results that help navigate charge stability
diagrams. This section lists them.

Optimal gate voltages: the gate voltages that minimise
the charge state Q⃗d’s free energy, F (V⃗g, Q⃗d) is

V⃗ ∗ = (Rcgd)+ RQ⃗d, (11)

where RT R = c−1
dd is the Cholesky factorisation and +

denotes the Moore-Penrose pseudo inverse. The proof of
this result is presented in Appendix H.

Optimal virtual gate matrix: the optimal virtual gate
matrix, α, used to construct virtual gates is

α = (cgdc−1
dd)+, (12)

where ith row of this matrix encodes the electrostatic
gate voltages required to change the ith dot’s potential.
The proof of this result is presented in Appendix I

V. EXAMPLES

In this section, we explain the usage of QArray to pro-
duce the stability diagram of a double quantum dot.
Firstly, we import the DotArray and GateComposer
classes as follows,

1 from qarray import (DotArray ,
GateVoltageComposer)

2 import numpy as np

Upon initialising the DotArray class, we specify the sys-
tem’s capacitance matrices, charge carriers, and the com-
putational core, as shown below. The temperature pa-
rameter (T) can be used to incorporate the effect of ther-
mal broadening. In the example below we set it to zero,
ensuring that the solver determines the charge state that
minimises the free energy as specified in Eq. (5).

6

1 # Initalising the DotArray class
2 model = DotArray (
3 cdd =[
4 [1 .3 , -0 .1],
5 [-0 .1 , 1 .3]
6],
7 cgd =[
8 [1., 0 .2],
9 [0 .2 , 1]

10],
11 algorithm = " default "
12 implementation = "rust"
13 charge_carrier = " holes "
14 T = 0 .0
15)

In this example, we input the capacitance matrices in
the Maxwell format. The software also accepts inputs
in the form of dot-dot and gate-dot capacitive couplings
using the keyword arguments Cdd and Cgd (with an upper
case "C"). During initialisation, the input parameters are
checked by the pydantic library [22]. This validation
process checks the correctness of the capacitance array
introduced by the user. This includes verifying that the
values passed for cdd are of the correct type and that the
matrix possesses the correct shape, is positive definite,
and is symmetric.

The GateVoltageComposer class has several methods
for creating gate voltage arrays. The most general is
meshgrid, as shown below, which mirrors numpy in con-
structing a dense array of gate voltages to sweep over. In
this way, it is possible to simulate N -dimensional charge
stability diagrams.

1 voltage_composer = GateVoltageComposer (
2 n_gate = model . n_gate
3)
4 Vx = np. linspace (-3, 3, 100)
5 Vy = np. linspace (-3, 3, 100)
6 # Constructing the gate voltage array for
7 # the 2D raster sweep
8 vg = voltage_composer . meshgrid (
9 gates =(0, 1), arrays =[Vx , Vy]

10)

We also implement do1d and do2d methods for gener-
ating one-dimensional and two-dimensional gate voltage
arrays, which wrap meshgrid. These methods are based
on the QCoDeS routines of the same names and take the
same arguments.

With these classes initialised, we can generate a sta-
bility diagram of the system in an open configuration us-
ing the DotArray model’s ground_state_open method.
The ground_state_closed method takes a second argu-
ment, n_charges, which sets the number of charges in
the system. In the following, we set this value to two,
n_open and n_closed are thus (100, 100, 2) numpy
arrays, such the ground state charge configuration at the
corresponding gate voltages is contained in the last di-
mension.

1 # calculate the occupation of each dot
2 n_open = model . ground_state_open (vg)
3 n_closed = model . ground_state_closed (vg , 2)

a) b)

c) d)
VP1 (a.u.)

V
P

4
(a

.u
.)

-60

-100

-140

-160 -120 -80
VP1 (mV)

Σ∇iqpc (a.u.)

δVX
- (mV) δVX

- (a.u.)

δV
Y

-
(a

.u
.)

-50

-50

0

0

50

δV
Y

-
(m

V
)

50

6.0- 1∂Vrf / ∂VP1
6.0- 1∂Vsens / ∂VP1

0
0

1

1

0
0

1

1
∂Vqpc /∂(δVY

-)

Figure 3. (a) Adaptation of Fig. 2b from Ref. [23] showing
a stability diagram of a linear quadruple quantum dot array
in the open regime. This is measured as a function of the two
outermost plunger gates voltages, VP1 and VP4. The colour
scale represents the derivative of the sensor signal Vrf with re-
spect to VP1. (b) A recreation of Fig. 2b from Ref. [23], simu-
lated using QArray. The colour scale represents the derivative
of the simulated sensor signal, Vsens, with respect to VP1. (c)
Adaptation of Fig. 3a from Ref. [24] showing the stability
diagram of a five-electron configuration corresponding to a
five-dot cross-geometry array. The colour scale represents the
sum of current changes in all charge sensors (

∑
∇iqpc) as a

function of virtual gates δV −
X (controlling the left-right detun-

ings) and δV −
Y (controlling the top-bottom detunings). (d) A

recreation of Fig. 3a from [24] using QArray. The colour scale
represents the derivative of the simulated sensor signal, in this
case Vqpc, with respect to δV −

Y . To simulate the sensing of a
qpc instead of a sensor dot, we considered only a single gate
for the sensor dot architecture and replaced the Lorentzian
shape response with a linear function.

A. Realistic simulations

Beyond simply computing idealised charge stability di-
agrams QArray can simulate the response from a charge
sensor and account for the thermal broadening of charge
transitions, as explained in Section IV. Combined, these
two capabilities make it possible to generate simulations
of stability diagrams that look considerably closer to ex-
perimental data. Figure 3 (a) shows a charge sensor mea-
surement of a charge stability diagram of an open quadru-
ple dot presented in Ref. [23]. In Fig. 3 (b), we simulate
this measurement using QArray with a 200 × 200 pix-
els resolution. Likewise, Fig. 3 (c) shows a measurement

7

from Ref. [24] of a stability diagram corresponding to a
five-electron closed configuration within a five-dot cross-
geometry array. In Fig. 3 (d), we simulate this measure-
ment with a resolution of 400 × 400 pixels. We achieved
a very good qualitative agreement between both mea-
surements and our simulations. Discrepancies are mainly
due to the fact that the constant capacitance model does
not capture the curvature of charge transitions; in this
model, couplings between dots are kept constant for all
gate voltage ranges.

The code to recreate the simulations displayed in Fig. 3
(b) and (d) is provided as examples within the QArray
package. We used the Rust implementation of the de-
fault algorithm for both reconstructions, but we could
have used any algorithm implementation. The compute
times are listed in Appendix K. As a figure of merit, the
Rust implementation of the default algorithm took 0.1
and 0.7s for the open and closed arrays, respectively. All
implementations of all algorithms in the package produce
identical plots.

VI. IMPLEMENTATIONS

Within QArray, the brute-force approach and our de-
fault algorithm are implemented in Python, Rust and
JAX. The threshold algorithm is implemented in Python
and Rust. The Rust and JAX implementations fulfil dif-
ferent use cases. The Rust implementations are opti-
mised for computation on a CPU, while a GPU can ac-
celerate the JAX based implementations. The Python
implementation does not provide a practical advantage
over the Rust and JAX cores, but it is retained for bench-
marking purposes (see Fig. 4(a-b)). In this section, we
discuss these different implementations in detail.

The Rust implementations: Rust is a systems pro-
gramming language on par with c in speed [13, 25, 26].
Our Rust implementations take advantage of parallelism
when sensible, based on workload at runtime, thanks to
the functionality provided by rayon [13, 14, 25, 26]. In
addition, we used caching and function memorisation to
avoid reevaluating the discrete charge state configura-
tions for which the free energy is evaluated. However,
appreciating that Rust is a relatively niche language com-
pared to the ubiquitousness of Python, we interloped the
Rust core with Python. This allows the user to gain all
the benefits of Rust in their familiar Python coding en-
vironment.

The JAX implementations: JAX is a Python-based
machine learning framework that combines autograd and
XLA (accelerated linear algebra). Its structure and work-
flow mirror that of numpy; however, at run time, the code
can be just in time (jit) compiled and auto-vectorised
to primitive operations for significant performance im-
provements. Through the vmap function, JAX will com-
pile the functions to XLA and execute them in parallel
with a GPU [15]. Unfortunately, the discrete nature of
the constant capacitance model negates the possibility of

using JAX’s autograd capabilities. In addition, as the
sizes of all arrays must be known at just-in-time compile
time, the JAX implementation of our algorithm cannot
perform the thresholding algorithm.

The numerical solver : We made use of the OSQP (Op-
erator Splitting Quadratic Program) solver instead of re-
lying on those available in scipy.optimize [27]. The
OSQP solver is optimised explicitly for constrained con-
vex quadratic problems [28]. OSQP is an incredibly effi-
cient solver; only one matrix factorisation is required to
setup the optimisation problem after which all operations
are cheap, such that there is no need to perform any slow
division operations. As such, we found the OSQP solver
faster at converging than the scipy implementations.

It is important to note that in QArray we set the unit
charge, |e| = 1, to avoid issues with numerical stability.
The units of free energy are thus electron volts, and the
units of our temperature parameter are Kelvin.

VII. BENCHMARKS

We benchmark the performance of each of the algo-
rithms within QArray for all the different implementa-
tions discussed. In order to do this, we generate a random
C matrix by drawing each element from a uniform dis-
tribution. This randomised matrix is converted to the
Maxwell format. We then compute the ground state
charge configuration over a set of 100 × 100 randomly
chosen gate voltage configurations and record the aver-
age computation time.

For all the implementations of the brute-force and de-
fault algorithm, we show the average compute time over
many benchmarking runs executed on both the CPU
within the Apple M1 Pro System on Chip (SOC) and
an NVIDIA GTX 1080TI GPU (Fig. 4 (a-b)). As antic-
ipated, the default version of the algorithm exhibits su-
perior scalability compared to the brute force approach,
resulting in notably shallower performance curves. Com-
pared to the brute force method, for arrays with more
than five dots, the Rust and JAX implementations of
the default algorithm are at least one order of magni-
tude faster and gain more time advantage as the num-
ber of dots increases. Even the Python implementation
becomes faster than the GPU-accelerated brute force
method for arrays with more than six quantum dots.
Still, it remains several orders of magnitude slower than
the Rust and JAX implementations due to the speed
gained by the parallelisation and the GPU usage offered
by these cores. On the CPU, our Rust and JAX cores
demonstrate approximately equal performances for open
dot arrays. However, for closed dot arrays, the Rust
core leverages optimisations that confer enhanced per-
formance in the simulation of large arrays. Neverthe-
less, the advantage of these optimisations is eclipsed by
the raw computational power harnessed by the JAX core
when executed on the GPU. The GPU-accelerated JAX
algorithm can compute the charge stability diagram of a

8

(a)

(b)

Open

Closed

Figure 4. (a-b) Average computation time required by each
core to generate 100 × 100 pixels charge stability diagrams.
Simulations are performed for randomly chosen capacitance
matrices and gate voltage configurations, and correspond to
increasing sizes of both open (top) and closed (bottom) arrays.
We ran the JAX and brute force cores on both a CPU and
a GPU. For the closed quantum dot arrays, the number of
confined electrons/holes matches the number of quantum dots
within the array.

16-dot array featuring 100×100 gate voltage pixels in less
than a second for both open and closed configurations.

In Fig. 5 (a-b), we compare several runs obtained with
the Rust implementation of the thresholding algorithm
using different values of t for open and closed regimes. As
expected, smaller threshold values result in faster com-
putation, especially in larger arrays. The Rust thresh-
olded algorithm running on a CPU was faster than the
JAX implementation on a GPU for t < 2/3. We also note
larger time gains in the open dots configuration compared
to the closed case. This difference arises because when
simulating quantum dot arrays in the closed regime, the
threshold strategy may fail if no charge state configura-
tions with the correct number of charges are found. In
this case, the algorithm doubles the threshold value and
recomputes the stability diagram. While this method en-
sures a correct stability diagram is generated, the addi-
tional computational overhead leads to smaller time gains

than in the open dot case.
Whilst decreasing the t values yields dramatic perfor-

mance gains, it should not be reduced below certain val-
ues in order to avoid artefacts in the simulated charge sta-
bility diagrams (see Appendix J). The minimum thresh-
old that can be set without introducing artefacts depends
on the c−1

dd capacitance matrix. See Appendix E and F for
a detailed discussion. In a few words, we have found that
the minimum threshold is of the order of the ratio of the
largest off-diagonal element of the cdd capacitance matrix
to its corresponding diagonal element. Given that the di-
agonal elements are the dot’s total capacitive coupling to
every other dot and gate, whilst the off-diagonal elements
are dot-dot couplings, we find the critical threshold to be
much smaller than one in the case of weakly coupled dots,
the approximation under which the capacitance model is
justified.

We note that these benchmarks, based on randomised
gate voltages and capacitance matrices, might underes-
timate the potential of the thresholded algorithm. In
tuning larger quantum dot arrays, virtual gates are often
used to control isolated double dot subsystems whilst the
other dots remain unperturbed (the n + 1 method [29]).
In this case, the threshold algorithm could neglect the
charge states corresponding to the other dots. There-
fore, the time required to simulate a large array operated
in this way would be comparable to simulating a double
dot device.

VIII. SUMMARY AND OUTLOOK

We demonstrated that our open-source software pack-
age can accelerate the simulation of charge stability di-
agrams of large quantum dot arrays in both open and
closed regimes. The speed and GPU acceleration will aid
in generating larger, more diverse datasets on which to
train neural networks. This will improve the accuracy
of the neural network-based classifiers used in automatic
tuning approaches. With improved intuition about the
charge stability diagrams, new tuning methods might be
developed. In particular, the automated tuning of closed
arrays could be drastically easier than for open arrays
owing to the smaller number of transitions. The speed of
our algorithms is particularly promising for model-based
machine-learning methods and real-time interfacing with
experiments, as well as for the development of hardware-
in-the-loop approaches.

In future, we hope that, with help from the wider com-
munity, this package can grow to include more advanced
noise models and high-level functionality. In the im-
mediate future, more advanced algorithms could be im-
plemented to solve constrained integer convex quadratic
problems, in particular, either the SCIP or the miOSQP
solver [30–32]. These algorithms can scale even better
than the thresholded algorithm. However, parallelisa-
tion and GPU acceleration will probably not be possi-
ble, so we expect our algorithms to be faster for all but

9

Open

Closed

Figure 5. (a-b) Average computation time required by the
Rust core to generate a 100 × 100 pixels charge stability dia-
gram computed with different threshold values for increasing
numbers of quantum dots both for open and closed quantum
dot arrays.

the largest arrays. Finally, as the main contribution of
QArray is in the backend, we hope that it can be used
as such with application-specific user-friendly interfaces
built on top.

CODE AVAILABILITY

The code is available on the Python package index
under qarray, so is pip installable with the command
pip install qarray. The associated GitHub reposito-
ries are https://github.com/b-vanstraaten/qarray.
Please star the repository and cite this paper if this pack-
age is useful. Discovered bugs can be reported using the
GitHub issue tracker.

AUTHOR CONTRIBUTIONS

B.v.S. wrote the code. B.v.S. and J.D.H wrote the doc-
umentation. B.v.S. and L.S. developed the mathematical
proofs and derived the analytical results. B.v.S., J.D.H.
and N.A. conceived of creating an open-source capaci-
tance model software package. All authors contributed
to the manuscript.

ACKNOWLEDGEMENTS

This work was supported by the Royal Society, the
EPSRC Platform Grant (EP/R029229/1), and the Eu-
ropean Research Council (Grant agreement 948932).

COMPETING INTERESTS

Natalia Ares declares a competing interest as a founder
of QuantrolOx, which develops machine learning-based
software for quantum control.

[1] van der Wiel, W. G. et al. Electron transport
through double quantum dots. Rev. Mod. Phys. 75, 1–
22 (2002). URL https://link.aps.org/doi/10.1103/
RevModPhys.75.1.

[2] Zwolak, J. P., Kalantre, S. S., Wu, X., Ragole, S. &
Taylor, J. M. Qflow lite dataset: A machine-learning
approach to the charge states in quantum dot exper-
iments. PLOS ONE 13, 1–17 (2018). URL https:
//doi.org/10.1371/journal.pone.0205844.

[3] Schröer, D. et al. Electrostatically defined serial triple
quantum dot charged with few electrons. Phys. Rev. B
76, 075306 (2007). URL https://link.aps.org/doi/
10.1103/PhysRevB.76.075306.

[4] Van Houten, H., Beenakker, C. & Staring, A. Coulomb-
blockade oscillations in semiconductor nanostructures.
arXiv preprint cond-mat/0508454 (2005).

[5] Oakes, G. A. et al. Automatic virtual voltage extraction
of a 2x2 array of quantum dots with machine learning
(2021). 2012.03685.

[6] Ihn, T. Semiconductor Nanostructures: Quantum
states and electronic transport (Oxford University Press,
2009). URL https://doi.org/10.1093/acprof:oso/
9780199534425.001.0001.

[7] Yang, S., Wang, X. & Das Sarma, S. Generic hubbard
model description of semiconductor quantum-dot spin
qubits. Phys. Rev. B 83, 161301 (2011). URL https:
//link.aps.org/doi/10.1103/PhysRevB.83.161301.

[8] URL https://qtt.readthedocs.io/en/latest/.
[9] Zwolak, J. P. et al. Autotuning of Double-Dot De-

vices In Situ with Machine Learning. Physical Review
Applied 13 (2020). URL http://dx.doi.org/10.1103/
PhysRevApplied.13.034075.

[10] Liu, H. et al. An automated approach for consecutive
tuning of quantum dot arrays. Applied Physics Let-
ters 121 (2022). URL http://dx.doi.org/10.1063/5.
0111128.

[11] Ziegler, J. et al. Toward robust autotuning of noisy
quantum dot devices. Phys. Rev. Appl. 17, 024069
(2022). URL https://link.aps.org/doi/10.1103/

https://pypi.org/project/qarray/
https://github.com/b-vanstraaten/qarray
https://github.com/b-vanstraaten/qarray/stargazers
https://github.com/b-vanstraaten/qarray/issues
https://link.aps.org/doi/10.1103/RevModPhys.75.1
https://link.aps.org/doi/10.1103/RevModPhys.75.1
https://doi.org/10.1371/journal.pone.0205844
https://doi.org/10.1371/journal.pone.0205844
https://link.aps.org/doi/10.1103/PhysRevB.76.075306
https://link.aps.org/doi/10.1103/PhysRevB.76.075306
https://doi.org/10.1093/acprof:oso/9780199534425.001.0001
https://doi.org/10.1093/acprof:oso/9780199534425.001.0001
https://link.aps.org/doi/10.1103/PhysRevB.83.161301
https://link.aps.org/doi/10.1103/PhysRevB.83.161301
https://qtt.readthedocs.io/en/latest/
http://dx.doi.org/10.1103/PhysRevApplied.13.034075
http://dx.doi.org/10.1103/PhysRevApplied.13.034075
http://dx.doi.org/10.1063/5.0111128
http://dx.doi.org/10.1063/5.0111128
https://link.aps.org/doi/10.1103/PhysRevApplied.17.024069

10

PhysRevApplied.17.024069.
[12] Matsakis, N. D. & Klock II, F. S. The rust language.

In ACM SIGAda Ada Letters, vol. 34, 103–104 (ACM,
2014).

[13] Costanzo, M., Rucci, E., Naiouf, M. & Giusti, A. D.
Performance vs programming effort between rust and c
on multicore architectures: Case study in n-body (2021).
2107.11912.

[14] Rayon-Rs. Rayon-rs/rayon: Rayon: A data parallelism
library for rust. URL https://github.com/rayon-rs/
rayon.

[15] Sabne, A. Xla: Compiling machine learning for peak
performance. Google Res (2020).

[16] Flentje, H. et al. A linear triple quantum dot system
in isolated configuration. Applied Physics Letters
110, 233101 (2017). URL https://doi.org/10.
1063/1.4984745. https://pubs.aip.org/aip/apl/article-
pdf/doi/10.1063/1.4984745/14499801/233101_1_online.pdf.

[17] Bertrand, B. et al. Quantum manipulation of two-
electron spin states in isolated double quantum dots.
Phys. Rev. Lett. 115, 096801 (2015). URL https://
link.aps.org/doi/10.1103/PhysRevLett.115.096801.

[18] Park, J. & Boyd, S. A semidefinite programming method
for integer convex quadratic minimization. Optimization
Letters 12, 499–518 (2017). URL https://doi.org/10.
1007%2Fs11590-017-1132-y.

[19] Buchheim, C., Caprara, A. & Lodi, A. An effective
branch-and-bound algorithm for convex quadratic inte-
ger programming. vol. 135, 285–298 (2010).

[20] Bliek, C., Bonami, P. & Lodi, A. Solving mixed-
integer quadratic programming problems with ibm-
cplex : a progress report (2014). URL https://api.
semanticscholar.org/CorpusID:16208906.

[21] Fuhrer, A. Phase coherence, orbital and spin states in
quantum rings. Doctoral thesis, ETH Zurich, Zürich
(2003). Diss., Naturwissenschaften ETH Zürich, Nr.
15094, 2003.

[22] URL https://docs.pydantic.dev/latest/.
[23] Delbecq, M. R. et al. Full control of quadruple

quantum dot circuit charge states in the single
electron regime. Applied Physics Letters 104,

183111 (2014). URL https://doi.org/10.1063/
1.4875909. https://pubs.aip.org/aip/apl/article-
pdf/doi/10.1063/1.4875909/14297354/183111_1_online.pdf.

[24] Mortemousque, P.-A. et al. Coherent control of indi-
vidual electron spins in a two-dimensional quantum dot
array. Nature Nanotechnology 16, 296–301 (2021).

[25] Ng, V. Rust vs c++, a battle of speed and efficiency
(2023).

[26] Ivanov, N. Is rust c++-fast? benchmarking system lan-
guages on everyday routines (2022). 2209.09127.

[27] Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods 17,
261–272 (2020).

[28] Stellato, B., Banjac, G., Goulart, P., Bemporad, A.
& Boyd, S. OSQP: an operator splitting solver for
quadratic programs. Mathematical Programming Com-
putation 12, 637–672 (2020). URL https://doi.org/
10.1007/s12532-020-00179-2.

[29] Volk, C. et al. Loading a quantum-dot based Qbyte reg-
ister. npj Quantum Information 5, 1–12 (2019).

[30] Bolusani, S. et al. The SCIP Optimization Suite
9.0. Technical Report, Optimization Online (2024).
URL https://optimization-online.org/2024/02/
the-scip-optimization-suite-9-0/.

[31] Bolusani, S. et al. The SCIP Optimization Suite
9.0. ZIB-Report 24-02-29, Zuse Institute Berlin
(2024). URL https://nbn-resolving.org/urn:nbn:de:
0297-zib-95528.

[32] Stellato, B., Naik, V. V., Bemporad, A., Goulart, P. J.
& Boyd, S. Embedded mixed-integer quadratic optimiza-
tion using the osqp solver. In European Control Confer-
ence, 1536–1541 (2018).

[33] Horn, R. A. & Johnson, C. R. Ma-
trix Analysis (Cambridge University Press,
1990). URL http://www.amazon.com/
Matrix-Analysis-Roger-Horn/dp/0521386322%
3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%
3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%
3D165953%26creativeASIN%3D0521386322.

https://link.aps.org/doi/10.1103/PhysRevApplied.17.024069
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://doi.org/10.1063/1.4984745
https://doi.org/10.1063/1.4984745
https://link.aps.org/doi/10.1103/PhysRevLett.115.096801
https://link.aps.org/doi/10.1103/PhysRevLett.115.096801
https://doi.org/10.1007%2Fs11590-017-1132-y
https://doi.org/10.1007%2Fs11590-017-1132-y
https://api.semanticscholar.org/CorpusID:16208906
https://api.semanticscholar.org/CorpusID:16208906
https://docs.pydantic.dev/latest/
https://doi.org/10.1063/1.4875909
https://doi.org/10.1063/1.4875909
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
http://www.amazon.com/Matrix-Analysis-Roger-Horn/dp/0521386322%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521386322
http://www.amazon.com/Matrix-Analysis-Roger-Horn/dp/0521386322%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521386322
http://www.amazon.com/Matrix-Analysis-Roger-Horn/dp/0521386322%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521386322
http://www.amazon.com/Matrix-Analysis-Roger-Horn/dp/0521386322%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521386322
http://www.amazon.com/Matrix-Analysis-Roger-Horn/dp/0521386322%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0521386322

11

Appendix A: Software implementations

This section lists the software implementations of each algorithm and how many charges states they consider.

Algorithm Number of charge states to be considered Software implementations
Brute-force (nmax + 1)ndot where nmax ∈ {1, 2, ..., ∞} JAX, Python
Qarray-default 2ndot Rust, JAX, Python
Qarray-thresholded (t + 1)ndot where t ∈ [0, 1] Rust, Python

Table I. A table showing the number of charge states needing to be considered by the software implementations of the brute-
force, default and thresholded algorithms. Where ndot refers to the number of quantum dots in the array being simulated,
is nmax maximum number of charges considered in any dot by the brute-force algorithm and t is the threshold used in the
thresholded algorithms, which quantifies the degree of approximation.

Appendix B: Positive Definite Proof

This section proves that the cdd is positive definite, making the optimisation problem convex.
Theorem B.1 For any set of capacitances between nodes such that cij ∀i, j are real, non-negative and cij = cji the
Maxwell matrix CM ∈ R(ndot+ngate)×(ndot+ngate) is defined as

CM
ij =

(∑
k

cik

)
δij − cij(1 − δij). (B1)

Let C ∈ Rndot×ndot be the upper left block of CM . C is positive definite assuming the physical case of every dot being
coupled to at least one gate, namely ∀i ∃j > ndot such that cij > 0.
Proof B.2 A matrix A ∈ Rn×n is called strictly diagonally dominant if for all n diagonal entries |Aii| >

∑
k ̸=i |Aik|

holds. We start proving that C is strictly diagonally dominant by observing

Cii =
ndot+ngate∑

k=1
cik >

ndot∑
k ̸=i

|Cik| =
ndot∑
k ̸=i

cik.

This holds due to the non-negative elements cij and can be simplified to the true statement
∑ndot+ngate

k=ndot+1 cik > 0. Strict
diagonal dominance implies positive definiteness for symmetric matrices with non-negative elements by [33, Theorem
6.1.10].

Appendix C: Continous minimum for open quantum dot arrays

In this section, we derive the continuous minimum charge state for open quantum dot array - the charge state that
minimises (4) neglecting constraints (i) and (ii). The free energy is

F (V⃗g, Q⃗d) := 1
2(cdgV⃗g − Q⃗d)T c−1

dd (CdgV⃗g − Q⃗d) (C1)

For ease of notation going forward, we will write this as

F (V⃗ , Q⃗) = 1
2(V − Q)T C−1(V − Q) (C2)

where V⃗ := cgdV⃗d. Differentiating L with respect to λ yields
∂L

∂λ
= −QT 1⃗ + Q̂

!= 0 → Q̂ = QT 1⃗. (C3)

Differentiating F for Qi gives
∂F

∂Qi
= −

[
C−1(V − Q))

]
i

!= 0 −→ Qi = Vi (C4)

Therefore, the continuous minimum for an open quantum dot array is

Q⃗∗cont open = V⃗ (C5)

12

Appendix D: Continous minimum for closed quantum dot arrays

In this section, we derive the continuous minimum charge state for closed quantum dot arrays - the charge state
that minimises (4) neglecting constraints (i) and (ii). If the array contains Q̂ charges, we can incorporate (iii) through
the method of Lagrangian multipliers with the Lagrangian

L(V⃗g, Q⃗d, N̂) := 1
2(cdgV⃗g − Q⃗d)T c−1

dd (CdgV⃗g − Q⃗d) − λ

(∑
i

Qdi − Q̂

)
. (D1)

For ease of notation going forward, we will write this as

L(V⃗ , Q⃗, Q̂) = 1
2(V − Q)T C−1(V − Q) − λ

(
QT 1⃗ − Q̂

)
(D2)

where V⃗ := cgdV⃗d, whilst 1⃗ is the one vector with all entries one, and otherwise subscripts have been dropped.
Differentiating L with respect to λ yields

∂L

∂λ
= −QT 1⃗ + Q̂

!= 0 → Q̂ = QT 1⃗. (D3)

Differentiating L for Qi gives

∂L

∂Qi
= −

[
C−1(V − Q))

]
i
− λ

!= 0 −→ Qi = Vi + λC1⃗, (D4)

Plugging (D4) into (D3) and solving for λ yields

λ∗ = Q̂ − 1⃗T V

1⃗T C1⃗
. (D5)

The Lagrangian in (D2) can be rewritten as

L(V⃗ , Q⃗, Q̂) = 1
2QT C−1Q − V T C−1Q + 1

2V T C−1V − λ∗1⃗T Q + λ∗Q̂

= 1
2
(
V + C1⃗λ∗ − Q

)T
C−1 (V + C1⃗λ∗ − Q

)
+ λ∗Q̂ − λ∗V T 1⃗ − 1

2λ∗21⃗T C1⃗ (D6)

by using the matrix generalisation of completing the square. Since the last three terms do not depend on Q⃗, this new
Lagrangian is again quadratic in Q⃗ with the positive definite matrix C. Therefore, the continuous minimum is

Q∗cont min = V + C1⃗λ∗

= V +
(

Q̂ − 1⃗T V⃗
) C1⃗

1⃗T C1⃗
. (D7)

Appendix E: Optimality criteria for limit cases

This section discusses whether only considering the nearest charge states to the continuous minimum is sufficient.
We consider two limiting cases and prove that in these cases, it is sufficient. The optimisation problem set out in
equation (5) can be written in the form

arg min
x⃗∈Rn

1
2 x⃗T Mx⃗ + b⃗T x⃗ (E1)

subject to xi ≥ 0 ∀i (E2)
and xi ∈ Z ∀i, (E3)

where M is positive definite matrix. In the following, we prove that if M were diagonal, it would be sufficient to
always round the continuous minimum to the nearest discrete change state.

13

Theorem E.1 The global minimiser x⃗∗
discret of the optimisation problem (E1),(E2), and (E3) can be obtained by

rounding each component of the minimiser x⃗∗
cont to the continuous optimisation problem consisting of (E1) and (E2).

Proof E.2 Since M is diagonal, the optimisation problem uncouples to n independent one-dimensional optimisation
problems of the form minxi 1/2Miix

2
i + bixi with the non-negativity constraint xi ≥ 0 and the integer constraint

xi ∈ Z. Now we show that rounding the solution x∗
i,cont from the one-dimensional continuous optimisation problem

to the closest integer yields the global minimiser x∗
i,discret. If x∗

i,cont = 0 the integer constraint is already fulfilled. If
x∗

i,cont > 0, then the parabola is symmetric around x∗
i,cont. Therefore, rounding to the closest integer minimises the

one-dimensional integer-constrained optimisation problem.

With small perturbations away from this diagonal case, we cannot always round to the nearest charge to reliably
find the lowest energy configuration. Nevertheless, we can guarantee that the minimiser is one of the 2nn surrounding
neighbours around the continuous solution as long as the condition number κ(M) = λmax/λmin is sufficiently low.
intuitively, a low condition number corresponds to an almost spherical symmetric potential.

Theorem E.3 If κ(M) ≤ 1 + 4/n, then one of the 2n surrounding neighbours of the continuous minimiser x∗
cont is

the global minimiser x∗
discret of the integer optimisation problem.

Proof E.4 We proceed by showing that even the closest integer point apart from the surrounding neighbours of the
continuous minimiser has a larger objective function value than one of the surrounding neighbours for any matrix M
as long as the condition number is sufficiently low. Let a⃗ be the vector from x⃗∗

cont to the closest integer neighbour and
b⃗ the vector from x⃗∗

cont to the closest integer point which is not a surrounding neighbour of x⃗∗
cont. Without loss of

generality, we can assume that a⃗ and b⃗ have the form a⃗ = [⃗c; d] and a⃗ = [⃗c; d + 1]. (The notation means that a⃗ has
the same entries as c⃗ with an additional appended entry d.)

Let g(y⃗) = y⃗T My⃗/2 with y⃗ = x⃗ − x⃗∗
cont such that ||y⃗||2λmin ≤ g(y⃗) ≤ ||y⃗||2λmax holds ∀y⃗. We want to show that

g(⃗a) ≤ g(⃗b) which is necessarily true if ||⃗a||2λmax ≤ ||⃗b||2λmin. This yields

λmax

λmin
≤ ||⃗c||2 + (d + 1)2

||⃗c||2 + d2 . (E4)

It holds that ||⃗c||2 ≤ (n−1)/4 since ||⃗a||2 is defined to be the vector to the closest neighbour and therefore |ai| ≤ 1/2 ∀i.
By incorporating this bound, we obtain the desired result of λmax/λmin ≤ 1 + 4/n.

We showed that under certain conditions, the discrete minimiser is among the surrounding neighbours. Intuitively
we can do better, namely, if the continuous minimiser is close to an integer in one variable, then the discrete minimiser
can be obtained by rounding to the closest integer. The following theorem derives bounds when rounding single
coordinates leads to optimal solutions.

Theorem E.5 Let element i of x⃗∗
cont be in the interval [k, k + δ] for an integer k. If the condition number κ fulfills

δ ≤
√

κ2 − (n − 1)(κ2 − 1)2 − 1
κ2 − 1 , (E5)

the i-th element of the discrete minimiser is k.

Proof E.6 We proceed in a similar way as beforehand by showing that no integer point with k at its i-th element has
a higher value than the “opposite” point with entry k + 1. With no loss of generality, let a⃗ = [⃗c; x] and b⃗ = [⃗c; 1 − x]
be the vectors from the continuous minimiser to two opposite integer points. Plugging this into ||⃗a||2λmax ≤ ||⃗b||2λmin

yields

λmax

λmin
≤

√
||⃗c||2 + (1 − δ)2

||⃗c||2 + δ2 . (E6)

Rearranging yields the quadratic (κ2 − 1)δ2 + 2δ − 1 + (κ2 − 1)||⃗c||2 ≤ 0. Solving that for δ and observing that
||⃗c||2 ≤ n − 1 yields the desired result.

Under this condition, we can guarantee that certain surrounding nodes can be omitted from checking and can,
therefore, choose a threshold of t = 1 − 2δ. Experimentally, however, choosing lower thresholds still yields optimal
results, e.g. t = ||∆||2 - we motivate this choice in the following section.

14

Appendix F: Physical motivation for diagonal and spherical limit case

The constant interaction model is a good approximation when the quantum dots interact weakly, and the associated
tunnel coupling is small. As a result, we should expect the interdot capacitive coupling to be smaller than the coupling
to the nearest gates; the diagonal elements will be considerably larger than the off-diagonals. As a result, we can
write

cdd = D(I − ∆) (F1)

where D is a diagonal matrix, I is the identity matrix, and the elements ∆ are given by the ratio of the off-diagonal
terms to the on. The inverse of this matrix can be approximated using the Neumann expansion

c−1
dd =

∞∑
n=0

∆nD−1 ≈ (I + ∆)D−1. (F2)

Therefore, for small ∆ where this approximation is valid, the c−1
dd matrix is diagonally dominant and is a perturbation

from the diagonal matrix. If cdd were diagonal, the charges in the quantum dots would not interact. In this case, the
lowest energy discrete charge configuration could be found by rounding the continuous solution to the nearest integer
charge, as we prove in the next section.

It follows that for small but non-zero ∆ rounding will yield the lowest energy charge state except in the most
ambiguous cases where a fractional component of the ith element of the continuous minimum, N∗

i , is close to 1/2.
Therefore, the threshold should be proportional to some ∆ norm, for example

t/2 = ||∆||2. (F3)

Appendix G: Number of charge states

Theorem G.1 The expected number of charge states needing to be considered by the thresholded algorithm with a
threshold t is given by (1 + t)ndot where ndot is the number of quantum dots.

Proof G.2 For random uniformly distributed gate voltages, the continuous minimum can also be considered uniformly
distributed. Therefore, in 1d, the probability that the algorithm has to consider one charge state is 1 − t, and the
probability that it has to consider two is t. Therefore, the expected number of points is E[N1d] = t ·2+(1− t) ·1 = 1+ t.
As the dimensions are independent E[NNd] = E[N1d]N . Therefore, if there are ndot quantum dots the expected number
of charge states is (1 + t)ndot

Appendix H: Finding optimal voltage for a given charge state

Theorem H.1 The gate voltages that minimise the charge state Q⃗d free energy, F (V⃗g, Q⃗d) is

V⃗ ∗ = (Rcgd)+ RQ⃗d, (H1)

where RT R = c−1
dd is the Cholesky factorisation and + denotes the Moore-Penrose pseudo inverse.

Proof H.2 The free energy is given by

F (V⃗g, N⃗d) = 1
2

(
Q⃗d − cgdV⃗g

)T

C−1
(

Q⃗d − cgdV⃗g

)
. (H2)

Using the Cholesky factorisation c−1
dd = RT R, the minimisation problem can be reformulated as the following linear

least-squares problem

min
V⃗g

||RQ⃗d − RcgdV⃗g||2. (H3)

Solving this via the Moore-Penrose pseudo inverse yields the desired result.

15

Appendix I: Virtual gates

This section derives how to construct virtual gates, namely determining how to change the gate voltages to obtain
a specific change in the dot potentials.

Theorem I.1 The optimal virtual gate matrix, α, used to construct virtual gates is

α = (cgdc−1
dd)+ (I1)

where + denotes the Moore-Penrose pseudoinverse. The ith row of this matrix encodes the electrostatic gate voltages
required to change the ith dot’s potential.

Proof I.2 The quantum dot potential changes with gate voltages according to ∆V⃗d = c−1
dd cgd∆V⃗g according to (3).

If this simple linear system is invertible, the Moore-Penrose pseudoinverse boils down to the regular inverse. If it
is underdetermined (i.e., more gates than dots and full row rank), there are infinite solutions. In this case, the
pseudoinverse picks the solution with minimal 2-norm. In case of an overdetermined linear system (i.e. more dots
than gates or no full column rank) there is no solution. In this case, the pseudoinverse returns the least squares
approximate solution.

Appendix J: Effect of threshold

As evidenced in Figure 5, the thresholding strategy can yield significant reductions in the compute time by reducing
the number of charge states evaluated to determine whether they are the lowest in energy. However, using values
that are too small for the threshold will introduce artefacts in the charge stability diagram. Decreasing the threshold
further will exaggerate these artefacts to the degree that for t = 0, all interdot transitions will be lost. We demonstrate
this in Fig. 6 a), where we simulate a double quantum dot with dot-dot capacitance matrix

cdd =
[

1.4 −0.2
−0.2 1.4

]
. (J1)

In this case, our empirical understanding of the threshold suggests the minimum value should be the ratio of the
off-diagonal elements to the on so tmin = 0.2/1.4 = 1/7, this is confirmed by plots e) and f) in Figure 6 being
identical. For smaller but non-zero values of the threshold, the charge stability diagram is distorted with the size
of the interdot transition being suppressed with decreasing threshold (Fig. 6 b-d)). In Appendix F, we motivate a
formula for the minimum value of the threshold t. In this case, the value suggested is more conservative at 0.202.
While not wrong, this value is quite a bit larger than what empirical intuition suggests; more work is required to
understand the thresholded algorithm fully.

In addition, even when the threshold is well above the minimum, the thresholding strategy appears to introduce
almost imperceptible distortions into the charge stability diagram. Figure 7 compares the charge stability diagram
produced by the Rust implementation threshold set to 1/3 with that produced by the brute force implemented in JAX
for a quadruple dot. For the capacitance matrix used in this simulation, our empirical understanding of the threshold
value required to capture the interdot transitions accurately is tmin = 0.08, whilst the analytical formula gives 0.19.
We hypothesise finite precision of the OSQP solver, which is exacerbated by the thresholding. For example, if a
threshold of t = 2/3 is used, the charge stability diagram is identical to brute force.

In summary, more work is required to understand the implications of the thresholding strategy fully. However, it
is worth noting that these distortions in the charge stability diagram are next to irrelevant when using the constant
capacitance model to generate training data for neural networks such as in references [9, 10]. As effects we manually
add to make the charge stability diagram look more , such as thermal broadening, measuring the charge stability
diagram through a charge sensor and noise, will entirely swap the distortions. And the speed of the thresholded
algorithm will allow for much larger more diverse training datasets.

Appendix K: Simulation times

This section tabulates the time required to simulate the charge stability diagrams in Fig.3, using each of the software
implementations.

16

Vx

V
y

(a)
t= 0

Vx

V
y

(b)
t= 1/28

Vx

V
y

(c)
t= 1/14

Vx

V
y

(d)
t= 3/28

Vx

V
y

(e)
t= 1/7

Vx

V
y

(f)
t= 1

Figure 6. (a-e) Charge stability diagrams of an open double quantum dot produced by the thresholded algorithm for threshold
values smaller than or equal to the empirical minimum value of 1/7 based on the capacitance matrix. The value of the threshold
used in the simulation is stated above in the plot. f) Simulated charge stability diagram with the thresholded algorithm with
the threshold set to one, so it performs identically to the default algorithm.

Algorithm Implementation Simulation time
Figure 3 b) (s)

Simulation time
Figure 3 d) (s)

Brute-force Python 4.6 137.6
Brute-force JAX 0.05 + 0.32 jit 21.1 + 0.4 jit
Default Python 4.92 18.1
Default JAX 0.09 + 0.8 jit 2.1+ 0.8 jit
Default Rust 0.10 0.71
Thresholded t = 1/2 Python 2.81 10.8
Thresholded t = 1/2 Rust 0.08 0.66

Table II. The compute times for all the different implementations of the brute-force, default and thresholded algorithms, to
recreate plots b) and d) in Figure 3. For the JAX-based implementations, we include the one-off jit compile time. For the brute-
force algorithm, we used nmax = 2 and 5 for the open four-dot array and the closed five-dot array in b) and d), respectively.

17

Bruteforce Rust (threshold = 1/3) Difference

δε V1 (a.u.) δε V1 (a.u.) δε V1 (a.u.)

δε
V

2 (
a.

u.
)

δε
V

2 (
a.

u.
)

Open

Closed

(a) (b) (c)

Figure 7. Diagrams illustrating the errors introduced by the thresholding strategy. (a) The charge stability diagram of a four-
gate quadrupled quantum dot device as a function of the left and rightmost gates, in both the open and closed regime, where
four holes are confined. The brute-force core was used to compute the charge stability diagrams. (b) Identical charge stability
diagram, but computed using the Rust core with a threshold of 1/3. (c) The pixel-wise difference between the brute force and
the rust core. Black pixels indicate that the predictions differ. The solid black band along the x and y axis demonstrate the
brute-force algorithm failing when nmax is too small. Whilst the small discrepancies in the centre of the plot are due to the
thresholding algorithm.

	QArray: a GPU-accelerated constant capacitance model simulator for large quantum dot arrays
	Abstract
	Introduction
	The constant capacitance model
	The QArray algorithms
	Computing the continuous minimum
	The analytical solutions
	The numerical solver

	Evaluation of the nearest neighbour discrete charge states
	The default algorithm
	The thresholded algorithm

	Additional functionality
	Charge sensors
	Thermal Broadening
	Optimal gate voltages and virtual gates

	Examples
	Realistic simulations

	Implementations
	Benchmarks
	Summary and Outlook
	Code availability
	Author contributions
	Acknowledgements
	Competing interests
	References
	Software implementations
	Positive Definite Proof
	Continous minimum for open quantum dot arrays
	Continous minimum for closed quantum dot arrays
	Optimality criteria for limit cases
	Physical motivation for diagonal and spherical limit case
	Number of charge states
	Finding optimal voltage for a given charge state
	Virtual gates
	Effect of threshold
	Simulation times

