QArray: a GPU-accelerated constant capacitance model
simulator for large quantum dot arrays

Barnaby van Straaten,™[] Joseph Hickie,! Lucas Schorling,?
Jonas Schuff,' Federico Fedele,? and Natalia Ares™[f

! Department of Materials, University of Ozford,
Ozford OX1 3PH, United Kingdom
2Department of Engineering, University of Oxford,
Oxford OX1 3PH, United Kingdom
(Dated: August 4, 2024)

Abstract

Semiconductor quantum dot arrays are a leading architecture for the development of quantum
technologies. Over the years, the constant capacitance model has served as a fundamental frame-
work for simulating, understanding, and navigating the charge stability diagrams of small quantum
dot arrays. However, while the size of the arrays keeps growing, solving the constant capacitance
model becomes computationally prohibitive. This paper presents an open-source software pack-
age able to compute a 100 x 100 pixels charge stability diagram of a 16-dot array in less than
a second. Smaller arrays can be simulated in milliseconds - faster than they could be measured
experimentally, enabling the creation of diverse datasets for training machine learning models and
the creation of digital twins that can interface with quantum dot devices in real time. Our soft-
ware package implements its core functionalities in the systems programming language Rust and
the high-performance numerical computing library JAX. The Rust implementation benefits from
advanced optimisations and parallelisation, enabling the users to take full advantage of multi-core
processors. The JAX implementation allows for GPU acceleration.

* barnaby.vanstraaten@kellogg.ox.ac.uk
t natalia.ares@Qeng.ox.ac.uk

mailto:barnaby.vanstraaten@kellogg.ox.ac.uk
mailto:natalia.ares@eng.ox.ac.uk

I. INTRODUCTION

Semiconductor quantum dot arrays are one of the leading platforms for the realisation of
large-scale quantum circuits. As they grow in size and complexity, these arrays present ex-
citing opportunities and significant challenges. Tuning and operating these devices involves
finding precise gate voltages to achieve the desired charge occupancy and interdot coupling
parameters. Charge stability diagrams provide a visual representation of the charge occupa-
tion in the quantum dot as a function of the applied gate voltages, allowing the identification
and control of transitions between different charge configurations. The constant capacitance
model is a widely-used equivalent circuit framework that models the electrostatic character-
istics of quantum dot arrays, This model can be used to compute charge stability diagrams
of quantum dots arrays[IH7]. As a result, the constant capacitance model has proven to
be an invaluable resource for gaining insights into complex charge stability diagrams and
training neural networks for automated tuning strategies [2, 5, BHIT].

However, the model encounters scaling limitations, making the simulations of arrays
larger than four dots slow and impractical. Specifically, the problem of computing the
lowest energy charge configuration in a brute force manner, as implemented in Refs. [2] §],
scales with (nmax + 1)t where nya, > 1 is the maximum number of charges considered at
any of the quantum dots, and nq. is the number of quantum dots being simulated.

We introduce QArray, an open-source software package for fast constant capacitance
modelling, opening the path to the creation of ever-larger datasets for neural network train-
ing, as well as the realisation of digital twins, the use of machine-learning-informed tuning
strategies, and the use of these simulators for tuning and characterisation in real-time. Our
package contains two new algorithms to compute the ground state charge configuration,
which we call QArray default and thresholded. These algorithms greatly reduce the number
of calculations needed to find the ground state charge configuration by computing the ener-
gies of only the most likely rather than the full set of possible configurations. Our default
algorithm’s complexity scales with 2"dt. The thresholded algorithm sacrifices some accuracy
to further reduce the number of charge states considered to (1 + ¢)™t, where t € [0,1] is
a threshold defining which charge states must be considered and which can be neglected.
Both of our algorithms considerably reduce computational time, especially for larger arrays
containing more charges. For example, our default algorithm, in the case of a five-dot array
containing five charges, reduces the number of change states considered by at least 243 times
compared to a brute-force approach.

Within QArray, the brute-force and our default algorithm are implemented in Python,
Rust and JAX, (see Fig.) The threshold algorithm is implemented in Python and Rust.
The Rust implementations are optimised for parallel computation on a CPU, using rayon
[12H14]. At the same time, a GPU can accelerate the JAX implementations through just-in-
time (jit) XLA compilation [15]. The Python implementations offer no practical advantages
over those written in Rust or JAX but are maintained for benchmarking and comparison
testing. The Rust and JAX implementations of our algorithms can model arrays with 16
or more dots in seconds and simulate the charge stability diagrams of smaller arrays in
milliseconds.

The following section details the matrix formulation of the constant capacitance model.
In Section [T} we discuss our algorithms and how they compute the charge ground state in
both open and closed quantum dot arrays. Section [[V] covers how realistic features can be
incorporated into the simulation and some useful analytical results. Section [V] provides a

2

Key V:(,m -1 ‘/;]n c)

D Gate
O

Quantum dot

Va

Capacitive
coupling

Na Naz Nan-1 Nan T
b) Inputs Algorithms %:ﬁ

I computed in Python \Y)

d 9t
Compted in Rust)
Capacitance DotArray [Accelerated by JAX
Matrices
Outputs
Gate Voltage
Composer Charge stability <

diagram >°’

Python
Threshold Y Charge sensing
T R
\Y

Figure 1. (a) Schematic of a generic array of quantum dots: The diagram illustrates the represen-

gl

tation of a quantum dot device as a system of capacitively coupled electrostatic gates and quantum
dots. Solid black lines represent the direct dot-to-gates couplings, while capacitors representing the
interdot capacitance are modelled with blue lines, respectively. From the choice of the capacitance
matrix (stored in the DotArray class), the user can define an array with an arbitrary number of
dots and geometry. For given gate voltages, a discrete integer number of charges minimises the
system’s free energy. (b) The structure of the QArray package featuring the multiple software
implementations, represented as colour-coded boxes denoting Python (blue), Rust (yellow), and
JAX (green), of the brute-force, default and thresholded algorithms. The gate voltage composer
class generates voltage vectors for native sweeps (e.g., V,1 against Vjo), or it can be used to define
arbitrary virtual gate sweeps. DotArray offers methods for computing charge stability diagrams
for open or closed regimes with any core choice. Optionally, the charge stability diagram can
be coupled with simulated charge sensors to model their response. (c) Charge stability diagrams
(computed with our default algorithm implemented in Rust) for a hole-based linear array of four
quantum dots in the open regime. The black lines denote transitions separating regions in the
charge stability diagram with a fixed dot occupation. (d) Charge stability diagrams (computed
with our default algorithm implemented in Rust) for the same linear four-dot array of quantum
dots in the closed regime where the total number of charges in the array is fixed to four.

step-by-step example of using our software package to simulate a double quantum dot and
demonstrates that QArray can be used to recreate experimentally-measured charge stability
diagrams of open quadruple dot and closed five dot arrays. In Section [VI, we discuss the
details of our software implementations and how we optimised for speed. Finally, in Section
[VIT we benchmark our implementations of each algorithm.

3

II. THE CONSTANT CAPACITANCE MODEL

The constant capacitance model describes an array of quantum dots and their associated
electrostatic gates as nodes in a network of fixed capacitors [IH7], (see Fig. 1a). The model
is based on the assumption that a single constant capacitance C' models the interactions
between the charges on a single quantum dot and those in the environment and that the
single-particle energy levels do not depend on the number of charges considered. Addition-
ally, the model is a good approximation when the quantum dots are weakly coupled enough
that quantum tunnelling effects can be ignored. Typically, the constant capacitance model
is valid in a small range of gate voltages, as significant changes in the confinement potential
can shift the dot positions and consequently alter their capacitive couplings. Each node
¢ has an associated charge ();, an electrostatic potential V;, and its capacitive coupling to
every other node k given by Cji,. The capacitor C;; stores a charge ¢;; := C;;(V; —V;). The
total charge on node i is therefore related to its and other nodes’ potentials according to

Qi:ZQij :Zcija/;_vj)- (1>

Using the Maxwell matrix formulation, we express this as C_j = CV, where ¢ is the Maxwell
capacitance matrix. In this framework, the ¢ matrix’s diagonal elements give each node’s
total capacitance, and the off-diagonal elements are the negative of the capacitive coupling
between the respective nodes. We now distinguish between quantum dots and electrostatic
gate nodes by separating the matrix equation into

Qy Cdg Cgq| |V,]’
where Qd(g) represents the charge on the quantum dots (gates) and ‘_/;l(g) denotes the potential
on the quantum dots (gates). The matrices c4q, Cyd, Cag, 49 €ncode dot-dot, gate-dot, dot-

gate and gate-gate capacitive couplings, respectively, in the Maxwell format. The potential
on the quantum dots can then be computed by

—

Vy= Cc?dl(@d —cgaVy). (3)

The free energy of the system, F(@, ‘7') = U(Cj; 17) — W(Cj, ‘7) = VTCV/Q — @ng, can then

be written as
— — 1 —, _ — _ — —
F(Qu; Vg) = ngcdded - (Cddlcgdvg)TQd? (4)

where we have dropped the terms without dependence on de. This free energy function is
convex since cyq is positive definite (for proof, see Appendix . Since the charge on the
gates is not of interest, in the remainder of this paper, we drop the subscript and refer to
the charge on the quantum dots as ¢). _

The allowed charge states () = £eN (for holes and electrons, respectively) are heavily
constrained in a quantum dot array. In particular, for an open quantum dot array, i.e. when
the array is coupled to fermionic reservoirs from which it can draw an arbitrary number of
charges (see Fig. [1] (¢)), the constraints are:

(i) The number of charges must be integers, represented as N € Zmaot

4

(ii) The number of charges on any given quantum dot must be non-negative, meaning
N; > 0 for all 7.

For a closed quantum dot array, i.e. when the leads are decoupled from the array, and
the number of charges is fixed to a finite value N [16l [I7] (see Fig. |1| (d)), we impose the
additional constraint:

(iii) The sum of all charges in the array must equal N.

At T = 0 K, the system will adopt the charge state, N *, which minimises the free energy
whilst obeying the appropriate constraints, such that

N* = argmin F(N; V), (5)
NeN
where N is the set of all admissible charge configurations for the open or closed regimes of the
quantum dot arrays. Due to the constraints, finding the lowest energy charge configuration
is an example of a class of optimisation problems called constrained convex quadratic integer
problems, also called Mixed-Integer Quadratic Programming (MIQP) problems, which are
NP-hard [18-20].

By computing the ground state charge configuration as a function of the gate voltages,
the constant capacitance model captures the charge stability diagrams of such quantum dot
arrays when the tunnel couplings between quantum dots are weak. The following section
discusses our algorithms for computing the charge configuration ground state.

III. THE QARRAY ALGORITHMS

The QArray-default and thresholded algorithms can be broken into two stages. First, we
neglect the integer charge constraint, , and compute the continuously-valued charge state
that minimises the free energy. We will refer to this state as the continuous minimum. In
the second stage, we reintroduce the integer charge constraint by evaluating the energy of
each discrete charge state that neighbours the continuous minimum and selecting the state
with the lowest energy (Fig. [2 (a)).

The QArray-default and thresholded algorithms differ in which charge states they define as
neighbouring the continuous minimum. The thresholded algorithm is much more selective
(Sec. Fig. [2[(b)). We formally justify considering only the nearest neighbouring
discrete charge states in Appendix[E] The fundamental idea is that the free energy is a convex
function minimised at the continuous minimum. Therefore, the lowest-energy discrete charge
states must lie close to the continuous minimum.

In the next section (Sec. [[ILA]), we will discuss how the continuous minimum is computed
for both open and closed arrays, then how the default and thresholded algorithms find
the discrete charge state lowest in energy from the nearest neighbours to the continuous

minimum (Sec. [l1I B)).

A. Computing the continuous minimum

To compute the continuous minimum charge configuration for both open and closed
quantum dot arrays, we initially try the analytical solution for the charge configuration

a) F(N) (a. u.)
| 3 &3

Figure 2. (a) Diagram depicting the default algorithm applied to an open double dot. The
algorithm first finds the continuous minimum (marked with a red cross), which minimises the free
energy. The free energy landscape, as a function of the charge on each dot, is shown with contour
lines. After computing the continuous minimum, the algorithm evaluates the nearest neighbour
discrete charge states (marked as red dots) to determine which is lowest in energy. By comparison,
the brute force implementation considers all charge states, leading to it also having to consider
the charge states marked as black dots. In this case, (1, 2) is the discrete charge state lowest
in energy. (b) Diagram depicting the thresholded algorithm applied to an open double dot. The
algorithm computes the continuous minimum (red cross) as in the default algorithm. However,
rather than just considering all nearest neighbour discrete charge states, thresholding is used to
reduce further the number of charge states needing to be evaluated compared to the default version
of the algorithm. As the continuous minimum does not lie within the vertical grey rectangle, for
which the width equals the threshold ¢ = 1/3, it is unnecessary to consider both the floor and
ceiling values for Ni. Instead, it can be rounded down. By contrast, the continuous minimum does
lie in the horizontal rectangle, so both floor and ceiling values for No must be considered. The
discrete charge states, considered by the thresholded algorithm, are shown as red dots.

derived by neglecting constraints that the charge state must take integer, non-negative
values, i.e. constraints |(i)[and respectively. If this solution satisfies constraint such
that no dot contains a negative number of charges, we accept and use it. Otherwise, we
compute a solution using a numerical solver, which explicitly applies constraint . We try
the analytical solution before resorting to the numerical solver because it is inexpensive to
compute compared to the solver, and trying it first offers an overall time advantage.

1. The analytical solutions

The continuous minimum for an open quantum dot array is
Sxcont open __ ¥
Q - ng‘/:gh (6)

see Appendix [C] for a formal derivation.

For closed quantum dot arrays, we use Lagrangian multipliers to account for the fixed
number of charges in the array (imposed by constraint . As derived in Appendix @ the
continuous solution can therefore be written as

Q’*cont closed _ ng‘_/;] + (Q — TTng‘/g ==, (7>

where 1 = (1,1,...,1)T € R™et is the one vector and (@ is the confined charge.

In both the open and closed cases, one or more of the elements of @*Com open/closed 5y
correspond to a negative number of electrons/holes. As mentioned before, if this occurs, we
must fall back on the numerical solver to implicitly apply the constraint. The numerical
solver is discussed next.

2. The numerical solver

The numerical solver computes the continuous minimum for open and closed dot arrays
as a constrained convex quadratic optimisation problem. The general form of these problems
is

minimise 7' MZ + o1 %

v
subject to | < AT < 4. (8)

In our case M = c;; and ¥ = —c;c,q4V,. Constraint can be encoded in this form by

setting the constraint matrix A to the identity, and the lower and upper bound vectors (I
and @) to vectors of all zeros and infinities, respectively. For a closed array, constraint
can be encoded by setting the constraint matrix as a row matrix with all terms equal to
one and upper and lower bound vectors as single value elements equal to N. Combining
constraints for open and closed quantum dot arrays involves concatenating the associated
constraint matrix and bound vectors.

B. Evaluation of the nearest neighbour discrete charge states

With the continuous minimum in hand, the QArray algorithms iterate over the nearest
neighbouring discrete charge states to find which one is the lowest in energy. The algorithms
differ in how they define the nearest neighbouring discrete charge states. In the following
subsection, we discuss precisely which charge states default and thresholded algorithms
iterate over.

1. The default algorithm

The default algorithm will consider all the different charge configurations obtained by
the element-wise flooring and ceiling of the values in the continuous minimum. Therefore,
the default algorithm iterates over all 2"t possible ways of rounding the elements of the
continuous minimum up or down to the nearest integer. The charge states considered by
the default algorithm when computing the lowest energy charge state of a double dot are
highlighted in red in Fig. (a). This considerably reduces the number of charge states
that need to be considered compared to the brute force approach. As mentioned previously,
we formally justify considering only the neighbouring discrete charge states in Appendix [E]
If the quantum dot array is closed, we eliminate the configurations that lead to the wrong
number of charges in the array.

2. The thresholded algorithm

The motivation behind the thresholded algorithm was the observation that it was some-
times unnecessary to consider every one of the 2"t possible charge combinations. Only if
the decimal part of each element of the continuous minimum charge state, N*°" is close
to 1/2 should we consider both charge configurations obtained by rounding up and down
to the nearest integer. Otherwise, we can round to the closest charge configuration. As an
example, the charge states considered by the thresholding algorithm when computing the
lowest energy charge state of a double dot, with a threshold of 1/3, are highlighted in red
in Fig. 2 (b)).

If we define the threshold as t € [0, 1], then the condition for having to consider both the
floor and ceiling charge configurations on the ith quantum dot is

frac[N;<o™] — 1/2| < t/2. (9)

The total number of charge states needed to be evaluated after the thresholding scales with
(t + 1)™et (see Appendix |G| for deviation).

When considering closed arrays, we found that applying the threshold may produce no
charge states with the correct number of charges. In this case, we double the threshold and
recompute. This threshold is left to the user’s discretion; however, in Appendix [F] we try
to motivate a good choice of threshold.

IV. ADDITIONAL FUNCTIONALITY

This section discusses features of QArray that are adjoint to the main algorithms. In par-
ticular, how we simulated charge sensing measurements (Sec. and thermal broadening
(Sec. [TV B)), and present analytical results regarding optimal choice of gate voltages and vir-
tual gates (Sec.|IV C]). These functionalities will be useful both when using QArray as a tool
to understand charge stability diagrams and for automated tuning strategies. The charge
sensing functions can be used to simulate realistic charge stability diagrams measured with
a charge sensor. The optimal gate voltage function can be used to simulate a voltage sweep
centred around a chosen charge state for any given capacitance matrix. Given a specific
capacitance matrix, the optimal virtual gate function can be used to find the linear combi-
nation of gates that can modify the electrochemical potential of a single dot compensating
for the effects of voltage cross-talk.

A. Charge sensors

To simulate charge-sensing measurements, we distinguish between charge-sensing dots
and regular dots. We first compute the charge state that minimises the free energy of the
regular dots. With the charges on the regular dots fixed, we then determine the charge
configuration on the sensor dots that minimises the overall free energy.

Next, we evaluate the difference in free energy between the minimum free energy charge
state of the regular dots and the sensor’s charge state next lowest in energy, which we denote

as AF(V,). We assume that the charge sensor dots are in the strongly coupled regime, so
the conductance follows the Breit-Wigner formula [2I]. Consequently, the charge sensor’s

8

response is Lorentzian, and we model the sensor response as:

. 1
W) = Ry +1 o

where I is the sum of the tunnel rates to the source and drain; this parameter is configurable
by the user to match their experimental setup. Additionally, we include various noise models
to simulate white noise, 1/f noise, and sensor switches due to fluctuating charge traps,
among others.

B. Thermal Broadening

For a finite temperature, the quantum dot system will not adopt the lowest energy charge
state. Instead, it will adopt a thermally mixed state based on the relative energy of the lowest
energy charge states, resulting in the thermal broadening of charge transitions. We anticipate
that the ability to simulate thermal effects would be useful for training representative data
for neural networks. This can be accounted for by replacing the arg min function in Eq.
with a soft arg min function, which computes a Boltzmann weighted sum of the applicable
charge states, such that

N* = soft arg min F(]_f, ‘_/;]) , where
NeN
L N F(N;V,)/kgT
soft arg min F'(N; V,) = 2y NV expl = <q AV)/ b]
N > 5 exp[—F(N; Vy) /kpT]

(11)

The summation runs over all the allowed charge configurations considered by the algo-
rithm. For a closed array, this means eliminating the charge states with the total number
of charges different than N. This approximation is valid for temperatures such that kpT
is smaller than the dot charging energies, since the contribution of other charge states is
exponentially suppressed.

C. Optimal gate voltages and virtual gates

In developing QArray, we derived and implemented analytical results that help navigate
charge stability diagrams. This section lists them.

Optimal gate voltages: the gate voltages that minimise the charge state @d’s free energy,
F (V;J, Qd) is = =
V* = (Reya) " RQy, (12)
where RTR = ¢} is the Cholesky factorisation and + denotes the Moore-Penrose pseudo
inverse. The proof of this result is presented in Appendix [H]

Optimal virtual gate matriz: the optimal virtual gate matrix, «, used to construct virtual
gates is

@ = (czicqa)", (13)

9

V)

where ith row of this matrix encodes the electrostatic gate voltages required to change the
ith dot’s potential. The proof of this result is presented in Appendix [[

V. EXAMPLES

In this section, we explain the usage of QArray to produce the stability diagram of a
double quantum dot. Firstly, we import the DotArray class as follows,

from qarray import DotArray, charge_state_changes
import numpy as np

import matplotlib.pyplot as plt

When initialising the DotArray class, we specify the system’s capacitance matrices, charge
carriers, the algorithm, and the implementation, as shown below. The temperature param-
eter (T') can be used to incorporate the effect of thermal broadening. In the example below,
we set it to zero, ensuring that the solver determines the charge state that minimises the
free energy as specified in Eq. .

Initalising the DotArray class

array = DotArray(

Cdd=[

[0.0, 0.1],

[0.1, 0.0]
s
Cgd=[

[1., 0.1],

[0.1, 1]
P
algorithm = "default",
implementation = "rust",
charge_carrier = "holes",
T=20.0

5)

Here, the Cdd and Cgd arguments encode the dot-dot and dot-gate capacitive couplings,
respectively. With the class’ initialisation, these are stored as the attributes ¢4y and cyq
(lowercase) in their Maxwell format. Once the model is defined, the user can either use a
graphical user interface (GUI) or a programmatic one. We anticipate the GUI will be useful
for fitting and understanding the charge stability diagrams of complex devices. Meanwhile,
the programmatic interface is more flexible, allowing the generation of large datasets with
access to the full breadth of QArray’s functionalities, i.e. charge sensing, noise and thermal
broadening. To use the GUI, the user should call the function:

array.run_gui()

This function opens a web interface on port 9000. Fig. [3|shows a screenshot of this interface.
From the GUI, it is possible to configure parameter sweeps with voltage gates, virtual
gates (denoted as vP;), detuning (defined as €;; := vP;, — vF;) and onsite energy U;; =
(vP; — vP;)/2. As the sweep parameters are changed, the corresponding charge stability
diagram is updated live, with the charge state being automatically labelled. In addition, it

10

C dot-dot C gate-dot Virtual gate matrix

D1 D2 D3 D4 P1 P2 P3 P4 vP1 vP2 vP3 vP4
D1 0 0.2 0.05 0.01 D1 1 0.1 0.05 0.01 1.458 -0.359 -0.1 0.001
D2 0.2 0 0.2 0.05 D2 0.1 1 0.1 0.05 -0.337 1.776 -0.35 -0.089
D3 0.05 0.2 0 0.2 D3 0.05 0.1 1 0.1 -0.089 -0.35 1.776 -0.337
D4 0.01 0.05 0.2 0 D4 0.01 0.05 0.1 1 0.001 -0.1 -0.359 1.458

X sweep options Y sweep options DAC values

0.3 S
P1 X v P2 X v
- = 0.4 $
5 < 5 $

200 s 200 8 0 °

0 <

- . Open/Closed options
Charge stability diagram
Any X v
Plot options
2
blues X v

Automatically update

[1000] BOOG virtual gate matrix

True X v

P2

Print charge state

True X v

Figure 3. The QArray GUI. The matrices "C dot-dot" and "C gate-dot" can be used to configure
the Cyq and Cyq capacitance matrices of a quantum dot array. The "virtual gate matrix" is used to
configure the linear combinations of gates making up each virtual gate. This matrix can be updated
automatically based on Eq. or it can be edited manually (configured in the "automatically update
virtual gate matrix" dropdown). The x and y sweep options and the "DAC values" can be used to
perform any gate voltage sweep. The results are then plotted in the charge stability diagram plot
section below. The open and closed drop down menu specifies whether the array is open or closed
and, if it is closed, how many charges it contains. The plot options menu allows the user to choose
the colour map, and finally, the print charge state menu allows the user to choose whether to label
the corresponding charge state on the charge stability diagram. The plot is automatically updated
whenever any of the options listed above are changed.

is possible to change the elements of the capacitance matrices and choose open or closed dot
configurations.

The DotArray class has methods to perform one and two-dimensional gate voltage
sweeps. For an open array, these methods are called dold_open and do2d_ open; likewise,
dold_ closed and do2d_ closed correspond to closed arrays. As shown below, these meth-

11

o

ods work with sweeps over arbitrary combinations of gate voltages, virtual plunger gates,
detunings and onsite energies:

min, max

, res = -4, 4, 400

computing the ground state charge configurations

n = array.do2d_open("P1", min, max, res, "P2", min, max, res)

n_virtual = array.do2d_open("vP1", min, max, res, "vP2", min, max, res)

n_detuning U = array.do2d_open("el_ 2", min, max, res, "Ul_2", min, max, res)

; n_closed

= array.do2d_closed("P1", min, max, res, "P2", min, max, res, n_charges = 2)

fig, ax = plt.subplots(2, 2, figsize=(5, 5))

extent = (min, max, min, max)
ax[0, 0] .set_title("Open")
ax[0, 0] .imshow(charge_state_changes(n), origin="lower", cmap=’Greys’, extent=extent)
ax [0, 0] .set_xlabel("P1")
ax[0, 0].set_ylabel("P2")
ax[0, 1].set_title("Virtual gates")
; ax[0, 1].imshow(charge_state_changes(n_virtual), origin="lower", cmap=’Greys’, extent =
extent)
7 ax[0, 1].set_xlabel("vP1")
ax[0, 1].set_ylabel("vP2")
ax[1, 0].set_title("Detuning - on-site energy")
ax[1, 0].imshow(charge_state_changes(n_detuning U), origin="lower", cmap=’Greys’, extent
= extent)
ax[1, 0].set_xlabel("e_{12}")
ax[1, 0].set_ylabel("U_{12}")
5 ax[1, 1].set_title("Closed (2 holes)")
ax[1, 1].imshow(charge_state_changes(n_closed), origin="lower", cmap=’Greys’, extent =
extent)
ax[1, 1].set_xlabel("P1")
ax[1, 1].set_ylabel("P2")
plt.show()

In this code, each of the do2d functions returns a numpy array of shapes (400, 400, 2)
where the last axis encodes the number of holes in each dot for the corresponding gate
voltages. To plot these charge configurations, we use charge state changes; this function
checks whether the charge state changes in the x or y directions. Therefore, the function’s
output is a boolean array of shapes (399, 399) where 1s are present wherever charge transi-
tions occur. QArray has other functions to map the charge states. The plots resulting from
this code are shown in Fig.

12

Open Virtual gates

a) 4 b)
8 of 1 & of]
L]
—4 L —4 | L
—4 0 4 —4 0 4
P1 vP1

)]ietuning - on-site energy a0 1 Closed (2 holes)

T

¢

''''''''

Figure 4. Plots from the code example. (a-c) show the charge stability diagrams of an open double
dot obtained by sweeping the plunger gate voltages (a), a set of virtual gate voltages (b), and
the detuning and on-site energies (c), respectively. (d) Charge stability diagram of thedouble dot
considered in (a-c) in the close regime. Two holes are enclosed within the array.

A. Realistic simulations

Beyond simply computing idealised charge stability diagrams QArray can simulate the
response from a charge sensor and account for the thermal broadening of charge transitions,
as explained in Section [V] Combined, these two capabilities make it possible to generate
simulations of stability diagrams that look considerably closer to experimental data. Figure[j
(a) shows a charge sensor measurement of a charge stability diagram of an open quadruple
dot presented in Ref. [22]. In Fig. 5| (b), we simulate this measurement using QArray with
a 200 x 200 pixels resolution. Likewise, Fig. [5| (¢) shows a measurement from Ref. [23] of a
stability diagram corresponding to a five-electron closed configuration within a five-dot cross-
geometry array. In Fig. [5[(d), we simulate this measurement with a resolution of 400 x 400
pixels. We achieved a very good qualitative agreement between both measurements and our
simulations. Discrepancies are mainly due to the fact that the constant capacitance model
does not capture the curvature of charge transitions; in this model, couplings between dots
are kept constant for all gate voltage ranges.

The code to recreate the simulations displayed in Fig. |5[(b) and (d) is provided as exam-
ples within the QArray package. We used the Rust implementation of the default algorithm
for both reconstructions, but we could have used any algorithm implementation. The com-
pute times are listed in Appendix [K] As a figure of merit, the Rust implementation of
the default algorithm took 0.1 and 0.7s for the open and closed arrays, respectively. All

13

N Vpy

VP4$mV)
2

FEEEs
: ;U

140 f :
-160 -120 -80 0 1
Vpy (MV) Ve (a.u.)

9) Ngpe/0(OV,) mm——m
\ . /
3 % . 4
s‘/ 5 NN
,>>_ >A~<:b<>o/<'
y i
N
//‘7 \
0
0 1

oV (a.u.)

Figure 5. (a) Adaptation of Fig. 2b from Ref. [22] showing a stability diagram of a linear
quadruple quantum dot array in the open regime. This is measured as a function of the two
outermost plunger gates voltages, Vp; and Vps. The colour scale represents the derivative of the
sensor signal Viy with respect to Vp;. (b) A recreation of Fig. 2b from Ref. [22], simulated using
QArray. The colour scale represents the derivative of the simulated sensor signal, Viens, with respect
to Vp1. (c) Adaptation of Fig. 3a from Ref. [23] showing the stability diagram of a five-electron
configuration corresponding to a five-dot cross-geometry array. The colour scale represents the sum
of current changes in all charge sensors (3 Vigpe) as a function of virtual gates 0Vy (controlling
the left-right detunings) and 6Vy (controlling the top-bottom detunings). (d) A recreation of Fig.
3a from [23] using QArray. The colour scale represents the derivative of the simulated sensor signal,
in this case, Vypc, with respect to 0Vy . To simulate the sensing of a QPC, we use the same method
as in section [[V'A] using a linear profile instead of a Lorentzian one.

implementations of all algorithms in the package produce identical plots.

VI. IMPLEMENTATIONS

Within QArray, the brute-force approach and our default algorithm are implemented in
Python, Rust and JAX. The threshold algorithm is implemented in Python and Rust. The
Rust and JAX implementations fulfil different use cases. The Rust implementations are
optimised for computation on a CPU, while a GPU can accelerate the JAX-based imple-
mentations. The Python implementation does not provide a practical advantage over the
Rust and JAX cores, but it is retained for benchmarking purposes (see Fig. [6fa-b)). In this
section, we discuss these different implementations in detail.

14

The Rust implementations: Rust is a systems programming language on par with c in
speed [13], 24, 25]. Our Rust implementations take advantage of parallelism when sensible,
based on workload at runtime, thanks to the functionality provided by rayon [13], 14, 24| 25].
In addition, we used caching and function memorisation to avoid reevaluating the discrete
charge state configurations for which the free energy is evaluated. However, appreciating
that Rust is a relatively niche language compared to the ubiquitousness of Python, we
interloped the Rust core with Python. This allows the user to gain all the benefits of Rust
in their familiar Python coding environment.

The JAX implementations: JAX is a Python-based machine learning framework that
combines autograd and XLA (accelerated linear algebra). Its structure and workflow mirror
that of numpy; however, at run time, the code can be just in time (jit) compiled and auto-
vectorised to primitive operations for significant performance improvements. Through the
vmap function, JAX will compile the functions to XLA and execute them in parallel with a
GPU [15]. Unfortunately, the discrete nature of the constant capacitance model negates the
possibility of using JAX’s autograd capabilities. In addition, as the sizes of all arrays must
be known at just-in-time compile time, the JAX implementation of our algorithm cannot
perform the thresholding algorithm.

The numerical solver: We made use of the OSQP (Operator Splitting Quadratic Pro-
gram) solver instead of relying on less specific optimisers available in scipy.optimize [26].
The OSQP solver is optimised explicitly for constrained convex quadratic problems [27].
It is an incredibly efficient solver; only one matrix factorisation is required to set up the
optimisation problem, after which all operations are cheap, such that there is no need to
perform any slow division operations. For a complete description of the OSQP solver and its
benchmarks, see Ref. [27]. For the solver’s hyperparameters, we use the default values sug-
gested by this reference. As a result, the solver performs the required number of iterations
to obtain the continuous minimum to within an absolute and relative error of 1073. The
solver updates the step size automatically. Our benchmarks found that the OSQP solver
was able to find the continuous minimum of double, triple and even quadruple dot systems
in less than 10ps per voltage configuration.

It is important to note that in QArray, we set the unit charge, |e| = 1, to avoid issues
with numerical stability. The units of free energy are thus electron volts, and the units of
our temperature parameter are Kelvin.

VII. BENCHMARKS

We benchmark the performance of each of the algorithms within QArray for all the
different implementations discussed. In order to do this, we generate a random C matrix by
drawing each element from a uniform distribution. This randomised matrix is converted to
the Maxwell format. We then compute the ground state charge configuration over a set of
100 x 100 randomly chosen gate voltage configurations and record the average computation
time.

For all the implementations of the brute-force and default algorithm, we show the average
compute time over many benchmarking runs executed on both the CPU within the Apple
M1 Pro System on Chip (SOC) and an NVIDIA GTX 1080TI GPU (Fig. [f] (a-b)). As
anticipated, the default version of the algorithm exhibits superior scalability compared to the
brute force approach, resulting in notably shallower performance curves. Compared to the
brute force method, for arrays with more than five dots, the Rust and JAX implementations

15

102 Open ; ; Closed

10t

100

Time (s)

W

/

—— Default Rust

—J— Default JAX (CPU) 3
Default JAX (GPU)

—J— Default Python

—F— Brute-force JAX (CPU) A

--J+- Brute-force JAX (GPU)
Brute-force Python

1

Wi —— Default Rust r

/ : —f— Default JAX (CPU) N
k—;/ | Default JAX (GPU) E
7 ! —JF— Default Python t

: —I— Brute-force JAX (CPU) § F
i i -+ Brute-force JAX (GPU)] [
| Brute-force Python

103 n L L L " i L L " L 1
4 8 12 16 4 8 12 16

Number of dots Number of dots

107!

102

Figure 6. (a-b) Average computation time required by each core to generate 100 x 100 pixels
charge stability diagrams. Simulations are performed for randomly chosen capacitance matrices
and gate voltage configurations and correspond to increasing sizes of both open (top) and closed
(bottom) arrays. We ran the JAX and brute force cores on both a CPU and a GPU. For the closed
quantum dot arrays, the number of confined electrons/holes matches the number of quantum dots
within the array. The error bars represent confidence intervals of 20, such that for a randomly
chosen set of capacitance matrices and voltages, the compute time should fall within the error bars
95% of the time.

of the default algorithm are at least one order of magnitude faster and gain more time
advantage as the number of dots increases. Even the Python implementation becomes faster
than the GPU-accelerated brute force method for arrays with more than six quantum dots.
Still, it remains several orders of magnitude slower than the Rust and JAX implementations
due to the speed gained by the parallelisation and the GPU usage offered by these cores.
On the CPU, our Rust and JAX cores demonstrate approximately equal performances for
open dot arrays. However, for closed dot arrays, the Rust core leverages optimisations that
confer enhanced performance in the simulation of large arrays. Nevertheless, the advantage
of these optimisations is eclipsed by the raw computational power harnessed by the JAX
core when executed on the GPU. The GPU-accelerated JAX algorithm can compute the
charge stability diagram of a 16-dot array featuring 100 x 100 gate voltage pixels in less
than a second for both open and closed configurations.

In Fig. [7| (a-b), we compare several runs obtained with the Rust implementation of the
thresholded algorithm using different values of ¢ for open and closed regimes. As expected,
smaller threshold values result in faster computation, especially in larger arrays. The Rust
thresholded algorithm running on a CPU was faster than the JAX implementation on a
GPU for t < 2/3. We also note larger time gains in the open dots configuration compared
to the closed case. This difference arises because when simulating quantum dot arrays in
the closed regime, the threshold strategy may fail if no charge state configurations with the
correct number of charges are found. In this case, the algorithm doubles the threshold value
and recomputes the stability diagram. While this method ensures a correct stability diagram
is generated, the additional computational overhead leads to smaller time gains than in the
open dot case.

Whilst decreasing the t values yields dramatic performance gains, it should not be reduced

16

T

Closed | 4 0.55
3 045

S
52 0.35

: &
o A 3 1 0.25

AT ?
10 4 { { { 4 i { 0 0.15
4 8 12 16 4 8 12 16 0.0 0.05 0.10 0.15 0.2
Number of dots Number of dots Threshold

Figure 7. (a-b) Average computation time required by the Rust core to generate a 100 x 100
pixels charge stability diagram computed with different threshold values for increasing numbers
of quantum dots both for open and closed quantum dot arrays. The error bars denote the two
standard deviation confidence intervals. (c) Comparison between the pixel values corresponding
to the charge stability diagram of Fig. b) computed with and without the threshold algorithm.
The axis on the left is the percentage error obtained for the thresholded algorithm as a function of
the threshold value. The axis on the right is the time saved when using the threshold algorithm.
The error bars represent the standard deviation of the calculation time over 10 repetitions. The
dashed line corresponds to an optimal threshold value that achieves a time save of a factor of 4
without introducing artefacts in the charge stability diagram.

too much as this might introduce artefacts in the simulated charge stability diagrams (see
Appendix [J]). To evaluate the error that could be introduced by the threshold method, we
compute the charge stability diagram of Fig. (b) with different threshold values between 0
and 0.2 and compare it with the stability diagram simulated with our default algorithm. The
axis on the left of Fig. [fj(c) is an estimated percentage error as a function of the threshold
value. The error is obtained from a pixel by pixel comparison of two charge stability diagrams
(with and without thresholds), only considering the pixels with a discrepancy larger than
the numerical precision. In this specific example, we find that for the lowest value of the
threshold, the maximum error is about 4%. On the right axis of the same plot, we report the
fraction of the time taken by the threshold algorithm (T,;,) against the standard algorithm
(Tdefaur)- In Appendix , we provide an analytical justification for selecting the threshold
based on the parameters of the capacitance matrices. The dashed line indicates a good
threshold value, as given by Eq. in the appendix, which leads to a 4 times computational
speedup without errors compared to the standard algorithm. The error bars indicate the
standard deviation of the computational time over 10 repetitions of the charge stability
diagram calculations.

We note that the minimum threshold that can be set without introducing artefacts de-
pends on the c(jdl capacitance matrix. See Appendix |[E| and [F| for a detailed discussion. In
a few words, we have found that the minimum threshold is typically of the order of the
ratio of the largest off-diagonal element of the ¢4y capacitance matrix to its corresponding
diagonal element. Given that the diagonal elements are the dot’s total capacitive coupling
to every other dot and gate, whilst the off-diagonal elements are dot-dot couplings, we find
the critical threshold to be much smaller than one in the case of weakly coupled dots, the
approximation under which the capacitance model is justified. Therefore, the performance
shown in Fig. [7] should be interpreted as the performance gained without introducing dis-

17

Tlh/Tdefaul((au)

tortions if the quantum dot array’s capacitance matrices allows setting a sufficiently low
threshold.

We note that these benchmarks, based on randomised gate voltages and capacitance ma-
trices, might underestimate the potential of the thresholded algorithm. In tuning larger
quantum dot arrays, virtual gates are often used to control isolated double dot subsystems
whilst the other dots remain unperturbed (the n + 1 method [28]). In this case, the thresh-
old algorithm could neglect the charge states corresponding to the other dots. Therefore,
the time required to simulate a large array operated in this way would be comparable to
simulating a double dot device.

VIII. SUMMARY AND OUTLOOK

We demonstrated that our open-source software package can accelerate the simulation of
charge stability diagrams of large quantum dot arrays in both open and closed regimes. The
speed and GPU acceleration will aid in generating larger, more diverse datasets on which to
train neural networks. This will improve the accuracy of the neural network-based classifiers
used in automatic tuning approaches. With improved intuition about the charge stability
diagrams, new tuning methods might be developed. In particular, the automated tuning of
closed arrays could be drastically easier than for open arrays owing to the smaller number of
transitions. The speed of our algorithms is particularly promising for model-based machine-
learning methods and real-time interfacing with experiments, as well as for the development
of hardware-in-the-loop approaches.

In future, we hope that, with help from the wider community, this package can grow to
include more advanced noise models and high-level functionality.

CODE AVAILABILITY

The code is available on the Python package index under QArray, so is pip installable
with the command pip install QArray. The associated GitHub repositories are https:
//github.com/b-vanstraaten/QArray. Please star the repository and cite this paper if
this package is useful. Documentation is available at https://QArray.readthedocs.io/
en/latest/introduction.html. Discovered bugs can be reported using GitHub issues.

AUTHOR CONTRIBUTIONS
B.v.S. wrote the code. B.v.S. and J.D.H wrote the documentation. B.v.S. and L.S.
developed the mathematical proofs and derived the analytical results. B.v.S., J.D.H. and

N.A. conceived of creating an open-source capacitance model software package. All authors
contributed to the manuscript.

ACKNOWLEDGEMENTS

This work was supported by the Royal Society, the EPSRC Platform Grant (EP/R029229/1),
and the European Research Council (Grant agreement 948932).

18

https://pypi.org/project/QArray/
https://github.com/b-vanstraaten/QArray
https://github.com/b-vanstraaten/QArray
https://github.com/b-vanstraaten/QArray/stargazers
https://QArray.readthedocs.io/en/latest/introduction.html
https://QArray.readthedocs.io/en/latest/introduction.html
https://github.com/b-vanstraaten/QArray/issues

COMPETING INTERESTS

Natalia Ares declares a competing interest as a founder of QuantrolOx, which develops

machine learning-based software for quantum control.

[10]

[1] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha and L. P.

Kouwenhoven, Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1 (2002),
doi:10.1103/RevModPhys.75.1.

[2] J. P. Zwolak, S. S. Kalantre, X. Wu, S. Ragole and J. M. Taylor, Qflow lite dataset: A

machine-learning approach to the charge states in quantum dot experiments, PLOS ONE
13(10), 1 (2018), doi:10.1371 /journal.pone.0205844.

[3] D. Schroer, A. D. Greentree, L. Gaudreau, K. Eberl, L. C. L. Hollenberg, J. P. Kotthaus and

S. Ludwig, FElectrostatically defined serial triple quantum dot charged with few electrons, Phys.
Rev. B 76, 075306 (2007), doi:10.1103/PhysRevB.76.075306.

H. Van Houten, C. Beenakker and A. Staring, Coulomb-blockade oscillations in semiconductor
nanostructures, arXiv preprint cond-mat /0508454 (2005).

[5] G. A. Oakes, J. Duan, J. J. L. Morton, A. Lee, C. G. Smith and M. F. G. Zalba, Auto-

matic virtual voltage extraction of a 2x2 array of quantum dots with machine learning (2021),
2012.03685.

[6] T.Ihn, Semiconductor Nanostructures: Quantum states and electronic transport, Oxford Uni-

versity Press, ISBN 9780199534425, doi:10.1093/acprof:0s0/9780199534425.001.0001 (2009).
S. Yang, X. Wang and S. Das Sarma, Generic hubbard model description of semiconductor
quantum-dot spin qubits, Phys. Rev. B 83, 161301 (2011), doi:10.1103/PhysRevB.83.161301.

| Quantum technology toolbox, doi:https://qtt.readthedocs.io/en/latest /.
| J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson, E. MacQuarrie, D. Savage, M. Lagally,

S. Coppersmith, M. A. Eriksson and J. M. Taylor, Autotuning of Double-Dot Devices In Situ
with Machine Learning, Physical Review Applied 13(3) (2020).

H. Liu, B. Wang, N. Wang, Z. Sun, H. Yin, H. Li, G. Cao and G. Guo, An automated approach
for consecutive tuning of quantum dot arrays, Applied Physics Letters 121(8) (2022), |doi:
10.1063/5.0111128.

[11] J. Ziegler, T. McJunkin, E. Joseph, S. S. Kalantre, B. Harpt, D. Savage, M. Lagally, M. Eriks-

son, J. M. Taylor and J. P. Zwolak, Toward robust autotuning of noisy quantum dot devices,
Phys. Rev. Appl. 17, 024069 (2022), doi:10.1103/PhysRevApplied.17.024069.

[12] N. D. Matsakis and F. S. Klock II, The rust language, In ACM SIGAda Ada Letters, vol. 34,

pp. 103-104. ACM (2014).

[13] M. Costanzo, E. Rucci, M. Naiouf and A. D. Giusti, Performance vs programming effort

—_—— —

—
o

—
(@)

—
[=2)

between rust and ¢ on multicore architectures: Case study in n-body (2021), 2107.11912.
Rayon-Rs, Rayon-rs/rayon: Rayon: A data parallelism library for rust.

A. Sabne, Xla: Compiling machine learning for peak performance, Google Res (2020).

H. Flentje, B. Bertrand, P.-A. Mortemousque, V. Thiney, A. Ludwig, A. D. Wieck, C. Bauerle
and T. Meunier, A linear triple quantum dot system in isolated configuration, Applied Physics
Letters 110(23), 233101 (2017), |doi:10.1063/1.4984745, https://pubs.aip.org/aip/apl/article-
pdf/doi/10.1063/1.4984745/14499801/233101__1_ online.pdf.

19

http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1371/journal.pone.0205844
http://dx.doi.org/10.1103/PhysRevB.76.075306
http://dx.doi.org/10.1093/acprof:oso/9780199534425.001.0001
http://dx.doi.org/10.1103/PhysRevB.83.161301
http://dx.doi.org/https://qtt.readthedocs.io/en/latest/
http://dx.doi.org/10.1063/5.0111128
http://dx.doi.org/10.1063/5.0111128
http://dx.doi.org/10.1103/PhysRevApplied.17.024069
http://dx.doi.org/10.1063/1.4984745

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]
[25]

[26]

B. Bertrand, H. Flentje, S. Takada, M. Yamamoto, S. Tarucha, A. Ludwig, A. D. Wieck,
C. Bauerle and T. Meunier, Quantum manipulation of two-electron spin states in isolated dou-
ble quantum dots, Phys. Rev. Lett. 115, 096801 (2015), |d0i:10.1103/PhysRevLett.115.096801.
J. Park and S. Boyd, A semidefinite programming method for integer convexr quadratic mini-
mization, Optimization Letters 12(3), 499 (2017), doi:10.1007/s11590-017-1132-y.

C. Buchheim, A. Caprara and A. Lodi, An effective branch-and-bound algorithm for con-
vex quadratic integer programming, vol. 135, pp. 285298, ISBN 978-3-642-13035-9, |doi:
10.1007/978-3-642-13036-6__ 22 (2010).

C. Bliek, P. Bonami and A. Lodi, Solving mixed-integer quadratic programming problems with
ibm-cplex : a progress report (2014).

A. Fuhrer, Phase coherence, orbital and spin states in quantum rings, Doctoral thesis, ETH
Zurich, Zirich, doi:10.3929/ethz-a-004593507, Diss., Naturwissenschaften ETH Zirich, Nr.
15094, 2003. (2003).

M. R. Delbecq, T. Nakajima, T. Otsuka, S. Amaha, J. D. Watson, M. J.

Manfra and S. Tarucha, Full control of quadruple quantum dot circuit
charge states in the single electron regime, Applied Physics Letters 104(18),
183111 (2014), doi:10.1063/1.4875909, https://pubs.aip.org/aip/apl/article-

pdf/doi/10.1063/1.4875909/14297354/183111__1_ online.pdf.

P.-A. Mortemousque, E. Chanrion, B. Jadot, H. Flentje, A. Ludwig, A. D. Wieck, M. Ur-
dampilleta, C. Bauerle and T. Meunier, Coherent control of individual electron spins in a
two-dimensional quantum dot array, Nature Nanotechnology 16(3), 296 (2021).

V. Ng, Rust wvs c++, a battle of speed and efficiency (2023), doi:
10.36227 /techrxiv.22792553.v1.

N. Ivanov, Is rust c++-fast? benchmarking system languages on everyday routines (2022),
2209.09127.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett et al., SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261
(2020), |doi:10.1038/s41592-019-0686-2.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad and S. Boyd, OSQP: an operator splitting
solver for quadratic programs, Mathematical Programming Computation 12(4), 637 (2020),
doi:10.1007 /s12532-020-00179-2.

C. Volk, A. M. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen, J. P. Dehol-
lain, T. Hensgens, T. Fujita, C. Reichl, W. Wegscheider and L. M. Vandersypen, Loading a
quantum-dot based Qbyte register, npj Quantum Information 5(1), 1 (2019).

R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press, ISBN
0521386322 (1990).

20

http://dx.doi.org/10.1103/PhysRevLett.115.096801
http://dx.doi.org/10.1007/s11590-017-1132-y
http://dx.doi.org/10.1007/978-3-642-13036-6_22
http://dx.doi.org/10.1007/978-3-642-13036-6_22
http://dx.doi.org/10.3929/ethz-a-004593507
http://dx.doi.org/10.1063/1.4875909
http://dx.doi.org/10.36227/techrxiv.22792553.v1
http://dx.doi.org/10.36227/techrxiv.22792553.v1
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1007/s12532-020-00179-2

Appendix A: Software implementations

This section lists the software implementations of each algorithm and how many charge
states they consider.

Algorithm Number of charge states to be considered|Software implementations
Brute-force (Nmax + 1)t where nmax € {1,2,...,00} |JAX, Python
QArray-default 2Mdot Rust, JAX, Python
QArray-thresholded |(t + 1)"d°t where ¢ € [0, 1] Rust, Python

Table I. A table showing the number of charge states needing to be considered by the software
implementations of the brute-force, default and thresholded algorithms. Where ngo refers to
the number of quantum dots in the array being simulated, is ny.x maximum number of charges
considered in any dot by the brute-force algorithm and ¢ is the threshold used in the thresholded
algorithms, which quantifies the degree of approximation.

Appendix B: Positive Definite Proof

This section proves that the cyy is positive definite, making the optimisation problem
convex.

Theorem B.1 For any set of capacitances between nodes such that c;; Vi, j are real, non-
negative and c;j = cj; the Mazwell matriz CM € RMaortngate)x(naottnoae) s defined as

Cl];/l = <Z Cik) 5ij — C¢j<1 — 51]) (Bl)
k
Let C € Rmaetxndot be the upper left block of CM. C is positive definite assuming the physical

case of every dot being coupled to at least one gate, namely Vi 3j > ngo such that c;; > 0.

Proof B.2 A matriz A € R™™ is called strictly diagonally dominant if for all n diagonal
entries |Agu| > gz |Aw| holds. We start proving that C is strictly diagonally dominant by
observing

Ndot+Ngate Ndot Ndot
Cii = Z Cik > Z |Cir| = Zcik-
k=1 ki ki

This holds due to the non-negative elements c;; and can be simplified to the true statement
ZZi"é;?ffa cir. > 0. Strict diagonal dominance implies positive definiteness for symmetric

matrices with non-negative elements by [29, Theorem 6.1.10].

Appendix C: Continous minimum for open quantum dot arrays

In this section, we derive the continuous minimum charge state for open quantum dot
array - the charge state that minimises (4) neglecting constraints[(i)land[(ii)] The free energy
is

!

F(V;,Qa) = ;(Cdg‘/i; — Qa) ezt (CayVy — Qa) (C1)

21

Where \79 denotes the applied gate voltages, de the charge on the dots and cqq and cgq
are submatrices of the Maxwell capacitance matrix, see Sec.. For ease of notation going
forward, we will write this as

F(7,G) = 5(V - Q7 (V = Q) (2)

where V := ng‘_/;l- Differentiating F' for @Q); gives

OF 1 !
50—~ lCT V-] s0— 0=V, (C3)
Therefore, the continuous minimum for an open quantum dot array is
@*cont open __ ‘7 (C4)

Appendix D: Continous minimum for closed quantum dot arrays

In this section, we derive the continuous minimum charge state for closed quantum dot

arrays - the charge state that minimises (4] neglecting constraints |(i)| and . If the array
contains () charges, we can incorporate through the method of Lagrangian multipliers

with the Lagrangian
— — A 1 — — _ — — A
LT, G) o= (eatl ~ Qo7 cab (Can¥y ~ @) - A (T =Q) . (0D

For ease of notation going forward, we will write this as

— - A

LV.G.Q) = LV - @) (V - Q) - A (¢"T - Q) (D2)

where V = cngd, whilst T is the one vector with all entries one, and otherwise subscripts
have been dropped. Differentiating L with respect to \ yields

L — A A —
Z}\:—QT1+Q$0—>Q:QT1. (D3)
Differentiating L for Q); gives
0L -
0Q; =—[cT'V=-Q)] -A20— Qi =Vi+ACT, (D4)
Plugging (D4} into (D3)) and solving for X yields
Q-1Tv
17C1 (D3)

The Lagrangian in (D2]) can be rewritten as
— = A 1]. A
LW&;Q%:?fC”Q—VWC”Q+§VWTWﬁaVWQ+XQ
1 . . . L1 .
:§(V+CHN—4®TC*(V+CHM—%®4mVQ—AWﬂi—§A”F01
(D6)

22

by using the matrix generalisation of completing the square. Since the last three terms do
not depend on Q, this new Lagrangian is again quadratic in Q with the positive definite
matrix C. Therefore, the continuous minimum is

Q*cont min _ 174 + CT)*

=V4+(Q-TV) s = (D7)

Appendix E: Proofs of Optimality for Considering Surrounding Neighbours and
Thresholding

This section discusses whether only considering the nearest charge states to the continuous
minimum is sufficient. We consider two limiting cases and prove that in these cases, it is
sufficient. The optimisation problem set out in equation () can be written in the form

1
arg min =& MZ + b’ & (E1)
FeRn 2
subject to x; > 0 Vi (E2)
and x; € Z Vi, (E3)

where M is positive definite matrix. In the following, we prove that if M were diagonal, it
would be sufficient to always round the continuous minimum to the nearest discrete change
state.

Theorem E.1 The global minimiser T3,,.... of the optimisation pmblem (E1),(E2), and
(E3]) can be obtained by rounding each component of the minimiser T, , to the continuous
optimisation problem consisting of (E1] . and .

cont

Proof E.2 Since M is diagonal, the optimisation problem uncouples to n independent one-
dimensional optimisation problems of the form min,, 1/2M;;x? + b;x; with the non-negativity
constraint x; > 0 and the integer constraint x; € Z. Now we show that rounding the solution
T} eont Jrom the one-dimensional continuous optimisation problem to the closest integer yields
the global minimiser T} giseret A Tieome = 0, the integer constraint is already fulfilled. If
T oomt > 0, then the pambola is symmetric around x; Therefore, rounding to the closest

k
i,con 1,cont”

integer minimises the one-dimensional integer- constrained optimisation problem.

With small perturbations away from this diagonal case, we cannot always round to the
nearest charge to reliably find the lowest energy configuration. Nevertheless, we can guar-
antee that the minimiser is one of the 2" surrounding neighbours around the continuous
solution as long as the condition number k(M) = A4z / Amin is sufficiently low. intuitively,
a low condition number corresponds to an almost spherical symmetric potential.

Theorem E.3 If k(M) < 1+ 4/n, then one of the 2" surrounding neighbours of the con-
tinuous minimiser x,,, is the global minimiser x3, ..., of the integer optimisation problem.

Proof E.4 We proceed by showing that even the closest integer point apart from the sur-
rounding neighbours of the continuous minimiser has a larger objective function value than

23

one of the surrounding neighbours for any matriz M as long as the condition number is suf-
ficiently low. Let @ be the vector from &%,., to the closest integer neighbour and b the vector
from 7%, to the closest integer point which is not a surrounding neighbour 0f T Without
loss of generality, we can assume that @ and b have the form @ = & d] and b= Gd+1]. (
The notation means that @ has the same entries as ¢ with an additional appended entry d.)

Let g() = ' Myj/2 with § = T — &, such that ||§]|* min < 9(7) < ||3]||2)\max holds Yy.

We want to show that g(@) < g(b) which is necessarily true if ||@l|*Amaz < ||b]|*Amin. This
yields

cont*

Amaz _ |I1]* + (d+ 1)
M~ [P+

(E4)

It holds that ||¢]|*> < (n —1)/4 since ||d@||? is defined to be the vector to the closest neighbour
and therefore |a;| < 1/2Vi. By incorporating this bound, we obtain the desired result of
Amax//\min S 1 + 4/”

We showed that under certain conditions, the discrete minimiser is among the surrounding
neighbours. Intuitively we can do better, namely, if the continuous minimiser is close to an
integer in one variable, then the discrete minimiser can be obtained by rounding to the
closest integer. The following theorem derives bounds when rounding single coordinates
leads to optimal solutions.

Theorem E.5 Let element i of I
condition number r fulfills

be in the interval [k,k + 0] for an integer k. If the

cont

\//12 —(n—1)(k2=1)2-1

0 <
— K‘/z—l)

(E5)

the i-th element of the discrete minimiser is k.

Proof E.6 We proceed in a similar way as beforehand by showing that no integer point with
k at its i-th element has a higher value than the “opposite” point with entry k + 1. With
no loss of generality, let @ = [2] and b = [&1 — 2] be the vectors from the continuous
minimiser to two opposite integer points. Plugging this into ||@||*Amas < ||0|[*Amin yields

max ||é1|2 (1 - 5)2
SJ G 0

Rearranging yields the quadratic (k* — 1)6% + 26 — 1+ (k% — 1)||c]|> < 0. Solving that for §
and observing that ||c]|> < n — 1 yields the desired result.

Under this condition, we can guarantee that certain surrounding nodes can be omitted
from checking and can, therefore, choose a threshold of ¢ = 1 —2¢§. Experimentally, however,
choosing lower thresholds still yields optimal results, e.g. ¢ = ||A||2 - we motivate this choice
in the following section.

24

Appendix F: Physical motivation for diagonal and spherical limit case

The constant interaction model is a good approximation when the quantum dots interact
weakly, and the associated tunnel coupling is small. As a result, we should expect the
interdot capacitive coupling to be smaller than the coupling to the nearest gates; the diagonal
elements will be considerably larger than the off-diagonals. As a result, we can write

Cdd = D(I - A) (Fl)

where D is a diagonal matrix, I is the identity matrix, and the elements A are given by the
ratio of the off-diagonal terms to the on. The inverse of this matrix can be approximated
using the Neumann expansion

cy=> A'D '~ (I+A)D L (F2)

n=0

Therefore, for small A where this approximation is valid, the cj] matrix is diagonally
dominant and is a perturbation from the diagonal matrix. If ¢4y were diagonal, the charges
in the quantum dots would not interact. In this case, the lowest energy discrete charge
configuration could be found by rounding the continuous solution to the nearest integer
charge, as we prove in the previous section.

It follows that for small but non-zero A rounding will yield the lowest energy charge state
except in the most ambiguous cases where a fractional component of the ith element of the
continuous minimum, N}, is close to 1/2. Therefore, the threshold should be proportional
to some A norm, for example

t/2 = |[All- (F3)

Appendix G: Number of charge states

Theorem G.1 The expected number of charge states needing to be considered by the thresh-
olded algorithm with a threshold t is given by (1+1t)™t where nge is the number of quantum
dots.

Proof G.2 For random uniformly distributed gate voltages, the continuous minimum can
also be considered uniformly distributed. Therefore, in 1d, the probability that the algorithm
has to consider one charge state is 1 — t, and the probability that it has to consider two is
t. Therefore, the expected number of points is E[Nyg) =t-2+ (1 —t)-1 =1+1t. As the
dimensions are independent E[Nng) = E[Nyg|N. Therefore, if there are ng.; quantum dots
the expected number of charge states is (1 4 t)™det

Appendix H: Finding optimal voltage for a given charge state

Theorem H.1 The gate voltages that minimise the charge state @d free energy, F(V;, @d)
18

V* = (Rega) " RGQy, (H1)

where RTR = ¢ is the Cholesky factorisation and + denotes the Moore-Penrose pseudo
muerse.

25

Proof H.2 The free energy is given by
5 o 1, N\T - =
F(Vg, Na) = 5 (@a—cgaVy) € (Qa—cqaly) (H2)

Using the Cholesky factorisation cj; = RT R, the minimisation problem can be reformulated
as the following linear least-squares problem

min IRGa — RegaVyllo. (H3)
g
Solving this via the Moore-Penrose pseudo inverse yields the desired result.

Appendix I: Virtual gates

This section derives how to construct virtual gates, namely determining how to change
the gate voltages to obtain a specific change in the dot potentials.

Theorem 1.1 The optimal virtual gate matriz, o, used to construct virtual gates is
o = (Cqucyl) (1)

where + denotes the Moore-Penrose pseudoinverse. The ith row of this matriz encodes the
electrostatic gate voltages required to change the ith dot’s potential.

Proof 1.2 The quantum dot potential changes with gate voltages according to AV, =
c;dlcgdAVg according to . If this simple linear system is invertible, the Moore-Penrose
pseudoinverse boils down to the reqular inverse. If it is underdetermined (i.e., more gates
than dots and full row rank), there are infinite solutions. In this case, the pseudoinverse picks
the solution with minimal 2-norm. In case of an overdetermined linear system (i.e. more
dots than gates or no full column rank) there is no solution. In this case, the pseudoinverse
returns the least squares approrimate solution.

Appendix J: Effect of threshold

As evidenced in Figure [7] the thresholding strategy can yield significant reductions in
the compute time by reducing the number of charge states evaluated to determine whether
they are the lowest in energy. However, using values that are too small for the threshold will
introduce artefacts in the charge stability diagram. Decreasing the threshold further will
exaggerate these artefacts to the degree that for ¢ = 0, all interdot transitions will be lost.
We demonstrate this in Fig. [§ a), where we simulate a double quantum dot with dot-dot
capacitance matrix

14 —02
Cdd = [—0.2 1.4 1 : (J1)

In this case, our empirical understanding of the threshold suggests the minimum value
should be the ratio of the off-diagonal elements to the on so ty;, = 0.2/1.4 = 1/7, this is
confirmed by plots e) and f) in Figure |8 being identical. For smaller but non-zero values of
the threshold, the charge stability diagram is distorted with the size of the interdot transition

26

t=0 t=1/28 t=1/14
(a) (b) — / (c) /
Ny N Ny
V, Vy Va
t=3/28 t=1/7 t=1
(@) / (©) / M —
s: - S & >D1 &
s s e
v, Ve Va

Figure 8. (a-e) Charge stability diagrams of an open double quantum dot produced by the
thresholded algorithm for threshold values smaller than or equal to the empirical minimum value
of 1/7 based on the capacitance matrix. The value of the threshold used in the simulation is stated
above in the plot. f) Simulated charge stability diagram with the thresholded algorithm with the
threshold set to one, so it performs identically to the default algorithm.

being suppressed with decreasing threshold (Fig. [§ b-d)). In Appendix [F] we motivate a
formula for the minimum value of the threshold . In this case, the value suggested is more
conservative at 0.202. While not wrong, this value is quite a bit larger than what empirical
intuition suggests; more work is required to understand the thresholded algorithm fully.

In addition, even when the threshold is well above the minimum, the thresholding strat-
egy appears to introduce almost imperceptible distortions into the charge stability diagram.
Figure[J compares the charge stability diagram produced by the Rust implementation thresh-
old set to 1/3 with that produced by the brute force implemented in JAX for a quadruple
dot. For the capacitance matrix used in this simulation, our empirical understanding of the
threshold value required to capture the interdot transitions accurately is ,;, = 0.08, whilst
the analytical formula gives 0.19. We hypothesise finite precision of the OSQP solver, which
is exacerbated by the thresholding. For example, if a threshold of t = 2/3 is used, the charge
stability diagram is identical to brute force.

In summary, more work is required to understand the implications of the thresholding
strategy fully. However, it is worth noting that these distortions in the charge stability dia-
gram are next to irrelevant when using the constant capacitance model to generate training
data for neural networks such as in references [0, 10]. As effects we manually add to make
the charge stability diagram look more , such as thermal broadening, measuring the charge
stability diagram through a charge sensor and noise, will entirely swap the distortions. And
the speed of the thresholded algorithm will allow for much larger more diverse training
datasets.

27

(@) Bruteforce b) Rust (threshold = 1/3) (© Difference

bzvz(au)

6ey; (a.u.)

Figure 9. Diagrams illustrating the errors introduced by the thresholding strategy. (a) The charge
stability diagram of a four-gate quadrupled quantum dot device as a function of the left and
rightmost gates, in both the open and closed regime, where four holes are confined. The brute-
force core was used to compute the charge stability diagrams. (b) Identical charge stability diagram,
but computed using the Rust core with a threshold of 1/3. (c) The pixel-wise difference between
the brute force and the rust core. Black pixels indicate that the predictions differ. The solid black
band along the x and y axis demonstrate the brute-force algorithm failing when ny.x is too small.
Whilst the small discrepancies in the centre of the plot are due to the thresholding algorithm.

Appendix K: Simulation times

This section tabulates the time required to simulate the charge stability diagrams in
Figh], using each of the software implementations.

28

Algorithm Implementation Simulation time|Simulation time
Figure |g| b) (s) |Figure |3| d) (s)
Brute-force Python 4.6 137.6
Brute-force JAX 0.05 4+ 0.32 jit |21.1 + 0.4 jit
Default Python 4.92 18.1
Default JAX 0.09 + 0.8 jit [2.1+ 0.8 jit
Default Rust 0.10 0.71
Thresholded ¢ = 1/2|Python 2.81 10.8
Thresholded ¢ = 1/2|Rust 0.08 0.66

Table II. The compute times for all the different implementations of the brute-force, default and
thresholded algorithms, to recreate plots b) and d) in Figure [5| For the JAX-based implementa-
tions, we include the one-off jit compile time. For the brute-force algorithm, we used nmax = 2 and
5 for the open four-dot array and the closed five-dot array in b) and d), respectively.

29

	QArray: a GPU-accelerated constant capacitance model simulator for large quantum dot arrays
	Abstract
	Introduction
	The constant capacitance model
	The QArray algorithms
	Computing the continuous minimum
	The analytical solutions
	The numerical solver

	Evaluation of the nearest neighbour discrete charge states
	The default algorithm
	The thresholded algorithm

	Additional functionality
	Charge sensors
	Thermal Broadening
	Optimal gate voltages and virtual gates

	Examples
	Realistic simulations

	Implementations
	Benchmarks
	Summary and Outlook
	Code availability
	Author contributions
	Acknowledgements
	Competing interests
	References
	Software implementations
	Positive Definite Proof
	Continous minimum for open quantum dot arrays
	Continous minimum for closed quantum dot arrays
	Proofs of Optimality for Considering Surrounding Neighbours and Thresholding
	Physical motivation for diagonal and spherical limit case
	Number of charge states
	Finding optimal voltage for a given charge state
	Virtual gates
	Effect of threshold
	Simulation times

