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Abstract

We propose a practical implementation of a universal quantum computer that uses local
fermionic modes (LFM) rather than qubits. The device consists of quantum dots tunnel-
coupled by a hybrid superconducting island and a tunable capacitive coupling between
the dots. We show that coherent control of Cooper pair splitting, elastic cotunneling, and
Coulomb interactions implements the universal set of quantum gates defined by Bravyi
and Kitaev [1]. Due to the similarity with charge qubits, we expect charge noise to be the
main source of decoherence. For this reason, we also consider an alternative design where
the quantum dots have tunable coupling to the superconductor. In this second device
design, we show that there is a sweet spot for which the local fermionic modes are charge
neutral, making the device insensitive to charge noise effects. Finally, we compare both
designs and their experimental limitations and suggest future efforts to overcome them.
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1 Introduction

Over the years, qubits emerged as the de facto basis for quantum computation with a
plethora of host platforms: superconducting circuits [2,3], trapped ions [4,5] and quantum
dots [6], to name a few. Recent works used qubit-based quantum computers to simulate
fermionic systems [7–9]. However, the mapping from qubits to local fermionic modes
(LFMs) is inefficient because it introduces additional overhead to the calculations [10,
11]. For example, a map from n qubits to fermions requires O(n) additional operations
through the Jordan-Wigner transformation [12] and O(log n) through the Bravyi-Kitaev
transformation [1].

An alternative to avoid the overhead in the qubit to LFM map is to use a quantum
computer that already operates with local fermionic modes [1]. Moreover, the advantage
of local fermionic modes is not limited to fermionic systems simulations. A set of 2n local
fermionic modes maps directly to n parity-preserving qubits or n−1 qubits. Therefore, the
map from local fermionic modes to qubits only requires a constant number of operations
regardless of the system size, being more efficient than the inverse [1]. Recently, Refs. [13,
14] showed that local fermionic modes offer advantages in quantum optimization problems
of finding the ground state energy of fermionic Hamiltonians.

There exist several proposed platforms to implement fermionic quantum computation.
Reference [15] encodes LFMs into noise-protected Majorana modes and implements gate
operations through a combination of braiding and rotations. However, Majorana modes
are still elusive, and braiding operations remain an experimental challenge. Recently,
Ref. [16] proposed neutral atoms confined by and manipulated through optical tweezers
as another LFM platform. The neutral atoms platform offers high-fidelity gates and co-
herence times above the millisecond range but suffers from scalability issues and slow gate
operations with characteristic times of 1–100µs [4, 17]. We propose an alternative solid-
state platform for fermionic quantum computation. Our proposal is inspired by recently
reported advances in Cooper pair splitters [18–27]. The design includes an additional tun-
able capacitance to control interdot interactions. We show that the device implements the
necessary universal set of gates proposed by Bravyi and Kitaev [1]. We also discuss the
limitations of the device.

2 Design

Bravyi and Kitaev [1] showed that fermionic quantum computation is equivalent to parity-

preserving qubit operations. As a consequence, given a set of fermionic creation (c†i ) and
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Figure 1: Minimal device implementation for universal fermionic quantum com-
putation. The unit cell of a fermionic processor—a fermion and a coupler—is
indicated by the dashed grey box. For operations, two singly-occupied spin-
(anti)polarized quantum dots host the local fermionic modes L and R. Two
tunnel barriers enable normal t and spin-dependent tSO tunnelings between the
two dots. A middle superconducting island mediates superconducting correla-
tions between the two local fermionic modes. An external mutual capacitor Cm

allows Coulomb interactions between the sites.

annihilation operators (ci), it follows that
U1(α) = exp

(
iαc†ici

)
, U2(β) = exp

[
iβ

(
c†icj + c†jci

)]
,

U3(γ) = exp
[
iγ

(
c†ic

†
j + cjci

)]
, U4(δ) = exp

(
iδc†icic

†
jcj

)
 (1)

with α = β = γ = π/4, and δ = π, is a universal set of gate operators. The case of
two LFMs is similar to two uncoupled qubits: each operation within a given fermion
parity sector is a rotation within SU(2). In the odd fermion parity sector, the operations
U1(α) and U2(β) are rotations around perpendicular axes in the Bloch sphere. Likewise
U3(γ) and U4(δ) are perpendicular rotations within the even fermion parity sector. The
U4 operation acts as a CZ two-fermion gate. In the presence of extra LFMs, required to
create superpositions of joint fermion parity of LFMs i and j, applying U4 generates states
with multi-fermion entanglement.

We thus propose a device where excitations occupy single-orbital sites, numbered by
the subindex i and j. A possible platform for such a proposal is an array of spin-polarized
quantum dots, as the scheme shown in Fig. 1. Within this platform, the unitary operations
in Eq. 1 are a time-evolution of the following processes:

1. c†ici onsite energy shift of the fermionic state at site i;

2. c†icj hopping of a fermion between sites i and j;

3. c†ic
†
j superconducting pairing between fermions at sites i and j;

4. c†icic
†
jcj Coulomb interaction between fermions at sites i and j.

We control the onsite energies µi with plunger gates. Similarly, a tunnel gate between
neighboring pairs of quantum dots controls hopping strength t between them. Manipula-
tion with plunger and tunnel gates is a well-established technique in charge [28, 29] and
spin [6] qubits.

To implement the superconducting coupling between the spin-polarized dots, we utilize
the design of a triplet Copper pair splitter [19–23, 27]. We include an auxiliary quantum
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dot in proximity to an s-wave superconductor mediating crossed Andreev reflection (CAR)
and elastic cotunelling (ECT) between the two quantum dots that encode the LFMs. Thus,
the ECT rate Γ sets the hopping strength between the two dots, whereas the CAR rate
Λ sets the effective superconducting pairing. Because the dots are spin-polarised, the
superconducting pairing must be of spin-triplet type, enabled by spin-orbit hopping in the
hosting material. We quantify the spin-orbit coupling in the hosting material by the spin
precession angle between the dots θi = 2πd/lso, where d is the interdot distance and lso
is the spin-orbit length. The spin-orbit coupling in InSb wires leads to a spin-precession
length lso ≥ 100 nm [30–32] resulting in non-negligible θi within the order of the dot-to-dot
distance.

Finally, we achieve Coulomb interaction between a pair of dots through capacitive
coupling Cm. Our design requires a variable capacitive coupling to implement the U4

gate. Several recent works demonstrate variable capacitive coupling in various platforms:
superconducting islands with variable Josephson energy [33], external double quantum
dots [34], gate-tunable two-dimensional electron gas [35] and varactor diodes [36].

We show a minimal design of a fermionic quantum computer with two LFMs in Fig. 1.
The device consists of three tunnel-coupled quantum dots in a material with large spin-
orbit coupling. The middle dot is proximitized by an s-wave superconductor with an
induced gap ∆ that mediates CAR and ECT between the outer dots. The spin-polarised
outer dots (L,R) encode the LFMs, whereas the middle one is an auxiliary component.
Finally, a tunable capacitor couples the outer dots. We generalize the device to an arbitrary
number of LFMs by repeating the unit cell indicated by the grey dashed box in Fig. 1 in
a chain. To read out the fermionic state, we propose to measure the occupation in each
quantum dot through charge sensing [37].

3 Effective Hamiltonian

3.1 Single fermion processes

In the absence of capacitive and tunnel coupling, the approximate Hamiltonian for the
two spin-polarised dots is

Hd =
∑

i=L,R

µic
†
iσi
ciσi , (2)

where ciσ is the electron anihilation operator at site i and spin σ while µi is the corre-
sponding chemical potential. The Hamiltonian in Eq. (2) is valid under two conditions: (i)
the Zeeman splitting is sufficiently large to ensure the spin polarisation; (ii) because µi is a
tunable parameter and the singlet state has no Zeeman splitting contribution, the charging
energy must be sufficiently large to ensure that doubly-occupied states are well-separated
from the computational states. Recent experiments on similar devices measure charging
energy of 2meV and Zeeman splitting of 400 µeV at 200mT [19,20,22,23]. Both charging
energy and Zeeman splitting are larger than the usual induced superconducting gap inside
the quantum dot ∆ ∼ 100 µeV [23,38–41], justifying the approximation in Eq. (2).

The proximity of the middle dot to the superconductor suppresses its g-factor [42].
Thus, differently from the outer dots, we consider a finite Zeeman energy B. The Hamil-
tonian of the middle dot is

HABS =
∑
σ,σ′

[µM (σ0)σσ′ +B(σz)σσ′ ] c†MσcMσ′ +∆c†M↑c
†
M↓ + h.c. (3)

where c†Mσ is the creation operator of electron on the middle dot with spin σ, ∆ is the
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induced superconducting gap, and σl are the Pauli matrices (l = {0, x, y, z}) acting on the
spin subspace. Both spin-polarised, at most singly occupied, dots in Eq. (2) connect to
the middle dot by symmetric tunnel barriers with strength t. The barrier t controls both
normal and spin-orbit tunneling processes:

Ht = t
∑

i=L,R

cos θic
†
iσi
cMσ + it

∑
i=L,R

∑
σ′

(σy)σiσ′ sin θic
†
iσi
cMσ′ + h.c. , (4)

where θi is the spin precession angle from dot i to the middle island. Thus, the total
Hamiltonian is

H = Hd +HABS +Ht . (5)

We obtain the effective low-energy Hamiltonian in the weak-coupling limit, t ≪ ∆,
through a Schrieffer–Wolff transformation (the derivation is in Appendix A) [43,44]:

H̃ =
∑
i

ϵ
σiσj

i c†iσi
ciσi +

∑
i,j

Γσiσjc
†
iσi
cjσj + Λσiσjc

†
iσi
c†jσj

+ h.c. , (6)

where ϵ
σiσj

i is the renormalised onsite energy of dot i, Γσiσj is the ECT rate and Λσiσj

is the CAR rate. While t ̸= 0, we do not vary the chemical potential of the outer dots,
µL = µR = 0. For simplicity, we also assume no Zeeman splitting within the middle dot
B = 0 and that the spin precession angles are symmetric θL = θR = θ (see Appendix A
for more general form). In such case, the effective parameters for the anti-parallel spin
configuration are:

Λ↑↓ = κ∆cos(2θ) , Γ↑↓ = −iκµM sin (2θ) , (7)

and for the parallel channel:

Λ↑↑ = −iκ∆sin (2θ) , Γ↑↑ = −κµM cos (2θ) , (8)

where
κ = t2/(∆2 + µ2M −B2) . (9)

Both onsite corrections terms are equal:

ϵ
σiσj

L = ϵ
σiσj

R = κµM . (10)

We observe that the magnitude of Λσiσj is maximum at µM = 0 and drops with increasing
chemical potential µM . On the other hand, Γσiσj has maxima at finite µM . The magnitude
of both processes depends on the spin-precession angle θ and spin configuration of the outer
dots as shown in Fig. 2 (a) and (b). To ensure that operation times for U2 and U3 are
similar, the convenient regime is where maxΓσiσj ∼ maxΛσiσj .

3.2 Capacitive coupling

The electrostatic energy between the two dots is [45]:

HC =
∑

i=L,R

υic
†
iσi
ciσi + Umc

†
LσL

cLσL
c†RσR

cRσR
, (11)

where Um = Cme
2/C̃ is the mutual interaction between the two dots,

υL/R =
CR/L(2ng,L/R + 1) + Cmng,R/L

2C̃
(12)
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Figure 2: Absolute value of Λ (blue) and Γ (orange) as a function of µM for
different values of B for the anti-parallel configuration (a) and the parallel con-
figuration (b). System parameters are t = 0.15, θL = 0.7 and θR = 0.3 where
θL ̸= θR for generality.

is the renormalization to the onsite energy, C̃ = CLCR − C2
m, CL and CR are the capaci-

tances of the left and right dots, Cm is the mutual capacitance, and ng,i is the charge offset
in the site i. Notice that we consider single-occupation of the dots in (11). This approxi-
mation is valid when Um ≪ ∆ ≪ e2CL/R/C̃ because the charging energy renormalization
due to the mutual capacitance is negligible in this regime. The last term in (11) gives the
Coulomb interaction between the dots required to implement U4.

4 Fermionic quantum gates

4.1 Unitary gate operations

To achieve the fermionic quantum operations defined in Eq. (1), we require specific time-
dependent profiles that vary tunable system parameters. In this case, we control the fol-
lowing system parameters through Eqs. (11) and (6): left and right plunger gates (µL, µR),
middle plunger gate (µM ), tunnel gates (t, we treat the two tunnel gates together), and
mutual capacitance (Cm). For simplicity, we only consider square pulses in time

H(τ) = HP (S)[Θ(τ)−Θ(τ − τP )] (13)

where Θ(τ) is the Heaviside step function, τ is time and τP is the duration of the pulse. We
define the pulse Hamiltonian HP (S) as a constant total Hamiltonian where S = {t, µM , ...}
are non-zero system parameters in the pulse. For example, HP ({t}) is a constant Hamil-
tonian with all system parameters zero except the tunnel coupling t. We set the idle
(reference) Hamiltonian to one where all gates are zero, t = µL = µR = µM = Um = 0.
Thus, the time-evolution operator simplifies to

U(τ2, τ1) = exp

[
− i

ℏ

∫ τ2

τ1

dτ ′ H(τ ′)

]
= exp

[
− i

ℏ
HP (S)τP

]
. (14)
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where τ2, τ1 are the initial and final times, and τP is the duration of the pulse. In practice,
the transition between the idle Hamiltonian and HP in Eq. (13) is not instantaneous but
ramps up smoothly over a time τR to minimize non-adiabatic transitions.

We engineer the unitary operations as an ordered sequence of pulses defined in Eq. (14).
For simplicity, we assume no Zeeman splitting in the middle dot, B = 0, and leave the
discussion of the more general case to section 4.2. In this case, the minimal pulse sequence
scheme which implements the gates in Eq. (1) is:

1. onsite operation:

U1 = exp

[
− i

ℏ
HP ({µL, µR}) τP

]
; (15)

2. hopping operation:

U2 = exp

[
− i

ℏ
HP ({µL = µ, µR = µ}) τ (4)P

]
× exp

[
− i

ℏ
HP ({t}) τ (3)P

]
× exp

[
− i

ℏ
HP ({µL = µ, µR = µ}) τ (2)P

]
× exp

[
− i

ℏ
HP ({t, µM}) τ (1)P

] (16)

3. superconducting pairing operation:

U3 = exp

[
− i

ℏ
HP ({t}) τP

]
; (17)

4. Coulomb interaction operation:

U4 = exp

[
− i

ℏ
HP ({µL, µR}) τ (2)P

]
× exp

[
− i

ℏ
HP ({Um}) τ (1)P

]
; (18)

where we indicate as τ
(i)
P the duration of the i-th pulse.

In the above scheme, the operations U1 and U3 require a single pulse. The gate U1

requires a single pulse because the dots are uncoupled from one another and the plunger
gates affect the onsite energies without inducing any sort of coupling between the dots.
Similarly, U3 is also a single operation because the CAR rate is maximum at µM = 0
whereas both ECT rate and onsite corrections are zero according to Eqs. (7— 10). We
show the time-dependent simulation of the U3 gate in Fig. 3.

On the other hand, the first pulse of Eq. (16) introduces finite onsite corrections to
the outer dots and CAR according to Eqs. (7— 10). Since the onsite corrections are
equal, only a global phase factor is accumulated within the odd fermion parity sector. On
the other hand, both onsite corrections and CAR result in undesired rotations within the
even fermion parity subspace. We undo these operations with an Euler rotation using two
orthogonal operations, resulting in the three subsequent pulses in Eq. (16). We show the
time-dependent simulation of the U2 gate in Fig. 5 (Appendix C). Similarly, the Coulomb
operation in Eq. (18) also requires a correction pulse with the plunger gates because the
mutual capacitance Cm renormalizes the onsite energies in the outer dots, as shown in
Eq. (11).

4.2 Finite Zeeman splitting in the middle dot

The presence of Zeeman splitting in the middle dot B introduces an asymmetric onsite
renormalisation ϵ

σiσj

L ̸= ϵ
σiσj

R and a shift in the minima of Γσiσj shifts away from µM = 0
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(see Appendix A), as shown in Fig. 2. These changes affect the prescriptions for U2 and
U3 since these operations require finite t.

The asymmetric onsite corrections break the orthogonality between U1 and the unitary
operation prescribed in Eq. (16). It is still possible to implement the U2 with two non-
orthogonal rotation axes in the odd fermion parity sector with additional operations to
compensate for the non-orthogonality [46].

The operation in Eq. (17) also introduces finite Γσiσj in the odd parity sector. We show
in Appendix B that anti-parallel spin configuration with symmetric spin-orbit precession
θL = θR removes the shifting Λ minima away from µM = 0 and restores the orthogonality
of the operations within the even parity sector.

4.3 Gate performance
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Figure 3: Time-dependent simulation of pairing gate U3 acting on an initial
vacuum state with different pulse rise time τR profiles. The vacuum population
is |ψ00|2 whereas the double occupation population (with middle dot unoccupied)
is |ψ11|2. Longer pulses (a) result in a smoother transient population profile
(b) and less leakage into the middle ABS state (c). The configuration is the
spin-antiparallel with finite Zeeman field within the middle dot B/∆ = 0.2 and
symmetric spin-orbit precession θL = θR = π/8

Switching on the pulse in Eq. (13) happens over a finite rise time τR. Short rise times
τR induce transitions from the LFM dots into the middle ABS at energy ∼ ∆ which
limits the performance of the gates. To avoid such transitions, the pulse times need to be
τR ≫ ℏ/∆. In Fig. 3 we show the time-dependent simulation of the gate U3 with different
rise times. We find that rise times τR > 2ℏ/∆ ensures negligible transitions into the ABS.
In a system of ∆ = 100 µeV that corresponds to rise times of τR > 13 ps.

Current tunable capacitors [35, 36] vary over a limited range. The upper limit for the
ratio between the maximum and minimum capacitance r = Coff/Con is r ≈ 40 [35, 36].
Thus, there is a non-negligible residual capacitance between the dots when the U4 gate
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is off. This residual capacitance acts as an unwanted source of phase and limits the
performance of the device. Because such error is coherent, we argue it is possible to offset
it after each or a few operations with a compensating U4 pulse. However, since [U3,U4] ̸= 0,
the U3 operation would require similar compensation pulses to Eq. (16) to offset the effect
of the residual capacitor.

5 Charge neutral local fermionic modes

Although the device in Fig. 1 we proposed has the ingredients to implement universal
fermionic gates, further work is required to mitigate the main sources of errors. Because
of its similarities to a quantum dot charge qubit, we expect the limiting decoherence
mechanism to be the same—charge noise [47]. Typical coherence times are of the order of
a few nanoseconds [28,47–49]. In comparison, Dvir et al. [23] report CAR/ECT strengths
that set a lower bound for gate pulse durations of ℏ/ΓCAR/ECT ≈ 50 ps. This minimal
device therefore requires gate pulses with sub-nanosecond duration to operate the device
within the charge coherence time, posing a significant requirement on control electronics.
As an improved alternative, we consider the device shown in Fig. 2 in which all quantum
dots are proximitized by a superconductor, so that the local fermionic modes become
Andreev quasiparticles. Because Andreev states are linear combinations of electron and
hole-like excitations, it is then possible to design a device that operates with charge-
neutral fermions. As a consequence, the device becomes quadratically protected against
charge noise. A similar idea to avoid charge noise in fermion-parity qubits was recently
proposed [50]. Furthermore, a recent work estimated that proximitizing a quantum dot
increases the dephasing time to 200 ns [51]. Furthermore, mitigation of the charge noise
allows implementation of error-correction codes for fermionic systems [52].

To illustrate the idea, we consider a spinful isolated quantum dot i with Zeeman
splitting Bi and onsite charging energy Ui. In presence of a superconducting gap ∆i, the
dot hosts Andreev quasiparticles with a Hamiltonian:

Hi,N = (ϵi +Bi) γ
†
i,↑γi,↑ + (ϵi −Bi) γ

†
i,↓γi,↓ + Uiγ

†
i,↑γi,↑γ

†
i,↓γi,↓ , (19)

where

ϵi =
√

∆2 + δµ2i − Ui/2 , (20)

µi = δµi − Ui/2 , (21)

and γi,σ are the annihillation operators of Andreev quasiparticles. When the chemical
potential detuning is small δµ/∆i ≪ 1, the Andreev quasiparticles are equal weight su-
perpositions of electrons and holes:

γ†i,↑ = uc†i,↑ + vci,↓ , γ†i,↓ = uc†i,↓ − vci,↑ , (22)

with the components

u =
1√
2

(
1 +

δµi
2∆i

)
+O(δµi

2) , v =
1√
2

(
1− δµi

2∆i

)
+O(δµi

2) . (23)

The charge operator corresponds to the Hamiltonian derivative with respect to the chemi-
cal potential, and its expectation value for the singly-occupied Andreev quasiparticle states
is: 〈

γi,σ

∣∣∣∣ dHi

dδµi

∣∣∣∣ γi,σ〉 =
δµi
∆i

, (24)
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which vanishes when δµi = 0. Such a chargeless state reduces its coupling to charged
sources of noise, however, it is also insensitive to the charge-sensing read-out procedure
proposed in Sec. 2. Therefore, during read-out, we propose to first detune the chemical
potential µi from the charge-neutral sweetspot to manifest charge. Another way to control
the charge of an ABS is via flux-tuning [53–58], but we do not consider it here because it
requires additional superconductors and introduces sensitivity to flux noise.

In order to use the charge-neutral fermions as local fermionic modes, we require the
vacuum state and a single Andreev quasiparticle state to be the lowest energy states,
with all the rest of the states removed away far in energy. We achieve this for dot i
that stores LFM by fulfilling the inequality |Ui/2 + Bi − ∆i| ≪ Bi. This condition is
satisfied when the charging energy is sufficiently small, and the superconducting gap is
comparable to the Zeeman splitting. We suggest the device depicted in Fig. 4 to control
these parameters. Differently from the device in Fig. 1, we add a tunable gate-controlled
coupling t∆,i between the dots and the superconductor that controls the proximity gap
∆i, the g-factor renormalization, and the screening of the Coulomb potential Ui. We refer
to the dots L and R that store LFMs in Fig. 1 as the outer dots whereas the middle dot
M mediates interaction between them.

Figure 4: Alternative layout for a device with charge-neutral local fermionic
modes. Differently from the device depicted in Fig. 1, we consider tunneling
between the quantum dots and the superconductor, t∆,i. Controlling these addi-
tional barriers allows tuning the induced superconducting gap.

5.1 Gates

Unlike the charged fermions, which implement the onsite gate using a plunger gate pulse (15),
the charge-neutral fermions require fixing the plunger gates at the sweet spot. Instead,
we utilize the tunnel barrier t∆i connecting the outer dot to the superconducting island.
In the weak and moderate coupling regime, tunnel barrier controls the induced supercon-
ducting gap ∆i ∼ t2∆i/∆, and the energy of the Andreev quasiparticles in Eq. (19). This,
therefore yields the desired onsite operation in the neutral fermion device:

U1 = exp

[
− i

ℏ
HP ({t∆L

, t∆R
}) τP

]
. (25)

Similarly to the charged fermion case, we couple two neutral fermions through a middle
dot strongly coupled to a superconductor, as shown in Fig. 4. We choose a symmetric set of
parameters for the outer neutral fermions: ∆L = ∆R = ∆N , θL = θR = θ and BL = BR =
BN . Furthermore, we neglect Zeeman splitting in the middle dot because leading-order
effects are ∼ t2B2/∆4. Again, we assume a weak-coupling limit, t ≪ ∆,∆N , BN , and
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perform a Schrieffer–Wolff transformation to obtain an effective low-energy model [43].
From the effective model, we obtain the coupling strengths between neutral fermions:

ΛN = iκµM sin (2θ) , ΓN = κ (∆ +∆N −BN ) cos (2θ) , (26)

where
κ = t2/

[
∆2 + µ2M − (∆N −BN )2

]
(27)

and a renormalized onsite energy:

ϵ̃N = (∆N −BN ) + κ (∆ +BN −∆N ) . (28)

Compared to the charged fermion case in Eq. (8), we observe that the terms that implement
U2 and U3 in Eq. (26) behave in a qualitatively opposite way: ΛN = 0 and ΓN is maximal
at µM = 0.

Because of the swapped nature of U2 and U3, the hopping operation in the neutral
fermion basis requires fewer steps:

U2 = exp

[
− i

ℏ
HP ({t∆L

= t∆N
, t∆R

= t∆N
}) τ (2)P

]
× exp

[
− i

ℏ
HP ({t}) τ (1)P

]
. (29)

Likewise, by tuning ∆N ≈ BN such that there is no onsite energy in Eq. (28), pairing
operation is simple in the even parity subspace and only requires a single U2 correction
pulse in the odd parity subspace:

U3 = exp

[
− i

ℏ
HP ({t∆L

= t∆N
, t∆R

= t∆N
}) τ (3)P

]
× exp

[
− i

ℏ
HP ({t}) τ (2)P

]
× exp

[
− i

ℏ
HP ({t, µM}) τ (1)P

]
.

(30)

To confirm the validity of pairing and hopping operations, we perform their time-dependent
simulation in Fig. 7 (Appendix C) where we consider the effect of a constant full model
Hamiltonian in Eq. (19). In a system with the middle strongly-coupled dot proximitized
to ∆ = 100 µeV, we predict the gate operation duration down to 1 ns.

We neglect other spin channels and doubly occupied states in the charged fermions
regime because Bi, Ui ≫ ∆ is a reasonable approximation. With neutral fermions, this
approximation is not valid, so we systematically eliminate the remaining states in the
outer dots using a Schrieffer–Wolff perturbative expansion in Um/∆N [43]:

HC =
∑

i=L,R

3U2
m

∆N
γ†i↓γi↓ −

U2
m

∆N
γ†L↓γL↓γ

†
R↓γR↓ , (31)

Thus, we can still implement U4 through the mutual capacitance Cm between the outer
dots even in the charge-neutral regime:

U4 = exp

[
− i

ℏ
HP ({t∆L

= t∆N
, t∆R

= t∆N
}) τ (2)P

]
× exp

[
− i

ℏ
HP ({Um}) τ (1)P

]
. (32)

Finally, because now the effective interaction is quadratic in U2
m, the device becomes less

sensitive to the decoherence effects of residual capacitance discussed in Sec. 4.3.
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5.2 Comparison with charged fermions

Opposite to charged fermions, neutral fermions are quadratically protected against plunger
gates’ charge noise. In an isolated (t = 0) neutral fermion mode, we identify the noise in
superconductor tunnel gates t∆i as another source of decoherence, because it modulates
the induced superconducting gap ∆i. However, the tunnelling rate is usually less sensitive
than the chemical potential to variations of gate voltage, ∂µi/∂V ≫ ∂t/∂V [59] and thus
the tunnel gate noise contributes less to the overall decoherence. As a result, we expect
the neutral fermion devices to have longer coherence times than charged fermion devices.

An exception to the insensitivity to charge noise is the pairing operation. The param-
eter ΛN in Eq. (26) is linear in µM and, therefore, susceptible to first-order charge noise.
However, the coupling prefactor t2/∆2 is much smaller than the main sources of charge
noise in the charged fermion regime.

In order to work only with the lowest energy states, we require the charging energy Ui

to be much smaller than both Zeeman Bi and the superconducting gap ∆i. In addition,
because the outer dots are weakly-coupled, the induced superconducting gap in the outer
dots is smaller than the one in the middle ∆i < ∆, which reduces the energy gap of the
computation states.

6 Future directions

Our proposed device consists of a chain of single-orbital fermionic sites. The device lay-
out is a limiting factor, as it only allows nearest-neighbor in hoppings, superconducting
pairing, and electrostatic interactions. The layout limitations are detrimental to effective
scalability. Thus, future works could, for example, generalize the model to two-dimensional
lattices.

We showed that the proposed device is a minimal example of a fermionic quantum
computer. However, we must also emphasize that the high control of the system parame-
ters allows using the same device as a quantum simulator. For example, a chain-like device
with the unit cell shown in Fig. 1 at finite Γσi,σj and Um can be directly mapped to the
Heisenberg model. Thus, with the superconducting correlations, these devices would be
an extension of other quantum dot platforms [60].

We mentioned in Sec. 4 that all tunable capacitors proposed present a residual mu-
tual capacitance Coff . The external capacitor is necessary because charge screening in the
superconducting island suppresses interdot interactions. On the other hand, a floating
superconducting island offers a direct interdot capacitance [61]. In a device with a switch
between a floating and grounded superconductor, there would be direct control of the
mutual capacitance [62]. Moreover, the charge screening due to the grounded supercon-
ducting island sets Coff → ∞, removing the need to fix offset phases due to the residual
capacitance. The complexity of this setup requires further experimental investigation.
Thus, we referred to the alternative methods despite their limitations.

7 Summary

We showed that Copper pair-splitting devices with tunable capacitors allow a minimal
implementation of a fermionic quantum computer. We derived the low-energy Hamiltonian
and showed how to implement a universal set of gate operations by tuning experimentally
controllable parameters. Moreover, we show how to suppress decoherence due to charge

12



SciPost Physics Submission

noise with an alternative device layout where all quantum dots have independent tunable
couplings to the superconducting reservoir. We achieve the insensitivity to charge noise
operating in a regime where the local fermionic modes are charge-neutral. Based on the
low-energy theory, we also studied optimal regimes for the operation of both devices.
By repeating the unit cell, it is possible to use the system as a static simulator of one-
dimensional fermionic chains.
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A Schrieffer–Wolff transformation

We perform a Schrieffer–Wolff transformation to obtain the effective Hamiltonian from
Eq. (6). We, first, diagonalize the Hamiltonian of the middle dot in Eq. (3):

HABS = (ϵABS +B)γ†↑γ↑ + (ϵABS −B)γ†↓γ↓ , (33)

where ϵABS =
√
∆2 + µ2M , γσ are the annihillation operators of Andreev quasiparticles

γ†↑ = uc†M↑ + vcM↓ , γ†↓ = uc†M↓ − vcM↑ , (34)

and u and v are the coherence factors.
We now define the occupation basis for the many-body states as |nL, nM , nR⟩, where

ni corresponds to the occupation number at the site i. Notice that for the middle dot, we
define the number operator as n̂Mσ = γ†MσγMσ, whereas in the outer dots n̂iσi = c†iσi

ciσi .
Because we consider µL/R, B ≪ ∆, in the absence of hopping between the dots,

⟨nL, 0, nR|H|nL, 0, nR⟩ ≪ ⟨nL, nM , nR|H|nL, nM , nR⟩ , (35)

for nL/R ∈ {0, 1}, and nM > 0. Thus, the states with zero occupation in the middle dot
form our low-energy manifold.

An energy ∼ ∆ separates the occupied states in the middle dot from the low-energy
manifold. In the weak coupling limit t≪ ∆, the high-energy subspace only contributes to
the low-energy dynamics through virtual processes. Therefore, we use a Schrieffer–Wolff
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transformation to obtain the effective Hamiltonian in the low-energy subspace in Eq. (6).
Whenever µL = µR = 0, the terms in Eq. (6) for the anti-parallel spin configuration are:

ϵ↑↓R = κ
(
−2B sin2 (θR) +B + µM

)
, ϵ↑↓L = κ

(
−2B cos2 (θL) +B + µM

)
, (36)

Λ↑↓ = κ∆cos(θL + θR) , Γ↑↓ = −iκ [µM cos (θL + θR)−B sin (θL − θR)] , (37)

and for the parallel configuration:

ϵ↑↑R = κ
(
−2B cos2 (θR) +B + µM

)
, ϵ↑↑L = κ

(
−2B cos2 (θL) +B + µM

)
, (38)

Λ↑↑ = −iκ∆sin (θL + θR) , Γ↑↑ = −κ [µM cos (θL + θR)−B cos (θL − θR)] , (39)

where
κ = t2/(∆2 + µ2M −B2) . (40)

At finite B, the chemical potential µM at which Γσiσj = 0 shifts to:

µ↑↓shift =
B sin (θL − θR)

sin (θL + θR)
, µ↑↑shift =

B cos (θL − θR)

cos (θL + θR)
, (41)

for anti-parallel and parallel spin configurations.

B Convenience of the anti-parallel spin configuration

B.1 Orthogonality with symmetric spin precession

In Eq. (36), for the anti-parallel spin configuration, we notice that when the spin precession
angles are equal θL = θR = θ, the double occupation onsite energy ϵL + ϵR = 0 is zero
at µM = 0 and the ETC minima shifts disappear as shown in Eq. (41). That restores
the orthogonality of operations within the even parity sector, and thus we express U3(γ)
operation as:

U3(γ) = exp

[
− i

ℏ
HP

(
{µL/R}

)
τ
(2)
P

]
× exp

[
− i

ℏ
HP ({t}) τ (1)P

]
, (42)

where we compensate a finite ϵL−ϵR with an onsite pulse. On the other hand, the hopping
operation requires additional operations to compensate for non-orthogonality [46]:

U2(β) = exp

[
− i

ℏ
HP ({µL = µ, µR = µ}) τ (N+4)

P

]
× exp

[
− i

ℏ
HP ({t}) τ (N+3)

P

]
× exp

[
− i

ℏ
HP ({µL = µ, µR = µ}) τ (N+2)

P

]
× exp

[
− i

ℏ
HP

(
{µL/R}

)
τ
(N+1)
P

]

×
N/2∏
j=1

exp

[
− i

ℏ
HP ({t, µM}) τ (2j)P

]
× exp

[
− i

ℏ
HP

(
{µL/R}

)
τ
(2j−1)
P

] (43)

where N is the number of pulses required to correct for the non-orthogonality within the
odd parity sector.
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B.2 Stability and number of operations

To quantify the degree of linear dependence of the operations, we define the following
metric

Lo =

√
(ϵL − ϵR)

2

(ϵL − ϵR)
2 + Γ2

, (44)

Le =

√
(ϵL + ϵR)

2

(ϵL + ϵR)
2 + Λ2

(45)

for Le even Lo and odd fermion parity sectors. If Le/o = 0, the operations are orthogonal,
and the scheme outlined in Section 4 is valid. On the other hand, if Le/o = 1, it is
impossible to generate a universal set of operations. To understand how robust the scheme
in Eq. (42) is, we consider small deviations from the perfect spin precession case: θL = θ
and θR = θ + δ. In this case, the metric Le/o reads:

Lo =

[
1 +

(µM
B

tan 2θ
)2

]−1/2

+O(δ) , (46)

Le = δ

(
B

∆

)
tan 2θ +O(δ2) . (47)

Depending on the linear dependence Le/o of the hopping and pairing operations, we can
estimate the maximal number of pulses required to implement an arbitrary operation [46]
within a given fermion parity subspace:

N (Le/o) = ⌈ π

arccos (Le/o)
⌉+ 1. (48)

C Time-dependent gate operations
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Figure 5: Time-dependent simulation of hopping gate U2 acting on an initial left
singly-occupied state with different pulse rise time τR profiles. The left state
population is |ψ10|2 whereas the right state population is |ψ01|2. Longer pulses
(a) result in a smoother transient population profile (b) and less leakage into the
middle ABS state (c). The configuration is the spin-antiparallel with finite Zee-
man field within the middle dot B/∆ = 0.2 and symmetric spin-orbit precession
θL = θR = π/8
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Figure 6: The time-dependent evolution due to a constant charged fermion Hamil-
tonian showing (a) U3 pairing and (b) U2 hopping operations. The parameters
are t/∆ = 0.15, α = π/8 with µM/∆ = 0 for (a) and µM/∆ = 0.45 for (b).
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Figure 7: The time-dependent evolution due to a constant neutral fermion Hamil-
tonian showing (a) U3 pairing and (b) U2 hopping operations. The parameters
are t/∆ = 0.15, BN/∆ = 0.3,∆N/∆ = 0.297, α = π/3.2 with µM/∆ = 2.5 for (a)
and µM/∆ = 0 for (b).
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