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Abstract

We propose a general principle of constructing non-Hermitian (NH) operators for insu-
lating and gapless topological phases in any dimension (d) that over an extended NH
parameter regime feature real eigenvalues and zero-energy topological boundary modes,
when in particular their Hermitian counterparts are also topological. However, the topo-
logical zero modes disappear when the NH operators simultaneously accommodate real
and imaginary (in periodic systems) or display complex (in systems with open boundary
conditions) eigenvalues. These systems are always devoid of NH skin effects, thereby ex-
tending the realm of the bulk-boundary correspondence to NH systems in terms of solely
the left or right zero-energy boundary localized eigenmodes. We showcase these gen-
eral and robust outcomes for NH topological insulators in d = 1, 2 and 3, encompassing
their higher-order incarnations, as well as for NH topological Dirac, Weyl, and nodal-
loop semimetals. Possible realizations of proposed NH topological phases in designer
materials, optical lattices and classical metamaterials are highlighted.
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1 Introduction

Nontrivial topology and geometry of electronic wavefunctions in the bulk of quantum crys-
tals leave signatures at the boundaries (edges, surfaces, hinges and corners) in terms of robust
gapless modes therein: a phenomenon known as the bulk-boundary correspondence (BBC).
It plays a prominent role in the identification of topological crystals in nature and is germane
for topological insulators (TIs) [1–12], topological semimetals (TSMs) [13–18], and topolog-
ical superconductors [19–23]. Broadly topological phases can be classified according to the
co-dimension (dc) of the associated boundary modes, where dc = d − dB and d (dB) is the
dimensionality of the system (boundary modes). Thus an nth order topological phase hosts
boundary modes of dc = n. For example, three-dimensional topological crystals supporting
surface (dB = 2), hinge (dB = 1) and corner (dB = 0) modes are tagged as first-order, second-
order and third-order topological phases, respectively [24–36].

An attempt to extend the realm of these topological phases to open quantum materials
leads to non-Hermitian (NH) operators, although their exact connection with the nature of
the system-to-environment interactions thus far remains illusive. Nevertheless, desired NH
operators, if simple, can in principle be engineered on optical lattices [37] and in classical
metamaterials [38–50]. Typically, NH operators display the NH skin effect: an accumulation
of all the left and right eigenvectors at the opposite ends of a system with open boundary
conditions [51–76]. Naturally, it masks the BBC in terms of left or right eigenmodes, which
nonetheless is captured by their bi-orthogonal product [61]. However, a direct experimen-
tal measurement of bi-orthogonal BBC remains challenging. Therefore, construction of NH
topological operators, featuring the BBC in terms of their left or right eigenvectors and thus
generically devoid of the NH skin effect, is of pressing and urgent theoretical and more cru-
cially, experimental importance.

Here, we outline a general principle of constructing such NH operators for TIs and TSMs in
any dimension as an extension of their Hermitian counterparts, which we explicitly exemplify
for systems of dimensionality d ≤ 3. We show that the NH operators display the BBC in
terms of robust zero-energy boundary modes, when all its eigenvalues are purely real. But,
the system becomes trivial when the eigenvalues are simultaneously real and imaginary (in
periodic systems) or complex (with open boundary conditions). See Figs. 1-5.

The rest of the paper is organized as follows. In the next section (Sec. 2), we review the
prominents models for TIs and TSMs in d = 1, 2 and 3. In Sec. 3, we propose the general
principle of constructing NH topological models devoid of any NH skin effects, and exemplify
it for one-, two-, and three-dimensional topological systems. We summarize the findings,
propose future directions and highlight the (meta)material pertinence of our study in Sec. 4.
Additional details of our investigation are relegated to three Appendices.

2 Topological models: A brief review

Our construction of NH topological operators is greatly facilitated by reviewing the uni-
versal model Bloch Hamiltonian for d-dimensional Hermitian topological phases, which can
be decomposed as

HHer(k) = HDir(k) +HWil(k) +HHOT(k). (1)

The lattice regularized Dirac kinetic energy stems from the nearest-neighbor (NN) hopping of
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Figure 1: Non-Hermitian Su-Schrieffer-Heeger model in d = 1. (a) Eigenvalue spec-
trum for α = 0.5 with a periodic boundary condition (PBC) and an open boundary
condition (OBC), showing their guaranteed reality condition and the existence of
two near zero-energy topological modes (inset) for |α| < 1. (b) Amplitude square
of the right (β = R) or left (β = L) eigenvectors of two zero-energy modes, show-
ing their sharp localization near the ends of the chain. (c) The same as (b), but for
all the right or left eigenvectors, showing no left-right asymmetry and confirming
the absence of any NH skin effect (inset). (d) Eigenvalues for α = 10, showing its
generic purely real or imaginary nature (with PBC) and complex nature (with OBC),
the absence of any zero-energy topological modes and skin effect for |α| > 1. Here,
we set t = B = 1 and ∆1 = 1. See Eqs. (2), (3) and (5), and Sec. 3.

amplitude t between the orbitals of opposite parities. Explicitly, it is given by

HDir(k) = t
d
∑

j=1

sin(k j a)Γ j , (2)

where a is the lattice constant in a d-dimensional hyper-cubic lattice, momentum
k = (k1, · · · , kd), and k1, k2 and k3 should be identified as kx , ky and kz , respectively, for ex-
ample. All the Hermitian Γ matrices appearing in this work satisfy the anticommuting Clifford
algebra {Γ j , Γl} = 2δ j l for any j and l. Their dimensionality, explicit representations and the
internal structure of the associated Dirac spinor (Ψ) depend on the microscopic details, which
we reveal while discussing specific models.

The (first-order) Wilson mass, preserving all the discrete crystal symmetries (such as, re-
flection, rotation and inversion), and thus transforming under the trivial singlet A1g represen-
tation of any crystallographic point group, is HWil(k) = Γd+1m(k), where

m(k) =∆1 − 2B
�

d −
d
∑

j=1

cos(k j a)
�

+
p
∑

s=1

ts cos(kd+s a). (3)

For now we switch off the symmetry preserving out of d-dimensional hyperplane hopping pro-
cesses by setting ts = 0 for all s . Then the first-order Wilson mass features band inversion
within the parameter regime 0 <∆1/B < 4d, where H Ins

Her(k) = HDir(k)+HWil(k) describes a
d-dimensional first-order TI, hosting zero-energy gapless boundary modes of dc = 1. Promi-
nent examples are end modes of the Su-Schrieffer-Heeger insulator [77–79], edge modes
of quantum anomalous [80] and spin Hall [5, 6] insulators, and surfaces states of three-
dimensional strong Z2 TIs [7–10]. Notice that HDir(k) and thus H Ins

Her(k) also transform under
the A1g representation.

A hierarchy of higher-order TIs is generated by the discrete symmetry breaking Wilson
masses [34,36]

HHOT(k) =∆2Γd+2 dx2−y2(k) +∆3Γd+3 d3z2−r2(k), (4)
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Figure 2: Non-Hermitian Qi-Wu-Zhang model in d = 2. (a) Eigenvalues for α = 0.5
with PBCs and OBCs, confirming their reality condition and the existence of near
zero energy topological edge modes (inset) for |α| < 1. (b) Amplitude square of
the right (β = R) or left (β = L) eigenvectors of two closest to zero energy modes,
showing their sharp edge localization. (c) The same as (b), but for all the right or
left eigenvectors, showing no left-right or top-bottom asymmetry about the center of
the system, thus no NH skin effect. (d) Purely real or imaginary (with PBCs) and
complex (with OBCs) eigenvalues for α = 10, showing absence of any zero energy
topological mode and NH skin effect for |α| > 1. Here, we set t = B = 1 and∆1 = 6.
See Eqs. (2), (3) and (5), and Sec. 3.

where dx2−y2(k) = cos(k1a)−cos(k2a) and d3z2−r2(k) = 2 cos(k3a)−cos(k1a)−cos(k2a).
The term proportional to ∆2 (∆3) is pertinent only for d ≥ 2 (d ≥ 3). While dx2−y2(k)
transforms under the singlet B1g representation of the tetragonal point group (D4h) in d = 2,
dx2−y2(k) and d3z2−r2(k) transform under the doublet Eg representation of the cubic point
group (Oh) in d = 3. By virtue of the anticommutation relation among all the Γ matrices
appearing in HHer(k), HHOT(k) acts as a mass for the gapless boundary modes of the first-
order TIs in d > 1, and partially gaps them out, thereby yielding boundary modes with dc > 1
and higher-order TIs. Below, we explain this mechanism.

As such, a finite ∆2 converts a parent first-order TI into a second-order TI. Specifically, in
d = 2 it hosts four zero energy modes localized at the corners in the body diagonal directions
(k1 = ±k2) along which dx2−y2(k) vanishes [34]. But, in d = 3 it features four z-directional
hinge modes and gapless surface states on the top and bottom x y planes of a cubic crystal,
exactly where dx2−y2(k) vanishes [28]. Subsequently, a finite ∆2 and ∆3 produce a third-
order TI in d = 3, supporting zero modes at eight corners of a cubic crystal, placed on its
body diagonals (k1 = ±k2 = ±k3), only along which both dx2−y2(k) and d3z2−r2(k) vanish
simultaneously [36]. One can continue this construction in d ≥ 3 to realize the hierarchy
higher-order TIs therein. However, we restrict ourselves to d ≤ 3.

Finally, we consider the terms proportional to ts [Eq. (3)], yielding (d + p)-dimensional
weak topological phases by stacking d-dimensional nth order TIs. Depending on the parameter
values (∆1/B and ts/B), the weak topological phase can be either gapless (known as TSMs) or
insulating (trivial TI). The weak phase can also be trivial, which we do not discuss here. Their
gapless boundary modes appear only along the stacking direction, obtained by placing the
zero-energy modes of the parent nth order TI in that direction. Some well known examples
are the Fermi arcs of Dirac and Weyl semimetals [13–16, 81], drumhead surface states of
nodal-loop semimetals [82–84] and hinge modes of higher-order Dirac semimetals [34, 85–
87], which we will discuss in the context of NH TSMs. In this work, we exclusively focus on
TSMs, although our results apply equally well for weak TIs. With this brief review on Hermitian
TIs and TSMs, the stage is now set for us to promote their NH counterparts, devoid of any NH
skin effects.
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Figure 3: Non-Hermitian second-order topological insulator in d = 2. (a) Real eigen-
value spectrum with PBCs and OBCs, accommodating four near zero-energy topo-
logical modes (inset) for α = 0.5. (b) Amplitude square of the right (β = R) or left
(β = L) eigenvectors of four closest to zero-energy modes, showing their sharp cor-
ner localization. (c) Same as (b), but for all the right or left eigenvectors, showing
no left-right or top-bottom asymmetry about the center of the system, and thus no
NH skin effect. (d) Generic real or imaginary (with PBCs) and complex (with OBCs)
eigenvalues, and the absence of zero-energy topological modes and NH skin effect
for α = 10. Here, we set t = B = 1, ∆1 = 6 and ∆2 = 1. See Eqs. (2)-(5), and
Sec. 3.

3 Skin effect free non-Hermitian (NH) topological operators

The key observation is that the first-order Wilson mass matrix Γd+1 anticommutes with
HDir(k) and HHOT(k). So, the products Γd+1HDir(k) and Γd+1HHOT(k) are anti-Hermitian, as
(Γd+1Γ j)† = −Γd+1Γ j for j = 1, · · · , d, d +2,d +3. We therefore define a NH generalization of
all the topological phases in terms of the NH operator

HNH(k,α) = HHer(k) +α Γd+1 [HDir(k) +HHOT(k)] . (5)

The parameter α quantifies the strength of the non-Hermiticity. Since all the matrices in
HNH(k,α) are mutually anticommuting, its eigenvalues are ±ENH(k,α), where

ENH(k,α) =
�

(1−α2)
§

t 2
d
∑

i=1

sin2(k j a) +∆
2
2d2

x2−y2(k) +∆
2
3d2

3z2−r2(k)
ª

+m2(k)
�1/2

. (6)

For α = 0, we recover the energy spectra of the Hermitian systems. For |α| < 1 all the eigen-
values are purely real, showing a line gap, irrespective of the real space boundary conditions
(periodic or open). For |α| > 1 they are either purely real or imaginary, which we also find
in systems with periodic boundary conditions. However, in systems with open boundary con-
ditions, the eigenvalues of HNH(k,α) are generically complex, as in such systems the Fourier
transformed finite matrices for sin(k j a) and cos(k j a) do not commute with each other. A
more detailed discussion on this issue is presented in Appendix A.

The NH operator HNH(k,α) also meets some non-spatial symmetries [63, 65, 73]. If
HHer(k) preserves the time-reversal (T ) and particle-hole (C ) symmetries [11], then
T H⋆NH(k,α)T −1 = HNH(−k,α) and CH⊤NH(k,α)C −1 = −HNH(−k,−α). The sublattice (S)
symmetry of HNH(k, 0) ≡ HHer(k) (if exists) translates into SHNH(k,α)S−1 = −HNH(k,−α)
for its NH counterpart. However, HNH(k,α) is devoid of the pseudo-Hermiticity symmetries.

Most importantly, as Γd+1 transforms under the A1g representation, Γd+1HDir(k) (also
an A1g quantity) preserves all the spatial symmetries of the Hermitian system and and
Γd+1HHOT(k) do not break any new crystal symmetry that has not been already broken in
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Figure 4: Hierarchy of non-Hermitian topological insulators (TIs) in d = 3. Real
eigenvalue spectrum for α = 0.5 with PBCs and OBCs, showing the existence of near
zero-energy topological modes (insets) for (a) first-order, (d) second-order and (g)
third-order TIs. Amplitude square of the right or left eigenvectors of (b) four, (e) four
and (h) eight near zero-energy modes, showing sharp localization (b) on six surfaces,
(e) on four z-directional hinges and two x y surfaces, and (h) at eight corners. Panels
(c), (f) and (i) are same as (a), (d) and (g), respectively, but for α = 10, showing
purely real or imaginary (with PBCs) and complex (with OBCs) eigenvalue spectrum
and the absence of near zero-energy modes. Here, we set t = B = 1, ∆1 = 10,
∆2 = 1 and ∆3 = 1. See Eqs. (2)-(5), and Sec. 3.

the Hermitian limit. The second condition is pertinent only for NH higher-order topological
phases, as they break discrete rotational symmetry (such as four-fold or C4) in the Hermi-
tian limit, but preserves composite (such as C4T ) symmetries. Therefore, the eigenmodes
of HNH(k) do not show any NH skin effect, by construction. In Appendix B from an explicit
example, we show that for the appearance of NH skin effect at least some discrete crystal
symmetry must be broken, which in d = 2 is the inversion symmetry. Furthermore, as the
anti-Hermitian component of HNH(k) and the Hermitian operator HDir(k) + HHOT(k) vanish
exactly at the same high symmetry time-reversal invariant momentum (TRIM) points in the
Brillouin zone, the topological bound states (when present) are always pinned at zero energy,
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Figure 5: Non-Hermitian topological semimetals. Boundary modes of (a) a two-
dimensional NH Dirac semimetal, featuring Fermi arcs between two Dirac points at
ky = ±π/(2a) for ∆1 = 0 and t2 = B = 1, (b) a three-dimensional NH nodal-
loop semimetal, showing drumhead surface states for ∆1 = 0 and t2 = t3 = B = 1,
images of the bulk nodal ring determined by cos(ky a)+cos(kza) = 0 on the top and
bottom surfaces, (c) a three-dimensional NH Weyl semimetal, displaying Fermi arcs
in between the Weyl nodes at kz = ±π/(2a), for ∆1 = 0 and t3 = B = 1, and (d) a
three-dimensional NH second-order Dirac semimetal with hinge Fermi arcs between
two Dirac points at kz = ±π/(2a) for ∆1 = 0 and ∆2 = t3 = B = 1. Here, we set
α = 0.5. See Eqs. (2)-(5), and Sec. 3.

as in the Hermitian systems. Finally, we show that such topological zero-energy bound states
exist only for 0 < ∆1/B < 4d and |α| < 1, when the eigenvalues of HNH(k) are purely real.
Next, we anchor these general outcomes for various prominent models for topological phases
of matter in one, two, and three dimensions, which we have reviewed for Hermitian systems.

3.1 NH topological insulator: One dimension

A NH Su-Schrieffer-Heeger model [77–79] in d = 1 can be defined by taking Γ1 = τ1 and
Γ2 = τ2, where the Pauli matrices τ operate on the orbital degrees of freedom. The results
are shown in Fig. 1. Irrespective of the values of α, this model never shows NH skin effect, as
anticipated. Analytical solutions of the topological modes at zero energy can be obtained by
considering a hard-wall boundary at x = 0 such that ΨR

0 (x = 0) = 0 in a semi-infinite system
occupying the region x ≥ 0, thus ΨR

0 (x →∞) = 0. Here, the superscript ‘R’ denotes right
eigenvector. Such a mode can only be found at zero energy, explicitly given by

ΨR
0 (x ) = A

�

1
tαλ+

tλ++∆1+Bλ2
+

�

∑

δ=±
[δ exp(−λδx )] , (7)

where A is the overall normalization constant, and

λδ =
t

2B

p

1−α2 + δ

√

√ t 2

4B2
(1−α2)−

∆1

B
. (8)

Hence, zero-energy topological bound state can only be found if |α| < 1, for whichℜ(λδ) > 0.
As α→ 1, such a mode becomes more delocalized. At α = 1, the modes living on two opposite
ends of the one-dimensional chain hybridize, and they disappear for |α| > 1.

The topological modes for the first-order TIs in d > 1 are obtained as the zero-energy
bound states with a hard-wall boundary condition in a direction along which the translational
symmetry is broken, following the steps outlined above. Subsequently, their dispersive na-
ture is revealed by computing the matrix elements of the remaining part of the Hamiltonian,
with conserved momentum in the orthogonal direction(s), within the subspace of the zero
modes [12]. In higher-order TIs, topological modes of reduced dimensionality are realized
by partially gapping the ones for the first-order TIs by the discrete symmetry breaking Wilson
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mass(es) [34, 36], as discussed in Sec. 2 for Hermitian systems. See Eq. (4). This procedure
applies to all the NH TIs within our construction. Hence, the above exercise proves that topo-
logical modes in NH TIs of any order in any dimension can only be found at zero energy and
when |α| < 1. So, we only provide its numerical evidence for all the remaining cases.

3.2 NH topological insulators: Two dimensions

A NH generalization of the Qi-Wu-Zhang model [80], describing NH Chern insulators, is real-
ized for Γ j = τ j for j = 1, 2, 3. The results are shown in Fig. 2. Within the topological regime,
this model hosts chiral edge modes. A NH version of the Bernevig-Hughes-Zhang model [6]
for a NH quantum spin Hall insulator is realized for Γ j = σ3τ j for j = 1, 2, 3. The Pauli matri-
ces σ act on the spin indices. All the results are identical to those for the NH Chern insulator,
except each mode now enjoys two-fold Kramers degeneracy due to the preserved time-reversal
(T ) symmetry. So, we do not show them explicitly here. Within the topological regime, this
model sustains counter-propagating helical edge modes for opposite spin projections. A NH
second-order TI, featuring four zero-energy corner modes [24, 34], can be realized with the
addition of the ∆2 term, accompanied by the matrix Γ4 = σ1τ0, to the NH quantum spin Hall
insulator model. The results are shown in Fig. 3. In all the cases, we numerically verify that
the NH operators never show NH skin effect for any α.

3.3 NH topological insulators: Three dimensions

A three-dimensional NH first-order TI, supporting gapless surface states on all six surfaces
of a cubic crystal, is obtained with Γ j = σ3τ j for j = 1, 2, 3 and Γ4 = σ1τ0. A NH second-
order TI, supporting four z-directional gapless hinge and gapless x y surface modes, is realized
when ∆2, accompanied by Γ5 = σ2τ0, is finite. A three-dimensional NH third-order TI is
realized when both the terms proportional to∆2 and∆3 are finite. As for the Hermitian third-
order TI, HHer(k) involves six mutually anticommuting Hermitian Γ matrices, their minimal
dimensionality is eight [36, 88]. We choose Γ j = η3σ3τ j for j = 1, 2, 3, Γ4 = η3σ1τ0,
Γ5 = η3σ2τ0 and Γ6 = η1σ0τ0. The set of Pauli matrices η operate on the sublattice degrees
of freedom. Then, its NH version HNH(k) [Eq. (5)] also supports eight zero-energy corner
modes. All the results are shown in Fig. 4. In d = 3 as well, we numerically verified that none
of NH operators display any NH skin effect (not shown explicitly, however).

3.4 NH Topological semimetals

By stacking NH TIs, one can realize NH TSMs depending on ∆1/B and ts/B. Naturally, they
are also devoid of any NH skin effect and support gapless boundary modes only when |α| < 1
as their parent NH TIs. Here, we discuss some key examples. NH Su-Schrieffer-Heeger insu-
lators, stacked in the y direction, can produce a NH Dirac semimetal in d = 2 (like graphene)
that supports Fermi arcs between two Dirac points, located along the ky axis. By continuing
such stacking in the z direction, we can find a NH nodal-loop semimetal, supporting drum-
head surface states on the (ky , kz) planes. By the same token, stacked (in the z direction)
NH Chern insulators yield a three-dimensional NH Weyl semimetal with surface Fermi arcs
occupying the (kz, x ) and (kz, y) planes in between two Weyl nodes along kz . And stacking
of NH second-order TIs produces NH higher-order Dirac semimetal in d = 3, featuring only
z directional hinge modes localized within the Dirac nodes on the kz axis. These outcomes
for specific choices of ∆1/B and ts/B are shown in Fig. 5. Notice that topological boundary
modes from opposite ends of the system become connected via bulk nodal points or loops in
all the NH TSMs, where the localization length of the zero-modes of the underlying NH TIs
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diverges. Weak TIs obtained in the same way are also devoid of any NH skin effect and accom-
modate topological boundary modes, which, however, occupy the entire Brillouin zone along
the stacking direction(s).

4 Discussion & outlook

Here we unfold a general principle of constructing NH insulating and nodal topological
phases in any dimension that is always devoid of NH skin effects. In the topological regime,
they showcase the BBC in terms of either the right or left zero-energy eigenmodes, when all
the eigenvalues of the NH operators are purely real, irrespective of the boundary condition.
The systems become trivial when these eigenvalues are purely real and imaginary in periodic
systems or complex when we implement open boundary conditions. See Figs. 1-5. In order to
numerically ensure the bi-orthonormality condition 〈ΨL

i
|ΨR

j
〉 = δi j between the real space left

(L) and right (R) eigenmodes of HNH(k,α) with eigenvalues Ei and E j , respectively, we some-
times have to add an extremely small amount of random charge disorder (∼ 10−4−10−6). Our
construction can be immediately generalized for NH crystalline topological phases, as in the
Hermitian limit their universal Bloch Hamiltonian takes the form of HHer(k). However, they
involve longer-range hopping processes (beyond NN), allowed by crystal symmetries [89–91].
In the future, it will be worthwhile extending this construction for NH topological supercon-
ductors. Furthermore, computing the topological invariant of each NH model is left for a future
investigation. Nonetheless, such a computation for the NH Chern model in d = 2 is explicitly
shown in Appendix C. The quantum critical points separating NH topological and trivial insu-
lators are described by NH Dirac or Weyl fermions. Stability of such NH critical points against
electronic interactions [92,93] and disorder is still in its infancy.

Simplicity of our construction for the NH topological operators should make them real-
izable on multiple platforms, as HNH(k,α) involves only NN hopping amplitudes and on-site
staggered potential [Eq. (5)], as also the case in the corresponding Hermitian systems. Namely,
the anti-Hermitian term in our construction of HNH(k,α) produces hopping imbalance be-
tween the NN sites in opposite directions (yielding non-Hermiticity). For example, electronic
designer materials [94–98] and optical lattices constitute a promising quantum platform where
these operators and the resulting NH topological phases can be realized. On optical lattices
the desired hopping imbalance between NN sites can be engineered by creating two copies of
a d-dimensional hypercubic lattice, occupied by neutral atoms living in the ground and first
excited states, and coupled via running waves, such that the latter ones undergo rapid loss.
When the wavelength of the running wave is equal to the lattice spacing, a NH topological
operator on optical lattice with NN hopping imbalance can be realized. This proposal general-
izes the one for one-dimensional NH chain with left-right hopping imbalance [58]. Although
challenging, a similar engineering can be executed in principle on designer electronic mate-
rials. Topological modes in these setups can be detected by the standard scanning tunneling
spectroscopy since the proposed NH topological phases are always devoid of the NH skin effect
and the BBC manifests solely in terms of the left or right eigenvectors of zero-energy modes.

Classical metamaterials, such as photonic and mechanical lattices, as well as topolectric
circuits, constitute yet another set of viable avenues along which the predicted skin effect free
NH topology can be experimentally displayed. On all these platforms, tunable NN hopping
can be implemented, and a plethora of NH topological phases with NH skin effects has already
been realized [38–50]. Lack of the NH skin effect associated with all our NH operators should
allow the detection of classical topological modes in these systems using well-developed tools
(already applied for Hermitian topological systems), such as the two-point pump probe spec-
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troscopy (on photonic lattices), mechanical impedance (on mechanical lattices) and electrical
impedance (on topolectric circuits). It is encouraging that following our work, a topolectric
circuit realization of the proposed skin effect free NH Su-Schrieffer-Heeger model has been
designed [99]. Current discussion should therefore stimulate a new surge of experimental
works exploring the BBC in skin effect-free NH systems in terms of solely the left and right
topological eigenmodes.
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A Eigenvalues with periodic and open boundary conditions

In this Appendix, we show how complex eigenvalues generically appear in the eigenspec-
trum of NH operator when implemented on a d-dimensional hyper-cubic lattice with open
boundary conditions. For simplicity and concreteness, consider a one-dimensional first-order
insulator with Hamiltonian

H(kx ) = t sin(kx )Γ1 + [∆1 − 2B (1− cos(kx ))] Γ2, (A.1)

where kx ≡ k1. For now we set the lattice spacing a = 1. Its square is given by

H(kx )
2 =
�

t 2 sin2(kx ) +
�

∆1 − 2B (1− cos(kx ))
�2�
Γ0−2t B
�

cos(kx ), sin(kx )
�

Γ2Γ1, (A.2)

where Γ0 is the identity matrix. The commutator in the last term vanishes when kx is a good
quantum number, as is the case in systems with periodic boundary conditions. However, this
is no longer the case in systems with open boundary conditions. In real space, the operators
cos(kx ) and sin(kx ) can be represented by matrices, where the elements at indices (i, j) cor-
respond to the local Fourier transform between site i and site j . Then in a periodic system, they
are represented by circulant real symmetric and imaginary anti-symmetric matrices, denoted
by CPBC

x and SPBC
x , respectively, and are given by

CPBC
x =





















0
1
2 0 · · · 0 0

1
2

1
2 0

1
2 · · · 0 0 0

0
1
2 0

. . .
...

...
...

...
...

. . . . . . 1
2 0 0

0 0 · · · 1
2 0

1
2 0

1
2 0 · · · 0 0 0

1
2





















and SPBC
x =























0
i
2 0 · · · 0 -

i
2

-
i
2 0

i
2 · · · 0 0

0 -
i
2 0

. . .
...

...
...

...
. . . . . . i

2 0

0 0 · · · -
i
2 0

i
2

i
2 0 · · · 0 -

i
2 0























. (A.3)

The two far off-diagonal elements in each of these matrices represent the boundary hopping
between the ends of the one-dimensional lattice chain. These two matrices always commute
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since circulant matrices form a commutative algebra. With open boundaries, the two far diag-
onal elements vanish and the matrices are no longer circulant. In such a system, we represent
them as COBC

x = CPBC
x − δCx

and SOBC
x = SPBC

x − δSx
, where

δCx
=















0 0 · · · 0
1
2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
1
2 0 · · · 0 0















and δSx
=















0 0 · · · 0 − i
2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
i
2 0 · · · 0 0















. (A.4)

Then the commutator appearing in the last term of Eq. (A.2) becomes

�

COBC
x , SOBC

x

�

=
i

2













-1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1













≡
i

2
ϵ. (A.5)

In higher dimensions instead of a single matrix ϵ, we find d number of diagonal matrices, ϵ j
with j = 1, · · · , d. The diagonal matrix ϵ j appears with −1 at diagonal indices corresponding
to one boundary of the system and +1 at the opposite boundary in the jth direction, while
all other diagonal elements are zero. We can then generalize this notion to our general NH
models, the square of which takes the form

H2
NH = (1−α

2)
�

H2
Dir +H2

HOT

�

+H2
Wil + V, (A.6)

where

V = −t B (Γd+1 +αΓ0)
d
∑

j=1

ϵ j iΓ j . (A.7)

with the eigenvalues

λV = ±t B
p

1−α2
d
∑

j=1

δ
j
edge

. (A.8)

Here, δ j
edge

= 1 for sites on the edge of the system in the jth direction and zero elsewhere.

Then, V is effectively a mass perturbation to H2
NH at these sites, and this perturbation is imag-

inary for |α| > 1. The eigenvalues of HNH when open boundaries are imposed now become
(to leading order)

ENH ≈ ±
È

(1−α2)
�

E2
Dir
+ E2

HOT

�

+ E2
Wil
+ 〈n|V |n〉, (A.9)

for a given eigenstate |n〉 of the ‘unperturbed’ Hamiltonian (with periodic boundary condition).
Here, E2

Dir
, E2

HOT and E2
Wil

are the eigenvalues of H2
Dir

, H2
HOT and H2

Wil
in periodic systems.

Introducing this potentially imaginary (for |α| > 1) term under the radical leads to complex
eigenvalues in systems with open boundary conditions, as opposed to purely real or purely
imaginary eigenvalues in periodic systems. Evaluating the perturbation to higher orders will
still always yield complex eigenvalues whenever |α| > 1.
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Anti-Hermitian matrix Rx Ry Rz
π Rz

π/2
NH skin effect

iτ1 + - - Vector (iτ2) Yes and along the x
directional edges

iτ2 - + - Vector (−iτ1) Yes and along the y
directional edges

iτ3 - - + Scalar No

Table 1: Transformations of all the local anti-Hermitian operators [Eq. (B.2)] under
the reflections about the x axis (Rx ) and the y axis (Ry), the inversion (Rz

π) and
the four-fold rotation (Rz

π/2
). The last column shows whether a particular local anti-

Hermitian term produces NH skin effect or not, and in which direction. See Fig. 6.
Here, + (−) indicates whether a local anti-Hermitian term is even (odd) under a
given symmetry operation.

B Discrete symmetries and NH skin effects: An example

In this Appendix, by focusing on a specific example of two-dimensional Chern insulator,
we show that for the appearance of NH skin effects, the spatial inversion symmetry must be
broken by the corresponding NH operator. Here we use the notation kx ≡ k1 and ky ≡ k2.
We begin with the square lattice model for Hermitian Chern insulator in d = 2, described by
the Hamiltonian

HHer
Chern = t
�

sin(kx a)τ1 + sin(ky a)τ2
�

+
�

∆1 − 4B + 2B
�

cos(kx a) + cos(ky a)
	�

τ3. (B.1)

For the realization of the Chern insulator no spatial or crystallographic symmetry is required.
However, for the discussion on the NH skin effect it is important that we identify its spatial
symmetries, when this model is implemented on a square lattice via Fourier transformation.

This model is invariant under the reflection about (a) the x axis, generated Rx = τ3K ,
under which (kx , ky) → (kx ,−ky) and (b) the y axis, generated by Ry = K , under which
(kx , ky) → (−kx , ky). Here, K is the complex conjugation. It is also invariant under
four-fold (C4) rotation about the z axis, generated by Rz

π/2
= exp[−iτ3π/4] under which

(kx , ky)→ (ky ,−kx ). Finally, we note that the model Hamiltonian is also invariant under the
inversion, which is equivalent to rotation about z axis by an angle π, generated by Rz

π = τ3,
under which k →−k. However, in two dimensions, the inversion is the product of Rx and Ry .

With the spatial symmetries of HHer
Chern

in hand, we now introduce the following local anti-
Hermitian operator to address the resulting NH skin effect

HAH(δ1,δ2,δ3) =∆1(iτ1) + δ2(iτ2) + δ3(iτ3). (B.2)

The symmetry transformations of each term under the spatial symmetries of the Hamiltonian
HHer

Chern
are shown in Table 1. In particular, the term proportional to δ1 (δ2) breaks the reflec-

tion symmetry about y (x ) axis, while preserving the other reflection symmetry. Consequently,
both of them break the inversion symmetry and produce NH skin effect. We also note that
these two terms constitute a vector under the four-fold or C4 rotation about the z axis. So,
the patterns of the skin effect due to these two terms transform into each other under such a
rotation. As δ1 breaks the reflection about y axis, the skin effect appears along the edges in the
x direction, thereby manifesting the reflection symmetry breaking. A similar conclusion also
holds for the NH skin effect arising from the δ2 term. By contrast, the term proportional to
δ3 preserves the inversion symmetry, while transforming as a scalar under four-fold rotation.
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Figure 6: Eigenvalue spectra of the NH operator HHer
Chern

+ HAH(δ1,δ2,δ3) [see
Eqs. (B.1) and (B.2)] for (a) δ1 = 0.25 and δ2 = δ3 = 0, (d) δ2 = 0.25 and
δ1 = δ3 = 0, and (g) δ3 = 0.25 and δ1 = δ2 = 0. Throughout we set∆1 = 6, B = 1
and t = 1. The amplitude square of all the left [right] eigenvector of the correspond-
ing NH operator are shown in (b), (e) and (h) [(c), (f) and (i)], respectively. Thus,
NH skin effect appears only for δ1 and δ2, respectively showing left-right and top-
bottom asymmetry in the spectral weight of all the left or right eignvectors. While
for δ3 there is no left-right or top-bottom asymmetry in the spectral weight of all
the left or right eignvectors, thus yielding no NH skin effect. These outcomes are
compatible with the symmetry analysis of each local anti-Hermitian term shown in
Table 1. Consult Appendix B. For the chosen parameter values, the NH operator is in
the topological regime as can be seen from the near zero energy modes only found
in systems with open boundary conditions. However, the existence (absence) of the
NH skin effect is insensitive to the topology of the model.

Hence, it does not show any NH skin effect. These results are shown in Fig. 6. Therefore,
from this simple example it is clear that for the appearance of the NH skin effect at least some
discrete symmetries must be broken by the anti-Hermitian term, which in d = 2 is the in-
version symmetry. On the other hand, the reflection symmetries dictate the geometry of the
NH skin effects by various anti-Hermitian perturbations and the rotational symmetry (C4 on
a square lattice) relates the geometry of the NH skin effects by anti-Hermitian perturbations
that together constitute a vector under discrete crystal rotations (δ1 and δ2 in this case). In
future, it will be worthwhile extending the symmetry requirement and classification of NH skin
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effects to other models and in higher dimensions. As in our construction, the anti-Hermitian
term does not break any crystal or discrete symmetry (for first-order topological phases) or any
new discrete symmetry that is not already broken in the Hermitian system (for higher-order
topological phases), the NH operator [Eq. (5)] is always guaranteed to be devoid of any NH
skin effect.

C Topological invariant of NH models: An example

In this Appendix, we show the computation of the topological inavriant of the NH operator
for a specific case of two-dimensional NH Chern insulator. From Eq. (5), we can write down
the explicit form of the corresponding NH operator to be

HNH
Chern = t [{sin(k1a)− iα sin(k2a)}τ1 + {sin(k2a) + iα sin(k1a)}τ2]

+ [∆1 − 4B + 2B {cos(k1a) + cos(k2a)}]τ3 ≡ τ · d(k), (C.1)

where d(k) is a three-component vector and τ is the vector Pauli matrix. We can then compute
the Chern number of this model given by [100]

C =

∫

BZ

d2k

4π

�

∂1d̂(k)× ∂2d̂(k)
�

· d̂(k), (C.2)

where ∂ j ≡ ∂k j
and d̂(k) = d(k)/

p

d2(k), and momentum integral is performed over the
first Brillouin zone (BZ). For any |α| < 1 (including α = 0, corresponding to the Hermitian
system), we find C = +1 for 0 <∆1/B < 4 and C = −1 for 4 <∆1/B < 8.
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