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Abstract

In this article, we document version 0.1 of the PanScales code for parton
shower simulations. With the help of a few examples, we discuss basic usage
of the code, including tests of logarithmic accuracy of parton showers. We
expose some of the numerical techniques underlying the logarithmic tests and
include a description of how users can implement their own showers within
the framework. Some of the simpler logarithmic tests can be performed in a
few minutes on a modern laptop. As an early step towards phenomenology,
we also outline some aspects of a preliminary interface to Pythia8.3, for access
to its hard matrix elements and its hadronisation modules.

The code is available from https://gitlab.com/panscales/panscales-0.X
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1 Introduction

Parton showers lie at the core of the majority of experimental and phenomenological stud-
ies in collider physics. At the LHC, they connect the electroweak and TeV momentum
scales of hard-scattering processes, where the relevant degrees of freedom are perturba-
tive quarks and gluons, with the non-perturbative physics of hadrons at scales of a few
hundred MeV. As such, parton showers account for physics across several orders of mag-
nitude in momentum scales. In QCD, large logarithms typically appear in the presence
of large momentum scale hierarchies, which have to be resummed to all orders in the
strong coupling to obtain physically sensible results. One of the frontiers of the devel-
opment of parton showers is to understand, demonstrate and improve their logarithmic
accuracy, with analytic resummations providing crucial inputs, as well as reference results
for comparison.

This paper documents the first public release of a new parton showering code, Pan-
Scales, version 0.1. It has been developed as part of a series of articles [1–9] investigating
how to design parton shower algorithms that provide controlled and verifiable logarith-
mic accuracy, together with parallel analytical work on approaches to resummation at
higher logarithmic accuracy and their connection with parton showers [10–17]. Several
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other groups have also recently been working on the question of logarithmic accuracy in
showers, see e.g. Refs. [18–25].

This PanScales release includes two main NLL-accurate parton showers, PanGlobal
and PanLocal. They have had their next-to-leading-logarithmic (NLL) accuracy tested for
e+e− [1] and colour-singlet production in pp [5,6] collisions, as well as Deep Inelastic Scat-
tering (DIS) and Vector Boson Fusion (VBF) processes [8]. They include state-of-the-art
handling of subleading colour corrections, which for many processes and observables allows
for full colour accuracy at LL (and often beyond) [2,5]. They also include the treatment of
both collinear and soft spin correlations [3–5], and first steps towards matching [7], as well
as elements towards NNLL accuracy [9] (the latter two just for e+e− collisions). Finally,
the codebase contains early versions of features that are yet to be discussed in physics
research papers, in particular an interface with the Pythia8.3 event generator [26], which
can be used to provide hard-process generation and hadronisation. Despite the inclusion
of the interface to Pythia8.3, the code is not yet at a stage of maturity that is suitable
for extensive comparisons to experimental data. This is notably because of the absence
of finite quark-mass effects, the need for further work on matching with higher (fixed)
order effects, as well as tuning of the non-perturbative parameters of the shower and of
any hadronisation model with which it is used (see e.g. Refs. [27–29]).

This manuscript is structured as follows. Section 2 focuses on basic usage of the code,
illustrating: the build procedure (section 2.1); stand-alone event generation (section 2.2);
the use of the code for carrying out basic logarithmic tests of parton showers (section 2.3);
usage with a preliminary interface to Pythia8.3 (section 2.4); and details for carrying
out validation of the code and building it with higher numerical precision (section 2.5).
Section 3 illustrates some of the techniques that underlie the logarithmic tests, discussing
both double-logarithmic global event shape observables (section 3.1) and single-logarithmic
non-global observables (section 3.2). Section 4 gives a brief discussion of how to use the
PanScales framework to implement a new shower, which provides a relatively straight-
forward way to gain access to the colour, spin-handling and logarithmic-accuracy testing
facilities. We close in section 5 with an outlook.

2 Basic usage

The PanScales code requires a C++14 compiler and a Fortran 95 compiler, the GSL
library, CMake (≥ 3.7) and, for some scripts, Python (≥ 3.6) with matplotlib installed.
Some features (higher-precision builds) require the MPFR [30] and QD [31] libraries (see
section 2.5 for details). It includes several third party codes, notably fjcore [32] for jet
finding and hoppet [33] for PDF handling and the Catch2 library for unit-testing (see the
3rdPartyCode.md file for further details). The code can also be linked to LHAPDF [34]
and to Pythia8.3. The PanScales code is released under the GNU GPL v3 license.

2.1 Downloading and building the code

PanScales can be obtained from the git repository

git clone --recursive https://gitlab.com/panscales/panscales-0.X

This comes with the following directory structure:

• shower-code/: main shower code and some simple examples

• pythia-interface/: code for the PanScales interface to Pythia8.3 [26]

• analyses/nll-validation/: code for the full set of NLL validation tests
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• helpers/: contains the double exp numerical type and a copy of fjcore [32]

• submodules/: contains hoppet [33], CmdLine (for command-line processing and
help) and AnalysisTools (for run steering and histogramming)

• scripts/: a variety of helper scripts

• unit-tests/: code for low-level unit tests

To build the code and examples in double-precision, do the following

cd panscales-0.X/shower-code

../scripts/build.py -j

The scripts/build.py script uses CMake to organise the build, which by default is placed
in the build-double/ subdirectory. Advanced use of CMake is described in the BUILD.md

file.

2.2 Standalone event generation

To run showering for the e+e− → qq̄ process and analyse the events, do

build-double/example-ee -shower panglobal -beta 0 -process ee2qq \

-physical-coupling -rts 91.1876 -nev 100000 \

-out example-results/example-ee.dat

This will take about 5−10 seconds, and produce an output file with histograms for a range
of event shapes. Runs are generally configured with command-line options, for example
with the first line indicating the use of the PanGlobal shower. The shower ordering variable
is v = kte

−βps|η|, with kt and η = − ln tan θ/2 respectively the transverse momentum and
pseudorapidity of the emission with respect to its parent. The choice βps = 0 (set with
the -beta 0 command-line argument) corresponds to transverse-momentum ordering.

The available command-line options can be explored with the -h flag, and command-
line options can also be placed in a card-file and read with the -argfile card-file.txt

option. For convenience, the main options are also listed in an OPTIONS.md file (any
executable can be made to generate such a file by adding -markdown-help to the com-
mand line). More details on the PanScales interface can be found by examining the
example-ee.cc file. Much of the code also has doxygen documentation, which can be
obtained by running doxygen from the shower-code/ directory.

Note that in standalone mode, as given above, currently all events have unit weight,
i.e. in order to recover a physical cross-section from the above run the histograms should
be multiplied by the appropriate cross section for the hard process. Furthermore, in most
cases the Born event is a fixed configuration rather than being sampled over.

A final comment is that the event record (in the class panscales::Event, Appendix A.1)
holds only the particles as they appear after all showering, rather than containing all inter-
mediate steps as in some other codes. The reason for this is that for showers with global
recoil, storing all intermediate steps would take memory of order n2 for an n-particle
event.1 Access to the event record at intermediate steps can however be enabled, cf. Ap-
pendix A.2. By default the code prints the first event, but this can be changed to print
N events with the -max-print N option.

Similar examples for pp→ Z and DIS are given respectively in the example-pp.cc and
example-dis.cc, with further explanations in an EXAMPLES.md file. Note that the above
examples do not by default integrate over the hard-process kinematics. That functionality
is instead available through the interface with Pythia8.3 (cf. section 2.4).

1Even showers with nominally local recoil sometimes involve global event changes, for example with
initial-state branching in the PanLocal shower.
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Figure 1: Example results from tests of NLL accuracy of the PanGlobal (βps = 0)
shower for three global event-shape observables, the Cambridge algorithm y23 and
the Lund βobs = 0 sum and maximum observables, corresponding respectively to
the three panels. Each panel shows the ratio of the shower cumulative-distribution
result to the NLL calculation. Each coloured line corresponds to a specific value
of αs, while the black line gives the extrapolation to αs = 0. The results are
shown as a function of the maximum allowed value of λ = αs lnO, where O is
the observable.

2.3 Logarithmic tests

Within the shower-code/ directory, the example-global-nll-ee.py script, and associ-
ated example-global-nll-ee.cc program, illustrate how to carry out a basic test of the
NLL accuracy of a shower for global event-shape observables. It can be used as

./example-global-nll-ee.py --njobs NJOBS --shower panglobal

and will test the NLL accuracy of the e+e− PanGlobal shower with βps = 0 (i.e. kt ordered),
for event shapes like the Cambridge-algorithm y23 [35] and Lund observables [1]. The Lund
observables measure either the sum or the maximum of the ktie

−βobs|ηi| for primary Lund-
plane declusterings i [36]. The NLL test works with βobs = 0, i.e. examining just the
relative transverse momenta (kt) of the declusterings.

The --njobs flag takes an integer which should be equal to the number of cores that
one wishes to run on. Depending on the machine, the script takes around 15 to 50 CPU
minutes, i.e. a few minutes of wall-time on a modern multi-core machine. On completion,
for each observable, it will produce plots such as those in Fig. 1, showing the αs → 0 limit
of the ratio Σshower(λ)/ΣNLL(λ), where Σ(λ) is the cross section for αs lnO to be smaller
than λ, with O being the value of the observable. The plot is given as a function of λ, as
is standard for NLL tests [1]: for an NLL-correct shower, the αs → 0 limit of the ratio
will be equal to 1. The user can examine the results for a non-NLL shower by replacing
panglobal on the command line with dipole-kt, which provides a standard kt-ordered
dipole shower [5], much like those [37–39] in standard public tools.

The shower-code directory also includes an example-nonglobal-nll-ee.py script
for testing non-global logarithms in the context of energy flow into an angular slice. It
can be used as follows

./example-nonglobal-nll-ee.py --njobs NJOBS --shower panglobal

The script again generates a plot with the ratio to the NLL (single-logarithmic) result.
The above command lines serve mainly to illustrate the more straightforward logarith-

mic accuracy tests and provide only a subset of the functionality required for a full set of
tests. For example, the global event-shape tests in the example-global-nll-ee.py script
are limited to βps = βobs = 0. Further discussion of considerations for logarithmic tests is
given in section 3.
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2.4 Usage with Pythia8

While we do not yet recommend the PanScales code for phenomenological production
purposes, those wishing to start exploring such applications may try the interface with the
Pythia8.3 [26] generator code, which we have tested with version 8.3.10. This enables
the use of Pythia8.3 to generate the hard process,2 as well as for hadronisation, while
PanScales carries out the parton showering at the scales in between. It also enables
access to Pythia8.3 I/O, e.g. for outputting HepMC files [40].

To compile and run the code, enter the pythia-interface/ directory and run3

./get-pythia.sh

../scripts/build.py --build-lib -j --with-lhapdf

The main example program simulates Drell-Yan production. The default invocation re-
quires the CT14lo set [41] from LHAPDF [34], which needs to be installed on the system
e.g. by running lhapdf install CT14lo.4 Running

build-double/main-dy -physical-coupling -lhapdf-set CT14lo \

-shower panglobal -nev 1e5 -out main-dy.dat

will generate 105 Drell-Yan events and histogram the Z rapidity, mass and transverse mo-
mentum. It does not (yet) include matching to higher-order matrix elements, so kinematic
distributions such as the transverse momentum of the colour singlet ptZ are sensible only
in the resummation region, i.e. at low ptZ .

Note that the above run will produce warnings concerning x regions where the PDF
set is badly behaved. Most other PDF sets have issues with negative or zero parton
distribution functions, especially at large x, that cause the PanScales code to throw an
exception after some number of events. Ultimately, we intend to make PanScales more
tolerant of ill-behaved PDFs, but at this stage of development we have taken the approach
that it is safer to abort the run than to continue generating events when a clear problem
has arisen, even if only a rare occurrence.

The same directory contains a range of other examples that can be run with Pythia8.3,
and the header of each example illustrates how to use it. We also provide an example of
interfacing to Rivet [42], in which case one needs to make sure Rivet is installed and the
code is compiled with it (through --cmake-options="-DWITH RIVET=on"). This allows
for an easy comparison with data, although we should note that none of the PanScales
showers are currently tuned, nor do they include the effects of quark masses. We comment
further at the end of this subsection.

The PanScales-Pythia8.3 interface transfers the event into the Pythia8.3 event
record after each shower emission. This is done to have access to the full Pythia8.3
functionality in the future, i.e. interleaving multi-parton interactions (MPI) with showering
of the hard process. Note that at this moment, we do not have the functionality to run
with MPI, but hadronisation can be added through the flag -hadron-level.

The above examples all use the same PanScales event-loop framework as in the main
shower-code/ directory. We also distribute examples with a standard Pythia8.3 struc-
ture. These are to be found in the main-pythia02.cc and main-pythia06.cc files, which

2So far only a limited set of processes is supported in the interface, e.g. because of the setup of
subleading-colour information for the hard process, which is currently handled manually.

3Users who wish to reuse an existing Pythia8.3 installation should see pythia-interface/README.md

for instructions. For users who already have a version of Pythia8.3 installed but also run the
get-pythia.sh script, care should to be taken about conflicts between the two versions of Pythia8.3
(e.g. library paths for dynamic linking leading to inconsistent versions).

4The code can also be used without LHAPDF, instead using a replacement toy PDF set. See
pythia-interface/README.md for details.
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are based on the corresponding main02.cc and main06.cc examples from the Pythia8.3
distribution. Note that only a restricted set of options is supported in this form, which
can be found at the end of PanScalesPythiaModule.cc.

In thinking about the interface between the PanScales showers and Pythia’s hadro-
nisation, it is perhaps useful to comment briefly on the interplay between hadronisation
and the parton shower’s logarithmic resummation. Consider an event with a hard scat-
tering scale Q and some infrared and collinear (IRC) safe observable (e.g. a jet rate) that
is sensitive to a transverse-momentum scale pt � Q. Any discussion in terms of quarks
and gluons implicitly comes with a requirement that the transverse momentum scale pt
be much larger than Λqcd ∼ 1 GeV. We expect that hadronisation (and associated tuning
parameters, such as those of the Lund string model) will act primarily at scales of the
order of Λqcd. Thus for the observable at scale pt, the relative impact of hadronisation
should be suppressed by a power of Λqcd/pt. Consequently hadronisation will not modify
the resummation properties of the shower. Of course in practice one may also be inter-
ested in physics at a few GeV or in quantities that are not IRC safe. In those cases, the
interplay between shower resummation and hadronisation may be non-trivial: for example
more accurate shower resummation may provide a better initial condition for hadronisa-
tion models. A more detailed study of these questions would be interesting, but is beyond
the scope of this manual.

2.5 Code validation and more advanced builds

To validate that the code is generating expected results, enter the shower-code/validation/
directory and run

./validate-showers.py -j

which runs a range of validation tests in parallel across all available cores. This takes a
total of about 300−1000 CPU seconds on a typical laptop, carrying out of the order of 100
separate short runs, each with different settings, verifying that they give histograms that
are identical to those in a set of reference files. It is possible to carry out validation runs
with larger numbers of events, but one should be aware that there can be differences due
to varying floating-point behaviours across different hardware. Additionally, lower-level
unit tests can be found in the unit-tests/ directory. These are based on the Catch2
library and are mainly used for checks of foundational classes, such as the main Momentum

class (see the README.md file in that directory for further details). The unit tests and
a subset of the validation tests can also be run with the continuous integration script
scripts/CI-build-and-test.py.

It is sometimes useful to build the main code in different numerical precisions, e.g. for
logarithmic tests that probe very disparate energy scales and angles. For this, the general
build script has an option --builds X which essentially invokes cmake with a suitable set
of configuration options. Specifically, one runs

../scripts/build.py --builds X [-j]

where X is a space-separated list that contains one or more of the following options: double,
ddreal, qdreal, doubleexp, mpfr4096.

The ddreal and qdreal options require at least version 2.3.23 of the QD library [31]
and have precisions of about twice and four times that of a double type, with speeds that
are about 10 and 200−300 times slower.

The doubleexp type was developed specifically for the PanScales project and has
the same relative precision as double, but a much larger range of exponents (stored in an
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additional 64-bit integer), which is useful when exploring finite values of αs ln v with very
small values of αs and correspondingly large values of ln v. It is about 3−10 times slower
than double.

The mpfr4096 type is based on the MPFR library and has 4096 bits for the mantissa,
i.e. about 75 times higher than double precision, or equivalently a little over 1000 decimal
digits of precision. It is about 1500−2500 times slower than double (using version 4.2.1
of the library).

For most purposes, the double and doubleexp types are sufficient, notably when used
with methods that track the differences between directions of dipole ends in addition
to the actual momenta of the corresponding partons [2]. That tracking can be enabled
at run time with the -use-diffs option and has only a modest speed penalty, of the
order of 10%. The higher precision types are, however, important when developing new
showers and testing the correctness of any parts of the code that carry out the dedicated
calculations with direction differences.

3 Further details for logarithmic tests

In this section we provide some insight into features of the code that facilitate shower loga-
rithmic accuracy tests, together with a more detailed discussion of some of the underlying
methodology than has been given in previous work.

Some of the discussion below concerns tests that go beyond the simple ones illus-
trated in section 2.3. Code for these more advanced tests is to be found in the directory
analyses/nll-validation/ with usage explanations in the corresponding README.md file.

3.1 Global event shapes

We start by considering the global event shape tests of section 2.3 and specifically examine
the commands that are run by the example-global-nll-ee.py script. For each of several
αs values, that script executes one or more commands of the following kind

build-double/example-global-nll-ee -Q 1.0 -shower panglobal -beta 0.0 \

-alphas 0.0016 -nloops 2 \

-lambda-obs-min -0.5 -lnkt-cutoff -327.5 -dynamic-lncutoff -15 \

-weighted-generation -nev-cache 75000.0 \

-spin-corr off -use-diffs -nev 750000 -rseq 11 \

-out example-results/lambda-0.5-alphas0.0016-rseq11.res

The second line indicates the value of αs(Q) in the MS scheme (working in units of√
s ≡ Q = 1) and that a two-loop running coupling is to be used. The next two lines

contain two separate critical elements, which we discuss below in more detail. Further
options are -spin-corr off, which turns off spin correlations (leaving them on adds about
50% to the run time). The -use-diffs option turns on tracking of direction differences
for higher numerical precision. It is not strictly necessary for this example, but the speed
cost is relatively limited, at about 10%. The -rseq 11 argument specifies the random
sequence that is used.

The choice of αs values (cf. also Fig. 1) involves a balance between several considera-
tions.

1. CPU usage differs across values of αs. For example taking too small a value of
αs (and correspondingly large logarithms) requires the use of the doubleexp type,
which is slower. Furthermore, in some cases, smaller αs values bring slower Monte
Carlo convergence (notably when one needs to use the methods of Section 3.1.3).
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2. At order NpLL one is looking for residual effects of O (αp−1
s ). For NLL tests, we have

p = 1 and so we are measuring an O (1) effect, i.e. independent of αs. But for, say,
an NNLL test, one would be looking to measure O (αs) effects, and taking values of
αs that are too small would make it more difficult to identify those effects.

3. The ability to take the shower cutoff sufficiently small that cutoff effects are negligi-
ble, while also not encountering the Landau pole in the coupling. This complicates
the use of larger values of αs, because one approaches the Landau pole more rapidly.
CPU usage then increases significantly, notably because of the higher particle mul-
tiplicities in each event.

4. The size of residual contributions that are beyond the order of extrapolation for the
αs → 0 limit. This favours taking smaller values of αs.

As concerns the last of these points, one should estimate a systematic error for the extrap-
olation, for example by using two different sets of αs points. While this is not done for
Fig. 1, it is a part of all tests in analyses/nll-validation/ that rely on extrapolation
of αs → 0.

Two further critical elements that we now need to discuss in more detail are (1) a
dynamic generation cutoff, which is necessary to prevent event particle multiplicities from
becoming intractable and (2) weighted event generation, which is necessary in order to
explore regions with large Sudakov suppression.

3.1.1 Dynamic generation cutoff

Let us discuss the following part of the command line:

-lambda-obs-min -0.5 -lnkt-cutoff -327.5 -dynamic-lncutoff -15

This indicates that the minimal value of λ = αs ln v is−0.5, which corresponds to ln kt/Q =
−312.5 with αs = 0.0016. The choice -lnkt-cutoff -327.5 allows the shower to run
somewhat below the kt scale associated with the minimal value of λ. This is important,
because multiple emissions break the immediate relation between the shower scale and
the observable, e.g. because of shower recoil effects, and because the observable sums
contributions from multiple emissions. These effects are properly accounted for only if the
shower is allowed to evolve sufficiently far below the single-emission scale that is equivalent
to the smallest value of the observable that is probed.

If we were to straightforwardly run with the very small cutoff indicated above, then the
average event particle multiplicity, n, would be prohibitively large. Specifically, it scales
as lnn = |λc|

√
2CA/(παs) + O (1) [43], where λc = αs ln kt,cutoff/Q. For the parameters

above, this would give n ∼ 108. To resolve this issue, in addition to the fixed kt cutoff
we also use a dynamic cutoff. We track the shower scale v1 of the first shower emission.
Knowing that we are restricting our attention to βobs = βps observables and that standard
global event shapes are recursively infrared-and collinear safe [44], we can be sure that
emissions with much lower values of v will not modify the event shapes. Accordingly, when
the shower reaches an ln v scale that is sufficiently far below that of the first emission, we
simply stop showering. That choice is specified by the -dynamic-lncutoff -15 argument,
which stops the showering when ln v < ln v1 + δln v = ln v1 − 15. This ensures that the
multiplicity is kept limited, e.g. for the above run it averages to about 20.

To validate this approach, the dependence of the normalised cross section Σ(λ) on
the size of the dynamic cutoff is shown in Fig. 2a (red line, corresponding to a kt-like
observable, i.e. βobs = 0). It is illustrated for the pp → Z process, as carried out for the
studies of Ref. [6], and one observes good convergence of Σ(λ) as the dynamic cutoff δln v

9
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Figure 2: Dependence of Σ(λ) on the size, δlnO, of the parton-shower dynamic
cutoff. The results are shown for the Sj,βobs class of observables in Drell-Yan
production, which sum ptie

−βobs|ηi| over all final-state jets i (with pt defined as
the transverse momentum with respect to the beam). The dependence on the
size of the dynamic cutoff size is shown normalised to the NLL prediction for
Σ, for each of three values of βobs: 0 (red), 0.5 (green) and 1.0 (blue). Two
showers are shown (a) PanGlobal with βps = 0 and (b) PanLocal (dipole) with
βps = 0.5. The upper panels show the ratio of Σ to the NLL result, showing the
convergence as δlnO is made more negative (note that the ratio is not expected to
go to 1, because of the finite value of αs). The lower panels show the difference
between Σ/ΣNLL results for successive δlnO values, again normalised to the NLL
result, giving a clearer view of the degree of convergence. The dashed lines help
illustrate that the behaviour is consistent with exponential dependence on δlnO.
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is taken below −9 (for the βps = βobs case discussed, δln v ≡ δlnO in the plot). The value
of −15 that we use above leaves a comfortable margin.

The above procedure is sufficient when the angular power βps in the definition of the
shower ordering variable coincides with the angular power βobs in the observable. When
βps 6= βobs a more elaborate procedure is needed. As a starting point, we need to be able
to evaluate the order of magnitude of the contribution of each emission i to the observable,
Oapprox,i. Given knowledge of βps and βobs, this can be determined from the value of ln v
and the (approximate) rapidity of the emission. Specifically we take it to have the form

Oapprox,i = cv ln vi + cb ln bi + const. (1)

where ln bi is a rapidity-like variable (cf. Section 4), the cv and cb are coefficients that
are independent of the dipole kinematics, and the remaining constant term does depend
on the dipole kinematics.5 In general Eq. (1) will agree with the true contribution to the
observable from emission i to within a factor of order 1. We then determine if the following
condition holds

lnOapprox,i < max
j<i
{lnOapprox,j}+ δlnO (2)

where on the right-hand side the max operation runs over prior accepted emissions j and
δlnO generalises the δln v discussed above. If Eq. (2) holds, then emission i is discarded
and showering continues. Showering is subsequently stopped when ln v is sufficiently small
such that for all emission rapidities one can be sure that Eq. (2) will always hold.

Note that for βps 6= βobs this procedure is guaranteed to be safe only for showers that
respect the PanScales condition that a given emission does not impact other emissions
far in the Lund plane.6 Results are illustrated in Fig. 2, for various combinations of βps
and βobs, showing the relative change in Σ between successive pairs of values of δlnO,
corresponding to the extremities of each horizontal bar. One sees a behaviour that is
consistent with an exponentially vanishing effect as δlnO becomes more negative. Again,
a choice of −15 should be more than adequate for NLL logarithmic tests. Note that the
need for a more sophisticated dynamic veto and cutoff is not the only challenge that arises
with βps 6= βobs. Further considerations are discussed below in section 3.1.3.

3.1.2 Weighted event generation for βps = βobs

Now we turn to the following part of the command line at the beginning of section 3.1

-weighted-generation -nev-cache 75000.0

This is needed to address the fact that Σ becomes infinitesimally small in the limit αs → 0
for fixed λ = αs ln v, specifically ln Σ ∼ λ/αs. To get a more concrete sense of the
challenge, consider that Σ ∼ 10−103 for λ = −0.5 and αs = 0.0016 as in the command
line at the start of section 3.1. With unweighted event generation, it would take orders of
magnitude longer than the age of the universe to explore that region.

We address this challenge by greatly enhancing the number of events whose first emis-
sion has an extremely small value of ln v, assigning a suitable weight to those events so as
to reproduce the correct final Σ distribution.

We divide the full evolution range [ln vmax, ln vmin] into a set of n consecutive bins,
each defined by their upper boundaries, ln v+

i . Writing the shower Sudakov form factor
between two scales v and v′ as ∆(v, v′) (for the Born event), we precompute the part of

5Our choice for Oapprox,i can be evaluated with the help of a function in the base class for shower
implementations, ShowerBase::Element::lnobs approx(...).

6This condition is not satisfied for standard dipole showers. For βobs 6= βps this results in super-leading
logarithmic terms [1] and such terms would not be fully reproduced with the above dynamic veto procedure.
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the Sudakov form factor associated with each bin.7 The precomputed Sudakov can be
inspected in the output file.

For each event, we choose a generation bin i randomly, with a probability pi that we
take proportional to ln v+

i − ln v+
i+1. The shower then starts from scale v+

i . If the first
emission scale is above v+

i+1, the shower continues down to the dynamic cutoff as explained
in section 3.1.1. If the first emission scale is below v+

i+1, the emission is discarded and
showering is restarted from scale v+

i , repeating this until one generates an emission above
v+
i+1. The weight assigned to the event is

w =
1

pi

(
∆(vmax, v+

i )−∆(vmax, v+
i+1)

)
. (3)

where the factor 1/pi compensates for the likelihood of choosing the window and the
second factor accounts for the Sudakov form-factor probability of having the first emission
between v+

i and v+
i+1.

In practice we choose the bins such that ln v+
i scales as −

√
i, which in a fixed-coupling

approximation ensures that the Sudakov form factor decreases by a similar factor from
one bin to the next. We take the total number of bins to be n = ln ∆(v+, v−)/ ln(u) where
u is a number of O(1/2), so that the probability of each successive bin is about half that
of the previous bin. This ensures that each attempt at starting the showering has a ∼ 50%
chance of generating an emission within the given window, while also ensuring that the
event weight tracks the actual first-emission Sudakov probability to within about a factor
of two.

Fig. 3a shows a validation of the correctness of the procedure for a physical value of
the coupling, αs = 0.1, where it is straightforward to obtain high accuracy with both
weighted and unweighted approaches. The plot shows the distribution of ln v1 for the first
emission when the generation is unweighted (red solid lines) and weighted (blue dashed
lines). The two approaches agree to within statistical errors. Fig. 3b shows the size of
the relative statistical error in the two approaches, illustrating the superiority of weighted
generation for small ln v1 values, and also illustrating that its statistical error is fairly
independent of ln v1, with a mild sawtooth structure that lines up with the generation bin
edges (indicated as vertical dotted lines).

3.1.3 Weighted event generation for βps 6= βobs

The above weighted event-generation procedure is very powerful when the Lund contour
of the observable lines up with that of the shower evolution variable, i.e. βobs = βps. If
this is not the case, a given value of the observable receives contributions from different
evolution windows with often widely differing weights, significantly worsening statistical
convergence.

Let us start by explaining the structure of our approach, which is illustrated also with
the help of Fig. 4. Ultimately, we want to generate all possible events such that a given
observable O is below some threshold, e.g. αs lnO = λ < −0.5. As a first step will
consider how to generate events with a condition on an approximation to the observable,
Omax ≡ maxi{Oapprox,i}, with the Oapprox,i as defined in Eq. (1). Specifically, we will
consider how to generate events such that Omax is in some range O− < Omax < O+, i.e.
the green band in Fig. 4, labelled “approximate observable window”. Then we will show
how to use event-samples in different approximate-observable windows so as to obtain a

7This can be done either with a Monte Carlo integration (the default) or with Gaussian quadrature.
The -nev-cache argument indicates the number of events used for the MC integration in each bin. We
have found that a suitable choice is about 10% of the total number of events that one wishes to generate.

12



SciPost Physics Codebases Submission

10 2

10 1

100
1 N

dN dl
nv

Dipole-kt, = 0.5, pp H
s = 0.1, s /mH = 100, yH = 0

unweighted
weighted

5 4 3 2 1 0
ln v1

0.0002

0.0000

0.0002

ra
tio

 - 
1

Weighted vs unweighted event generation

(a)

5 4 3 2 1 0
ln v1

10 5

10 4

10 3

[1 N
dN dl
nv

]/ [
1 N

dN dl
nv

]

Dipole-kt, = 0.5, pp H

s = 0.1, s /mH = 100, yH = 0
unweighted
weighted

Relative uncertainty

(b)

Figure 3: Validation of the weighted event generation. We show the results for
Dipole-kt for pp → H collisions with

√
s/mH = 100 and yH = 0. We take

αs = 0.1 and target λ = −0.5. (a) The distribution of ln v1 values for the first
emission, with and without weighted generation, illustrating that they agree.
The bottom panel shows the ratio between the weighted and unweighted results
minus 1, where the statistical uncertainty is indicated with the red band. (b)
The relative statistical uncertainty in the ln v1 distribution for both unweighted
and weighted shower generation.

set of events with a constraint on the actual observable, exploiting the fact that O and
Omax differ at most by a factor of order one.

The complication that we face in generating an event sample with a constraint on
Omax is that the shower contours (blue lines of Fig. 4) do not align with observable
contours (e.g. edges of the green band). However, knowing the scaling of the observable,
it is possible to analytically work out the largest shower scale, va, that can generate
an emission with approximate observable-value O+. We therefore start the showering
from that scale va, with an initial weight equal to w = ∆(vmax, va), where vmax is the
largest kinematically accessible scale. We then need to ensure that the showering does
not generate any emissions with Oapprox,i > O+. The simplest approach would be to veto
every event that has any of the emissions i contributing such that Oapprox,i > O+. This
would be correct, but would in general lead to a very small fraction of surviving events.
That survival fraction corresponds roughly to the Sudakov form factor associated with the
area between the top of the green band (O+) and the thick blue va line in Fig. 4.

To work around this problem, we employ a procedure that relates to an approach
first introduced in Ref. [45] in the context of multi-jet merging. Specifically, we use an
enhancement Cenh > 1 for the probability of generating individual emissions. If an emission
i has Oapprox,i > O+, the emission is discarded, the event is kept, but the event weight w
is multiplied by a factor such that

w → w
Cenh − 1

Cenh
. (4)

Emissions with Oapprox,i ≤ O+ (including those with Oapprox,i ≤ O−) are instead accepted
with probability 1/Cenh, with the event weight unchanged. Once v goes below some value

13
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Figure 4: Illustration of some of the main steps in the weighted event-generation
approach that is used for βps 6= βobs, for a specific target observable window.
Beyond what is shown in the figure, one important element is that if, after show-
ering, there are no emissions in the approximate observable window, the event is
discarded. The approach is additionally supplemented with the dynamic genera-
tion cutoff of section 3.1.1.

vb such that no further emission can have Oapprox,i > O+, the enhancement factor is
set equal to 1 and the shower continues down to the scale of the dynamic cutoff. After
statistical averaging this gives exactly the same result as a uniform-weight approach that
discards every event with any emissions Oapprox,i > O+ [45].8 Finally, events are only
accepted if at least one emission has an approximate observable value satisfying Oapprox,i >
O−. Together with the preceding steps, this guarantees O− < Omax < O+.

The final step is that for a given value of the constraint on the actual observable (e.g.
αs lnO < λ = −0.5), we need to add together several contiguous O± windows above the
constraint, plus one final window without a lower bound (i.e. O− = 0). Note that Fig. 4
shows only one of the windows. The need for several windows is because the actual value
of the observable can be smaller than the approximate value of the observable by some
O (1) factor. The number of windows that is needed depends on both the shower and the
observable. Typically if the actual observable can be substantially below the approximate
observable, one needs a greater number of windows above the value of the true observable
constraint. One should always check that the highest window contributes minimally to
the result, i.e. less than the total statistical uncertainty after summing all windows.

Let us close with a comment on event weights. Within a given approximate observable
window, from one event to the next Eq. (4) will have been applied a different number of

8One way of understanding this is to think that one starts with a number of replicas of the shower
that will evolve in parallel. The number of replicas is equal to Cenh, and the enhancement of the emission
probability can be interpreted as being equivalent to the total probability of emissions occurring in any of
the replicas. Concentrating specifically on emissions with Oapprox,i > O+, the first time any of the replicas
generates an emission with Oapprox,i > O+, that replica is simply discarded, leaving Cenh − 1 replicas.
The factor Cenh−1

Cenh
in Eq. (4) is simply the ratio of surviving to original replicas. As the shower continues,

the remaining weight Cenh−1
Cenh

is then shared back out across Cenh replicas again, and so the procedure
continues.
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times, reflecting the number of emission that have been discarded in that event. There
will therefore be a spread of event weights. The width of the event weight distribution
gets smaller as Cenh is made larger, but there is an associated slow-down of the showering,
because of the increased emission probability. The optimal choice for Cenh involves some
balance between these two aspects. In practice we use Cenh = 20 for showers with βps = 0,
and Cenh = 100 for showers with βps = 0.5.

In its current form, the code (analyses/nll-validation/shower-global-obs.cc)
performs separate runs for each of several windows and the python script that manages
the calculations (run-nll-tests.py) adds the results together. A command line that sets
up the use of the above algorithm is, for instance

build-double/shower-global-obs -Q 1.0 -no-spin-corr -nloops 2 -alphas 0.008 \

-shower panglobal -beta 0.0 -colour NODS \

-lambda-obs -0.5 -beta-obs 0.5 -lnkt-cutoff -77.5 \

-strategy RouletteEnhanced -enhancement-factor 20.0 \

-ln-obs-buffer 3.5 -nln-obs-div 7 -veto-buffer -15.0 \

-use-diffs -rseq 11 -nev 70000 \

-out nll-tests-tmp/panglobal00-fapx0.5-lambda0.5-as0.008-NODS-rseq11.dat

The second and third lines set up a shower and an observable class with different βps
and βobs values. The fourth line sets up the strategy described above and the associated
value of the enhancement factor, corresponding to Cenh. The fifth line indicates that 7
approximate observable windows are explored, extending to e3.5 times above the target
value of the observable. The code performs runs in each of the 7 separate approximate-
observable windows, producing one output file for each (Fig. 4 corresponds to a single
window). The -veto-buffer -15 argument on the fifth line sets the size of the dynamic
veto and cutoff, as explained for βps 6= βobs at the end of section 3.1.1. If a user wishes to
explore new observables or new showers, they are strongly advised to manually verify that
the contribution to the cross section from the highest window is sufficiently suppressed
relative to the total result. This can be done by examining the output files from the above
command, there being one file per observable window.

3.2 Single-logarithmic observables, e.g. non-global logarithms

An example of a single-logarithmic test, such as the transverse energy flow in a rapidity
slice in e+e− → qq̄ collisions, can be performed with the example-nonglobal-nll-ee.py

script in the shower-code/ directory. This will execute the following command

build-doubleexp/example-nonglobal-nll-ee -Q 1.0 -shower panglobal -beta 0.0 \

-nloops 2 -colour CATwoCF \

-slice-maxrap 1.0 -lambda-obs-min -0.5 \

-alphas 1e-09 -lnkt-cutoff -501000000.0 -ln-obs-margin -11 \

-strategy CentralRap -half-central-rap-window 10 \

-spin-corr off -nev 10000 -rseq 11 \

-out example-results/lambda-0.5-alphas1e-09-rseq11.res

The second line indicates that a 2-loop running coupling is to be used and that the colour
scheme is a large-Nc scheme in which CA = 2CF = 8/3.9 The third line indicates the size

9Recall that the PanScales showers are logarithmically accurate for non-global logarithms only in the
large-Nc limit, though the subleading-colour schemes [2] are numerically close to the full-colour results
[46,47]. The schemes of Ref. [2] can be obtained by replacing CATwoCF with NODS or Segment. The leading-
colour test can also be performed with CF = 1

2
CA = 3

2
, using the option CFHalfCA. When running with

small but finite values of αs, one advantage of CA = 2CF = 8/3 over CF = 1
2
CA = 3

2
is that the former

has a greater cancellation between the CA and nf terms in the running-coupling β-function, which ensures
that the Landau pole is further in the infrared for any given value of αs.
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of the rapidity slice in which the in-slice energy flow Et will be measured, and sets the
minimum value of λ = αs lnEt/Q = −0.5.

The fourth line indicates that we run at an infinitesimal value of the coupling, αs(Q) =
10−9 (still working in units of

√
s ≡ Q = 1), with a sufficiently small kt cutoff, e−501000000,

so as to cover the region down to λ = −0.5. The point of using such a small value of
αs is to avoid a substantial extrapolation to αs = 0, alleviating the need for runs at
multiple values of αs. It is physically possible to use such an infinitesimal value because
the observable Σ(λ,αs) is independent of αs for αs → 0. This is in contrast with the case
of global event shapes where ln Σ(λ,αs) ∼ λ/αs. The huge range of orders of magnitude
of momenta requires the use of the doubleexp type.

As with the case of global event-shape tests, a straightforward run with the above
parameters would give multiplicities that are much too high to be managed (in fact, the
situation is even worse, because of the much smaller value of αs). The mitigation procedure
is different in this case: the combination of arguments on the fifth line causes the shower to
only generate emissions within a window where the absolute rapidity is less than 11 (with
respect to the emitter or spectator). For showers that satisfy the PanScales conditions,
as long as λ is not too large and the window is large enough, the results should be (and
are) independent of the window size. Corresponding arguments also exist for an analogous
modification of the shower to generate only hard-collinear emissions, as is relevant for many
spin-correlation, fragmentation function and PDF evolution tests.

Note that for verifying next-to-single-logarithmic accuracy [12, 13, 48] for non-global
logarithms [9] it is necessary to enable the double-soft matrix element corrections and
associated virtual corrections (with the -double-soft command-line argument, available
only for the PanGlobal showers with β = 0 and β = 0.5, for e+e− collisions). One also has
to modify the above command line to run at multiple small but finite values of αs, so as to
be able to determine the first derivative of Σ(λ,αs) with respect to αs in the αs → 0 limit.
Doing so accurately requires considerable computer resources. Users who wish to explore
this are advised, in a first instance, to run with the -split-dipole-frame option for the
PanGlobal showers with βps = 0, which is the most computationally efficient setup.

4 Implementing a new shower

The PanScales framework allows for relatively straightforward addition of new dipole and
antenna showers with alternative kinematic maps or ordering variables. This allows the
user to leverage the existing code for colour and spin handling, as well as the infrastructure
for logarithmic accuracy tests and the interface to Pythia8.3. As an example, our own
toy implementation of the Pythia8.3 final-state shower involves about 250 lines of header
(ShowerToyPythia8.hh), most of which are boilerplate code, and a further 250 lines in
ShowerToyPythia8.cc, more than half of which are comments or blank lines. For a slightly
more elaborate example that handles also initial-state radiation, the user may wish to look
at the ShowerDipoleKt class.

Here we outline some of the aspects that a user should keep in mind in implementing
their own new shower. Firstly, the code is in the panscales namespace. Inspecting the
code, the user will see that rather than double, many variables are in precision type:
this corresponds to the precision that was chosen in the build step. Generically, double is
used for logarithmic variables and acceptance probabilities, while precision type is to be
used for (non-logarithmic) kinematic variables and associated matrix-element calculations,
where rounding errors and large exponents may be encountered.

Much of the core work of showering is carried out by the ShowerRunner class, which
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is essentially agnostic as to the specific details of any given shower. The basic work
flow of ShowerRunner is depicted in Fig. 5. The ShowerRunner class is constructed by
passing a pointer to any class that derives from ShowerBase, whose role is to handle a
small, well-defined set of shower-specific tasks, such as providing the acceptance proba-
bility and implementing the shower’s kinematic map. The functions that the user should
provide to the shower are also shown in Fig. 5. For concreteness, with this distribution,
we have supplied two files, ShowerUserDefined.hh and ShowerUserDefined.cc, derived
from ShowerBase, which one can modify. The functions that need to be touched are
marked with “USER-TODO” in the code. The user-defined shower can then be run with
the -shower user-defined command line argument. Note that the template is meant
for e+e− showers. For additional features like initial-state radiation, matching or the im-
plementation of double-soft currents, the reader should examine the structure of other
existing showers.

Choose lnv and element
Return lnb range

Choose lnb

Return lnkt for αs

αCMW
s (k2

t ) acceptance
Determine branching

weights
Decide whether to

branch, select channel

Generation phi and
spin acceptance
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Figure 5: Simplified structure of a single trial for an emission in the shower. Steps
on the left are performed by the centralised ShowerRunner class. Shower-specific
steps, shown on the right, are the responsibility of the ShowerUserDefined im-
plementation, as well as its sub-classes. The EmissionInfo sub-class stores all
required information needed for the current branching, such as the splitting
variables and constructed kinematics. The emitting dipole is accessible in the
Element sub-class, which contains the majority of the shower-specific code. The
matching, implementation of the spin correlations throughout the event evolu-
tion, and the double-soft splitting functionalities are not illustrated here.

The class ShowerUserDefined implements:

• Member functions that provide textual descriptive information about the shower.

• Member functions that provide structural information about the shower, notably
whether the shower is a dipole shower (only the emitter splits), or an antenna shower
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(both the emitter and spectator can split) via the function only emitter splits(),
and n elements per dipoles() (two for a dipole shower, one for an antenna). For
showers with a global kinematic map, one where a dipole branching also impacts the
kinematics of particles not in the dipole, the function is global() should return
true (more on this later).

• Member functions to create the two sub-classes ShowerUserDefined::EmissionInfo,
and ShowerUserDefined::Element.

The two sub-classes encode the data associated with an emission and most of the imple-
mentation of the shower splitting:

• ShowerUserDefined::EmissionInfo derives from ShowerBase::EmissionInfo. A
pointer to its base class is used by ShowerRunner as the main structure to keep
track of the emission through the various steps of constructing that emission, and is
generally passed to all shower-specific functions. Much of the required functionality is
already present in the base class. Users may extend it to cache quantities computed
at specific steps of a single emission that is trialled, so as to not reproduce them
again at a later stage. An example would be the absolute kt of an emission, or
the longitudinal momentum fraction z, which might first be calculated in the early
stages of Fig. 5 and then used later when generating the new dipole kinematics.

• ShowerUserDefined::Element derives from ShowerBase::Element. It is responsi-
ble for carrying out almost all of the shower-specific work. In case of multiple types
of elements (i.e. II, IF and FF dipoles), one might choose to derive distinct element
classes for each, typically each from an intermediate ShowerUserDefined::Element

base class (see e.g. ShowerDipoleKt).

Let us focus here on the Element class. For a dipole shower, where each dipole end is
associated with a distinct kinematic map, there will be two Elements per dipole, one for
each end. For an antenna shower, there will be just one Element per dipole. The branching
kinematics are governed by three variables:

• ln v, the logarithm of the (dimensionful) ordering variable.

• ln b, a logarithmic variable for the longitudinal degree of freedom of the emission. In
the soft-collinear region of a back-to-back dipole it might, for example, map directly
to a rapidity, or to ln z where z is the radiated particle’s momentum fraction.

• φ, the azimuthal angle for the emission.

The main non-trivial member functions that need to be implemented are the following:

• lnb extent const() and lnb extent lnv coeff(): for any given ln v, ShowerRunner
will take the ln b generation range to be taken equal to

lnb extent const() + ln v × lnb extent lnv coeff() (5)

where typically the first term would be a function of the dipole kinematics (as en-
coded in the corresponding Element) and the second term would not. The use of a
simple analytic form for the extent facilitates the generation of the ln v distribution.

• lnb generation range(lnv): for a given value of the evolution scale lnv, returns
a Range object containing the limits of ln b generation. The difference between the
upper and lower limits should coincide with the extent expected from the previous
bullet point. Not all ln b values in the range need be kinematically valid.
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• lnv lnb max density(): returns the maximal emission density (for a dln v dln b dφ2π
measure). Typically this would be the soft-collinear limit of the emission density

dP

dln v dln b dφ/2π
=
CAα

max
s

π
(6)

where αmax
s is the maximal value that the strong coupling can take.10

• lnkt approx(lnv,lnb): returns the logarithm of the transverse momentum of an
emitted parton with that ln v, ln b combination. The result should be exact in the
soft-collinear limit, but does not need to be exact in the soft large-angle or in the
hard-collinear limits. It is typically used for the evaluation of αs(kt), as well as for
some of the dynamic emission vetoing used for logarithmic accuracy tests.

• eta approx(lnv,lnb): similar, but returns the rapidity of the emitted parton in the
soft-collinear limit, used in the computation of colour transition points and dynamic
emission vetoing.

• acceptance probability(emission info): sets information subsequently used by
ShowerRunner in order to calculate the probability that the dipole splits. It makes
use of the generation variables lnv and lnb, as cached in emission info. Specifically
it sets the following member variables in emission info:

– emitter weight rad gluon : weight for the emitter to radiate a gluon;

– emitter weight rad quark : weight for the emitter to radiate a (anti-)quark;

– spectator weight rad gluon : weight for the spectator to radiate a gluon;

– spectator weight rad quark : weight for the spectator to radiate a (anti-)quark.

The weights to radiate a gluon/quark depend on the splitting functions. Only
for an antenna shower will the spectator weights be non-zero. They are to in-
clude a factor of the maximal allowed value of the strong coupling αmax

s , with
the ShowerRunner class then accounting for an αs(kt)/α

max
s factor. In initial-state

branchings, ShowerRunner also accounts for an appropriate PDF ratio factor. The
user may choose to use the splitting functions implemented in QCD.hh. This can
be done by calling fill dglap splitting weights, which needs the longitudinal
radiated momentum fraction z (where z → 0 indicates the soft limit). In addition,
when using spin correlations, the user should set

– z radiation wrt emitter : collinear momentum fraction with respect to the
emitter;

– z radiation wrt spectator: collinear momentum fraction with respect to the
spectator.

The acceptance probability(...) function returns a bool, where false indicates
that the generation variables are definitely outside the kinematic limit. For most
showers, if it returns true then the generation variables would normally be inside
the kinematic limit. The emitter and spectator splitting probabilities are then used
later in ShowerRunner to accept/reject a splitting, and choose the splitting channel.

10All current shower implementations have a private member pointer Element:: shower, and the base
shower class has a max alphas() member, as well as a qcd() member that supply access respectively
to αmax

s and QCD constants. Together these provide the information needed to calculate the maximum
density.
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• do kinematics(emission info, rp): constructs the post-branching momenta of
the emitter, the spectator and the newly radiated particle. For this, one may again
use the cached generation variables lnv, lnb and phi, alongside any other quan-
tity that the user stored in emission info. The post-branching momenta should
be stored in emission info under the names emitter out, spectator out and
radiation. This function returns a bool, where true indicates that the gen-
eration variables were inside the physical kinematic limit.11 Note that the pre-
branching emitter and spectator momenta should be taken from a variable rp of
type RotatedPieces. This class is part of the framework for handling directional
differences. It provides a rotated version of the dipole with one or other of its
particles aligned along the z axis, which allows the user to retain high precision
in the branching kinematics (specifically, small components along the x or y axis)
without explicit knowledge of the underlying direction-difference structures. The
direction-difference infrastructure then takes care of deducing the correct momenta
and direction differences in the original frame.

• update event(...): In the Element base class, the update event(...) mem-
ber function takes care of replacing the pre-branching emitter and spectator par-
ticles with the post-branching ones, adds the radiated particle to the event, and
takes care of some of the bookkeeping associated with colour handling. However,
other particles in the event are by default not modified. Therefore, for showers
with a global kinematic map, this function needs to implement additional opera-
tions on the rest of the event (e.g. a boost or rescaling). These would typically be
preceded by an explicit call to ShowerBase::Element::update event(...). The
event is then further processed by ShowerRunner, updating the event dipoles, colour
and spin-density structure in addition to any caching associated with the event
generation. Note that cached information associated with dipoles other than the
newly-created dipole and the splitting dipole are by default not updated, unless the
ShowerUserDefined::is global() function returns true.

Once implemented, the new shower can be run by using the flag -shower user-defined.
If the user would like their shower to work with direction differences, they should

inspect how this is implemented in existing showers. Aside from the RotatedPieces

discussion above, calculations of dot products in determining dipole invariants should make
explicit use of knowledge of direction differences (available from the dirdiff 3 minus 3bar

member variable of element.dipole()), and do kinematics(...) should use 3-vectors
in its internal calculations to avoid triggering off-mass-shell errors. Furthermore if the
shower carries out any global boosts, these need to be performed in a way that correctly
boosts also the full set of dipole direction differences. The user is invited to inspect the
code of existing showers for further details.

It is important also to test the correctness of the direction-differences implementation.
Typically we do this by first running a double-precision build with a physically sensible
range and verifying that results are identical with/without the -use-diffs argument.
Then we create a build in the doubleexp type, running with -use-diffs and a logarithmic

11It is possible for the acceptance probability(...) function to return true even outside the kinematic
limits. In this case there are two possible avenues for imposing the kinematic limit. One is for the shower’s
Element class to overload the base-class member function check after acceptance probability(...),
which gets called after αs and PDF factors have been incorporated into the branching probabilities and
those have been used to decide to continue with the emission generation. It is called before φ and the
splitting channel are known. Alternatively do kinematics(...) is called with knowledge of the φ value
and channel, and can return false if the emission is outside the kinematics. The former is the only route
that is currently valid in order for spin correlations to be correctly accounted for.
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range of about 1000 (and correspondingly low αs, so that the multiplicity stays of the
order of 10−100) and compare the output to a build with the much slower mpfr4096 type,
running without -use-diffs. Again the results should be identical, though typically a
few iterations are likely to be necessary to identify all sources of potential loss of precision.
A final comment is that, by default, the logarithmic-accuracy tests of section 2.3 run in
double precision, with a ln v range reaching about 300. However, for this to work, the
shower should not ever do more than take the square of a momentum, otherwise the result
will exceed the exponent that can be represented in double precision. If this is a problem,
the user should modify a configuration flag in example-global-nll-ee.py so as to use
doubleexp (which is somewhat slower).

5 Conclusions

This 0.1 series release of the PanScales code allows users to start exploring its features
and techniques, notably for tests of logarithmic accuracy of parton showers. It also demon-
strates an early version of the interface to Pythia8.3. While we do not yet recommend
its use for phenomenological applications, we hope that this early release of the code will
provide a foundation for exploring connections with other projects, so as to enable the
wide ecosystem of collider physics tools to benefit from the validated logarithmic accuracy
of the PanScales showers.
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A Event record

A.1 Basic event information

Here we give an example event record, printed by default for the first event of any run
(the first N events can be printed with the command-line option -max-print N).
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iev = 0

Event weight = 1

Base (unshowered) event:

Q = 0 0 0 91.1876 pt = 0 y = 0 phi= 0 m2 = 8315.18

0 0 0 -45.5938 45.5938 pt = 0 y = -100000 phi= 0 m2 = 0 ID= -1 IS=1 HS=0 DIS=0

1 0 0 45.5938 45.5938 pt = 0 y = 100000 phi= 0 m2 = 0 ID= 1 IS=2 HS=0 DIS=0

2 0 0 0 91.1876 pt = 0 y = 0 phi= 0 m2 = 8315.18 ID= 23 IS=0 HS=1 DIS=0

Showered event:

Q = 0 0 0 91.1876 pt = 0 y = 0 phi= 0 m2 = 8315.18

0 0 0 -570.915 570.915 pt = 0 y = -100000 phi= 0 m2 = 0 ID= 21 IS=1 HS=0 DIS=0

1 0 0 520.429 520.429 pt = 0 y = 100000 phi= 0 m2 = 0 ID= 21 IS=2 HS=0 DIS=0

2 3.11993 3.07746 0 91.2928 pt = 4.38232 y = 0 phi= 0.778545 m2 = 8315.18 ID= 23 IS=0 HS=1 DIS=0

3 -2.47555 0.733957 -132.101 132.126 pt = 2.58206 y = -4.62822 phi= 2.85337 m2 = 0 ID= 1 IS=0 HS=0 DIS=0

4 0.176626 -1.17714 8.23204 8.31765 pt = 1.19031 y = 2.63215 phi= 4.86132 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

5 0.225872 -0.693864 -10.6021 10.6272 pt = 0.729702 y = -3.3705 phi= 5.0271 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

6 0.806285 0.0490162 3.51406 3.6057 pt = 0.807773 y = 2.17635 phi= 0.060718 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

7 -1.50297 0.278166 -110.974 110.985 pt = 1.5285 y = -4.97821 phi= 2.95859 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

8 0.334135 -0.240379 -35.8056 35.8079 pt = 0.411616 y = -5.15895 phi= 5.65955 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

9 0.284056 0.202652 87.4383 87.439 pt = 0.348935 y = 6.21695 phi= 0.619678 m2 = 0 ID= -1 IS=0 HS=0 DIS=0

10 0.0393766 -0.98628 -55.6666 55.6753 pt = 0.987066 y = -4.72562 phi= 4.75229 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

11 0.548843 -0.631906 1.05701 1.34826 pt = 0.836979 y = 1.05562 phi= 5.42756 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

12 0.547439 -0.663149 -4.74753 4.82478 pt = 0.859916 y = -2.40979 phi= 5.4025 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

13 0.803506 -0.0658898 374.22 374.22 pt = 0.806203 y = 6.83341 phi= 6.20137 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

14 -2.90755 0.117353 -175.05 175.074 pt = 2.90992 y = -4.79016 phi= 3.10125 m2 = 0 ID= 21 IS=0 HS=0 DIS=0

The printout includes the hard event before showering, and the final fully showered event.
The ID corresponds to PDG code for the particle, a non-zero value of IS indicates that the
particle is in the initial state and HS is non-zero for particles that are considered to be part
of the hard system (here, particle 2, which is the Z boson). The DIS variable is relevant
only to DIS and VBF processes and in particular for the latter it indicates which of the
two sides of the VBF process a given particle is associated with. From the point of view
of an analysis, all particles with IS equal to zero are valid final-state particles. Within
an analysis, the particles are available through f event.particles(), which returns a
vector of Particle objects. That same f event object also can be used to access the
event dipoles.

A.2 Access to step-by-step event information

As discussed in Section 2.2, by default PanScales does not store the event structure sepa-
rately after each branching. However it is possible to ask for the corresponding information
to be stored. This is achieved by calling f shower runner.set step by step event caching(true)

in the user startup phase of an analysis. Once this is done, after each event the user
can access f shower runner->cached step by step event() which has various enquiry
functions, for example for retrieving the branching variables or the event at any given step
of the shower. Note that this interface may still evolve.

For debugging purposes, there is also a compile-time option (-DPSVERBOSE=on) that
can be passed to cmake. When enabled, running a shower provides very extensive output
as to the shower’s individual steps.

A final feature to be aware of is that in most cases the order of emissions is preserved
in the event record, so the last particle in the event record corresponds to the last emission
made by the shower. However, if running with double-soft corrections there is an internal
“swap” procedure [9] that exchanges partons. In this case, the order of partons does not
always correspond to the order of generation.
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[30] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann, Mpfr: A multiple-
precision binary floating-point library with correct rounding, ACM Trans. Math.
Softw. 33(2), 13–es (2007), doi:10.1145/1236463.1236468.

[31] Y. Hida, X. S. Li and D. H. Bailey, Quad-double arithmetic: Algorithms, imple-
mentation, and application, In 15th IEEE Symposium on Computer Arithmetic, pp.
155–162 (2000).

[32] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C72,
1896 (2012), doi:10.1140/epjc/s10052-012-1896-2, 1111.6097.

[33] G. P. Salam and J. Rojo, A Higher Order Perturbative Parton Evo-
lution Toolkit (HOPPET), Comput. Phys. Commun. 180, 120 (2009),
doi:10.1016/j.cpc.2008.08.010, 0804.3755.

[34] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht,
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