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Abstract

Beyond their origin in modeling many-body quantum systems, tensor networks have emerged
as a promising class of models for solving machine learning problems, notably in unsu-
pervised generative learning. While possessing many desirable features arising from their
quantum-inspired nature, tensor network generative models have previously been largely
restricted to binary or categorical data, limiting their utility in real-world modeling prob-
lems. We overcome this by introducing a new family of tensor network generative models
for continuous data, which are capable of learning from distributions containing continu-
ous random variables. We develop our method in the setting of matrix product states, first
deriving a universal expressivity theorem proving the ability of this model family to ap-
proximate any reasonably smooth probability density function with arbitrary precision. We
then benchmark the performance of this model on several synthetic and real-world datasets,
finding that the model learns and generalizes well on distributions of continuous and dis-
crete variables. We develop methods for modeling different data domains, and introduce
a trainable compression layer which is found to increase model performance given limited
memory or computational resources. Overall, our methods give important theoretical and
empirical evidence of the efficacy of quantum-inspired methods for the rapidly growing field
of generative learning.
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1 Introduction40

Although originally developed for the needs of quantum many-body physics [1–4], tensor net-41

works (TNs) have rapidly expanded to a host of other areas, where their ability to model correla-42

tions and reveal hidden structures within spaces of exponentially large dimension have made them43

an invaluable tool in such domains as quantum computing [5–7], applied mathematics [8–10], and44

machine learning (ML) [11–14]. In this last setting, TN models are taken as parameterized models45
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Figure 1: Continuous-valued tensor network. The feature layer (magenta) is a tensor
product of feature map operators ζ defined on each site, with the thicker purple edges
denoting indices associated to continuous values. The feature layer is connected to the
site indices of a discrete-valued tensor network (blue). The specific network above de-
fines a function Φ(x), where x = (x1, x2, . . . , x20).

for approximating functions which solve real-world tasks, where TN optimization methods such as46

the density matrix renormalization group (DMRG) [15] can be repurposed to formulate quantum-47

inspired approaches to learning the structure of naturally occurring data. This approach has opened48

up a string of theoretical and empirical successes, from theoretical results in previously intractable49

problems in learning theory [16,17], to practical high-performance compression methods for large50

ML models [18,19], to empirical successes across such tasks as image classification [11,20], miss-51

ing data imputation [21, 22], and unsupervised probabilistic modeling [12, 23–26].52

Generative modeling, where a parameterized model is trained to draw from an unknown prob-53

ability distribution based on a dataset of previous samples, represents a particularly promising area54

for the use of TN models in ML [12, 23–26]. Beyond the significant intrinsic value of generative55

modeling for everyday applications (as evidenced by the recent explosion of popular interest in56

generative AI), TN models using the Born machine (BM) formalism [12, 27] present several dis-57

tinctive benefits within this domain that remain elusive with other classical methods. Some of58

these benefits arise from the use of tools from entanglement theory, with examples including pow-59

erful architecture design methods [28, 29] and rigorous expressivity relationships [30, 31], while60

other benefits, such as perfect sampling [32] (and variable-length generalizations [24]), follow61

from the distinctive mathematical composition of TN models.62

TN generative models are not without their limitations however, the most significant of which63

is their near-exclusive application to distributions of discrete random variables. This restriction64

can be best understood within the BM formalism, which is often thought by physicists as de-65

scribing many-body wavefunctions. In this context, a TN model can be viewed as a “synthetic”66

many-body wavefunction, with the number of possible values of each random variable setting the67

dimension of the associated local spin. Because the BM formalism is primarily used in many-body68

quantum physics, where a TN describes a discrete “orbital” or site space, it seems natural from69

that standpoint to use them exclusively for discrete variables. Continuous random variables would70

necessitate infinite-dimensional local spins, which have received less attention in the many-body71

TN community. This restriction to discrete random variables severely limits the applicability of72

TN models in real-world generative modeling, where the majority of problems involve data with73

continuous features.74

In this paper, we present a framework for employing TNs in generative modeling problems75

involving continuous variables. We make use of vector-valued feature maps as a means of map-76
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ping from the infinite-dimensional space associated with each continuous variable to a finite-77

dimensional feature space associated with each core of a TN. Using the matrix product state (MPS)78

ansatz for concreteness, we show how restricting these feature maps to be isometries permits an79

extension of the standard MPS canonical form to the continuous-valued setting, which in turn al-80

lows the use of DMRG update and sweep schemes and perfect sampling algorithms within this81

new setting. We find that the choice of feature maps and the dimension of the associated feature82

spaces have a large impact on the behavior of the associated generative model, and develop analyt-83

ical methods to identify suitable choices of these parameters for different input datasets. Despite84

the simplicity of this continuous-valued MPS model, which contains the same variational param-85

eters as a standard MPS, we nonetheless prove a universal approximation theorem demonstrating86

that it can approximate any sufficiently smooth probability density function to arbitrary precision,87

given sufficiently large bond dimensions and feature dimensions. On top of this basic model, we88

develop a novel compression layer that permits the feature map itself to be learned from data,89

which we show gives significant improvements in the performance of the model for a given num-90

ber of variational parameters. These methods are empirically evaluated on various synthetic and91

real datasets containing combinations of discrete and continuous variables, where they are found92

to reliably capture the features of the dataset in each case.93

2 Background94

Before discussing the continuous case, we first give a brief overview of TNs and BM models in95

the setting of probability distributions over discrete variables. For a more detailed introduction to96

TNs and BMs, we refer the interested reader to [4, 12].97

2.1 Tensor Networks98

Tensor networks (TNs) are a general mathematical formalism for representing large multidimen-99

sional arrays as the contraction of smaller tensor cores. The collection of the model’s tensor100

cores comprise the parameters of the model, whose elements can be varied to achieve high per-101

formance in optimization or learning tasks. Because much of the historical development of TNs102

took place in the setting of condensed matter physics, the multidimensional arrays in question103

are often thought of by physicists as describing many-body wavefunctions, with the indices of104

these arrays corresponding to individual spins (e.g. bosons, fermions, or qubits). In machine105

learning settings though, the tensors in question will describe multivariate functions to be learned106

from data, in which case the indices will correspond to individual variables, such as those of a107

multivariate probability distribution. Other use cases of TNs for ML can be found in supervised108

learning [11, 33], tensor regression [34, 35], and combinatorial optimization [36, 37].109

Typical TN models, including all those considered here, use N separate tensor cores {A(i)}N
i=1

110

to encode an Nth order tensor ψ ∈ Kd1×d2×···×dN , where K refers to either the real or complex111

numbers. Each core of the TN contains one site index of dimension di , with the other bond112

indices of A(i) being associated to edges of a graph describing the network of tensor contractions113

connecting the cores of the TN. Different graphs define different TN models, and the graphical114

structure associated to a TN constrains the correlations achievable between different regions of115

the model via area laws [3, 38]. For a given TN structure, the dimensions of the hidden indices116

are hyperparameters known as the bond dimensions of the model, which determine a trade-off117

between the expressivity of the model (i.e. the range of tensors which can be represented), and the118

computational cost of its operation.119

Our work utilizes the matrix product state (MPS) model, which is defined by a 1D line graph120

connecting adjacent sites. The bond dimensions of an MPS can in principle vary for each bond121
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connecting adjacent sites, but here will be assumed to be some constant value χ ≥ 1. In this case,122

the tensorψ encoded by the N cores of an MPS is defined by the relation123

ψs = A(1)[i1]A
(2)[i2] · · ·A(N)[iN] (1)

where s = (i1, i2, · · · , iN) is the joint value of all site indices of the tensor, and the RHS of Eq. 1124

describes the multiplication of a χ-dimensional row vector A(1)[i1], N−2 different χ×χ matrices125

A(2)[i2] · · ·A(N−1)[iN−1], and a χ-dimensional column vector A(N)[iN]. This MPS can therefore126

be completely described by 2 matrices of dimension χ × d1 and χ × dN , along with N − 2 third-127

order tensors of shape {χ × χ × di}N−1
i=2

.128

There are typically two different optimization and update strategies. One approach involves129

updating all tensors incrementally using gradient-based algorithms, as is commonly employed to130

train neural networks in machine learning settings. The other approach targets one site or two131

adjacent sites, optimizing them fully before moving to the next target. This method involves inter-132

actively sweeping and targeting tensors from left to right and then right to left, inspired by DMRG133

sweeps used in calculating ground states. At each step for a given target, we use gradient descent134

methods to update the bond tensors until convergence, thereby avoiding the frequent recalculation135

of environment tensor contractions.136

Similar to DMRG schemes, we can target one or two adjacent sites for optimization. In the137

one-site update approach, the bond dimension is fixed and predetermined. For the two-site update,138

the two tensors are contracted to form a bond tensor, which is then optimized via gradient-based139

methods until convergence. The bond tensor can then be factorized back into two adjacent tensors,140

with the dimension of the newly factorized bond dynamically adjusted based on the singular value141

spectra occurring in the decomposition. We will refer to this approach as the DMRG two-site142

scheme in the following discussion. However, unlike traditional DMRG methods for ground state143

problems, this approach will not involve solving an eigenvalue problem.144

2.2 Discrete-valued Born Machines145

While TNs such as MPS allow the description of arbitrary tensorsψ, in the context of probabilistic146

modeling we would like our models to describe probability distributions, whose entries are non-147

negative and sum to 1. The Born machine (BM) model represents a natural way of doing so,148

which also permits the use of concepts from quantum information within the setting of classical149

probabilistic modeling. A BM is parameterized by a TN describing a “synthetic wavefunction”150

ψ over the values s = (i1, i2, · · · , iN) of the N discrete random variables, where the elements ψs151

of ψ can either be real or complex. In either case, the probability distribution defined by the TN152

parameterization ofψ is taken to be that given by the Born rule of quantum mechanics, namely153

P(s) =
1

Z
|ψs|2 , (2)

where the partition function Z is defined by154

Z =
∑

s

|ψs|2 . (3)

Eqs. 2 and 3 guarantee that P(s) ≥ 0 for all s, and that
∑

s P(s) = 1, thus ensuring a valid155

probability distribution. Although the naive summation in Eq. 3 is exponential in the number156

of variables N , for BMs defined over MPS this can be carried out in time O(Ndχ3), where157

d = maxi di . Alternately, TN canonical forms can be used to constrain the tensor cores of the158

MPS to always satisfy Z = 1, in which case the evaluation of probabilities in Eq. 2 only has cost159

O(Nχ2).160

BMs are often used in the context of density estimation, where the goal is to learn a probability161

distribution P which approximates a target distribution Q using a finite data set D = {s( j)}T
j=1

162
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of T samples from Q. A conventional approach for optimizing the TN cores of the BM is by163

minimizing the Kullback-Liebler (KL) divergence KL(Q, P) =
∑

s Q(s) log (Q(s)/P(s)) between164

P and Q, which is equivalent to minimizing the cross-entropy loss165

L(Q, P) = −
∑

s

Q(s) log(P(s)) ≈
1

T

∑

s∈D
− log(P(s)). (4)

Although the first summation in Eq. 4 ranges over all possible values of s, leading to an exponential166

cost with increasing number of variables N , the second summation only depends on the size of the167

dataset D, and can therefore be used to efficiently train the model to minimize Eq. 4. In this form,168

we will refer to the finite sum on the right of Eq. 4 as the negative log likelihood (NLL) loss of the169

model on the dataset D. We note that the same functional definitions as above will be used later for170

defining the KL divergence and NLL loss for probability density functions of continuous random171

variables x. While the NLL loss is always non-negative for discrete-valued probabilistic models,172

in the continuous-valued case it is possible for this quantity to become negative for a sufficiently173

peaked density P.174

While BMs are trained in a similar manner to other classical probabilistic models, they possess175

several distinct advantages. Besides being efficient models for density estimation, BMs are also176

generative models whose underlying TN factorization allows efficient sampling from the exact177

distribution P, without the need for Monte Carlo or other approximate sampling methods. The178

existence of such perfect sampling [32] methods is closely linked to the efficient TN computation179

of the partition function Z in Eq. 3, and extends to any BM whose underlying TN has an acyclic180

graph structure [27]. Furthermore, the interpretation of samples from P as outcomes of a projective181

measurement on the underlying wavefunction ψ permits the application of tools from quantum182

information within the setting of classical probabilistic modeling, something which has been used183

as a powerful theoretical tool for characterizing the expressivity of different model families [30,184

31], as well as answering model design questions based solely on the underlying dataset D [29].185

2.3 Related Work186

The notion of feature functions has previously been used in tensor network models, primarily in187

the context of classification tasks [11, 13, 39], although also with some applications in function188

regression [40] and generative modeling [41]. As we discuss later, our interpretation of the fea-189

ture functions as isometric maps permits straightforward conditional generation and training of190

the continuous-valued BM model. Refs. [42, 43] look at the question of MPS approximations of191

continuous functions, but where increasingly fine discretizations of the function are approximated192

using discrete-valued MPS. Ref. [44] shows how to combine a similar style of discretization with193

certain analytically tractable feature functions. Ref. [45] presents a universal approximation result194

for functional tensor trains that we use as an important building block in the development of the195

universal approximation theorems of Sec. 5. Refs. [46, 47] present similar continuous generaliza-196

tions of tensor train (TT) models, but whose optimization is handled by very different algorithms.197

The work of [48] studies density modeling of continuous data (phrased in terms of TTs rather198

than MPS), with the “squared tensor train density estimation” variation of their model having199

many similarities to ours. The distinct origin and focus of the TT and MPS communities lead200

to several important differences between the model of [48] and the one introduced here. While201

the model of [48] is similarly capable of perfect conditional and unconditional sampling, this202

requires the computation of explicit marginals that are trivial in our case owing to the use of an203

MPS canonical form. This use of canonical forms also allows us to optimize the model using204

a DMRG update and sweep approach, in contrast to updating all tensors simultaneously by the205

gradient-based optimization used in [48]. Our compression layer architecture is novel, as are the206

universal approximation results Theorems 2 and 3 proving that continuous-valued MPS permit the207

approximation of any (sufficiently smooth) wave function or probability density function.208
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Figure 2: Continuous-valued MPS. (a) For the feature layer, the input at each site x ∈ R
is a continuous variable, after mapping, it outputs a discrete vector of feature dimension
D, which is directly connected to the tensor network layer (blue). χ and D are hyper
parameters controlling the dimensions of different bonds. (b) Graphical depiction of the
continuous-valued function Φ defined in Eq. 6.

Our notion of “continuous-valued MPS” should not be confused with the continuous matrix209

product states introduced in [49]. These models utilize a continuous spatial dimension, and can be210

thought of as the limit of an infinite number of site indices, but with the site dimensions remaining211

constant and discrete. This type of model has applications in quantum field theory, and is not of212

interest in this context. The setting we consider here uses a fixed number of indices, but with each213

index varying over a continuous domain.214

3 Continuous-valued Born Machine Model215

Despite the desirable properties of standard BMs, one obvious limitation is their restriction to216

modeling discrete-valued probability distributions. While this is rarely an issue in the setting of217

many-body physics, within classical machine learning such a restriction is extremely limiting, as218

most datasets used in unsupervised learning contain continuous features described by a probability219

density function (PDF).220

To remedy this limitation, we show here how discrete-valued Born machines can be naturally221

generalized to the setting of probability distributions over any combination of discrete and contin-222

uous variables, as depicted in Fig. 2. This generalization is made possible by the use of feature223

maps which convert points in the continuous domain into finite-dimensional vectors which can224

be contracted with the underlying discrete-valued TN. We show in detail how this generaliza-225

tion preserves all of the convenient properties and standard algorithms for BMs, including perfect226

sampling, density evaluation at specific points in the domain, and efficient computations of the par-227

tition functions and marginals. For convenience of presentation, in the following we assume the228

use of identical feature maps for all N sites of the MPS, which are assumed to possess a common229

feature dimension D, but the generalization to site-dependent feature functions is straightforward.230

3.1 Model231

At a high level, the continuous-valued BM introduced here uses a feature map ζ : I → KD
232

to convert variables x from a continuous domain I to real or complex D-dimensional vectors233

v = ζ(x ) ∈ KD . Once such a map has been defined for each site of a discrete-valued MPS, it can234
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Figure 3: Graphical formulation of the isometric condition on the feature map ζ, which
is equivalent to the orthonormality requirement on feature functions expressed in Eq. 6.

be used to convert the MPS into a function of N continuous variables.235

A more concrete manner of representing our mapping ζ comes from picking a basis of D236

feature functions F = { fi}Di=1
, with each fi : I → K equal to the projection of ζ onto one of the237

D vectors {ei}Di=1
forming an orthonormal basis for KD , so that fi(x ) = 〈ei ,ζ(x )〉. We require ζ238

to be an isometry, meaning that the feature functions satisfy the relations239

(ζζ†)i, j =
∫∞
−∞ f ∗

i
(x ) f j(x )dx = δi j , (5)

(ζ†ζ)x ,x ′ =
∑D

i=1 fi(x ) f ∗i (x
′) = Π(x , x ′),

whereΠ(x , x ′) is a kernel function satisfying
∫

x ′ Π(x , x ′)Π(x ′, x ′′)dx ′ = Π(x , x ′′) (see Fig. 3).240

This isometry requirement is invaluable for extending the convenient properties of discrete-valued241

MPS and BMs to the continuous-valued setting, and can be made without loss of generality, as242

any feature map can be converted into an isometric form (see Appendix A for details).243

Given a mapping ζ satisfying the above conditions, any tensorψ containing N discrete indices244

s = (i1, i2, . . . , iN) can be promoted into a continuous-valued function Φ of N continuous vari-245

ables x = (x1, x2, . . . , xN) by contracting each site index with the corresponding vector ζ(xk), as246

described by247

Φ(x) =
∑

i1,i2,...,iN

� N
∏

k=1

fik
(xk)

�

ψi1,i2,...,iN
. (6)

A graphical representation of Eq. 6 is shown in Fig. 2, where the tensor ψ is taken to be given by248

a discrete-valued MPS.249

Just as with discrete-valued BMs in Eq. 2, the continuous-valued BM PDF P is given by the250

elementwise norm squared of the underlying function Φ : Ω→ K,251

P(x) = |Φ(x)|2 . (7)

P(x) is clearly non-negative everywhere in its domain of definition Ω = IN and, owing to the252

isometry conditions of Eq. 6, is guaranteed to satisfy the normalization condition
∫

x∈Ω P(x)dx = 1253

whenever the underlying discrete-valued MPS ψ satisfies the condition
∑

i1,...,iN
|ψi1,...,iN

|2 = 1.254

For the case of an unnormalized MPS ψ, the normalization factor required to ensure the proper255

normalization of Φ is precisely the squared norm of ψ, which can be efficiently computed using256

standard MPS methods. In contrast to the discrete-valued case however, it is possible for the PDF257

P to take values P(x) > 1 at some points x ∈ Ω.258

The standard canonical form for discrete-valued MPS can be straightforwardly generalized259

(with the help of the isometric constraints of Eq. 6) to produce a notion of canonical form for260

continuous-valued MPS, as shown in Fig. 4. Just as with the usual MPS canonical form, this261

ensures the proper normalization of the BM distribution P throughout training, and simplifies the262

computation of gradients and other quantities which typically require O(χ3) time to compute.263
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Figure 4: Continuous-valued MPS canonical form. (a) The underlying discrete-valued
MPS is required to be in canonical form with an orthogonality center (green dot tensor).
When the feature maps additionally satisfy the orthonormality relations of Eq. 6, then
the continuous-valued MPS is said to be in continuous-valued MPS canonical form. (b-
c) Graphical proof that the left (right) tensors constitute isometries from the left (right)
bond spaces to the space of square-integrable functions acting on the left (right) set of
continuous variables.
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Figure 5: Tensor network diagrams depicting how calculating the probabilities of a
continuous-valued MPS BM can be considerably simplified. The MPS is taken to be
in canonical form, with the orthonormal center (green dot tensor) on the leftmost site.
(a) The marginal distribution P(x1, x2, x3) is given by integrating out the continuous
variables x4, x5, which is trivial when the MPS is in continuous-valued canonical form.
(b) The conditional probability P(x3|x1, x2) used in the sampling process, which is fa-
cilitated by the computation of a D × D conditional density matrix σ(3)(x1, x2).
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3.2 Sampling264

Continuous-valued MPS BMs share the same perfect sampling capabilities as their discrete-valued265

counterparts. Sampling proceeds site by site, with the continuous random variable at each site266

i conditioned on those produced at previous sites 1, 2, . . . , i − 1 via contraction of a sample-267

dependent vector on the bond dimensions adjacent to site i.268

For any site k, the conditional PDF of the random variable xk satisfies269

P(xk |x1, x2, . . . , xk−1) =
P(x1, x2, . . . , xk−1, xk)

P(x1, x2, . . . , xk−1)
, (8)

where the marginal PDFs are defined for any k as270

P(x1, x2, . . . , xk) (9)

=
∑

i1,...,ik
i′1,...,i′

k

� k
∏

ℓ=1

f ∗iℓ(xℓ)

�

ρi1,...,ik ,i′1,...,i′
k

� k
∏

ℓ=1

fi′
ℓ
(xℓ)

�

.

In the above, ρi1,i2,...,ik ,i′1,i′2,...,i′
k

represents the discrete reduced density matrix resulting from inte-271

grating over all remaining variables xk+1, . . . , xN . Although the summation involved in Eq. 9, as272

well as the integrations needed to compute the reduced density matrix, are prohibitively expensive273

to implement directly, Fig. 5 shows how the tensor network representation of P can be used to274

remedy this situation.275

When the underlying MPS is in canonical form, tracing out the rightmost variables xk+1, . . . , xN276

can be performed efficiently, and computing value of the conditional probability distribution277

P(xk |x1, x2, . . . , xk−1) can be accomplished with complexity O(D2χ2). This process is facil-278

itated by a D × D conditional density matrix σ(k)(x1, . . . , xk−1) associated to site k, shown in279

Fig. 5b. The conditional distribution in question is then given by280

P(xk |x1, . . . , xk−1) (10)

= Z−1
k

D
∑

ik ,i′
k
=1

f ∗ik
(x )σ(k)

ik i′
k

(x1, . . . , xk−1) fi′
k
(x ),

where the normalization constant Zk is chosen such that
∫

xk∈I
P(xk |x1, x2, . . . xk−1)dxk = 1.281

This in turn can be computed via numerical or closed-form integration over xk , to obtain a cumu-282

lative distribution function F(xk) =
∫

x ′≤xk
P(x ′)dx ′. This permits a random sample to be pro-283

duced using inverse transform sampling, by sampling a uniformly random z ∼ [0, 1] and then ap-284

plying the inverse of the cumulative distribution F to yield the random sample xk = F−1(z). Con-285

tinuing this process for k = 1, 2, . . . , N yields an exact sample from the BM PDF P(x1, x2, . . . , xN),286

with O
�

N(χ2D + χD2)
�

complexity.287

3.3 Training288

In the simplest formulation of a continuous-valued MPS, the feature functions F = { fi}Di=1
are289

chosen in advance and unchanged throughout training. Only the core tensors of the discrete-valued290

MPS representation ofψ are taken as tunable parameters, and are trained to minimize the model’s291

NLL on a dataset of unlabeled samples.292

Given a dataset with continuous data, each datum can be mapped to a tensor product of vectors293

associated with the corresponding features at each site. For a dataset D with N continuous features,294

10
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the j’th sample x( j) = (x ( j)1 , x ( j)2 , . . . , x ( j)N ) is mapped into295

ζ(x ( j)1 )⊗ ζ(x
( j)
2 )⊗ · · · ⊗ ζ(x

( j)
N ) =

N
⊗

k=1







f1(x
( j)
k
)

...
fD(x

( j)
k
)






, (11)

where ζ(x ( j)
k
) is the vector representation of the k’th feature of the j’th sample of D.296

Computing the NLL requires a summation over all data samples in D, in each of which the297

site indices of ψ are contracted with the feature vectors given in Eq. 11. The MPS can then be298

trained to learn this dataset by any conventional means, such as gradient descent on the NLL of the299

distribution, or an adapted version of DMRG [12]. In this latter method, the cores for a pair of sites300

(i, i+1) are trained by first contracting the tensorψ with the feature vectors at sites 1, 2, . . . , i−1301

and i +2, i +3, . . . ,n, then optimizing the remaining bond tensor to minimize the NLL according302

to the procedure described in [12].303

4 Feature Functions304

In a setting with discrete data, the possible values of the dataset’s categorical features determine305

the sizes of the site indices of the TN, so that a feature taking d possible values is always associated306

with a site dimension of d. In the continuous-valued setting however, the feature functions and307

feature dimension D represent new hyperparameters with a significant impact on the inductive308

bias and expressiveness of the model. The following are all feature maps we assess numerically309

in Sec. 7, which are natural choices for different types of continuous domains. We describe the310

component functions of each map, along with their behavior under isometrization (i.e. imposing311

the isometry conditions of Eq. 6).312

Fourier The complex exponentials ei2πkx for k = 0, 1, . . . restricted to the compact interval313

[0, 1], which already satisfy Eq. 6.314

Legendre Polynomials of degree k = 0, 1, . . . restricted to the compact interval [−1, 1]. Isometriza-315

tion leads these to be proportional to the Legendre polynomials.316

Laguerre Polynomials of degree k = 0, 1, . . . multiplied by the exponential e−x/2, and defined317

on the half interval {x ∈ R|x ≥ 0}. Isometrization leads these to be proportional to the318

Laguerre polynomials multiplied by e−x/2.319

Hermite Polynomials of degree k = 0, 1, . . . multiplied by the Gaussian e−x2/2, and defined on320

all ofR. Isometrization leads these to be proportional to the Hermite polynomials multiplied321

by e−x2/2.322

Beyond these particular cases, the framework we use permits many other possible feature323

maps, including the discretization of continuous variables into categorical ones by binning. Con-324

sider the D feature functions fk defined as325

fk(x ) =

¨

1, λk−1 ≤ x ≤ λk

0, otherwise.
(12)

These indicator functions serve as “one-hot” encodings of the categorical variable associated to326

the placement of x into one of D separate bins with bin edges λ0 < λ1 < · · · < λD , and satisfy327

Eq. 6 up to normalization.328

11
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Figure 6: (a-c): The expected univariate distribution Pinit when a D-dimensional feature
map is used. (a) Legendre polynomials, which converge to an arcsin distribution in the
limit of D → ∞. (b) Laguerre functions, for which E[x ] increases with increasing
D. (c) Hermite functions, which progressively broaden with increasing D. (d) The
expected distribution for Fourier functions is uniform for all D, but we instead illustrate
the univariate distributions associated with specific random MPS at two values of D, for
bond dimension χ = 5.

One important and obvious criterion when choosing a feature map is the domain of data be-329

ing studied. The Lagrange and Fourier feature maps can be used (with appropriate shifting and330

scaling) to describe data in any connected compact interval [a, b], with the latter also permitting331

features on a periodic domain (for example, angular data). The Laguerre feature map is suitable332

for data taking nonnegative real values without an obvious upper limit, while the Hermite feature333

map is suitable for data which can range over the whole real line.334

4.1 Priors from Feature Maps335

Beyond simply constraining the domain of input data, the choice of feature map for a given336

continuous-valued BM sets the inductive bias of the model in a manner which can be precisely337

quantified, in the form of univariate marginal distributions at initialization. A common initializa-338

tion method for MPS BMs is to choose the elements of each MPS core to be independent identi-339

cally distributed (IID) random variables, and in this case the following Theorem characterizes the340

single-site marginal distributions over each continuous random variable.341

Theorem 1. Consider a continuous-valued MPS with feature dimension D and an isometric fea-342

ture map ζ : I → KD at site i characterized by feature functions F = { f1, f2, . . . , fD}. Given343

an initialization of all MPS core elements by IID random variables of zero mean and fixed vari-344

ance, the expected single-site marginal distribution Pinit(xi) of the randomly initialized MPS BM345

is given by346

Pinit(xi) =
1

D
∥ζ(xi)∥2 =

1

D

D
∑

k=1

| fk(xi)|2. (13)

The proof of Theorem 1 is given in Appendix B, and is based on a simple characterization347

of the expected density operator of the underlying discrete-valued relative to the IID initialization348

method in question, which then permits a derivation of Eq. 13.349

To illustrate this result, we consider the expected prior distributions associated with each of the350

features maps considered above. The simplest is the Fourier case, where each complex exponential351

fk(xi) = ei2πkxi will have unit norm, and therefore yield an expected uniform distribution over352

the interval I = [0, 1]. We note that even in this simple case though, individual random MPS353
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will generally have single-site marginal distributions that differ from this expected distribution354

(Fig. 6d), which only characterizes the average with respect to many different initializations.355

More interesting is the Legendre case (Fig. 6a), where the initial distribution skews towards356

the ends of the interval I = [−1, 1]. In the limit of increasing D, the density of the univariate357

PDF P(D)init diverges at the endpoints of the interval, yet the distribution as a whole converges to an358

analytically tractable arcsin distribution [50], given by359

lim
D→∞

P(D)init (x ) =
1

π
p

1− x2
. (14)

In practice this bias means the Legendre polynomials lead to significantly worse initialization on360

most datasets, and we find better performance with other feature maps.361

The Laguerre and Hermite cases (Fig. 6b and c) are both associated with a broadening of the362

mass of the expected univariate distribution with increasing D, at a rate of O(
p

D).1 In this case,363

it is sensible to rescale the inputs to these feature maps as the feature dimension is increased,364

i.e. using the new feature functions gk(x ) = fk(
p

Dx ). These rescaled feature functions likely365

converge to exact analytic forms in the D → ∞ limit, but we leave this characterization as an366

open question.367

From a practical standpoint, Theorem 1 represents a useful tool for choosing feature maps368

based on the marginal distributions associated with each feature of a dataset. Employing a feature369

map whose expected prior distribution closely resembles the empirical marginal distribution for370

that feature leads to improved performance in training, in that regions of the feature space which371

occur more often in the dataset are assigned higher probability at initialization. This could be372

compared to importance sampling in Monte Carlo methods, which leaves the same asymptotic373

distribution in the high-capacity limit, but accelerates the rate of convergence.374

5 Universal Approximation with Continuous-valued MPS375

It is well-known that discrete-valued MPS with sufficiently large bond dimensions can exactly376

represent any space of Nth order tensors using the truncation-free version of the iterated singu-377

lar value decomposition (SVD) protocol of [5, 9]. By extension, any discrete-valued probability378

distribution can be exactly represented by an MPS BM whose underlying wavefunction is associ-379

ated with the square root of the distribution. The corresponding questions for continuous-valued380

MPS and square-integrable functions (or PDFs) of N continuous variables are considerably less381

straightforward. It is clear that the exact representation result from the discrete case cannot be382

applied here, since the continuous-valued functions of interest live in infinite-dimensional Hilbert383

spaces, while the functions describable by a continuous-valued MPS with fixed bond dimension384

χ and feature dimension D will necessarily occupy a finite-dimensional manifold [53].385

We overcome this difficulty by proving universal approximation theorems, which bound the386

worst-case error in encoding a sufficiently smooth wavefunction (resp. PDF) using a continuous-387

valued MPS (resp. MPS BM), as a function of the bond dimension χ and feature dimension D.388

These results show in particular that by increasing the values of χ and D, any sufficiently smooth389

wavefunction or PDF can be approximated to any desired precision using a continuous-valued390

MPS.391

Theorem 2. Consider a family of continuous-valued MPS with polynomial feature functions392

F = { f1, f2, . . .} forming an orthonormal basis for [0, 1], which is defined on the hypercube393

1Hermite distributions have an asymptotic scaling in amplitude as
�

1− x2

2D+1

�−1/2
for large D and |x | ≪

p
2D + 1,

with an exponentially small weight at |x | ≫
p

2D + 1 [51]. A similar scaling holds for Laguerre distributions [52].

13



SciPost Physics Submission

Ω = [0, 1]N ⊆ RN . Let k ≥ N and let Φ : Ω → C be any square-integrable function with unit394

norm (〈Φ,Φ〉 = 1), whose partial derivatives of order 1, 2, . . . , k all exist and are bounded. Then395

for every positive χ , D ∈ N there exists a continuous-valued MPS of bond dimension χ and feature396

dimension D with unit norm, whose associated function Φ(χ ,D)
MPS approximates Φ with infidelity397

1− |〈Φ,Φ(χ ,D)
MPS 〉| ≤ γ1χ

−k+1 + γ2D−2k , (15)

where γ1,γ2 > 0 depend on the target function Φ, the assumed degree of smoothness k, and the398

feature functions F .399

The proof of Theorem 2, along with an overview of the functional analytic concepts used in400

the proof and the precise definition of the constants γ1,γ2, are given in Appendix C. The result401

makes heavy use of the work of [45], which generalizes the iterated SVD method for computing402

discrete MPS representations of tensors to the setting of infinite-dimensional spaces of real-valued403

functions.404

We note that the restriction in Theorem 2, which applies to functions Φ defined on the unit405

hypercube Ω = [0, 1]N is primarily for ease of presentation, and can be easily relaxed to func-406

tions on any product of compact intervals [a1, b1]× · · · × [aN , bN] (i.e. an N-dimensional box).407

More generally, although a rigorous proof for the case of functions on non-compact domains (e.g.408

Φ : RN → C) is not possible with the methods of [45], we give a heuristic argument in Appendix C409

for how Theorem 2 can be modified to bound the error involved in approximating functions on410

non-compact domains using continuous-valued MPS.411

The above theorem can be used to prove a similar approximation result for PDFs. In place of412

infidelity between wavefunctions, we utilize the Jensen-Shannon (JS) divergence between distri-413

butions, which is defined as JS(P, Q) =
1
2 (KL(P, M) +KL(Q, M)) for M the equal-weight mixture414

of P and Q taking values M(x) =
1
2 (P(x) +Q(x)). Besides being symmetric in the input PDFs415

P and Q, JS divergence takes bounded values (in contrast to KL divergence), and is zero only416

when P and Q are identical almost everywhere. The following Theorem therefore guarantees that417

any sufficiently smooth PDF can be approximated to arbitrary accuracy using a BM built from a418

continuous-valued MPS.419

Theorem 3. Consider a family of continuous-valued MPS with polynomial feature functions420

F = { f1, f2, . . .} forming an orthonormal basis for [0, 1], which is defined on the hypercube421

Ω = [0, 1]N ⊆ RN . Let k ≥ N and let P : Ω → R be any Probability Density Function (PDF)422

bounded below as Pmin = minx∈Ω P(x) > 0, whose partial derivatives of order 1, 2, . . . , k all423

exist and are bounded. Then for every positive χ , D ∈ N there exists a continuous-valued MPS of424

bond dimension χ and feature dimension D with unit norm, whose associated Born machine PDF425

P(χ ,D)
MPS (x) = |Φ

(χ ,D)
MPS |

2 approximates P with Jensen-Shannon divergence426

JS
�

P(χ ,D)
MPS , P
�

≤ η1χ
− k−1

2 +η2D−k , (16)

where η1,η2 > 0 depend on the target PDF P, the assumed degree of smoothness k, and the427

feature functions F .428

The proof of Theorem 3 applies Theorem 2 to the approximation of a naive target wavefunction429

given by ΦP(x) =
p

P(x), and then uses standard tools from information theory to translate430

bounds in infidelity into bounds in JS divergence. The key technical argument of this proof is431

ensuring that the smoothness guarantees assumed of P yield similar smoothness guarantees for432

ΦP , which is complicated by the fact that the derivative of
p

P(x) becomes infinite in the limit433

P(x)→ 0. To avoid this pathological behavior, we require that P(x) be bounded below by some434

Pmin, as explained in the proof in Appendix C.435
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Figure 7: Continuous-valued MPS with compression layer (green). (a) The input x is
converted to a vector of dimension D. Then the compression operator (green triangular)
is an isometry matrix, which rotate and truncate into a d dimensional site index of the
MPS. (b) From top to bottom is the feature mapping layer, compression layer and MPS
layer. Both the feature layer and the compression layer is direct product of many local
operators.

Just as for Theorem 2, the domain in Theorem 3 can be replaced w.l.o.g. with any N-436

dimensional box, and by a heuristic argument can be used to bound the error in approximating437

PDFs defined on unbounded domains. We note also that different symmetric loss functions can be438

used in place of JS divergence in Theorem 3, notably total variation distance.439

As one final comment on Theorems 2 and 3, the attentive reader might wonder about the440

case of smooth target functions, for which the value of k can be made arbitrarily large. While441

the bounds in Eqs. 15 and 16 might seem to become arbitrarily small, it is important to note442

that the quantities γ1,γ2,η1,η2 themselves depend on k, and generally grow very rapidly (e.g.443

super-factorially) with increasing k. Consequently, even though smooth PDFs can technically be444

approximated with error O(χ−
k−1

2 +D−k) for any positive value of k, in practice the large prefactor445

in such bounds would make this increasingly favorable scaling only become apparent at values of446

χ and D which increase at an astronomical rate.447

6 Compression Layer448

The feature dimension D plays a crucial role in determining the expressivity of the continuous-449

valued model, as it determines the number of basis functions spanning the space of functions on450

the continuous variable. This in turn determines the precision of the continuous variable being451

modeled, with a dimension D limiting the precision to roughly O(D−1). While a larger feature452

dimension enables the MPS to capture finer details of the distribution, it also comes at the cost of453

significantly increased computational complexity. As a concrete example, training using two-site454

update scheme leads to a memory cost of O(χ2D) and a computational cost of O(χ3D3), making455

it impractical to increase the feature dimension beyond a certain limit.456

To address this issue, we propose the addition of an intermediate compression layer that con-457

nects the D-dimensional feature space to a smaller site space of dimension d in the underlying458

discrete-valued MPS. It may be the case in practice that the univariate functions needed to de-459

scribe each feature of a target distribution or function are easily describable in a low-dimensional460
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space, but where each basis function is more complex than a predetermined feature function. Our461

compression layer takes advantage of this possibility by storing a tunable collection of d basis462

functions, which are each taken to be a superposition of D fixed feature functions, where d ≪ D.463

This allows us to take advantage of the expressive power of high numbers of feature functions464

while minimizing computational costs, improving the efficiency and performance of the continu-465

ous MPS model. While we have so far taken D = d, when clarity is needed we will refer to D as466

the feature dimension of the model and d as the site dimension.467

Adding a compression layer results in a model that is a simple example of a tree tensor net-468

work, as shown in Fig. 7. The compression layer consists of many different D×d matrices {Ui}Ni=1
469

satisfying the isometric condition U†
i
Ui = Id , which are tunable parameters of the model. In the470

case of datasets possessing similar kinds of features (e.g. time series data), it may be advantageous471

to choose all isometries Ui to be equal.472

Jointly training the compression layer with the MPS parameters can be done in either the473

context of gradient-based optimization, or in an alternating manner in the context of DMRG.474

The former case can be straightforwardly handled by the use of tools for gradient-based opti-475

mization on Stiefel manifolds (i.e. families of isometric matrices), so we describe here the latter476

optimization process. The isometry Ui at a site i is trained to maximize the NLL loss asso-477

ciated to a training dataset D, where samples from the dataset are associated with continuous478

features x = (x1, x2, . . . , xN). For a given sample from D, the N − 1 features at all other sites479

xî = (x1, . . . , xi−1, xi+1, . . . , xN) are contracted with all cores of the underlying discrete-valued480

MPS, giving a d dimensional vector v¬i at site i, while the remaining feature xi is embedded481

as a D dimensional vector ζ(xi). Given this information, the goal is to find the isometry which482

minimizes the negative log-likelihood loss over the training dataset, or equivalently:483

Ui = argmax
∑

x∈D
log
�

|〈ζ(xi)|Ui |v¬i〉|
�

. (17)

We can find a good Ui by first linearizing the log(|·|) term, which turns Eq. 17 into a Procrustes484

problem [54] of linear alignment under an isometric constraint. Procrustes problems can be easily485

solved with a singular value decomposition on the effective matrix being contracted with Ui in486

Eq. 17 (after linearization), where setting all singular values to 1 gives the optimal isometry. Upon487

reaching a candidate solution Ui , the nonlinearity log(|·|) is linearized again and the optimization488

process repeated until convergence, typically within a few iterations. Full pseudocode for this489

training is presented in Appendix E.490

We note that although computing a vector v¬i for each sample x ∈ D may appear expensive,491

the use of cached environment tensors reduces the incremental cost of this computation to only492

O(χ2d) when carried out in the context of the adapted DMRG procedure of [12], making this a493

very lightweight addition to the basic continuous-valued MPS model.494

7 Numerical Results495

We test the continuous-valued MPS BM model on five distinct density estimation tasks. The first496

is a rotated hypercube, a simple linearly transformed multidimensional uniform distribution, which497

we use this to explore the scaling of accuracy with increasing bond and feature dimensions. The498

second and third are the synthetic two moons dataset [55] and the non-synthetic Iris dataset [56],499

both of which contain a mixture of continuous and discrete variables. The fourth is a dataset of500

samples from the classical 2D XY model at nonzero temperature, a statistical mechanical model501

whose partition function has previously been shown amenable to TN methods [57, 58]. Finally,502

we use a specifically designed synthetic dataset to test the dynamic basis compression training503

algorithm.504
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Figure 8: KL divergence of continuous MPS on rotated hypercube dataset, trained with
different feature dimensions D and bond dimensions χ .

Figure 9: Left plot: 800 samples from the Two Moons distribution, σ = 0.1. Right plot:
800 samples from our model with χ = 8, D = 17.

In each setting the continuous-valued MPS BM is trained to minimize the NLL loss on the tar-505

get dataset using a two-site DMRG procedure. This is equivalent to minimizing the KL divergence506

of the model’s learned PDF relative to the distribution which produced the target dataset, and in507

cases where the entropy of the target distribution can be accurately estimated, we will report the508

KL divergence of the model. Otherwise we report the raw values of the NLL loss, which can be509

negative in the continuous-valued setting. Any experimental details not specified below can be510

found in Appendix D.511

7.1 Rotated Hypercube512

As a simple testbed, we used a distribution drawn uniformly from a rotated hypercube [−1, 1]N513

for N = 5. This dataset has nontrivial correlations between each pair of variables and sharp jumps514

in the overall density, yet still has continuously differentiable marginals.515

For each feature dimension D and maximum bond dimension χ , the MPS was trained from516

an initial random state with 18 DMRG sweeps and a maximum bond dimension that increased517

linearly up to χ . The KL divergence of the model for different values of χ and D make use of the518

Fourier feature map, which was found to work best in this setting. The KL divergence of the model519

for different bond and feature dimensions are plotted in Fig. 8. As expected, the loss decreases as520

we improve either dimension, and saturates if one is increased without the other.521

We note that both real and complex tensor networks can be utilized for continuous-valued522

BMs, and during this initial set of experiments, we quickly found that real-valued tensor networks523

empirically performed much worse, often failing to converge at all (see Appendix D.1). We at-524

tribute this to large jumps in the MPS during the truncation process when using two-site DMRG,525

and speculate that better behavior might be observed for real-valued models when training using526

gradient descent. Because of this behavior though, all remaining experiments were carried out527

using complex-valued tensor networks.528
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a) True Data

b) Sampled Data

Figure 10: The six different pairwise marginals between each pair of four continuous
variables associated to (a) the 150 samples in the Iris dataset, and (b) 150 samples drawn
from the continuous MPS model. The three class labels are indicated by color.

7.2 Two Moons529

The two moons dataset is a standard synthetic dataset available from scikit-learn [55], containing530

two continuous features encoding the position on a 2D plane and one binary feature indicating531

which “moon" the sample belongs to. We use a three-site MPS containing two continuous indices532

and one discrete index to learn the structure of the dataset in an unsupervised manner, but note that533

the efficient conditional sampling permits the trained MPS BM model to be immediately used as534

either a supervised classifier or a conditional generative model.535

Hermite and Fourier feature maps were both tested on the dataset, with an identical training536

schedule used as for the rotated cube. We found the Fourier basis to give favorable performance537

at all parameters, with a comparison of samples from the trained model with those from the two538

moons distribution shown in Fig. 9. More information, including the KL divergence at different539

values of D and χ , can be found in Appendix D.2.540
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7.3 Iris Dataset541

The Iris dataset [59] has four continuous features and a three-class categorical feature. Being a542

small dataset of only 150 samples, we must pay attention to overfitting. For each bond dimension543

and feature dimension under consideration, we use five-fold cross validation, and report the mean544

of the NLL loss on the validation set in each of the five folds. The petal measurements are strictly545

positive values, so the Legendre feature map seemed the most natural in this regard. However, we546

again found that the Fourier feature map performed the best in practice. Although the Iris dataset547

was used here for an unsupervised density modeling task, we note that as in the two moons task,548

the MPS BM can immediately be used to either predict the class label given the four continuous549

features, or conditionally generate continuous samples given a specific class.550

We found that overfitting did occur at higher dimensions, with higher losses being seen on551

the held-out data fold (see Appendix D.3 for the NLL loss as a function of χ and D). Optimal552

performance was observed at χ = 9 and D = 7, with a validation loss of −1.40 ± 0.01. The553

samples in the Iris dataset are compared to a similar number of samples from the trained MPS BM554

in Fig. 10, where the four continuous features are displayed as six pairwise marginals. The trained555

model shows good agreement with the original Iris dataset, although some outliers are visible.556

7.4 XY Model557

The classical XY model [60, 61] is a physical system of 2D unit vectors v⃗i , with an interaction558

energy Ei, j = −v⃗i · v⃗ j between adjacent sites. For an N site system, representing each vector559

v⃗i = (sin xi , cos xi) by its angle xi ∈ [0, 2π] gives N continous features for each sample drawn560

from the thermal ensemble associated to the interaction Hamiltonian. This feature space has a561

natural periodic structure, allowing a further test of the Fourier feature map. We chose N = 16,562

with the associated sites arranged in a 4 × 4 grid. To ensure a challenging long-range correla-563

tion structure, we trained on a dataset of samples drawn from the model’s thermal distribution at564

temperature T = 0.8 which was close to the model’s critical temperature of Tc ≈ 0.882.565

The MPS BM model for χ = 12 and D = 13 was able to reach a KL divergence of ap-566

proximately 0.52 relative to the true XY distribution, which was lower than the KL divergence567

of 0.6 found by a variational autoencoder (VAE) benchmark with hidden dimension of 512 and568

10-dimensional latent space. The VAE benchmark additionally required careful hyperparameter569

tuning and several attempts to reach this value, whereas the continuous-valued MPS was able to570

reach a lower KL divergence without any modification. Other derived metrics were used to further571

verify the performance of the MPS model, as reported in Appendix D.4.572

7.5 Compression Test573

To verify that the performance of the compression layer, we created a synthetic dataset containing574

several tightly-grouped variables (see Appendix D.5 for details). The dataset possesses four con-575

tinuous features with very different single-site marginals, which are shown in Fig. 11. To assess576

the impact of the compression layer, we compared three continuous-valued MPS models: (a) a577

larger MPS model with D = 16, (b) a smaller MPS model with D = 3, and (c) a compression-578

enhanced MPS model with distinct feature dimension D = 16 and site dimension d = 3. Although579

model (c) employs the same number of feature functions as the larger model (a), its reduced site580

dimension makes its computational cost closer to the smaller model (b).581

The single-site marginal distributions of the three trained models are shown in Fig. 11(a-c),582

where it is evident that models (a) and (c) give a more faithful reconstruction of the dataset struc-583

ture than model (b). This is supported by the final NLL loss of the trained models, with model584

(a) attaining the best NLL loss of -2.17, followed by model (c) with a comparable loss of -2.05,585

and finally model (b) with a much higher loss of 2.04. We therefore see that by using compres-586

sion layers, continuous-valued MPS with small site dimensions can deliver performance that is587
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Figure 11: Comparison of the single-feature marginal distributions for three represen-
tative MPS models on the synthetic compression dataset, with bond dimension χ = 4.
TL: True one-site marginals. TR: an MPS with D = 16 obtained the best recovery of the
target dataset. BL: The smaller MPS with D = 3 gave considerably worse behavior. BT:
Using a compression layer with site dimension d = 3 and feature D = 16 gave compa-
rable performance to the larger model, while maintaining a reduced computational cost.

nearly identical to much larger MPS, but without a significant increase in computational cost or588

parameter count.589

8 Conclusions590

We have introduced a family of continuous-valued TN generative models, which share the per-591

fect sampling and conditional generation properties of standard discrete-valued TN BMs, while592

also permitting the use of arbitrary combinations of continuous and discrete data. The general-593

ity of these models is proven by a pair of universal approximation theorems, which ensure that594

any sufficiently smooth PDF or continuous-valued wavefunction can be efficiently represented to595

arbitrary precision using continuous-valued MPS. Benchmarking this model on a broad range of596

synthetic and real-world datasets with discrete and continuous variables, we find it able to accu-597

rately learn the structure of each dataset, with a programmable compression layer giving enhanced598

performance in the presence of limited computational resources.599

A key ingredient in our continuous generalization is the notion of feature maps to embed con-600

tinuous data as finite-dimensional vectors. While feature maps have been used for supervised TN601

models since at least [11, 18], a major contribution of our work is the discovery of much richer602

structure in feature maps within the context of generative modeling. We prove a general character-603

ization of the influence of feature maps on the marginal distributions of continuous-valued MPS604

BMs at initialization, and investigate several concrete feature maps in detail from a theoretical and605

empirical perspective. Our focus on isometric feature maps, which we prove entails no loss of606

generality, lets us derive a canonical form for continuous-valued MPS that preserves the conve-607

nient properties of discrete-valued MPS and permits the use of powerful methods like DMRG for608
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optimization.609

While we have restricted to the use of MPS for convenience, in principle any discrete-valued610

TN can be extended by our methods into a corresponding continuous-valued model, and bench-611

marking the performance of more sophisticated TNs (e.g. tree TNs, MERA, and PEPS) in prob-612

lems with continuous data is an obvious next step. A more open-ended direction is to develop613

methods for boosting the expressivity of feature maps, or choosing them based on the structure614

of particular datasets. Our compression layer represents an important contribution along these615

lines, but using neural networks or other ML models may boost expressivity yet further. Develop-616

ing heuristics for better choosing the feature dimension D in a given problem, analogous to how617

entanglement-based area laws guide the choice of bond dimension χ , is another problem deserving618

future attention. Along similar lines, we anticipate generalizations of two-site update scheme that619

permit the dynamic variation of both D and χ to be a useful aid for optimizing continuous-valued620

TN models.621

9 Acknowledgments622

The authors would like to thank Vladimir Vargas-Calderón for contributing the VAE benchmark623

result. G.R.’s research was supported by the Canadian Institute for Advanced Research (CIFAR624

AI chair program).625

References626

[1] I. Affleck, T. Kennedy, E. Lieb and H. Tasaki, Rigorous results on valence-bond ground627

states in antiferromagnets, Physical Review Letters 59(7), 799 (1987).628

[2] M. Fannes, B. Nachtergaele and R. F. Werner, Finitely correlated states on quantum spin629

chains, Communications in mathematical physics 144(3), 443 (1992).630

[3] M. M. Wolf, F. Verstraete, M. B. Hastings and J. I. Cirac, Area laws in quantum systems:631

mutual information and correlations, Physical review letters 100(7), 070502 (2008).632

[4] R. Orús, A practical introduction to tensor networks: Matrix product states and projected633

entangled pair states, Annals of physics 349, 117 (2014).634

[5] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Physical635

review letters 91(14), 147902 (2003).636

[6] C. Schön, E. Solano, F. Verstraete, J. I. Cirac and M. M. Wolf, Sequential generation of637

entangled multiqubit states, Physical review letters 95(11), 110503 (2005).638

[7] Y.-Y. Shi, L.-M. Duan and G. Vidal, Classical simulation of quantum many-body systems639

with a tree tensor network, Physical review A 74(2), 022320 (2006).640

[8] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review 51(3),641

455 (2009).642

[9] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33(5),643

2295 (2011).644

[10] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic et al., Tensor networks645

for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompo-646

sitions, Foundations and Trends® in Machine Learning 9(4-5), 249 (2016).647

21



SciPost Physics Submission

[11] E. Stoudenmire and D. J. Schwab, Supervised learning with tensor networks, Advances in648

Neural Information Processing Systems 29 (2016).649

[12] Z.-Y. Han, J. Wang, H. Fan, L. Wang and P. Zhang, Unsupervised generative modeling using650

matrix product states, Phys. Rev. X 8(3), 031012 (2018).651

[13] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley and E. M. Stoudenmire, Towards quantum652

machine learning with tensor networks, Quantum Science and Technology 4(2), 024001653

(2019), doi:10.1088/2058-9565/aaea94.654

[14] R. Orús, Tensor networks for complex quantum systems, Nature Reviews Physics 1(9), 538655

(2019).656

[15] S. R. White, Density matrix formulation for quantum renormalization groups, Physical657

review letters 69(19), 2863 (1992).658

[16] N. Cohen, O. Sharir and A. Shashua, On the expressive power of deep learning: A tensor659

analysis, In Conference on learning theory, pp. 698–728. PMLR (2016).660

[17] V. Khrulkov, A. Novikov and I. Oseledets, Expressive power of recurrent neural networks,661

arXiv preprint arXiv:1711.00811 (2017).662

[18] A. Novikov, M. Trofimov and I. Oseledets, Exponential machines, arXiv:1605.03795 (2016).663

[19] C. Yin, B. Acun, X. Liu and C.-J. Wu, Tt-rec: Tensor train compression for deep learning664

recommendation models (2021), arXiv:2101.11714.665

[20] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou, A. Anandkumar and666

S. Zafeiriou, Tensor methods in computer vision and deep learning, Proceedings of the IEEE667

109(5), 863 (2021).668

[21] H. Zhou, L. Li and H. Zhu, Tensor regression with applications in neuroimaging data anal-669

ysis, Journal of the American Statistical Association 108(502), 540 (2013).670

[22] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo and L. Zhang, Multispectral images671

denoising by intrinsic tensor sparsity regularization, In Proceedings of the IEEE conference672

on computer vision and pattern recognition, pp. 1692–1700 (2016).673

[23] J. Liu, S. Li, J. Zhang and P. Zhang, Tensor networks for unsupervised machine learning,674

Physical Review E 107(1), L012103 (2023).675

[24] J. Miller, G. Rabusseau and J. Terilla, Tensor networks for probabilistic sequence modeling,676

In International Conference on Artificial Intelligence and Statistics, pp. 3079–3087, (PMLR)677

(2021).678

[25] S. Cheng, J. Chen and L. Wang, Information perspective to probabilistic modeling: Boltz-679

mann machines versus born machines, Entropy 20(8), 583 (2018), doi:10.3390/e20080583.680

[26] I. Glasser, N. Pancotti and J. I. Cirac, From probabilistic graphical models to gen-681

eralized tensor networks for supervised learning, IEEE Access 8, 68169 (2020),682

doi:10.1109/ACCESS.2020.2986279.683

[27] S. Cheng, L. Wang, T. Xiang and P. Zhang, Tree tensor networks for generative modeling,684

Phys. Rev. B 99, 155131 (2019).685

[28] Y. Levine, O. Sharir, N. Cohen and A. Shashua, Quantum entanglement in deep learning686

architectures, Physical review letters 122(6), 065301 (2019).687

22

https://doi.org/10.1088/2058-9565/aaea94
arXiv:2101.11714
https://proceedings.mlr.press/v130/miller21a.html
https://doi.org/10.3390/e20080583
https://doi.org/10.1109/ACCESS.2020.2986279


SciPost Physics Submission

[29] S. Lu, M. Kanász-Nagy, I. Kukuljan and J. I. Cirac, Tensor networks and efficient descrip-688

tions of classical data, arXiv preprint arXiv:2103.06872 (2021).689

[30] I. Glasser, R. Sweke, N. Pancotti, J. Eisert and I. Cirac, Expressive power of tensor-network690

factorizations for probabilistic modeling, Advances in neural information processing sys-691

tems 32 (2019).692

[31] S. Adhikary, S. Srinivasan, J. Miller, G. Rabusseau and B. Boots, Quantum tensor networks,693

stochastic processes, and weighted automata, In International Conference on Artificial In-694

telligence and Statistics, pp. 2080–2088. PMLR (2021).695

[32] A. J. Ferris and G. Vidal, Perfect sampling with unitary tensor networks, Physical Review B696

85(16), 165146 (2012).697

[33] J. Martyn, G. Vidal, C. Roberts and S. Leichenauer, Entanglement and tensor networks for698

supervised image classification, arXiv preprint arXiv:2007.06082 (2020).699

[34] J. Reyes and M. Stoudenmire, A multi-scale tensor network architecture for classification700

and regression (2020).701

[35] I. Convy and K. B. Whaley, Interaction decompositions for tensor network regression, Mach.702

Learn. Sci. Technol. 3(4), 045027 (2022).703

[36] T. Hao, X. Huang, C. Jia and C. Peng, A quantum-inspired tensor network method for704

constrained combinatorial optimization problems, arXiv preprint arXiv:2203.15246 (2022).705

[37] J.-G. Liu, X. Gao, M. Cain, M. D. Lukin and S.-T. Wang, Computing solution space prop-706

erties of combinatorial optimization problems via generic tensor networks, arXiv preprint707

arXiv:2205.03718 (2022).708

[38] J. Eisert, M. Cramer and M. B. Plenio, Colloquium: Area laws for the entanglement entropy,709

Reviews of modern physics 82(1), 277 (2010).710

[39] M. Schuld and N. Killoran, Quantum machine learning in feature hilbert spaces, Physical711

Review Letters 122 (2019), doi:10.1103/physrevlett.122.040504.712

[40] S. Wahls, V. Koivunen, H. V. Poor and M. Verhaegen, Learning multidimensional fourier713

series with tensor trains, In 2014 IEEE Global Conference on Signal and Information Pro-714

cessing (GlobalSIP), pp. 394–398. IEEE (2014).715

[41] S.-H. Lin, O. Kuijpers, S. Peterhansl and F. Pollmann, Distributive pre-training of generative716

modeling using matrix-product states, arXiv preprint arXiv:2306.14787 (2023).717

[42] M. Ali and A. Nouy, Approximation with tensor networks. part iii: Multivariate approxima-718

tion, arXiv preprint arXiv:2101.11932 (2021).719

[43] M. Ali and A. Nouy, Approximation theory of tree tensor networks: Tensorized univariate720

functions, Constructive Approximation pp. 1–82 (2023).721

[44] F. Wesel and K. Batselier, Quantized fourier and polynomial features for more expressive722

tensor network models, In International Conference on Artificial Intelligence and Statistics,723

pp. 1261–1269. PMLR (2024).724

[45] D. Bigoni, A. P. Engsig-Karup and Y. M. Marzouk, Spectral tensor-train decomposition,725

SIAM Journal on Scientific Computing 38(4), A2405 (2016).726

23

https://doi.org/10.1103/physrevlett.122.040504


SciPost Physics Submission

[46] A. Gorodetsky, S. Karaman and Y. Marzouk, A continuous analogue of the tensor-train727

decomposition, Computer methods in applied mechanics and engineering 347, 59 (2019).728

[47] Y. Hur, J. G. Hoskins, M. Lindsey, E. M. Stoudenmire and Y. Khoo, Generative modeling via729

tensor train sketching, Applied and Computational Harmonic Analysis 67, 101575 (2023).730

[48] G. S. Novikov, M. E. Panov and I. V. Oseledets, Tensor-train density estimation, In Uncer-731

tainty in artificial intelligence, pp. 1321–1331. PMLR (2021).732

[49] F. Verstraete and J. I. Cirac, Continuous matrix product states for quantum fields, Phys. Rev.733

Lett. 104, 190405 (2010), doi:10.1103/PhysRevLett.104.190405.734

[50] B. Ellefsen, Math StackExchange: Averaged value of product of Legendre Polynomials735

(2023).736

[51] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,737

graphs, and mathematical tables, vol. 55, US Government printing office (1968).738

[52] D. Borwein, J. M. Borwein and R. E. Crandall, Effective laguerre asymptotics, SIAM Journal739

on Numerical Analysis 46(6), 3285 (2008).740

[53] S. Holtz, T. Rohwedder and R. Schneider, On manifolds of tensors of fixed tt-rank, Nu-741

merische Mathematik 120(4), 701 (2012).742

[54] J. Gower and G. Dijksterhuis, Procrustes problems., Oxford University Press (2004).743

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,744

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos et al., Scikit-learn: Machine745

learning in Python, Journal of Machine Learning Research 12, 2825 (2011).746

[56] R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of eugenics747

7(2), 179 (1936).748

[57] J. Yu, Z. Xie, Y. Meurice, Y. Liu, A. Denbleyker, H. Zou, M. Qin, J. Chen and T. Xiang,749

Tensor renormalization group study of classical x y model on the square lattice, Physical750

Review E 89(1), 013308 (2014).751

[58] L. Vanderstraeten, B. Vanhecke, A. M. Läuchli and F. Verstraete, Approaching the kosterlitz-752

thouless transition for the classical x y model with tensor networks, Physical Review E753

100(6), 062136 (2019).754

[59] M. Lichman, UCI machine learning repository (2013).755

[60] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in756

one- or two-dimensional isotropic heisenberg models, Phys. Rev. Lett. 17, 1133 (1966),757

doi:10.1103/PhysRevLett.17.1133.758

[61] Y. Nambu, A Note on the Eigenvalue Problem in Crystal Statistics, Progress of Theoretical759

Physics 5(1), 1 (1950), doi:10.1143/ptp/5.1.1, https://academic.oup.com/ptp/article-pdf/5/1/760

1/5253488/5-1-1.pdf.761

[62] M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).762

[63] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of763

state calculations by fast computing machines, The Journal of Chemical Physics 21(6), 1087764

(1953), doi:10.1063/1.1699114, https://doi.org/10.1063/1.1699114.765

24

https://doi.org/10.1103/PhysRevLett.104.190405
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1143/ptp/5.1.1
https://academic.oup.com/ptp/article-pdf/5/1/1/5253488/5-1-1.pdf
https://academic.oup.com/ptp/article-pdf/5/1/1/5253488/5-1-1.pdf
https://academic.oup.com/ptp/article-pdf/5/1/1/5253488/5-1-1.pdf
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114


SciPost Physics Submission

[64] F. Perez-Cruz, Kullback-leibler divergence estimation of continuous distributions,766

In 2008 IEEE International Symposium on Information Theory, pp. 1666–1670,767

doi:10.1109/ISIT.2008.4595271 (2008).768

A Generality of Isometric Feature Map Condition769

Given an arbitrary feature map ζ : I → KD represented by a basis of feature functions given by770

F = { f1, f2, . . . , fD}, we present a general procedure to create new feature functions satisfying771

Eq. 6, thereby giving an isometric map. We further show how this procedure can be applied to772

any continuous-valued MPS without imposing any changes in the associated continuous-valued773

function Φ : IN → K. We assume first that the functions are linearly independent, as otherwise774

we can remove any linearly dependent basis functions without any impact on the feature map’s775

expressive power.776

First, we calculate a Hermitian “overlap matrix” M ∈ KD×D whose elements Mi j give the777

overlap between feature functions fi and f j , namely778

Mi j = 〈 fi , f j 〉 =
∫

x∈I
f ∗i (x ) f j(x )dx . (18)

By the assumption of all functions in F being linearly independent, M is full-rank, which allows779

its matrix inverse square root X = M−
1
2 to be computed from the spectral decomposition of M :780

M = QΛQ† (19)

X = QΛ−
1
2 Q† (20)

where Q is a D × D unitary and Λ−
1
2 denotes the elementwise inverse square root of the diagonal781

matrix Λ containing strictly positive diagonal entries. X is itself an invertible Hermitian matrix,782

and Eq. 19 and Eq. 20 can be used to verify that X MX = I783

Using X we can generate a new isometric feature map, whose basis of feature functions784

{g1, g2, . . . , gD} is given by785

gk(x) =
D
∑

j=1

f j(x)X jk . (21)

The isometric nature of the new feature map can be verified by the orthonormality of the feature786

functions, concretely:787

∫

x∈I
g ∗i (x )g j(x )dx

=

∫

x∈I

�

∑

a

f ∗a (x)X
∗
ai

�
�

∑

b

fb(x)Xb j

�

dx

=
∑

a,b

X∗ai Xb j

�∫

f ∗a (x) fb(x)dx

�

=
∑

a,b

X∗ai Xb j Mab = (X
†MX)i j = δi j .

Finally, we note that this transformation can be applied to an existing continuous-valued MPS788

model without any change in the associated function Φ. The new feature map defined by Eq. 21789

is equivalent to the composite function sending x 7→ ζ(x )X , and applying the inverse matrix790

25
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Figure 12: (a) Graphical illustration of Lemma 1, characterizing the covariance tensor
resulting from IID initialization of an MPS core tensor (blue circles). (b) Simplified
graphical proof of Theorem 1 for the case of N = 5 and i = 3, with the first equality
being the definition of the expected marginal distribution Pinit(x3). The second pro-
portionality comes from applying Lemma 1 to all pairs of core tensors and using the
isometric nature of the feature maps (magenta trapezoids), with the resulting diagram
giving the value ∥ζ(x3)∥2. The remaining proportionality factor

1
D seen in Theorem 1

arises from normalization considerations.

X−1 to the corresponding site index of the underlying discrete-valued MPS ψ therefore gives a791

new discrete-valued MPS which computes the same continuous-valued function Φ, but using an792

isometric feature map.793

Those more familiar with TN methods will identify this procedure as a simple variation of794

the standard procedure for converting TNs over acyclic graphs into canonical form, but with the795

important caveat that some of the indices being traced over are associated with infinite-dimensional796

spaces of functions.797

B Proof of Marginal Distribution Characterization798

We prove the characterization of marginal distributions of randomly-initialized continuous-valued799

MPS BMs given in Theorem 1 in the following, which is restated for ease of reference.800

Theorem 1. Consider a continuous-valued MPS with feature dimension D and an isometric fea-801

ture map ζ : I → KD at site i characterized by feature functions F = { f1, f2, . . . , fD}. Given802

an initialization of all MPS core elements by IID random variables of zero mean and fixed vari-803

ance, the expected single-site marginal distribution Pinit(xi) of the randomly initialized MPS BM804

is given by805

Pinit(xi) =
1

D
∥ζ(xi)∥2 =

1

D

D
∑

k=1

| fk(xi)|2. (13)

The above Theorem characterizes an initialization coming from choosing each entry of the806

underlying discrete-valued MPS core tensors {A(i)}N
i=1

to be IID random variables with mean zero807

and identical variance. In this setting we assume each core tensor A(i) has shape χi−1 × χi × Di ,808

and we begin by proving an important Lemma governing the expected behavior of pairs of such809

tensors under this type of IID initialization.810
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Lemma 1. Consider a tensor A(i) ∈ Kχi−1×χi×Di whose elements have mean E
�

A(i)
α,β ,k

�

= 0 and811

variance E
�
�

�

�A(i)
α,β ,k

�

�

�

2�

= ti . The sixth-order variance tensor B(i) given by taking two copies of812

A(i) and averaging over all IID initializations is given by813

B(i)
α,α′,β ,β ′,k,k′

= E
�
�

A(i)
�∗
α,β ,k A(i)

α′,β ′,k′

�

= t δα,α′δβ ,β ′δk,k′ . (22)

The proof of Lemma 1 is an immediate consequence of the IID nature of the different elements814

of A(i). The elements of B(i) are covariances between pairs of elements in A(i), which by assump-815

tion are 0 for different elements, and ti for identical elements. The result has a convenient graph-816

ical form, shown in Fig. 12a, which facilitates many calculations involving randomly-initialized817

MPS.818

As a concrete example, we can compute the expected squared norm of a continuous-valued819

MPS Φ whose underlying discrete-valued MPS ψ has been initialized using core tensors with820

IID random elements with mean zero. The isometric nature of the model’s feature map leads the821

squared norm of a continuous-valued MPS to be identical to that of its underlying discrete-valued822

MPS, which with the use of Lemma 1 can be verified to equal the product of all feature and bond823

dimensions in the model, namely824

E

�

∥ψ∥2
�

=
N
∏

i=1

ti Diχi , (23)

where we take χN to be χN = 1. In order to ensure proper normalization when the MPS is used as a825

probabilistic BM, it is necessary to have the per-core variances ti to satisfy
∏N

i=1 ti =
∏N

i=1 Diχi ,826

which can be ensured by taking ti = (Diχi)
−1.827

Given this, the proof of Theorem 1 reduces to taking the definition of the expected univariate828

marginal distribution Pinit(xi), wherein all other variables are traced out, and applying TN iden-829

tities to simplify the resultant expression to the form given in Eq. 13 (see Fig. 12b). Applying830

the isometric condition of Eq. 6 allows all pairs of traced-over feature maps to be removed (see831

Fig. 3), with Lemma 1 permitting a comparable removal of all pairs of matched tensor cores A(i).832

The result is the simple diagram on the right side of Fig. 12b, with a proportionality factor equal833

to the product of all ti with a term ai =
∏N−1

i=1 χi
∏

j ̸=i Dj coming from tracing over all bond834

dimensions, as well as all feature dimensions except for Di . The result is the scalar factor D−1
i

,835

which under the typical assumption of constant feature dimension Di = D, gives the proportional-836

ity factor appearing in Eq. 13. This completes the proof of Theorem 1.837

C Proof of Universal Approximation Results838

We prove the universality approximation results of Theorems 2 and 3 in the following, which are839

restated below for ease of reference. In order to prove these Theorems, we must first introduce840

some concepts from functional analysis, which are used to introduce and prove Theorem 4, which841

generalizes Theorem 2 to characterize a wider range of functions.842

C.1 Functional Analysis Preliminaries843

Our results concern the setting of spaces of scalar-valued functions f : Ω→ K defined on the N-844

dimensional hypercube Ω = [0, 1]N ⊆ RN equipped with L2-norm ∥ f ∥L2
µ

:=
�∫

x∈Ω| f (x)|
2dµ
�1/2

845
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associated with a positive-valued finite measure µ (i.e. µ(Ω) <∞). We use K to indicate one846

of either R or C, in the typical case where the choice of field doesn’t change the validity of the847

definitions or results.848

If i = (i1, i2, . . . , ik) for some k ≥ 0, then we use ∂ (i) f =
∂ k f

∂ xi1∂ xi2 ···∂ xik
to indicate a standard849

k’th-order partial derivative of the function f , with the usual caveat that such derivatives only850

exist for sufficiently smooth functions. More generally, we use D(i) f to indicate a k’th-order weak851

derivative of f , which is defined as a function satisfying the formula852

∫

x∈Ω

�

D(i) f (x)
�

ϕ(x)dµ = (−1)k
∫

x∈Ω
f (x)
�

∂ (i)ϕ(x)
�

dµ (24)

for all infinite-differentiable functions ϕ : Ω→ K which vanish on the boundary of Ω. The usual853

integration by parts formula ensures that each partial derivative ∂ (i) f is itself a weak derivative854

of f , but the latter can also be defined for functions f whose k’th-order partial derivatives don’t855

exist for all x ∈ Ω. A function can possess multiple different weak derivatives, but these will agree856

almost everywhere in Ω (i.e. everywhere but a measure zero subset of Ω).857

We are interested in functions that are “sufficiently nice” for proving universal approximation858

results, which leads to the concept of Sobolev spaces. The k’th order Sobolev space Hk
K

on Ω is859

defined as the collection of all functions f : Ω→ K possessing all weak derivatives D(i) f of order860

|i| ≤ k (i.e. i = (i1, i2, . . . , iℓ) for ℓ ≤ k), which each have finite L2 norm. This is equivalent to861

the condition862

∥ f ∥Hk
K

:=
∑

|i|≤k

∥D(i) f ∥L2
µ
dµ <∞, (25)

where the quantity ∥ f ∥Hk
K

is referred to as the k’th-order Sobolev norm of f . For k = 0, the863

Sobolev norm reduces to the usual L2 norm on Ω, and more generally ∥ f ∥L2
µ
≤ ∥ f ∥Hk

K

, so that864

every f ∈ Hk
K

necessarily has bounded L2 norm. We will also employ the so-called Sobolev865

seminorm | f |Hk
K

of a function f ∈Hk
K

, which is defined as | f |Hk
K

:=
∑

|i|=k∥D(i) f ∥L2
µ
.866

A final concept needed in the following is the notion of α-Hölder continuity, where a function867

f : Ω→ K is bounded in variation as868

| f (x)− f (y)| ≤ C∥x− y∥α, (26)

for C ∈ R a constant holding for any pair of points x, y ∈ Ω. We can without loss of generality869

take α to be in the range α ∈ (0, 1], and note that when α = 1 the notion of α-Hölder continuity870

reduces to the more familiar definition of Lipschitz continuity. Any function f : Ω → K whose871

first derivatives exist at all points in Ω and are bounded as
�

�

�

∂ f
∂ xi

�

�

� <∞ (for i = 1, 2, . . . , N) will872

always be Lipschitz continuous, and therefore α-Hölder continuous for any 0 < α ≤ 1.873

C.2 Proof of Theorem 2874

Theorem 2. Consider a family of continuous-valued MPS with polynomial feature functions875

F = { f1, f2, . . .} forming an orthonormal basis for [0, 1], which is defined on the hypercube876

Ω = [0, 1]N ⊆ RN . Let k ≥ N and let Φ : Ω → C be any square-integrable function with unit877

norm (〈Φ,Φ〉 = 1), whose partial derivatives of order 1, 2, . . . , k all exist and are bounded. Then878

for every positive χ , D ∈ N there exists a continuous-valued MPS of bond dimension χ and feature879

dimension D with unit norm, whose associated function Φ(χ ,D)
MPS approximates Φ with infidelity880

1− |〈Φ,Φ(χ ,D)
MPS 〉| ≤ γ1χ

−k+1 + γ2D−2k , (15)
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where γ1,γ2 > 0 depend on the target function Φ, the assumed degree of smoothness k, and the881

feature functions F .882

Rather than proving Theorem 2 directly, we instead prove a more general Theorem 4, given883

below. The fact that Theorem 4 implies Theorem 2 is immediate from the definitions and facts884

above concerning Sobolev spaces and Hölder continuity.885

Theorem 4. Consider a family of continuous-valued MPS with polynomial feature functions886

F = { f1, f2, . . .} forming an orthonormal basis for [0, 1], which is defined on the hypercube887

Ω = [0, 1]N ⊆ RN . Let k ≥ N and let Φ : Ω → C be any square-integrable function in the888

Sobolev space Hk
C

with unit L2 norm which is α-Hölder continuous for α >
1
2 . Then for every889

positive χ , D ∈ N there exists a continuous-valued MPS of bond dimension χ and feature dimen-890

sion D of unit norm, whose associated function Φ(χ ,D)
MPS approximates Φ with infidelity891

1− |〈Φ,Φ(χ ,D)
MPS 〉| ≤ γ1χ

−k+1 + γ2D−2k ,

where γ1,γ2 > 0 depend on the target function Φ, the assumed degree of smoothness k, and the892

feature functions F .893

This more general formulation allows us to make use of an invaluable result from [45], which894

applies to functional tensor train (FTT) decompositions that are almost identical to the continuous-895

valued MPS considered here. The result in question comes from the fundamental FTT approxi-896

mation characterization given in their Theorem 13 with a polynomial interpolation method, as897

expressed in their Eqs. 66, 70, and 73 2. Rephrased in our terminology and notation, this result898

takes the form of:899

Lemma 2 ( [45]). Let Φ : Ω → R be a Hk
R

function on Ω = [0, 1]N ⊆ RN which is α-Hölder900

continuous for α >
1
2 , and where k ≥ N . Then for any collection F = { f1, f2, . . .} of polynomial901

feature functions which form an orthonormal basis for [0, 1], for every positive χ , D ∈ N there902

exists a continuous-valued MPS with bond dimension χ and feature dimension D which computes903

a function Φ(χ ,D)
MPS : Ω→ R satisfying904

∥Φ−Φ(χ ,D)
MPS ∥L2

µ
≤

√

√N − 1

k − 1
∥Φ∥Hk

R

(χ + 1)−
k−1

2

+ C(k)|Φ(χ ,D)
MPS |Hk

R

D−k , (27)

with C(k) depending on k and (implicitly) on the choice of F .905

The RHS of Lemma 2 contains two polynomials of χ and D whose dependence on k is of906

the same order as the two polynomials on the RHS of the bound of Theorem 4. In order to use907

the former result to prove the latter though, we must do several things: (a) Replace χ + 1 by χ908

in the RHS of Eq. 27; (b) Generalize the setting of Lemma 2 from real-valued to complex-valued909

functions; (c) Ensure that Φ(χ ,D)
MPS can be chosen to have unit L2 norm whenever Φ does; (d) Bound910

the quantity |Φ(χ ,D)
MPS |Hk

C

by a function of k and F alone; and (e) Convert the L2 bound derived from911

Lemma 2 into the infidelity bound appearing in Theorem 4. We will proceed to do each of these912

in the following.913

Replace χ + 1 by χ This is straightforward, as for any positive values K > 0 and m ≥ 1,914

the inequality K(χ + 1)−m ≤ 2Kχ−m holds for all bond dimensions χ ≥ 1. This replacment915

therefore adds a factor of 2 to the first term on the RHS of Eq. 27.916

2All equation and theorem references are relative to the published version of [45]
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Complex-valued generalization Although Lemma 2 is phrased in terms of real-valued func-917

tions, generalizing this result to complex-valued functions is straightforward. The target function918

Φc : Ω → C can be represented as a weighted sum of two real-valued functions Φr ,Φi : Ω → R919

via Φc(x) = Φr (x) + iΦi(x), and each function approximated separately by continuous MPS920

Φr
MPS,Φi

MPS of bond dimension
χ

2 (assuming wlog that χ is even). The two approximating MPS921

can be summed together as a single continuous MPS Φc
MPS of bond dimension χ , giving922

∥Φc −Φc
MPS∥L2

µ
≤ ∥Φr −Φr

MPS∥L2
µ
+ ∥Φi −Φi

MPS∥L2
µ

≤ 2

√

√N − 1

k − 1

�

∥Φr∥Hk
R

+ ∥Φi∥Hk
R

�
�χ

2

�− k−1
2

+ C(k)
�

|Φr
MPS|Hk

R

+ |Φi
MPS|Hk

R

�

D−k (28)

≤ 2
k
2+1

√

√N − 1

k − 1
∥Φc∥Hk

C

χ−
k−1

2

+
p

2C(k)|Φc
MPS|Hk

C

D−k , (29)

where we have used the identity ∥Φr∥Hk
R

+∥Φi∥Hk
R

≤
p

2∥Φc∥Hk
C

(a basic consequence of complex923

versus real L2 norms) for the Sobolev norm and seminorm.924

Ensure Φ(χ ,D)
MPS has unit norm Theorem 4 not only assumes a target function Φ with unit norm,925

but also ensures a continuous MPS approximation with unit norm. This guarantee is not provided926

by Lemma 2, whose approximating function Φ(χ ,D)
MPS is not guaranteed to have the same norm as927

the target Φ. While we can always rescale Φ(χ ,D)
MPS to have unit norm, we must understand how this928

impacts the approximation error, something which can be done through inequalities which hold929

in any normed vector space. Given a target vector u satisfying ∥u∥ = 1, suppose there exists a930

vector v which approximates u to within distance ∥u − v∥. The unit vector v̂ = v/∥v∥ will then931

necessarily approximate u to within distance932

∥u − v̂∥ = ∥(u − v) + (v − v̂)∥ ≤ ∥u − v∥+ ∥v − v̂∥
= ∥u − v∥+ |1− ∥v∥| = ∥u − v∥+ |∥u∥ − ∥v∥|
≤ 2∥u − v∥.

Bound |Φ(χ ,D)
MPS |Hk

C

as a function of k and F We utilize the fact that the spatial dependence of933

Φ
(χ ,D)
MPS is entirely mediated by the first D polynomial embedding functions from F , which form an934

orthonormal basis over the finite-dimensional vector space of polynomials with degree less than935

D. This arrangment means that Φ(χ ,D)
MPS has all partial derivatives of arbitrary order, which can be936

used to directly compute its Sobolev seminorm |Φ(χ ,D)
MPS |Hk

C

without invoking the notion of weak937

derivative. Given the simple rules for taking partial derivatives of multivariate polynomials, we938

can see that any single spatial derivative
∂

∂ xi
will preserve the space of polynomials spanned by939

the D first embedding functions in F , and consequently be equivalent to a D×D matrix acting on940

the i’th mode of the discrete MPSψ(χ ,D)
MPS underlying the continuous MPS Φ(χ ,D)

MPS . More generally,941

every partial derivative ∂ (i) will be equivalently to a bounded linear operator M (i) acting on the942

vector space of N’th order tensors CD×···×D ≃ CDN whereψ(χ ,D)
MPS lives.943
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With these details in place, the seminorm can be explicitly bounded as944

|Φ(χ ,D)
MPS |Hk

C

=
∑

|i|=k

∥∂ (i)Φ(χ ,D)
MPS ∥L2

µ
=
∑

|i|=k

∥M (i)ψ
(χ ,D)
MPS ∥

≤
∑

|i|=k

|M (i)| · ∥ψ(χ ,D)
MPS ∥ =
∑

|i|=k

|M (i)|, (30)

where in the second equality we have invoked the orthonormality of the feature functions and945

the above-remarked equivalence between the action of ∂ (i) on continuous MPS and a finite-946

dimensional matrix M (i) acting on the underlying discrete MPSψ(χ ,D)
MPS . The notation |M (i)| refers947

to the spectral norm (i.e. the largest singular value) of M (i), and the final equality uses the unit948

norm assumption ∥Φ(χ ,D)
MPS ∥L2

µ
= ∥ψ(χ ,D)

MPS ∥ = 1. Although the value of the spectral norms |M (i)|949

will depend on the choice of basis functions F , it is clear that the RHS of Eq. 30 is finite and950

depends on nothing else besides k, giving us the desired bound on |Φ(χ ,D)
MPS |Hk

C

.951

Convert L2 bound to infidelity bound Summarizing our results up to this point, we have proved952

that for any unit-norm target function Φ ∈ Hk
C

and an orthonormal basis of polynomial feature953

functions F , there exist quantities γ′1,γ′2 > 0 depending only on Φ, k, and F for which there954

exist unit-norm continuous MPS Φ(χ ,D)
MPS of arbitrary bond dimension χ and feature dimension D955

approximating Φ with L2 error ∥Φ−Φ(χ ,D)
MPS ∥L2

µ
≤ γ′1χ

− k−1
2 +γ′2D−k . However Theorem 4 requires956

a bound on the infidelity 1− |〈Φ,Φ(χ ,D)
MPS 〉|. This can be achieved by the straightforward inequality957

1− |〈u, v〉| ≤ 1
2∥u − v∥2, which holds for any u and v in a normed vector space. Combining this958

with our L2 bound gives959

1− |〈Φ,Φ(χ ,D)
MPS 〉| ≤

1
2∥Φ−Φ

(χ ,D)
MPS ∥

2
L2
µ

≤ 1
2

�

γ′1χ
− k−1

2 + γ′2D−k
�2

≤ γ1χ
−k+1 + γ2D−2k , (31)

where we use the identity γ′1γ
′
2χ
− k−1

2 D−k ≤ γ′1γ
′
2(χ

−k+1 + D−2k) to simplify the cross-terms960

arising from the expansion of the square above to arrive at the constants γ1 :=
1
2γ
′2
1 + γ

′
1γ
′
2 and961

γ2 :=
1
2γ
′2
2 +γ

′
1γ
′
2. This gives us our desired infidelity bound, completing our proof of Theorem 4,962

and by extension Theorem 2.963

As a final note, we consider the case where the domain of the target function Φ is unbounded964

(e.g. all of RN ). Although the methods of [45] don’t apply in this setting (for reasons related965

to certain functional analytic lemmas used in the proof of Lemma 2), we can instead consider966

a sequence of approximations of Φ by functions Φε supported on boxes Ωε of increasing size,967

which each approximate Φ to within a distance of ε. By approximating this sequence of functions968

of bounded domain using Theorem 2, we can approximate our targetΦ to arbitrary precision, albeit969

at the cost of introducing another ε-dependent term into the error bound of Eq. 15. Although this970

argument leaves some technical details to be worked out, it is clear that in practice this method971

offers a concrete means of using continuous-valued MPS as universal function approximators for972

functions on unbounded domains.973

C.3 Proof of Theorem 3974

Theorem 3. Consider a family of continuous-valued MPS with polynomial feature functions975

F = { f1, f2, . . .} forming an orthonormal basis for [0, 1], which is defined on the hypercube976
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Ω = [0, 1]N ⊆ RN . Let k ≥ N and let P : Ω → R be any Probability Density Function (PDF)977

bounded below as Pmin = minx∈Ω P(x) > 0, whose partial derivatives of order 1, 2, . . . , k all978

exist and are bounded. Then for every positive χ , D ∈ N there exists a continuous-valued MPS of979

bond dimension χ and feature dimension D with unit norm, whose associated Born machine PDF980

P(χ ,D)
MPS (x) = |Φ

(χ ,D)
MPS |

2 approximates P with Jensen-Shannon divergence981

JS
�

P(χ ,D)
MPS , P
�

≤ η1χ
− k−1

2 +η2D−k , (16)

where η1,η2 > 0 depend on the target PDF P, the assumed degree of smoothness k, and the982

feature functions F .983

The proof of Theorem 3 applies Theorem 2 to the artificial wavefunction ΦP(x) =
p

P(x),984

which requires first proving that (a) The partial derivatives of ΦP of orders 1, 2, . . . , k (where985

k ≥ N) all exist and are bounded. With this established, Theorem 2 gives us an approximating986

wavefunction Φ(χ ,D)
MPS with a bounded infidelity relative to ΦP , and we must (b) Convert the infi-987

delity bound between ΦP and Φ(χ ,D)
MPS into a bound on the Jensen-Shannon (JS) divergence between988

P and P(χ ,D)
MPS . We tackle these issues in turn.989

Prove the partial derivatives of ΦP of orders 1, 2, . . . , k (where k ≥ N) all exist and are990

bounded. We employ the multivariate version of Faà di Bruno’s formula, which is a generaliza-991

tion of the standard chain rule to higher-order partial derivatives, stated here as992

Lemma 3 (Faà di Bruno). Consider a multivariate function g : Ω→ K for Ω ⊆ RN whose partial993

derivatives ∂ (i)g up to order k exist and are bounded, as well as a univariate function h : K→ K994

which is k-times differentiable within the range of g (i.e. g (Ω) ⊆ K). Then the partial derivative995

of the composite function h ◦ g : x 7→ h(g (x)) wrt the ℓ variables i = (xi1 , xi2 , . . . , xiℓ) (with996

ℓ ≤ k) at a point x ∈ Ω is997

∂ (i)h(g (x)) =
∑

π∈Π

D|π|h

d y |π|
(g (x)) ·
∏

B∈π
∂ (B)g (x), (32)

where (i) π runs through the set Π of all partitions of the set {i1, i2, . . . , iℓ}; (ii) B ∈ π denotes an998

iteration over all “blocks” of the partition π; (iii) ∂ (B) denotes the partial derivative with respect999

to all of the variables xi with i ∈ B; (iv) and |π| indicates the number of blocks in the partition π.1000

The details of Eq. 32 are of little interest to us, as we only use it to bound the partial derivatives1001

∂ (i)ΦP . To this end, we first use the assumption P(x) ≥ Pmin and chain rule for the square root1002

function h(y) : y 7→ py to show that1003

�

�

�

�

Dnh

d yn
(g (x))

�

�

�

�

=

�

�

�

�

(2n − 3)(2n − 5) · · · (−1)
2n

g (x)−n+
1
2

�

�

�

�

≤ 2n
�

1

Pmin

�n−
1
2
=: Smax(n). (33)

The fact that Smax(n) is an increasing function of n tells us that Smax := Smax(k) is an upper1004

bound for every derivative of h up to order k. Denoting the largest partial derivative of P by1005

GP := max|i|≤k maxx∈Ω
�

�∂ (i)P(x)
�

�, which is finite by assumption (see Theorem 3), we can use1006

Eq. 32 to give the bound1007

∂ (i)ΦP(x) = ∂
(i)h(P(x)) ≤
∑

π∈Π
Smax

∏

B∈π
∂ (B)P(x)

≤
∑

π∈Π
Smax

∏

B∈π
GP ≤
∑

π∈Π
Smax (GP)

k

≤ Smax (kGP)
k , (34)
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which suffices to prove the existence and boundedness of the partial derivatives of ΦP .1008

Convert the infidelity bound between ΦP and Φ(χ ,D)
MPS into a bound on the Jensen-Shannon1009

(JS) divergence between P and P(χ ,D)
MPS . We proceed in three steps, using the quantum trace dis-1010

tance and the classical total variation (TV) distance as intermediate quantities. The trace distance1011

T(Φ,Φ′) between pure quantum states Φ and Φ′ takes the form of T(Φ,Φ′) :=
p

1− |〈Φ,Φ′〉|2,1012

which can be expressed in terms of the infidelity I(Φ,Φ′) = 1−|〈Φ,Φ′〉| as T(Φ,Φ′) =
p

2I + I2.1013

Thus, the infidelity bound of Eq. 31 gives us a bound on our quantum trace distance of interest.1014

A well-known interpretation of the quantum trace distance between states Φ, Φ′ is a bound1015

on the classical TV distance TV(P, P(χ ,D)
MPS ) = supA⊆Ω

�

�

�P(A)− P(χ ,D)
MPS (A)
�

�

� between any classical1016

distributions PΦ, PΦ′ which arise from von Neumann measurements of the corresponding quan-1017

tum states [62]. Given that the Born machine distributions are precisely those arising from von-1018

Neumann measurements of the underlying wavefunctions, we have TV(P, P(χ ,D)
MPS ) ≤ T(ΦP ,Φ(χ ,D)

MPS ),1019

and thereby a bound on the TV distance,1020

TV(P, P(χ ,D)
MPS ) = sup

A⊆Ω

�

�

�P(A)− P(χ ,D)
MPS (A)
�

�

� ≤ T(ΦP ,Φ(χ ,D)
MPS )

≤
r

3
2

�

γ′1χ
− k−1

2 + γ′2D−k
�

. (35)

Finally, the Jensen-Shannon divergence is known to be bounded by the TV distance, written1021

as JS(P,Q) ≤ ln(2)
2 TV(P,Q) which, combined with the above results, give1022

JS(P, P(χ ,D)
MPS ) ≤

ln(2)
2

TV(P, P(χ ,D)
MPS ) ≤

ln(2)
2

T(ΦP ,Φ(χ ,D)
MPS )

=
ln(2)

2

p

2I + I2 ≤
p

3 ln(2)
2

p

I

≤
r

3
8 ln(2)
�

γ′1χ
− k−1

2 + γ′2D−k
�

. (36)

Taking η1 :=
Ç

3
8 ln(2)γ′1 and η2 :=

Ç

3
8 ln(2)γ′2 completes the proof of Theorem 3.1023

D Detailed Methods1024

D.1 Rotated Cube1025

The cube was rotated by a random orthogonal transformation, and then scaled per-axis to the range1026

[−1, 1] to standardize the range. This resulted in a linear transformation1027

M =











1.33 0.155 0.074 0.411 0.029
−0.072 1.181 0.029 0.375 −0.342
0.306 0.303 0.862 −0.226 0.302
−0.363 0.217 −0.297 0.998 0.125
0.024 0.229 0.358 0.514 0.875











which acted on the set [−1
2 ,

1
2]

5. The simple form allowed use to compute the exact entropy as1028

log(det(M)) = −0.4246.1029

The training set was 80k sampled points. No minibatching was used. Eighteen sweeps of1030

DMRG were performed. At each site, 4 steps of gradient descent were performed, each with a1031
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Figure 13: A comparison of real-entry and complex-entry matrix product state perfor-
mance on the rotated cube dataset. Bond dimension χ and feature dimension D were
equal, and tried at 5 different values from 3 up to 19, with both real and complex entries.
The bond dimension was initially lower and increased at training epochs 9 and 22, lead-
ing to kinks in the loss curve. Complex-entry MPS trained smoothly, while real-entry
MPS did not, due to the sharp truncation of the SVD.

learning rate of 0.05. The maximum bond dimension in the first sweep was max(χmax/2, 5), and1032

increased in subsequent sweeps linearly up to χmax where it stayed for the last five sweeps.1033

In Fig. 13 we present a comparison of the training performance for MPSs with real and com-1034

plex entries on this specific data set.1035

D.2 Two Moons1036

For a given noise parameter σ≪ 1, the entropy of the two moons dataset can be approximated as1037

S ≈
3 ln(2π) + 1

2
+ ln(σ) +

1.81

π
σ. (37)

This approximation can be understood as ln(2) for choosing a curve to lie on, log(π) for a uniform1038

distribution on a curve of length π, and log(σ
p

2πe) for a radial uncertainty σ. The final
1.81
π σ1039

accounts for extending the curve of length π at the tips by a blur of σ, where1040

1.81 ≈
∫ ∞

−∞
−
p

2(1+ erf(x )) log
�

1+ erf(x )
2

�

dx . (38)

For our experimental results, we used a value of σ = 0.1, for which S ≈ 0.96.1041

To use the Fourier basis, we first scaled the x and y values to the range [−0.9, 0.9]. This1042

rescaling adds a small constant factor to the NLL, but this was corrected for when comparing1043

to the true entropy of the distribution. We used a training set of 10k sampled points. The KL1044

divergence as a function of χ and D is presented in Fig. 14, where a minimum value of 0.022 was1045

reached. It is apparent that for this dataset, the bond dimension quickly saturated its usefulness1046

past χ = 4 ∼ 5, with the largest improvement coming from increasing D.1047

D.3 Iris1048

We used the Iris dataset available in the UCI Machine Learning Repository [59], consisting of 1501049

points with four continuous features describing petal shapes of different Iris flowers, supplemented1050

with a categorical feature describing which of three varieties the flower belongs to. The Iris dataset1051

was normalized by rescaling each feature to lie in the range [−1, 1], before applying a feature map1052

to each. The NLL loss for different bond and feature dimensions is shown in Fig. 15.1053
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Figure 14: Excess loss (NLL minus distribution entropy) on Two Moons with σ = 0.1,
trained with different embedding dimensions and bond dimensions. Upper plot shows a
Hermite embedding. Lower plot shows a Fourier embedding.

Figure 15: NLL loss on Iris dataset at different bond dimensions and feature dimensions.
Each point is the mean of 5 values from a 5-fold cross validation.
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D.4 XY Model1054

The continuous-valued MPS model was trained to minimize the NLL loss on a dataset of samples1055

drawn from the finite temperature XY model generated using Markov Chain Monte Carlo [63].1056

The conversion of this score to a KL divergence was made using the test of [64] with 100k samples1057

and a k = 10 neighborhood. To further examine the model’s behavior, we also measured the KL1058

divergence between the model and true marginal distributions of the angle-invariant quantities1059

Cneigh = cos(x1,1 − x1,2) and Ccorn = cos(x1,1 − x4,4), which measure the correlations between1060

neighbors and opposite corners, respectively. These pairwise correlations were both learned very1061

well, with a KL divergence of 0.0027 for corner-to-corner correlations (which are the hardest for1062

the linear MPS to learn), and even lower values for closer pairs of sites.1063

D.5 Compressable Data1064

The deliberately compressible data for Sec. 7.5 was a 4-feature dataset generated by the following1065

formulas from four samples xi from the uniform distribution on [0, 1]:1066

y1 = −1+ ⌊0.6+ 2.2x1⌋
y3 = x3

y4 = −
1

2
+ ⌊1.4x4⌋

y2 =
y1 + 2x2 + y3 + y4

4
,

where ⌊x ⌋ denotes the largest integer k such that k ≤ x . This produces a dataset where each1067

feature has a very different marginal (implying that each feature would make best use of a different1068

compression map), the features y1 and y4 are discrete with only three or two values respectively,1069

and y2 is correlated with the other three (so that the MPS correlation structure is not trivial). The1070

single-site marginal distribution is shown in Fig. 11.1071

E Dynamic Basis Training1072

The following pseudocode details in more detail the process for optimizing the D × d isometric1073

compression matrices {Ui}Ni=1
using a dataset of samples D = {x( j)}T

j=1
, where each sample has1074

features x( j) = (x ( j)1 , x ( j)2 , . . . , x ( j)N ). In practice the steps in this process will be interspersed with1075

DMRG updates, in order to benefit from caching of intermediate hidden states.1076
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Algorithm 1 Dynamic Basis Adjustment
ε← 0.5 ▷ Controls stability
for i ← 1 . . . N do ▷ Loop over each site

for j ← 1 . . . T do ▷ Loop over each sample in batch
ui, j ← ζ(x

( j)
i
) ▷ D-dim embedding

vi, j ←MPSContract(x( j),¬i) ▷ d-dim embedding
c j ← u†

i, j
Ui vi, j

p j ← |c j | ▷ Loss probability
φ j ← c j/p j ▷ Current phase

end for
B←
∑T

j=1(p
ε
j
φ j)−1ui, jv

†
i, j

▷ D × d matrix
BU , BS, BV = SVD(B)
Ui ← BU BT

V ▷ Update isometric matrix Ui
end for
Increase ε towards 1. If loop is unstable, decrease ε towards 0.
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