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Abstract

We investigate a large class of N = (2, 2) supersymmetric field theories in two di-
mensions, which contains the Murugan-Stanford-Witten model, and can be naturally
regarded as a disordered generalization of the two-dimensional Landau-Ginzburg mod-
els. We analyze the two and four-point functions of chiral superfields, and extract from
them the central charge, the operator spectrum, and the chaos exponent in these mod-
els. Some of the models exhibit a conformal manifold parameterized by the variances of
the random couplings. We compute the Zamolodchikov metrics on the conformal man-
ifold, and demonstrate that the chaos exponent varies nontrivally along the conformal
manifolds. Finally, we introduce and perform some preliminary analysis of a disordered
generalization of the gauged linear sigma models, and discuss the low energy theories
as ensemble averages of Calabi-Yau sigma models over complex structure moduli space.
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1 Introduction

Disordered couplings have provided us a large class of large N solvable models, and brought
many new insights into the dynamics of black holes in quantum gravity. The classic example
is the Sachdev-Ye-Kitaev (SYK) model [1, 2], which is a quantum mechanical system of
N Majorana fermions interacting with random multi-fermion couplings. Using large N

techniques, the correlation functions of the fermions in the SYK model can be explicitly
solved [3–5]. For instance, the two-point function can be solved by summing over the melonic
diagrams using the Schwinger-Dyson equation, and the four-point function is solved by
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summing over the ladder diagrams. Interesting physical observables are then extracted from
these exact solutions, such as the spectrum of two-particle states and the chaos exponent
from the Euclidean and the out-of-time order four-point correlation functions, respectively.
They reveal many remarkable properties of the SYK model.

At low temperatures, the SYK model exhibits an emergent time reparameterization sym-
metry, which is weakly broken by finite temperature leading to a Goldstone mode, the
Schwarzian sector [4, 6]. Despite the low energy spectrum of the SYK model is not sparse,
the Schwarzian sector dominates over the rest of the states. Consequently, the holographic
dual at low energies is governed by a two-dimensional dilaton gravity, the Jackiw Teitelboim
(JT) gravity [6–8]. The SYK model further displays maximal chaos, as the chaos exponent
saturates the bound on chaos [9], which is a notable feature that shares with black holes in
Einstein gravity [10].

Over the years, the SYK model has been generalized to include complex fermions [11–13],
additional flavor symmetry [14], and supersymmetry [15–20]. Going beyond 0+1 dimensions,
the two and three-dimensional generalizations of the SYK have been studied with various
numbers of supersymmetries [21–27]. In higher dimensions, one has to consider nontrivial
renormalization group (RG) flows, which introduce additional complications. On the one
hand, the couplings involving only fermions are (marginally) irrelevant in two dimensions
and above. On the other hand, the bosonic models typically require fine-tunings of the
relevant couplings to reach the conformal fixed point in the infrared (IR), which becomes
subtle when the couplings are random variables. Nevertheless, with N = 2 supersymmetry in
two dimensions, the Murugan-Stanford-Witten (MSW) model, introduced in [21], overcomes
both problems and admits a superconformal fixed point.

In this paper, we study generalizations of the MSW model by introducing multiple families
of disordered chiral superfields. The models are solvable in the large N limit, defined as the
numbers of the chiral superfields in each family becoming large while the ratios between
the numbers remain finite. They can also be viewed as the disordered generalization of the
N = 2 Landau-Ginzburg models in two dimensions, and follow a similar classification [28–30]
(see Section 2.2).1 The MSW model is the simplest model in the classification with only
one family of chiral superfields. An important new feature of the more general disordered
Landau-Ginzburg models is that when there are two or more families of chiral superfields, the
models could admit nontrivial conformal manifolds in the IR parametrizing by the variances
of the random couplings. We investigate several examples in the classification with two
families of chiral superfields, including one with an IR conformal manifold (see Section 2.4).
In particular, we compute the two and four-point functions of the chiral superfields in these
models in the large N limit by summing over the melonic and ladder diagrams, and we

1A closely related tensor model generalization of the N = 2 Landau-Ginzburg models was studied in [31].
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extract the chaos exponents from the four-point functions. In general, the chaos exponent
λL depends on the ratio of the numbers of chiral superfields in each family, as well as the
coordinates of the conformal manifold (when the manifold exists). We find an upper bound
λL ≲ 0.5824 across all the examples we studied. We propose that this is a universal upper
bound for the chaos exponents in the disordered Landau-Ginzburg models.

Besides large N techniques, the disordered Landau-Ginzburg models can also be studied
by supersymmetric localization. Following the analysis of the non-disordered models in
[32–34], we compute the two-sphere partition functions and the two-point functions of the
disordered models (see Section 2.5). In the large N limit, the results of the two-point function
coefficients agree nicely with those computed before from summing Feynman diagrams. This
provides extra evidence that the disordered Landau-Ginzburg models flow to superconformal
fixed points in the IR. Furthermore, in the example with an IR conformal manifold, we
compute the Zomoldchikov metric by taking derivatives of the two-sphere partition function.

Another new feature when there are multiple families of chiral superfields is that the
superpotential could be engineered such that the theory possesses nontrivial flavor U(1)

symmetries. Such a superpotential always has flat directions, and the IR theory is non-
compact. One could make the theory compact by gauging the U(1) flavor symmetries,
where the D-terms potential lifts all the flat directions. The resulting theory is a disordered
generalization of the gauged linear sigma models. In the seminal work [35], it was shown
that the (non-disordered) gauged linear sigma models, with an anomalous-free axial R-
symmetry and a positive Fayet-Iliopoulos coupling, are in the same universality class as the
nonlinear sigma models on Calabi-Yau target spaces, i.e. they flow to the same N = (2, 2)

superconformal field theories. This result implies that the disordered gauged linear sigma
models, with the same conditions as above, are IR-dual to the ensemble averages of the
Calabi-Yau sigma models over the complex structure moduli (see Section 3). To support
this, we compute the two-point functions of the chiral superfields and the result confirms
that the theories flow to IR superconformal fixed points.

The remainder of this paper is organized as follows. Section 2.2 introduces the disordered
Landau-Ginzburg models and presents a classification of the models. Section 2.3 reviews the
Murugan-Stanford-Witten model. Section 2.4 studies examples of the disordered Landau-
Ginzburg models with two families of chiral superfields, computing the two and four-point
functions and analyzing the chaos exponents. Section 2.5 applies the supersymmetric local-
ization to the disordered Landau-Ginzburg models, and computes the two-sphere partition
functions, two-point functions, and the Zamolodchikov metric for several examples. Sec-
tion 3 introduces the disordered gauged linear sigma models, discusses their relations to the
ensemble averages of Calabi-Yau sigma models, and performs some preliminary analysis.
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2 Disordered Landau-Ginzburg models

2.1 The models

Let us consider a disordered N = 2 Ginzburg-Landau model with n different families of
chiral superfields: Φ

(1)
i for i = 1, · · · , N1, Φ

(2)
i for i = 1, · · · , N2, and so on. The chiral

superfields have a standard kinetic term

Lkin =

∫
d2θd2θ̃

(
Φ̃(1),iΦ

(1)
i + Φ̃(2),iΦ

(2)
i + · · ·+ Φ̃(n),iΦ

(n)
i

)
, (2.1)

and are coupled via an interaction term

LW = i

∫
d2θW (Φ

(1)
i , · · · ,Φ(n)

i )
∣∣∣
θ̃=

¯̃
θ=0

+ h.c. . (2.2)

Our conventions of the superspace are given in Appendix A. The disordered superpotential
W contains terms with random couplings, with the general form as

W =
∑

p≡(p1,··· ,pn)∈I

gI1···Inp (Φ
(1)
I1
)p1 · · · (Φ(n)

In
)pn , (2.3)

where I is an index set that controls which terms would appear in the superpotential, the
index Ip is a collection of pa indices, Ia = (i1, · · · , ipa), and (Φ

(a)
Ia
)pa stands for

(Φ
(a)
I )p ≡ Φ

(a)
i1

· · ·Φ(a)
ip

. (2.4)

The coupling constants gI1···Inp are independent Gaussian random variables with zero mean
and variance as〈

gI1···Inp

〉
= 0 ,

〈
gI1···Inp gp,I′1···I′n

〉
=

J2
p

Np1+···+pn−1
δI1I′1

· · · δInI′n , δII′ ≡ δ
(i1
i′1

· · · δip)i′p
, (2.5)

where N = N1 + · · · + Nn, We are interested in the limit Ni → ∞ while fixing Jp and the
ratios

λi =
Ni

N
. (2.6)

The superspace coordinates θ+ and θ− have charges (1, 0) and (0, 1) under U(1)L×U(1)R
R-symmetry, and the coordinates θ̄± have the opposite charges. For the interaction terms
to preserve the U(1)L ×U(1)R symmetry, the superpotential has to be a quasi-homogeneous
polynomial, and we further demand that the chiral superfields in the same family scale by
the same weight, i.e.

W (λq1Φ
(1)
i , · · · , λqnΦ

(n)
i ) = λW (Φ

(1)
i , · · · ,Φ(n)

i ) for λ ∈ C∗ . (2.7)
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Under the renormalization group, the theory flows to a strongly coupled N = (2, 2) SCFT.
The U(1)L×U(1)R R-symmetry becomes the part of the superconformal algebra. The bottom
component of the chiral superfields Φ(a) become chiral primary operators of R-charges (qa, qa).
By the quasi-homogeneity condition, the powers pa in (2.3) and the R-charges qa satisfy

n∑
a=1

paqa = 1 . (2.8)

For a given (p1, · · · , pn), we focus on the cases that the couplings gI1,··· ,Inp are generic, since
generic couplings give dominant contributions to the ensemble average over the coupling
constants.

IR conformal manifold and field redefinitionss In the non-disordered models, the
coefficients in the superpotential modulo (quasi-homogeneous) field redefinitions of the chiral
superfields correspond to exactly marginal deformations of the IR SCFTs. In disordered
models, the coefficients in the superpotential are random couplings and should be averaged
over, but we could still vary the variances Jp in (2.5). Some of the variances could be fixed
again by field redefinitions (of bilocal superfields), and the remaining variances give marginal
deformations and parameterize the IR conformal manifold of the disordered models.

To see more precisely how field redefinitions fix the variances, let us integrate out the
random couplings gI1···Inp ’s and arrive at the action of the bilocal superfields G(a)(Z̃1, Z2) and
Σ(a)(Z̃1, Z2),

S =
∑
a

Na log det
[
θ12

¯̃θ12δ(⟨12⟩)δ(⟨1̄2̄⟩)D2D2 + Σ(a)(Z̃1, Z2)
]
+N

∑
a

Tr (Σ(a) ·G(a))

−N

∫
d2|2Z̃1d

2|2Z2

∑
p≡(p1,··· ,pn)∈I

J2
pG

(1)(Z̃1, Z2)
p1 · · ·G(n)(Z̃1, Z2)

pn ,
(2.9)

where Z = (y, ȳ, θ, θ̄), Z̃ = (ỹ, ¯̃y, θ̃, ¯̃θ). The super-derivatives D, D are defined in A.2, and
the super-distances ⟨12⟩ and ⟨1̄2̄⟩ are defined in (A.9). We have used the matrix notation
for the second term on the first line of (2.9) as

Tr (Σ(a) ·G(a)) =

∫
d2|2Z̃1d

2|2Z2Σ
(a)(Z̃1, Z2)G

(a)(Z̃1, Z2) . (2.10)

In the low energy limit E ≪ Jp, we can drop the derivative term D2D2 in (2.9).

Now, we follow the arguments in [36,37] (with suitable generalizations to bilocal actions)
to show that one could use field redefinitions to simplify the action (2.9). Consider the field
redefinition of the bilocal field G(a) as

G(a)(Z̃1, Z2) → G(a)′(Z̃1, Z2) = F (a)(G(1)(Z̃1, Z2), · · · , G(n)(Z̃1, Z2)) , (2.11)
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where F (a) is a quasi-homogeneous polynomial that has the same homogeneous degree as
G(a), i.e.

F (a)(λq1G(1)(Z̃1, Z2), · · · , λqnG(n)(Z̃1, Z2)) = λqaF (a)(G(1)(Z̃1, Z2), · · · , G(n)(Z̃1, Z2)) . (2.12)

Under the field redefinition (2.11), the path integral measure DG(a) becomes

DG(a) → DG(a)′ = | det(δF/δG)|DG(a) . (2.13)

The Jacobian | det(δF/δG)| is a constant and can be ignored because δF/δG could be
arranged to a block upper triangular matrix with constant diagonal blocks by the quasi-
homogeneous condition (2.12).

Next, we consider the field redefinition of Σ(a) as

Σ(a) → Σ(a)′ = Σ(a) ·G(a) · (F (a))−1 , (2.14)

where “·” is the matrix product that stands for integrating over Z or Z̃ as in (2.10), and
(F (a))−1 is the matrix inverse of F (a). Under the field redefinition (2.14), the path integration
measure DΣ(a) changes to

DΣ(a) → DΣ(a)′ =
∣∣det [G(a) · (F (a))−1

]∣∣V DΣ(a) , (2.15)

where V is the rank of the bilocal superfield Σ(a) regarded as a matrix.2 In summary, we
arrive at the action

S =
∑
a

Na log det
(
Σ(a)

)
+N

∑
a

Tr (Σ(a) ·G(a))

−N

∫
d2|2Z̃1d

2|2Z2

∑
p≡(p1,··· ,pn)∈I

J2
pF

(1)(Z̃1, Z2)
p1 · · ·F (n)(Z̃1, Z2)

pn

−
∑
a

(Na − V ) log det
(
F (a) · (G(a))−1

)
.

(2.16)

The last term in (2.16) can be written as a ghost action

Sgh =
∑
a

(Na − V )

∫
d2|2Z̃1d

2|2Z2 C̃(Z̃1)
[
F (a) · (G(a))−1

]
(Z̃1, Z2)C(Z2) , (2.17)

where C̃ and C are the anti-chiral and chiral ghost superfields, respectively. Because F (a) is
a quasi-homogeneous polynomial with the same degree as G(a), it should take the form as

F (a)(G(1), · · · , G(n)) = κG(a) +H(a)(G(1), · · · ,���G(a), · · · , G(n)) , (2.18)

2More precise definition of V can be found in [38].
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where H(a) is a quasi-homogeneous polynomial that does not depend on G(a). We have[
F (a) · (G(a))−1

]
(Z̃1, Z2) = κθ12

¯̃θ12δ(⟨12⟩)δ(⟨1̄2̄⟩) +
[
H(a) · (G(a))−1

]
(Z̃1, Z2) . (2.19)

Substituting (2.19) into the ghost action (2.17), the first term in (2.19) gives a mass term
for the ghost fields C and C̃. Hence, in the IR limit, we can integrate out the ghost fields C
and C̃, equivalent to deleting the last term in (2.16). Because F (a)’s are quasi-homogeneous,
the second line of (2.16) can be rewritten as

−N

∫
d2|2Z̃1d

2|2Z2

∑
p≡(p1,··· ,pn)∈I

J ′2
p G

(1)(Z̃1, Z2)
p1 · · ·G(n)(Z̃1, Z2)

pn , (2.20)

which takes the same form as the second line of (2.9), but with new coefficients J ′2
p which

are linear combinations of the old coefficients J2
p . Hence, the field redefinition (2.11) gives

us equivalence relations between variances

J ′2
p ∼ J2

p , (2.21)

which can be used to fix (some of) the variances J2
p .

2.2 A classification

We presently discuss the constraints and classifications of the disordered superpotential W .
In this discussion, we could treat a family of superfields {Φ(a)

i | i = 1, · · · , Na} as a single su-
perfield Φ(a), and treat the superpotential W as a function of the variables Φ(1), · · · ,Φ(n). The
classification problem now reduces to the problem of classifying non-disordered Ginzburg-
Landau theories (Ni = 1 for all i = 1, · · · , n) [28–30]. We briefly review the classification
in [30].

We impose the following two constraints on the superpotentials.

1. The IR SCFT has a unique normalizable vacuum. This implies that the superpotential
W (Φ(i)) is compact, i.e. the equations

∂Φ(1)W = · · · = ∂Φ(n)W = 0 (2.22)

has a unique solution
Φ(1) = · · · = Φ(n) = 0 . (2.23)

2. The theory is indecomposable, which implies that the superpotential cannot be written
as a sum of two terms involving different variables, i.e. for example

W (Φ(1), · · · ,Φ(n)) = W1(Φ
(1), · · · ,Φ(k)) +W2(Φ

(k+1), · · · ,Φ(n)) . (2.24)
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Since we will focus on the IR SCFT, two different superpotentials, which define different
UV theories, are regarded as IR-equivalent if the theories flow to the same IR SCFT. In
particular, this implies the following two IR-equivalence relations between superpotentials.

1. If two superpotentials are related by a field redefinition compatible with quasi–homogeneity,
then they are IR-equivalent.

2. If a superpotential W has a variable Φ(a), which appears only linearly or quadratically,
then W is IR-equivalent to a superpotential given by substituting equations of motion
∂Φ(a)W = 0 into W .

In [30], the authors found all the possible R-charge assignments to the superfields Φ(1),
· · · , Φ(n) up to n = 5, which give superpotentials that satisfy the above two constraints and
two equivalence relations. We will focus on the cases of n = 1 and 2.

For n = 1, the possible R-charges are

q1 =
1

q
, for q ∈ Z≥3 . (2.25)

The superpotential is
W (Φi) = gi1···iqΦi1 · · ·Φiq , (2.26)

where we have suppressed the superscript. This model has been studied in [21, 22], and
we refer to it as the Murugan-Stanford-Witten (MSW) model. The MSW model with a
specified q would be referred to as the MSWq model. Some analysis of the MSW model will
be reviewed in Section 2.3. For the non-disordered model (N = 1), this superpotential was
referred as the Aq−1 superpotential in [28].

For n = 2, the possible R-charges are

Ik,l : (q1, q2) =

(
l − 1

kl
,
1

l

)
for (k, l) ∈ Z≥2 × Z≥3 , (2.27)

and
IIk,l : (q1, q2) =

(
l − 1

kl − 1
,
k − 1

kl − 1

)
for (k, l) ∈ Z≥2 × Z≥2 . (2.28)

We will refer to them as type Ik,l and type IIk,l models. These two classes of models are
overlapped, and we have the identifications

Ik,l = IIk,l+ 1−l
k
. (2.29)

Given the R-charges of the chiral superfields, we consider the most general quasi-homogeneous
superpotentials up to field redefinitions. Such superpotentials would satisfy the compactness

8



and indecomposable conditions. If we specialize the superpotential by turning off some of the
coefficients, then the superpotential might not satisfy the compactness and indecomposable
conditions.

In Section 2.4, we will study and give detailed analyses of the models

I2,q , I3,3 , I4,3 , II3,4 . (2.30)

For the non-disordered theories (N1 = N2 = 1), the type I2,q, I3,3, and I4,3 superpotentials
were referred as the Dl+1, E7, and J10 superpotentials, respectively, in [28]. The superpoten-
tials of I2,l, I3,3 and II3,4 do not have any exactly marginal deformations. The models I3,4 has
one-dimensional conformal manifolds. We will inspect how physical quantities (especially
the chaos exponent) vary along the conformal manifolds.

2.3 Review of the Murugan-Stanford-Witten (MSW) model

The models with only one type of disordered chiral superfields and Aq−1 superpotential (2.26)
were studied in [21,22]. Let us give a brief review following [22] of the computation of the two
and four-point functions of the chiral superfields Φi, the operator spectrum in the Φi × Φj

OPE, and the chaos exponent of the model.

We start with the two-point function〈
Φ̃i(Z̃1)Φj(Z2)

〉
= δijG(⟨12⟩) , (2.31)

which is a function of the super-distances ⟨12⟩ and ⟨1̄2̄⟩ given in (A.9). The coordinates Z, Z̃
are Z = (y, ȳ, θ, θ̄), Z̃ = (ỹ, ¯̃y, θ̃, ¯̃θ). In the leading order of the large N limit, the propagators
can be computed by summing over the melonic diagrams and satisfy the Schwinger-Dyson
equations

D3D3G(⟨13⟩) + qJ2

∫
d2y2d

2θ2G(⟨12⟩)G(⟨32⟩)p−1 = θ̃13
¯̃θ13δ(⟨13⟩)δ(⟨1̄3̄⟩) , (2.32)

In the low energy (conformal) limit E ≪ J , we can drop the first term of the equation, and
solve the equations by considering the conformal ansatz

G(⟨12⟩) = b

|⟨12⟩|2∆Φ
, (2.33)

Casting the ansatz into Dyson-Schwinger equation, one can determine the scaling dimension
and the coefficient:

∆Φ =
1

q
, bqJ2 =

1

4π2q
. (2.34)
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In Section 2.5, we compute the same two-point function using supersymmetric localization,
and find agreement with (2.33) and (2.34).

Next, we turn to the four-point function. We focus on the average four-point function
which has a large N expansion as

1

N2

N∑
i,j=1

〈
Φ̃i(Z̃1)Φi(Z2)Φj(Z3)Φ̃

j(Z̃4)
〉
= G(⟨12⟩)G(⟨43⟩) + 1

N
F (Z̃1, Z2, Z3, Z̃4) , (2.35)

where the first term is from a disconnected diagram. The leading connected four-point
function F(Z̃1, Z2, Z3, Z̃4) can be computed by summing over the ladder diagrams, which
gives the result

F (Z̃1, Z2, Z3, Z̃4) =
∞∑
n=0

K⋆n ⋆ F0(Z̃1, Z2, Z3, Z̃4) ,

F0(Z̃1, Z2, Z3, Z̃4) ≡ G(⟨13⟩)G(⟨42⟩) ,
(2.36)

where K is the ladder kernel, whose action, denoted by ⋆, is given by

K ⋆ F (Z̃1, Z2, Z3, Z̃4) ≡
∫

d2yad
2θad

2ỹbd
2θ̃b K(Z̃1, Z2, Za, Z̃b)F (Z̃b, Za, Z3, Z̃4) ,

K(Z̃1, Z2, Z3, Z̃4) ≡ (p− 1)J2G(⟨1, 3⟩)G(⟨4, 3⟩)q−2G(⟨4, 2⟩) ,
(2.37)

and K⋆n denotes the n-th power of the ⋆-product, i.e. for example K⋆2 = K ⋆K.

The kernel can be diagonalized by the eigenfunction

V∆,ℓ(Z̃1, Z2) =
1

|⟨12⟩|2∆Φ−∆

(
⟨12⟩
⟨1̄2̄⟩

) ℓ
2

(2.38)

as
k∆,ℓV∆,ℓ(Z̃1, Z2) =

∫
d2yad

2θad
2ỹbd

2θ̃bK(Z̃1, Z2, Za, Z̃b)V∆,ℓ(Z̃b, Za) . (2.39)

The eigenvalue is

k∆,ℓ =
1−∆Φ

∆Φ

Γ(1−∆Φ)
2Γ( ℓ−∆

2
+∆Φ)Γ(

∆+ℓ
2

+∆Φ)

Γ(∆Φ)2Γ(1 +
ℓ−∆
2

−∆Φ)Γ(1 +
∆+ℓ
2

−∆Φ)
. (2.40)

The spectrum of the operators in the Φ̃×Φ OPE can be computed by solving the equation

k∆,ℓ = 1 . (2.41)

Each solution in the domain ∆ ≥ 1 corresponds to a superconformal primary of dimension
∆ and spin ℓ.
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Using the superconformal symmetry, we can fix the four-point function as

F (Z̃1, Z2, Z3, Z̃4) =
1

⟨12⟩2∆Φ⟨43⟩2∆Φ
F(z, z̄) , (2.42)

where z and z̄ are the cross ratios

z =
⟨12⟩⟨43⟩
⟨12⟩⟨42⟩

, z̄ =
⟨1̄2̄⟩⟨4̄3̄⟩
⟨1̄2̄⟩⟨4̄2̄⟩

. (2.43)

The four-point function could be expanded in the superconformal partial wave basis as

F(z, z̄) =
∞∑
ℓ=0

∫ ∞

0

ds
⟨Ξ∆,ℓ,F0⟩
1− k(∆, ℓ)

Ξ∆,ℓ(z, z̄)

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩
, (2.44)

where s = −i∆, Ξ∆,ℓ(z, z̄) is the superconformal partial wave, and ⟨·, ·⟩ is the superconformal
invariant inner product. We have removed the δ(0) in the inner product ⟨Ξ∆,ℓ,Ξ∆,ℓ⟩ in the
denominator. Their explicit expressions are given in Appendix B. Using the relation between
superconformal partial waves and superconformal blocks (B.2), we can rewrite the expansion
as

F(z, z̄) =
∞∑
ℓ=0

∫ ∞

−∞
ds ρ(∆, ℓ)G∆,ℓ(z, z̄) , (2.45)

where the density function ρ(∆, ℓ) is explicitly given by

ρ(∆, ℓ) =
ρMFT(∆, ℓ)

1− k(∆, ℓ)
, (2.46)

where ρMFT(∆, ℓ) is the density function for the mean-field theory, explicitly given by

ρMFT(∆, ℓ) =
⟨Ξ∆,ℓ,F0⟩ S∆̃,ℓ

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩

=− 21−2∆Φ+ℓ csc

(
1

2
π(∆− ℓ+ 2∆Φ)

)
sin

(
1

2
π(∆− ℓ− 2∆Φ)

)
×

Γ(1−∆Φ)
2Γ
(
1
2
(1−∆+ ℓ)

)
Γ
(
1
2
(∆ + ℓ)

)
Γ(∆Φ)2Γ

(
1
2
(2−∆+ ℓ)

)
Γ
(
1
2
(1 + ∆ + ℓ)

)
×

Γ
(
−∆

2
− ℓ

2
+∆Φ

)
Γ
(
1
2
(−∆+ ℓ) + ∆Φ

)
Γ
(
1
2
(2−∆− ℓ− 2∆Φ)

)
Γ
(
1
2
(2−∆+ ℓ− 2∆Φ)

) . (2.47)

The operator spectrum in the Φ̃× Φ OPE is given by the solutions to the equation

k(∆, ℓ) = 1 . (2.48)
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The OPE coefficients are given by the residue of the density function. In particular, the
OPE coefficient of (the bottom component of) the stress tensor multiplet R is given by∣∣cΦ̃ΦR

∣∣2 = − 1

N
Res
∆=1

(ρ(∆, 1)) =
4∆2

Φ

N(1− 2∆Φ)
, (2.49)

from which we compute the central charge of the IR theory

c =
12∆2

Φ

|cΦ̃ΦR|2
= N(3− 6∆Φ) =

N∑
i=1

6

(
1

2
−∆Φ

)
. (2.50)

We recognize that the central charge computed in this way agrees with the one obtained
from the general arguments using the R-symmetry anomaly matching and the structure of
N = (2, 2) superconformal algebra [28, 39]. This central charge coincides with the central
charge of N copies of the Aq−1 type N = (2, 2) minimal model, which shows up as the
IR theory of the non-disordered (N = 1) version of the superpotential (2.26) [28]. This
is because the central charge is invariant under exactly marginal deformations [40], which
corresponds to deformations of the UV superpotential.

As discussed in [21], after analytic continuing of the Euclidean four-point function (2.44)
to the out-of-time-order correlator in the Lorentzian signature, and taking the long time
limit (chaos limit), the chaos exponent λL is computed by solving the same equation (2.48)
with ∆ = 0 and ℓ = λL. The chaos exponent λL as a function of ∆Φ is plotted in Figure 1.
At ∆Φ = 1

3
(q = 3), the chaos exponent reaches the highest value λL ≈ 0.5824.

Figure 1: The chaos exponent λL as function of ∆Φ = 1
q

in MSW model. When ∆Φ = 1
3
,

chaos exponent arrives at the maximum value 0.5824. Extrapolation is used to reach large
q behavior.
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2.4 Models with two disordered chiral superfields

Let us now consider the models with two disordered chiral superfields Φ
(1)
i ,Φ

(2)
a for i =

1, · · ·N1 and a = 1, · · ·N2. For type Ik,l or IIk,l models, the general form of the superpotential
(2.3) specializes becomes

W =
∑

(m,n)∈I

gm,n(Φ(1))m(Φ(2))n ≡
∑

(m,n)∈I

gi1···im,a1···an(Φ
(1)
i1

· · ·Φ(1)
im
)(Φ(2)

a1
· · ·Φ(2)

an ) , (2.51)

where the random coupling g(i1,··· ,im),(a1,··· ,an) satisfies〈
gi1···im,a1···an ḡi′1···i′m,a′1···a′n

〉
=

J2
m,n

Nm+n−1
1

δ
(i1
i1

· · · δ im)
i′m

δ
(a1
a′1

· · · δ an)
a′n

. (2.52)

Note that we have changed to a different convention on the variance here comparing to (2.5).
The index set I is given by

I = {(m,n) ∈ Z≥0 × Z≥0 | mq1 + nq2 = 1} , (2.53)

where q1, q2 are the R-charges of Φ(1) and Φ(2) given in (2.27) and (2.28). The large N limit
of these models are taken as

N1, N2 → ∞ fixing λ =
N2

N1

. (2.54)

We would follow Section 2.3, and perform the same analysis for the type Ik,l and IIk,l
models as we did for the MSW model. We first consider models with general k, l, and
derive general formulae for the two and four-point functions. Then we would specialize in
the models in (2.30) and study the spectra and chaos exponents. To start, we consider the
two-point functions〈

Φ̃(1),i(Z̃1)Φ
(1)
j (Z2)

〉
= δijGΦ(1)(⟨12⟩) ,

〈
Φ̃(2),a(Z̃1)Φ

(2)
b (Z2)

〉
= δabGΦ(2)(⟨12⟩) , (2.55)

where Z = (y, ȳ, θ, θ̄) and Z̃ = (ỹ, ¯̃y, θ̃, ¯̃θ), and the super-distances ⟨12⟩ and ⟨1̄2̄⟩ are given in
(A.9). In the large N limit, the two-point functions satisfy the Schwinger-Dyson equations

D3D3GΦ(1)(⟨13⟩) +
∫

d2y2d
2θ2GΦ(1)(⟨12⟩)ΣΦ(1)(⟨32⟩) = θ̃13

¯̃θ13δ(⟨13⟩)δ(⟨1̄3̄⟩) ,

D3D3GΦ(2)(⟨13⟩) +
∫

d2y2d
2θ2GΦ(2)(⟨12⟩)ΣΦ(2)(⟨32⟩) = θ̃13

¯̃θ13δ(⟨13⟩)δ(⟨1̄3̄⟩) ,
(2.56)

where the self-energies ΣΦ(1) and ΣΦ(2) are

ΣΦ(1)(⟨32⟩) =
∑

(m,n)∈I

mλnJ2
m,nGΦ(1)(⟨32⟩)m−1GΦ(2)(⟨32⟩)n ,

ΣΦ(2)(⟨32⟩) =
∑

(m,n)∈I

nλn−1J2
m,nGΦ(1)(⟨32⟩)mGΦ(2)(⟨32⟩)n−1 .

(2.57)
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Similar to the MSW model, in the low energy limit E ≪ J , after ignoring the first terms of
the equations in (2.56), we consider the conformal ansatz

GΦ(1)(⟨12⟩) =
b1

|⟨12⟩|2∆1
, GΦ(2)(⟨12⟩) =

b2
|⟨12⟩|2∆2

. (2.58)

The Schwinger-Dyson equations (2.56) fix the conformal dimensions ∆1, ∆2 by R-charges as

∆1 = q1 , ∆2 = q2 , (2.59)

and impose the equations on the two-point function coefficients b1, b2,∑
(m,n)∈I

mλnJ2
m,nb

m
1 b

n
2 =

1

4π2
,

∑
(m,n)∈I

nλn−1J2
m,nb

m
1 b

n
2 =

1

4π2
. (2.60)

The equations (2.60) admit multiple solutions. Unitarity imposes further constraints that
the two-point function coefficients b1 and b2 are non-negative numbers,

b1 ≥ 0 , b2 ≥ 0 . (2.61)

Later in the examples, we will see that the unitarity bounds (2.61) give bounds on λ, and
the model becomes non-compact when the bounds are saturated.

Next, we consider the averaged four-point functions,〈
O1(Z̃1, Z2)O1(Z̃4, Z3)

〉
= GΦ(1)(⟨12⟩)GΦ(1)(⟨34⟩) +

1

N1

F11(Z̃1, Z2, Z3, Z̃4) ,〈
O2(Z̃1, Z2)O2(Z̃4, Z3)

〉
= GΦ(2)(⟨12⟩)GΦ(2)(⟨34⟩) +

1

N2

F22(Z̃1, Z2, Z3, Z̃4) ,〈
O1(Z̃1, Z2)O2(Z̃4, Z3)

〉
=

1

N2

F12(Z̃1, Z2, Z3, Z̃4) ,〈
O2(Z̃1, Z2)O1(Z̃4, Z3)

〉
=

1

N1

F21(Z̃1, Z2, Z3, Z̃4) ,

(2.62)

where O1 and O2 are the bi-local operators

O1(Z̃1, Z2) =
1

N1

N1∑
i=1

Φ(1),i(Z̃1)Φ
(1)
i (Z2) ,

O2(Z̃1, Z2) =
1

N2

N2∑
a=1

Φ(2),a(Z̃1)Φ
(2)
a (Z2) .

(2.63)

The four-point functions F11, F12, F21, F22 can be computed by summing over the ladder
diagrams, and the result can be written in a compact form as

F(z, z̄) ≡
(
F11 F12

F21 F22

)
=

∞∑
n=0

(
K11 K12

K21 K22

)⋆n

⋆

(
F11,0 0

0 F22,0

)
, (2.64)
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F11,0, F22,0 are the zeroth ordered disconnected ladder diagrams,

F11,0 = GΦ(1)(⟨13⟩)GΦ(1)(⟨42⟩) , F22,0 = GΦ(2)(⟨13⟩)GΦ(2)(⟨42⟩) . (2.65)

The matrix elements K11, K12, K21, K22 of the ladder kernel matrix are

K11 =
∑

(m,n)∈I

m(m− 1)λnJ2
m,nGΦ(1)(⟨13⟩)GΦ(1)(⟨42⟩)GΦ(1)(⟨43⟩)m−2GΦ(2)(⟨43⟩)n ,

K12 =
∑

(m,n)∈I

mnλnJ2
m,nGΦ(1)(⟨13⟩)GΦ(1)(⟨42⟩)GΦ(1)(⟨43⟩)m−1GΦ(2)(⟨43⟩)n−1 ,

K21 =
∑

(m,n)∈I

mnλn−1J2
m,nGΦ(2)(⟨13⟩)GΦ(2)(⟨42⟩)GΦ(1)(⟨43⟩)m−1GΦ(2)(⟨43⟩)n−1 ,

K22 =
∑

(m,n)∈I

n(n− 1)λn−1J2
m,nGΦ(2)(⟨13⟩)GΦ(2)(⟨42⟩)GΦ(1)(⟨43⟩)mGΦ(2)(⟨43⟩)n−2 ,

(2.66)

which acts on F11,0, F22,0 in the way as in (2.37).

Consider the eigenvector:

VT
∆,ℓ =

(
v1

|⟨43⟩|2∆1−∆

(
⟨43⟩
⟨4̄3̄⟩

) ℓ
2

,
v2

|⟨43⟩|2∆2−∆

(
⟨43⟩
⟨4̄3̄⟩

) ℓ
2

)
, (2.67)

the ladder kernel matrix acts on VT
∆,ℓ as a 2×2 matrix,(

K11 K12

K21 K22

)
⋆ V∆,ℓ =

∑
(m,n)∈I

J2
m,n

(
m(m− 1)λnbm1 b

n
2k1 mnλnbm+1

1 bn−1
2 k1

mnλn−1bm−1
1 bn+1

2 k2 n(n− 1)λn−1bm1 b
n
2k2

)
V∆,ℓ

≡
(
k11 k12
k21 k22

)
V∆,ℓ,

(2.68)

where k1, k2 are functions of the conformal dimension ∆ and spin ℓ,

ki(∆, ℓ) = 4π2(−1)ℓ+1 Γ(1−∆i)
2Γ
(
ℓ−∆
2

+∆i

)
Γ
(
ℓ+∆
2

+∆i

)
Γ(∆i)2Γ

(
1 + ℓ−∆

2
−∆i

)
Γ
(
1 + ℓ+∆

2
−∆i

) . (2.69)

We denote the eigenvalues of this matrix by k+(∆, ℓ) and k−(∆, ℓ). The four-point function
can be expanded in the superconformal partial waves as

F(z, z̄) =
∞∑
ℓ=0

∫ ∞

0

ds
1

(1− k+(∆, ℓ))(1− k−(∆, ℓ))

Ξ∆,ℓ(z, z̄)

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩

×
(
1− k22 k12
k21 1− k11

)(
⟨Ξ∆,ℓ,F11,0⟩ 0

0 ⟨Ξ∆,ℓ,F22,0⟩

)
,

(2.70)
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where again we have removed the δ(0) in the inner product ⟨Ξ∆,ℓ,Ξ∆,ℓ⟩ in the denominator.

Using the shadow symmetry of the superconformal partial wave, the s-integral can be
completed to the entire real line R. The conformal block expansion of the four-point function
is obtained by pulling the s-contour to the right. The operator spectrum in the Φ̃(a) × Φ(b)

OPE is given by the solution to the equation

(1− k+(∆, ℓ))(1− k−(∆, ℓ)) = 0 . (2.71)

The OPE coefficients between the disordered chiral superfields Φ(1), Φ(2) and the bottom
component of the stress tensor multiplet R are extracted from the residues∣∣cΦ̃(1)Φ(1)R

∣∣2 = − 1

N1

Res
∆=1

(
1− k22(∆, ℓ)

(1− k+(∆, ℓ))(1− k−(∆, ℓ)

⟨Ξ∆,ℓ,F11,0⟩
⟨Ξ∆,ℓ,Ξ∆,ℓ⟩

∣∣∣
ℓ=1

)
,∣∣cΦ̃(2)Φ(2)R

∣∣2 = − 1

N2

Res
∆=1

(
1− k11(∆, ℓ)

(1− k+(∆, ℓ))(1− k−(∆, ℓ)

⟨Ξ∆,ℓ,F22,0⟩
⟨Ξ∆,ℓ,Ξ∆,ℓ⟩

∣∣∣
ℓ=1

)
.

(2.72)

We also obtain the central charge of the IR SCFT

c =
12∆2

Φ(1)

|cΦ̃(1)Φ(1)R|2
=

12∆2
Φ(2)

|cΦ̃(2)Φ(2)R|2
. (2.73)

For the examples (2.30) that will be studied in details in the following subsubsections, we
show that (2.73) simplifies to

c = 6N1

(
1

2
− q1

)
+ 6N2

(
1

2
− q2

)
, (2.74)

which is consistent with the R-symmetry anomaly matching and the IR N = (2, 2) super-
conformal algebra, and is independent of the couplings (coefficients) in the superpotential as
expected from the Zamolodchikov c-theorem [40]. Finally, similar to the MSW model, the
chaos exponent λL can be computed by solving the equation (2.71) with ∆ = 0 and ℓ = λL.
For the examples we studied below, the chaos exponents are bounded above by

λL ≤ 0.5824 , (2.75)

where the upper bound is the chaos exponent for the MSW3 model.

In the following subsections, we will specialize the above analysis of the two and four-point
functions to the models (2.30).

2.4.1 I2,q type

For I2,q model, which is also a disordered generalization of Dq type model, the superpotential
is:

W = gi1j2,aΦ
(1)
i1
Φ

(1)
i2
Φ(2)

a + ga1···aqΦ(2)
a1

· · ·Φ(2)
aq , (2.76)
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which means the index set I is
I = {(2, 1), (0, q)} . (2.77)

Following the discussion in Section 2.1, the field redefinitions of the bilocal superfields give
the equivalent relations (

J2
2,1

J2
0,q

)
∼
(
λ2
1λ2J

2
2,1

λq
2J

2
0,q

)
. (2.78)

When J2,1 and J0,q are both non-zero, we use this field redefinition to set

J2,1 = J0,q ≡ J , (2.79)

where J is a dimensionful overall coupling that sets the energy scale of the theory. The
physical observables in the IR (E ≪ J) SCFT are independent of J .

The conformal dimensions and R-charges of the chiral superfields Φ(1) and Φ(2) are

∆1 = q1 =
q − 1

2q
, ∆2 = q2 =

1

q
, (2.80)

Specializing the equations (2.60) for the two-point function coefficients b1 and b2 gives

2λJ2
2,1b

2
1b2 =

1

4π2
, qλq−1J2

0,qb
q
2 + J2

2,1b
2
1b2 =

1

4π2
. (2.81)

When λ < 1
2
, all the solutions to (2.81) violate the unitarity bounds (2.61). When λ ≥ 1

2
,

there is a unique solution to (2.81) that satisfies the unitarity bounds (2.61):

b1 =
2

3(1−q)
2q q

1
2qπ

1−q
q J

1
q

0,q

J2,1(2λ− 1)
1
2q

, b2 =
(2λ− 1)

1
q

2
3
qπ

2
q q

1
qJ

2
q

0,qλ
. (2.82)

At λ = 1/2, the equations (2.81) imply J0,q = 0, and the theory becomes non-compact. The
formula (2.73) gives the central charge of the theory

c

N1

=
3

2
+ 3

(
1− 2

q

)(
λ− 1

2

)
≥ 3

2
. (2.83)

The kernel of the theory is(
k11 k12
k21 k22

)
=

(
2λb21b2J

2
2,1k1(∆, ℓ) 2λb33J

2
2,1k1(∆, ℓ)

2b1b
2
2J

2
2,1k2(∆, ℓ) q(q − 1)λq−1bq2J

2
0,qk2(∆, ℓ) ,

)
(2.84)

where k1(∆, ℓ) and k2(∆, ℓ) are given in (2.69). The equation (2.71) for the operator spectrum
in the OPE can be explicitly written down as

1 +
4π2(2λ− 2λq + q − 1)k2(∆, ℓ)− k1(∆, ℓ) ((2λ− 2λq + q + 1)k2(∆, ℓ) + 8π2λ)

32π4λ
= 0 ,

(2.85)
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where we have substituted b1 and b2 by using the equations (2.81).

The chaos exponent λL can be computed by solving the equation (2.85) with ∆ = 0 and
ℓ = λL. The result is shown in Figure 2.

Figure 2: The chaos exponent for the I2,q (Dq) type model as a function of flavor ratio λ ≥ 1
2

and ∆2 =
1
q
. For a fixed λ, the chaos exponent grows monotonically in a similar way to the

MSW model (λ → ∞). For a fixed ∆2 = 1
q
, the chaos exponent decreases with the growth

of λ. The dotted red line 0.5824 in the subfigure is the upper bound for the MSW model,
which turns out to be also the upper bound for I2,q type model. The dots stand for the
integer value of q, and extrapolation is used for the general value q.

2.4.2 I3,3 type

The I3,3 type (aka E7 type) superpotential is:

W = gi1i2i3,aΦ
(1)
i1
Φ

(1)
i2
Φ

(1)
i3
Φ(2)

a + ga1a2a3Φ(2)
a1
Φ(2)

a2
Φ(2)

a3
, (2.86)

and we have the index set
I = {(3, 1), (0, 3)} . (2.87)

Again, the field redefinitions of the bilocal superfields give the equivalent relations(
J2
3,1

J2
0,3

)
∼
(
λ3
1λ2J

2
3,1

λ3
2J

2
0,3

)
. (2.88)
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We use it to set the variances of the random couplings to

J3,1 = J0,3 ≡ J . (2.89)

The conformal dimensions and R-charges of the chiral superfields Φ(1) and Φ(2) are

∆1 = q1 =
2

9
, ∆2 = q2 =

1

3
, (2.90)

The equations (2.60) for the two-point function coefficients b1 and b2 become

3λJ2
3,1b

3
1b2 =

1

4π2
, 3λ2J2

0,3b
3
2 + J2

3,1b
3
1b2 =

1

4π2
. (2.91)

When λ ≥ 3, there is a unique solution to (2.91) that satisfies the unitarity bounds (2.61):

b1 =
J

2
9
0,3

2
4
93

1
9π

4
9J

2
3
3,1(3λ− 1)

1
9

, b2 =
(3λ− 1)

1
3

(6π)
2
3λJ

2
3
0,3

. (2.92)

At λ = 1/3, the equations (2.91) imply J0,3 = 0, and the theory becomes non-compact.
When λ < 1

3
, (2.91) does not admit any unitary solutions. 3 From (2.73), the central charge

of the theory is
c

N1

= 2 +

(
λ− 1

3

)
≥ 2 . (2.93)

The kernel of the theory is(
k11 k12
k21 k22

)
=

(
6b31b2λJ

2
3,1k1(∆, ℓ) 3b41λJ

2
3,1k1(∆, ℓ)

3b21b
2
2J

2
3,1k2(∆, ℓ) 6b32λ

2J2
0,3k2(∆, ℓ)

)
. (2.94)

The equation (2.71) for the operator spectrum can be explicitly written down as

1 +
8π2(1− 3λ)k2(∆, ℓ) + k1(∆, ℓ) ((12λ− 7)k2(∆, ℓ)− 24π2λ)

48π4λ
= 0 . (2.95)

We further take a look at the chaos exponent λL by solving (2.95) with ∆ = 0 and ℓ = λL.
The result is shown in Figure 3.

2.4.3 I4,3 type

The I4,3 model has the superpotential

W =gi1···i3Φ
(1)
i1

· · ·Φ(1)
i3

+ gi1i2,a1a2Φ
(1)
i1
Φ

(1)
i2
Φ(2)

a1
Φ(2)

a2
+ gi,a1···a4Φ

(1)
i Φ(2)

a1
· · ·Φ(2)

a4

+ ga1···a6Φ(2)
a1

· · ·Φ(2)
a6

. (2.96)

3We thanks Micha Berkooz for discussion on this point.
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Figure 3: The chaos exponent of the I3,3 model as function of λ. When λ → ∞, the chaos
exponent saturates 0.5824. When λ → 1

3
, the chaos exponent equals to the non-compact

lower bound 0.5496.

The index set is I = {(3, 0), (2, 2), (1, 4) (0, 6)}. The field redefinitions of the bilocal super-
fields give the equivalent relations

J2
3,0

J2
2,2

J2
1,4

J2
0,6

 ∼


λ3
1 0 0 0

3aλ2
1 λ2

1λ
2
2 0 0

3a2λ1 2aλ1λ
2
2 λ1λ

4
2 0

a3 a2λ2
2 aλ4

2 λ6
2



J2
3,0

J2
2,2

J2
1,4

J2
0,6

 . (2.97)

We find a combination that is invariant under the above transformation

u2 =
3
(
J4
2,2 − 3J2

1,4J
2
3,0

) 3
2

(J4
2,2 − 3J2

1,4J
2
3,0)
[
2J6

2,2 − 9J2
1,4J

2
3,0J

2
2,2 + 27J2

0,6J
4
3,0 − 2

(
J4
2,2 − 3J2

1,4J
2
3,0

) 3
2

] 1
3

. (2.98)

Hence, in the IR, there is a one-dimensional conformal manifold parameterized by u. Equiva-
lently, one can use the equivalence relation (2.97) to set the variances of the random couplings
to

J1,4 = 0 , J3,0 = J0,6 = J , J2,2 = uJ , (2.99)
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where J is an overall dimensionful coupling. At u = 0, the theory factories into a tensor
product of a MSW3 model and a MSW6 model. The parameter u can be regarded as the
coupling between the MSW3 and the MSW6 models.

Another interesting limit is u → ∞. To properly take this limit, we apply the transfor-
mation (2.97) with a = 0, λ1 = u− 2

3 , and λ2 = u− 1
3 on (2.99), and find

J1,4 = 0 , J3,0 = J0,6 = u−1J , J2,2 = J . (2.100)

Hence, the theory becomes non-compact in the limit u → ∞.

The conformal dimensions of the chiral superfields are

∆1 =
1

3
, ∆2 =

1

6
. (2.101)

The two-point function coefficients b1 and b2 satisfy the equation

2λ2J2
2,2b

2
1b

2
2 + λ4J2

1,4b1b
4
2 + 3J2

3,0b
3
1 =

1

4π2
,

6λ5J2
0,6b

6
2 + 2λJ2

2,2b
2
1b

2
2 + 4λ3J2

1,4b1b
4
2 =

1

4π2
.

(2.102)

The equations (2.102) admit one or zero solution that satisfies the unitarity bounds (2.61)
depending on the values of λ and u. It is hard to determine the precise region for the
existence of a unitary solution. We have tested numerically that a unitary solution exists for
all values of λ, u ≥ 0.

The ladder kernel is(
k11 k12
k21 k22

)
=

(
2b21
(
b22λ

2J2
2,2 + 3b1J

2
3,0

)
k1(∆, l) 4b21b2λ

2
(
b22λ

2J2
1,4 + b1J

2
2,2

)
k1(∆, l)

4b32λ
(
b22λ

2J2
1,4 + b1J

2
2,2

)
k2(∆, l) 2b22λ

(
15b42λ

4J2
0,6 + 6b1b

2
2λ

2J2
1,4 + b21J

2
2,2

)
k2(∆, l)

)
.

(2.103)
The equation (2.71) for the operator spectrum can be explicitly written down as

g(u)

(
2λk1(∆, ℓ) + k2(∆, ℓ)

(
8− (5λ+ 8)k1(∆, ℓ)

2π2

))
+

(k1(∆, ℓ)− 2π2) (5k2(∆, ℓ)− 4π2)

8π4
= 0 ,

g(u) = b21b
2
2λu

2J2 ,

(2.104)

where b1 and b2 can be solved by the equations (2.102), and g(u) is a function of only the
variable u. For general λ, g(u) is a complicated function, and becomes simple when λ = 1

as
g(u)

∣∣
λ=1

=
1

4π2
(

3×2
1
3

u2 + 2
) . (2.105)
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The OPE spectrum depends on u only through the function g(u). The formula (2.73)
gives the central charge of the theory:

c

N1

= 1 + 2λ (2.106)

The central charge is independent of the g(u) even though the ladder kernel function is the
function of the parameters. However, the chaos exponent, equivalently the Regge intercept
of the theory, is the function of these parameters. When g(u) = 0, the two models decouple,
hence one finds two roots corresponding to chaos exponent for the MSW3 and the MSW6,
respectively.

Figure 4: The chaos exponent of the I4,3 model as function of λ when g(u) = 1. When
λ → 0, the chaos exponent saturates the bound (2.75), when λ → ∞, the chaos exponent
goes to the one of the MSW6.

To see the dependence between the exactly marginal deformation and chaos exponent, we
first set λ = 1, then g(u) = b21b

2
2u

2J2. One can then solve b1, b2 from the simplified equations
numerically (2.102) as function of u. Together with (2.71), we find the relation between u

and λL, as shown in Fig(5).
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Figure 5: The chaos exponent of the I4,3 model as function of u when λ = 1. When u = 0,
the model becomes decoupled MSW3 and MSW6 with the chaos exponent equals to 0.5824.
When increasing u, λL decreases and becomes the value 0.5379 of a non-compact model
when u → ∞. The chaos exponent depends on u weakly when u > 2−

1
33

1
2 ≈ 1.37, where the

Zamolochikov metric in (2.132) becomes negative.

2.4.4 II3,4 type

The II3,4 model has the superpotential:

W = gi1···i3,a1Φ
(1)
i1

· · ·Φ(1)
i3
Φ(2)

a1
+ gi1,a1···a4Φ

(1)
i1
Φ(2)

a1
· · ·Φ(2)

a4
. (2.107)

We have the index set to be
I = {(3, 1), (1, 4)} , (2.108)

and the conformal dimensions and R-charges are given by:

∆1 =
3

11
, ∆2 =

2

11
. (2.109)

The two-point function coefficients satisfy the equations

3λJ2
3,1b

3
1b2 + λ4J2

1,4b1b
4
2 =

1

4π2
, J2

3,1b
3
1b2 + 4λ3J2

1,4b1b
4
2 =

1

4π2
. (2.110)

When 4 ≥ λ ≥ 1
3
, the equations (2.110) admit a unique solution that satisfies the unitarity

bounds (2.61). At λ = 1
3
, the equations (2.110) imply J1,4 = 0, and at λ = 4, the equations
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(2.110) imply J3,1 = 0. The model is non-compact at both of these two points. When λ > 4

or λ < 1
3
, (2.110) does not have any unitary solution.

The kernel of the theory is(
k11 k12
k21 k22

)
=

(
6b31b2λJ

2
3,1k1(∆, ℓ) 3b41λJ

2
3,1k1(∆, ℓ) + 4b21b

3
2λ

4J2
1,4k1(∆, ℓ)

3b21b
2
2J

2
3,1k2(∆, ℓ) + 4b52λ

3J2
1,4k2(∆, ℓ) 12b1b

4
2λ

3J2
1,4k2(∆, ℓ)

)
.

(2.111)
From Eq.(2.73), we can obtain the central charge is

c

N1

=
3

11
(5 + 7λ) (2.112)

The OPE spectrum can be explicitly written out:

1 +
3(−4 + λ)

22π2
k1(∆, ℓ) +

3− 9λ

11π2λ
k2(∆, ℓ) +

−32 + 9(8− 3λ)λ

176π4λ
k1(∆, ℓ)k2(∆, ℓ) = 0 (2.113)

The chaos exponent is shown in Fig.(6)

Figure 6: The chaos exponent as function of λ in the type II34 theory. When λ = 1/3 and
4, the model is non-compact.
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2.5 Two-sphere partition function and two-point functions

The two-sphere partition function of the Landau-Ginzburg models can be computed by
supersymmetric localization [32]. Consider a theory with N chiral superfields Φi for i =

1, · · · , N and a superpotential W (Φi), the infinite-dimensional path integral localizes onto
constant field configurations and becomes a finite-dimensional integral

Z =

∫ (∏
i

dϕidϕ̃
i
)
e−4πirW (ϕi)−4πirW (ϕ̃i) , (2.114)

where r is the radius of the two-sphere, and ϕi, ϕ̃i are the bottom components of the chiral and
anti-chiral superfields Φi, Φ̃i, respectively. The integration contour of the integral (2.114)
is defined along the half-dimensional space given by ϕ̃i = ϕ∗

i inside the space C2N of the
variables ϕi’s and ϕ̃i’s. A common method to evaluate the integral is to decompose the
contour as a sum over Lefschetz thimbles by the Picard-Lefschetz theory (see Appendix D
in [34]).

This result has been generalized to extremal correlators on the two-sphere [33,34], which
is an n-point function of n−1 chiral operators inserted at arbitrary points on the two-sphere
and one anti-chiral operator inserted at the south pole. For instance, the two-point function
of a chiral operator O at the north pole and an anti-chiral operator Õ at the south pole is
computed by 〈

ÕO
〉
S2

=
1

Z

∫ (∏
i

dϕidϕ̃
i
)
ÕOe−4πirW (ϕi)−4πirW (ϕ̃i) . (2.115)

When the IR theory is an SCFT, the correlation functions on S2 can be conformally mapped
to the correlation functions on R2. In particular, the two-point function on the two-sphere
is related to that on the plane by

(2r)2∆
〈
ÕO

〉
S2

= lim
x→∞

|x|2∆
〈
Õ(x)O(0)

〉
R2 . (2.116)

Now, let us apply supersymmetric localization to the disordered Landau-Ginzburg models
with the superpotential (2.3). The disorder-averaged two-sphere partition function is

Z =
1

N

∫ ( ∏
I1,··· ,In,p

dgI1···Inp dḡp,I1···In

)
e
−

∑
p

Np1+···+pn−1

J2
p

g
I1···In
p ḡp,I1···InZ(g, ḡ) ,

N =

∫ ( ∏
I1,··· ,In,p

dgI1···Inp dḡp,I1···In

)
e
−

∑
p

Np1+···+pn−1

J2
p

g
I1···In
p ḡp,I1···In ,

(2.117)

where Z(g, ḡ) is the two-sphere partition function with fixed coupling constants gI1···Inp and
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ḡp,I1···In . Using supersymmetric localization, Z(g, ḡ) is computed by the integral

Z(g, ḡ) =

∫ (∏
a

∏
i

dϕ
(a)
i dϕ̃(a),i

)
exp

[
− 4πir

∑
p≡(p1,··· ,pn)∈I

gI1···Inp (ϕ
(1)
I1
)p1 · · · (ϕ(n)

In
)pn

− 4πir
∑

p≡(p1,··· ,pn)∈I

ḡp,I1···In(ϕ̃
(1),I1)p1 · · · (ϕ̃(n),In)pn

]
.

(2.118)

Recall our notation Ia = (i1, · · · , ipa) and (ϕ
(a)
Ia
)pa = ϕ

(a)
i1

· · ·ϕ(a)
ia

. Performing the gI1···Inp and
ḡp,I1···In integrals first, we find

Z =

∫ (∏
a

∏
i

dϕ
(a)
i dϕ̃(a),i

)
exp

[
−16π2V (ϕ

(a)
i , ϕ̃(a),i)

]
,

V (ϕ
(a)
i , ϕ̃(a),i) =

∑
p≡(p1,··· ,pn)∈I

r2J2
p

Np1+···+pn−1
(ϕ(1)ϕ̃(1))p1 · · · (ϕ(n)ϕ̃(n))pn .

(2.119)

Note that since the function V (ϕ
(a)
i , ϕ̃(a),i) with ϕ̃(a),i = (ϕ

(a)
i )∗ is real and bounded from

below, and the integral (2.119) is much easier to compute than the integral (2.114) for
non-disordered theories.4 The integral can be further simplified as

Z =

∫ (∏
a

2πNa

Γ(Na)
R2Na−1

a dRa

)
exp

− ∑
p≡(p1,··· ,pn)∈I

16π2r2J2
p

Np1+···+pn−1
R2p1

1 · · ·R2pn
n

 , (2.120)

where we have used the spherical coordinates with the radius R2
a = ϕ(a)ϕ̃(a).

The disorder-averaged sphere two-point function is

〈
ÕO

〉
S2

=
1

NZ

∫ ( ∏
I1,··· ,In,p

dgI1···Inp dḡp,I1···In

)
e
−

∑
p

Np1+···+pn−1

J2
p

g
I1···In
p ḡp,I1···In

×
∫ (∏

a

∏
Ia

dϕ
(a)
Ia
dϕ̃(a),Ia

)
ÕO

× exp

[
− 4πir

∑
p≡(p1,··· ,pn)∈I

gI1···Inp (ϕ
(1)
I1
)p1 · · · (ϕ(n)

In
)pn

− 4πir
∑

p≡(p1,··· ,pn)∈I

ḡp,I1···In(ϕ̃
(1),I1)p1 · · · (ϕ̃(n),In)pn

]
.

(2.121)

Note that (2.121) is more precisely an annealed disordered sphere two-point function, mean-
ing that the disorder averages in the numerator and denominator are performed separately.

4We thank Sungjay Lee for a discussion on this point.
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This definition allows us to compute the two-point functions exactly in the following exam-
ples.

As discussed in the previous subsection, the variances that cannot be fixed by field
redefinitions parameterize the IR conformal manifold. Similar to the non-disordered model
in [41,33], we can compute the Zamolodchikov metric of the IR conformal manifold by taking
derivatives of the two-sphere partition function as

gp1p2 = −∂Jp1∂Jp2 logZ . (2.122)

In the following, we compute the two-sphere partition functions and the two-point func-
tions of chiral superfields in the MSW, I2,q, and I3,3 model, and compute the Zamolodchikov
metric of the I4,3 model.

Supersymmetric localization in the MSW, I2,q, and I3,3 models The two-sphere
partition function of the MSW model with the superpotential (2.26) is

ZMSWq =
1

N

∫ ( ∏
i1,··· ,ip

dgi1···iqdḡi1···iq

)
e−

Nq−1

J2 |gi1···iq |2
∫ (∏

i

dϕidϕ̃
i
)

× exp
(
−4πirgi1···iqϕ1 · · ·ϕiq − 4πirḡi1···iq ϕ̃

1 · · · ϕ̃iq
)

=

∫ (∏
i

dϕidϕ̃
i
)
exp

(
−16π2r2J2

N q−1
(ϕiϕ̃

i)q
)

=
16−

N
q NN−N

q πN− 2N
q J− 2N

q r−
2N
p Γ
(

N+q
q

)
Γ(N + 1)

.

(2.123)

Next, we compute the disorder-averaged sphere two-point function,〈
ϕ̃iϕj

〉MSWq

S2
=

1

NZMSWq

∫ ( ∏
i1,··· ,iq

dgi1···iqdḡi1···iq

)
e−

Nq−1

J2 |gi1···iq |2
∫ (∏

i

dϕidϕ̃
i
)

× ϕ̃iϕj exp
(
−4πirgi1···iqϕ1 · · ·ϕiq − 4πirḡi1···iq ϕ̃

1 · · · ϕ̃iq
)

=
δijΓ
(

N+1
q

)
16

1
qπ

2
qJ

2
qN

1
q r

2
qΓ
(

N
q

) .

(2.124)

In the large N limit, the result becomes

〈
ϕ̃iϕj

〉MSWq

S2
=

δij

(2π)
2
q q

1
qJ

2
q (2r)

2
q

+O(N−1) . (2.125)
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Mapping the two-point function from S2 to R2 using (2.116), we find

〈
ϕ̃i(x)ϕj(0)

〉MSWq

R2 =
δij

(2π)
2
q p

1
qJ

2
q |x|

2
q

+O(N−1) . (2.126)

We see that our result here nicely agrees with (2.33) and (2.34) from summing over the
melonic diagrams using the Schwinger-Dyson equation.

Now, let us perform the same computation for the I2,q and I3,3 models. For the I2,q model,
we find

ZI2,q =
π

N2(q−2)+N1
q N

N1(q+1)+2N2(q−1)
2q

1 Γ
(
N1

2

)
Γ
(

2N2−N1

2q

)
(rJ0,q)

N1−2N2
q

2
2N1(q−1)+4N2+q

q qΓ (N1) Γ (N2) (rJ2,1)
N1

,

〈
ϕ̃(1),iϕ

(1)
j

〉I2,q
S2

= δij

(4π)
1
q
−1N

1
2(

1
q
−1)

1 Γ
(
N1+1

2

)
Γ
(

2N2−N1−1
2q

)
(rJ0,q)

1
q

Γ
(
N1

2

)
Γ
(

2N2−N1

2q

)
(rJ2,1)

,

〈
ϕ̃(2),aϕ

(2)
b

〉I2,q
S2

= δab

N
q−1
q

1 Γ
(

2N2−N1+2
2q

)
16

1
qπ

2
qN2Γ

(
2N2−N1

2q

)
(rJ0,q)

2
q

,

(2.127)

where the two-point functions in the large N limit agree with the previous result (2.82)
computed by solving the Schwinger-Dyson equations.

For the I3,3 model, we find

ZI3,3 =
π

1
9
(5N1+3N2)N

1
9
(7N1+6N2)

1 Γ
(
N1

3

)
Γ
(
N2

3
− N1

9

)
(rJ0,3)

2
9
(N1−3N2)

2
4
9
(2N1+3N2)9Γ (N1) Γ (N2) (rJ3,1)

2N1
3

,

〈
ϕ̃(1),iϕ

(1)
j

〉I3,3
S2

= δij

Γ
(
N1+1

3

)
Γ
(
3N2−N1−1

9

) ( rJ0,3
N1

) 2
9

28/9π4/9Γ
(
N1

3

)
Γ
(
N2

3
− N1

9

)
(rJ3,1)

2
3

,

〈
ϕ̃(2),aϕ

(2)
b

〉I3,3
S2

= δab
Γ
(
3N2−N1+3

9

)
2

4
3π

2
3N2Γ

(
N2

3
− N1

9

) ( rJ0,3
N1

) 2
3

,

(2.128)

where the two-point functions in the large N limit agree with the previous result (2.92)
computed by solving the Schwinger-Dyson equations.

Zamolodchikov metric of the I4,3 model Let us compute the two-sphere partition
function of the I4,3 model. For simplicity, we focus on the case N1 = N2 ≡ N , and use the
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parametrization of the variances (2.99). The formula (2.119) gives

ZI4,3 =

∫ (∏
i

dϕ
(1)
i dϕ̃(1),i

∏
a

dϕ(2)
a dϕ̃(2),a

)
exp

{
− 16π2

[
r2J2

N2
(ϕ

(1)
i ϕ̃(1),i)3

+
u2r2J2

N3
(ϕ

(1)
i ϕ̃(1),i)2(ϕ(2)

a ϕ̃(2),a)2 +
r2J2

N5
(ϕ(2)

a ϕ̃(2),a)6
]}

=
π2NN2N

2Γ(N)2

∫ ∞

0

∫ ∞

0

dR1dR2R
N−1
1 R

N
2
−1

2 e−16π2Nr2J2(R3
1+u2R2

1R2+R3
2) ,

(2.129)

where we have changed the integration variables as ϕ(1)
i ϕ̃(1),i = NR1 and ϕ

(2)
a ϕ̃(2),a = N

√
R2.

The integral in the large N limit can be evaluated using the saddle point approximation.
The result is

logZI4,3 = N

3
2
+

1

2
log

 π2

2
13
3 J2r2

(
2

2
3u2 + 3

)
+O(N0) . (2.130)

For a consistency check, we take u = 0 of logZI4,3 and find that it factorizes to a sum of the
log of the partition functions of the MSW3 and the MSW6 models in (2.123) in the large N

limit,
logZI4,3

∣∣
u=0

= logZMSW3 + logZMSW6 . (2.131)

Taking u-derivatives, we compute the Zamolodchikov metric,

guu = −d2 logZ

du2
= N

3× 2
2
3 − 2× 2

1
3u2

(3 + 2
2
3u2)2

. (2.132)

Curiously, note that the metric guu vanishes at u = 2−
1
33

1
2 , and becomes negative when

u > 2−
1
33

1
2 .

Since the random couplings gI1···Inp in the superpotential (2.3) are complex, it is tempting
to replace the variance J2

p in (2.5) by JpJp for a complex Jp. This leads to the replacement
of u2 by uū in the two-sphere partition function (2.130). Now, the conformal manifold is
complex one-dimensional, and we find the metric

guū =
3N

2
1
3 (3 + 2

2
3uū)2

, (2.133)

which is the metric of a round two-sphere of radius
√

N/2. However, since u always appears
in the combination uū, we do not know how to probe the angular direction on the conformal
manifold.

We have seen that the theory becomes non-compact in the u → ∞ limit. The u = ∞
point is at infinity on the conformal manifold with respect to the metric (2.132), but at a
finite distance with respect to the metric (2.132).
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3 Disordered gauged linear sigma models

Let us start by reviewing some basics of the gauge linear sigma models following [35] to set
up our convention and notation, and along the way introduce the disordered couplings to
the theory. Consider a U(1) gauge theory with chiral superfields Φ

(1)
i for i = 1, · · · , N of

charge 1 and Φ
(2)
a for a = 1, · · · ,M of charge −q. The U(1) gauge field and its superpartners

form a vector superfield V , or equivalently a twisted chiral superfield Σ = 1√
2
D̃DV . The

(Euclidean) Lagrangian density of the model is

L = Lkin + LW + LFI ,

Lkin = −
∫

d4θ

(
Φ̃(1),ie2VΦ

(1)
i + Φ̃(2),ae−2(q−1)VΦ(2)

a +
1

4e2
ΣΣ

)
,

LW = −
∫

d2θW (Φ(1),Φ(2))
∣∣∣
θ̃=

¯̃
θ=0

− h.c. ,

LFI = −
∫

dθd ¯̃θ
it

2
√
2
Σ
∣∣
θ̃=θ̄=0

+

∫
dθ̃dθ̄

it̄

2
√
2
Σ
∣∣
θ=

¯̃
θ=0

.

(3.1)

The superpotential W is a homogeneous polynomial given by

W (Φ(1),Φ(2)) = Φ(2)
a Ga(Φ(1)) ≡ gi1···iq ,aΦ

(1)
i1

· · ·Φ(1)
iq
Φ(2)

a , (3.2)

where the coupling constants gai1···iq is a Gaussian random variable with mean and variance

〈
gi1···iq ,a

〉
= 0 ,

〈
gi1···iq ,aḡj1···jq ,b

〉
=

J2

N q
δab δ

(i1
j1

· · · δiq)jq
. (3.3)

LFI is the Fayet-Iliopoulos term. After integrating out the Grassmann coordinates, it be-
comes

LFI = rD +
iθ

2π
F12 , (3.4)

where t = ir + θ
2π

is the Fayet-Iliopoulos parameter.

After integrating out the auxiliary fields, the potential for the bosonic fields is

U =
1

2e2
D2 +

M∑
a=1

∣∣Ga(ϕ(1))
∣∣2 + N∑

i=1

∣∣∣∣∣
M∑
a=1

ϕ(2)
a

∂Ga(ϕ(1))

∂ϕ
(1)
i

∣∣∣∣∣
2

(3.5)

with

D = −e2

(
N∑
i=1

|ϕ(1)
i |2 − q

M∑
a=1

|ϕ(2)
a |2 − r

)
, (3.6)

where ϕ
(1)
i and ϕ

(2)
a denote the bottom components of the chiral superfields Φ

(1)
i and Φ

(2)
a .

For generic couplings gi1···iq ,a, the polynomials Ga(ϕ
(1)) satisfy the “transverse” condition, i.e.
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for any (ϕ
(2)
1 , · · · , ϕ(2)

M ) ̸= (0, · · · , 0), the equations

Ga(ϕ(1)) = 0 =
M∑
a=1

ϕ(2)
a

∂Ga(ϕ(1))

∂ϕ
(1)
i

, (3.7)

have a common solution only for ϕ(1)
1 = · · · = ϕ

(1)
N = 0. Note that the transverse condition is

different from the compactness condition (2.22), (2.23) of the disordered Landau-Ginzburg
models.

Let us analyze the low energy physics of the model. First, we assume r > 0. Vanishing
of the D-term (D = 0) requires ϕ(1)

i cannot all vanish. The transverse condition then implies
ϕ
(2)
a = 0. Hence, vanishing of the potential U gives

N∑
i=1

|ϕ(1)
i |2 = r , Ga(ϕ(1)) = 0 . (3.8)

We further divide the space of solutions of (3.8) by the U(1) gauge transformation, i.e.
imposing the identification ϕ

(1)
i

∼= ϕ
(1)
i eiθ. Therefore, the classical moduli space X is an

intersection of hypersurfaces Ha ≡ {Ga(ϕ
(1)) = 0} inside the complex project space CPN−1

with the projective coordinates ϕ
(1)
i . After integrating out the massive fields ϕ

(2)
a , the low

energy effective theory is a sigma model with target space X.

Next, we consider the case r < 0. Vanishing of the D-term requires ϕ(2)
a cannot all vanish.

The transverse condition then implies ϕ(1)
i = 0. The classical moduli space is then a CPM−1

with the projective coordinates ϕ
(2)
a . For q > 2, the massless fields are the ϕ

(1)
i and the

oscillations tangent to the CPM−1. For q = 2, some parts of the ϕ
(1)
i become massive. The

low energy effective theory is a hybrid Landau-Ginzburg/sigma model on a vector bundle
over CPM−1.

We will be particularly interested in the case when the IR theory is a CFT. The N = 2

superconformal algebra contains a U(1)R affine Lie algebra. However, in general, the axial
part U(1)L × U(1)R R-symmetry is broken quantum mechanically due to a mixed anomaly
with the U(1) gauge symmetry. Vanishing of such an anomaly requires

M

N
=

1

q
. (3.9)

It is expected that the IR theory is a CFT when the condition (3.9) is met. When r > 0,
this condition also implies that the classical moduli space X is a Calabi-Yau manifold;
hence, the IR CFT is a Calabi-Yau sigma model. The space of the Calabi-Yau manifold X

becomes the conformal manifold of the IR CFT. In particular, the complex structure moduli
of X is parametrized by the Gaussian random coupling constants gi1···iq ,a with mean and
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variance given in (3.3). The ensemble average over gi1···iq ,a becomes an average of the Calabi-
Yau sigma models over the part of the conformal manifold corresponding to the complex
structure moduli.

The theory is solvable in the large N limit:

N → ∞ , λ ≡ M

N
, q , t , J , µ ≡ e

√
N , (3.10)

where the last two parameters J , µ have classical dimension one, and the other parameters
are dimensionless. We relax the condition (3.9) so that λ and q are independent parameters.
We focus on the two-point functions of the chiral superfields,〈

Φ̃(1),i(Z̃1)Φ
(1)
j (Z2)

〉
= δijGΦ(1)(⟨12⟩) ,

〈
Φ̃(2),a(Z̃1)Φ

(2)
b (Z2)

〉
= δabGΦ(2)(⟨12⟩) . (3.11)

They satisfy the same Schwinger-Dyson equations (2.56) as the disordered Landau-Ginzburg
models. We note that, in the leading order of the large N limit (3.10), the propagators of
the chiral superfields do not receive corrections from the loops involving the gauge field and
its superpartners. It is similar to the case of the quantum electrodynamics (QED) or the
CPN−1 model in two or three dimensions, where the matter propagators also do not receive
loop corrections from the gauge fields in the leading order large N limit.

In the low energy limit E ≪ J , we consider the same conformal ansatz (2.58). The
Schwinger-Dyson equations (2.56) imply

q∆1 +∆2 = 1 , λ =
1

q
, J2bq1b2 =

q

4π2
. (3.12)

Note importantly that we have reproduced the condition (3.9) for the absence of U(1)R sym-
metry anomaly, which gives evidence for the IR conformal fixed point. This gives additional
evidence that when (3.9) is satisfied the IR theory is conformal. The dimensions ∆1 and ∆2

for the chiral superfields are undetermined and constrained only by the linear equation in
(3.12). This does not imply that the theory is short of determinability because the chiral su-
perfields Φ(1) and Φ(2) are not gauge invariant operators. The only constraint on the scaling
dimensions is that to ensure the self-energy dominates in IR, the scaling dimension of Φ(1)

should satisfy ∆1 ∈ (0, 1
q
).

The natural next step is to study the four-point function of the superfields Φ(a) and Φ̃(a),
and extract the OPE spectrum and the chaos exponent. However, since the Φ(a) and Φ̃(a)

are not gauge invariant operators, the interpretation of these quantities is subtle. We leave
the analysis for future work.

32



4 Summary and discussion

In this paper, we studied N = (2, 2) supersymmetric field theories with random couplings
in the superpotential.

1. We introduced the disordered Landau-Ginzburg models, which generalize the Murugan-
Stanford-Witten model by including more families of chiral superfields. The models
follow a similar classification as the non-disordered Landau-Ginzburg models. In par-
ticular, with two families of chiral superfields, the model are classified as type Ik,l and
IIk,l with R-charges given in (2.27) and (2.28).

2. We analyzed the models I2,q, I3,3, I4,3, and II3,4. From the two and four-point functions
computed exactly in the large N limit, we extracted the conformal dimensions of the
chiral superfields ∆1 and ∆2, the central charge c, and the chaos exponent λL. The
former two agree with the expectation from the IR superconformal field theories.

3. The chaos exponent λL depends on the ratio λ of the numbers of chiral superfields in
each families. For the examples we studied, we plotted λL against λ in Figures 2, 3,
4, and 6. From these data, we proposed a universal upper bound λL ≲ 0.5824 for the
chaos exponents in the unitary disordered Landau-Ginzburg models.

4. We computed the partition functions and two-point correlation functions of the dis-
ordered Landau-Ginzburg models on a two-sphere using supersymmetric localization.
In the large N limit, we showed that the results on the two-point function coefficients
for the MSW, I2,q, and I3,3 models nicely agree with those computed by summing over
melonic diagrams. We also computed the Zamolodchikov metric for the I4,3 model.

5. We introduced the disordered gauged linear sigma models, and showed that with a
positive Fayet-Iliopoulos parameter and an anomalous free U(1)R symmetry, they flow
to the ensemble averages of Calabi-Yau sigma models over complex structure moduli.

It is important to extend our analysis of the disordered gauged linear sigma models to
the four-point functions, from which we can extract many physical quantities such as the
OPE spectrum and the chaos exponent. This would give as valuable information about the
ensemble averages of Calabi-Yau sigma models. In Section 3, the average over the coupling
constants in the gauged linear sigma models was performed with a Gaussian distribution.
It would be more natural to consider instead the average with a measure implied by the
Zamolodchikov metric on the conformal manifold following [42–44].5 In the IR Calabi-Yau

5We thank the SciPost referee for comments on this point.
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sigma models, on the part of the conformal manifold corresponding to the complex structure
moduli space of the Calabi-Yau target space, the Zamolodchikov metric at one-loop order in
the large volume limit is the Weil–Petersson metric [45].

In [46], the ensemble average of Calabi-Yau sigma models over complex structure moduli
in the large volume limit with an uniform distribution was studied. It was found that the
averaged spectrum of scalar local operators exhibits the same statistical properties as the
Gaussian orthogonal ensemble of random matrix theory. It would be interesting to compare
their result with the OPE spectrum in our model.

Our studies on the disordered Landau-Ginzburg models can be straightforwardly gener-
alized to higher dimensions. In three dimensions, the superpotential can be at most cubic in
order for the theories to flow to nontrivial superconformal fixed points. With three or more
families of chiral superfields, the disordered cubic superpotentials would have some random
couplings whose variances are not fixed by field definitions, and the IR theories would exhibit
nontrivial conformal manifolds. The OPE spectrum as a function of the coordinates on the
conformal manifold could provide nontrivial data for testing the CFT distance conjecture
in [47].
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A N = (2, 2) superspace

The N = (2, 2) superspace has the holomorphic and anti-holomorphic coordinates

(z, θ, θ̃) , (z̄, θ̄, ¯̃θ) . (A.1)
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The super-derivatives are

D =
∂

∂θ
+ θ̃

∂

∂z
, D =

∂

∂θ̄
+ ¯̃θ

∂

∂z̄
,

D̃ = − ∂

∂θ̃
− θ

∂

∂z
, D̃ = − ∂

∂ ¯̃θ
− θ̄

∂

∂z̄
.

(A.2)

The supercharges are realized by the differential operators

Q =
∂

∂θ
− θ̃

∂

∂z
, Q =

∂

∂θ̄
− ¯̃θ

∂

∂z̄
,

Q̃ = − ∂

∂θ̃
+ θ

∂

∂z
, Q̃ = − ∂

∂ ¯̃θ
+ θ̄

∂

∂z̄
.

(A.3)

The integration measure for the superspace is defined as

d2θ ≡ dθdθ̄ , d2θ̃ ≡ dθ̃d ¯̃θ . (A.4)

A chiral superfield Φ satisfies the condition

D̃Φ = 0 = D̃Φ , (A.5)

and an anti-chiral superfield Φ̃ satisfies the condition

DΦ̃ = 0 = DΦ̃ . (A.6)

Hence, the chiral superfield Φ depends only on the coordinates

Z = (y, ȳ, θ, θ̄) , y = z + θθ̃ , ȳ = z̄ + θ̄ ¯̃θ , (A.7)

and the anti-chiral superfield Φ̃ depends only on the coordinates

Z̃ = (ỹ, ¯̃y, θ̃, ¯̃θ) , ỹ = z − θθ̃ , ¯̃y = z̄ − θ̄ ¯̃θ . (A.8)

The super-distances are defined as the combinations

⟨12⟩ = ỹ1 − y2 − 2θ̃1θ2 , ⟨1̄2̄⟩ = ¯̃y1 − ȳ2 − 2¯̃θ1θ̄2 , (A.9)

which are annihilated by all the supercharges Q1 +Q2, Q̃1 + Q̃2, Q1 +Q2, Q̃1 + Q̃2.
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B Two dimensional superconformal partial wave

When expanding the four point function in the basis of superconformal partial waves, one
has:

F =
∞∑
ℓ=0

∫ ∞

0

ds
⟨Ξ∆,ℓ,F0⟩
1− k(∆, ℓ)

Ξ∆,ℓ(u, v)

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩
(B.1)

The principal series for the N = 2 superconformal partial waves have conformal dimension
∆ = is, s ∈ R. There are some related works about the bosonic partial waves in general d
dimensions, see [25,48,49].

One has two quantities to evaluate from the above expression: the inner product between
zero rung ladder and conformal partial waves ⟨Ξ∆,ℓ,F0⟩ and the norm of superconformal par-
tial waves ⟨Ξ∆,ℓ,Ξ∆,ℓ⟩. Our strategy is to use known relations between superconformal blocks
and bosonic blocks which enable us to deduce the relationship between the superconformal
partial waves and bosonic conformal partial waves.

The superconformal partial wave is a linear superposition of superconformal blocks:

Ξ∆,ℓ(z, z̄) = S∆̃,ℓG∆,ℓ(z, z̄) + S∆,ℓG∆̃,ℓ(z, z̄) (B.2)

S∆,ℓ are some coefficients determined by ∆ and ℓ, and ∆̃ = −∆ is the 2 dimensional super-
shadow of ∆. By using the shadow symmetry, we can unfold the integral:

F =
∞∑
ℓ=0

∫ ∞

−∞
ds

⟨Ξ∆,ℓ,F0⟩
1− k(∆, ℓ)

S∆̃,ℓG∆,ℓ(z, z̄)

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩
=

∞∑
ℓ=0

∫ ∞

−∞
ds

ρMFTG∆,ℓ(z, z̄)

1− k(∆, ℓ)
(B.3)

where we have defined:

ρMFT ≡
⟨Ξ∆,ℓ,F0⟩S∆̃,ℓ

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩
(B.4)

as the mean field spectral function. When z, z̄ → 0, the superconformal block with 4 identical
operator relates bosonic conformal block by

G∆,ℓ(z, z̄) =
1

|z|
G1,−1

∆+1,ℓ(z, z̄) (B.5)

G∆12,∆34

∆,ℓ is the bosonic conformal block in the four point function with primaries ∆a, a =

1, · · · , 4, and ∆12 = ∆1−∆2,∆34 = ∆3−∆4. The relation enables us to write superconformal
partial waves in terms with bosonic conformal blocks:

Ξ∆,ℓ(z, z̄) =
1

|z|
(
S∆̃,ℓG

1,−1
∆+1,ℓ(z, z̄) + S∆,ℓG

1,−1
1−∆,ℓ(z, z̄)

)
(B.6)
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on the other hand, since the linear combination of blocks appears in the superconformal
partial wave, we must have

Ξ∆,ℓ(z, z̄) =
1

|z|
N (∆, ℓ)Ψ1,−1

∆+1,ℓ(z, z̄) (B.7)

here Ψ∆12,∆34

∆,ℓ is conformal partial waves in the four point function with primaries ∆a, a =

1, · · · , 4, which can be expressed as the linear combination as the bosonic conformal block:

Ψ∆12,∆34

∆,ℓ = S∆34

∆̂,ℓ
G∆12,∆34

∆,ℓ + S∆12
∆,ℓ G

∆12,∆34

∆̂,ℓ
(B.8)

∆̂ = 2 − ∆ is the bosonic shadow of ∆. N (∆, ℓ) is the normalization coefficient, which
relates the S∆,ℓ and S∆,ℓ by:

S−∆,ℓ = N (∆, ℓ)S∆34=−1
1−∆,ℓ (B.9)

The shadow coefficient is given by:

S∆34
∆,ℓ =

πΓ(∆ + ℓ− 1)Γ
(

∆̂+∆34+ℓ
2

)
Γ
(

∆̂−∆34+ℓ
2

)
Γ(∆̂ + ℓ)Γ

(
∆+∆34+ℓ

2

)
Γ
(
∆−∆34+ℓ

2

) . (B.10)

the normalization of the superconformal partial waves follows from the bosonic case:

⟨Ξ∆,ℓ,Ξ∆′,ℓ′⟩ = N (∆, ℓ)N (∆′, ℓ′)

〈
1

|z|
Ψ1,−1

∆+1,ℓ,
1

|z|
Ψ1,−1

∆′+1,ℓ′

〉
SUSY

= N (∆, ℓ)N (∆′, ℓ′)
〈
Ψ1,−1

∆+1,ℓ,Ψ
1,−1
∆′+1,ℓ′

〉1,−1

Bosonic

= N (∆, ℓ)2n∆+1,ℓ2πδ (s− s′) δℓℓ′ ,

(B.11)

here we denote ⟨, ⟩SUSY and ⟨, ⟩Bosonic as SUSY/bosonic invariant inner product under properly
gauge fixing, for the detail of measure after gauge fixing, refer to [25]:

⟨F,G⟩SUSY =

∫
d2z

1

|z|2|1− z|2
FG =

∫
d2z

1

|z|4|1− z|2
(|z|F ) (|z|G) = ⟨|z|F, |z|G⟩∆12=1,∆34=−1

Bosonic

(B.12)

n∆,ℓ is the normalization coefficients in 2d bosonic conformal partial wave:

n∆,ℓ =
vol
(
Sd−2

)
vol(SO(d− 1))

4(2ℓ+ d− 2)πΓ(ℓ+ 1)Γ(ℓ+ d− 2)

2d−2Γ
(
ℓ+ d

2

)2 1

22ℓ
πdΓ(∆− d

2
)Γ(∆̂− d

2
)

(∆ + ℓ− 1)(∆̂ + ℓ− 1)Γ(∆− 1)Γ(∆̂− 1)

(B.13)

We need not care about the expression of N (∆, ℓ), since it cancels in the calculation of ρMFT

in the following context. Let us now consider the superconformal zero rung laddder diagram.

37



For simplicity, we fix the gauge to be ⟨Φ̃(0)Φ(z)Φ̃(1)Φ(∞)⟩. Under this gauge, the zero rung
ladder becomes |z|2∆Φ . The inner product is given as:

⟨Ξ∆,ℓ,F0⟩ = N (∆, ℓ)

〈
1

|z|
Ψ1,−1

∆+1,ℓ, |z|
2∆Φ

〉
SUSY

= N (∆, ℓ)⟨Ψ1,−1
∆+1,ℓ, |z|

2∆Φ+1⟩1,−1
Bosonic (B.14)

Within the new gauge set up G = {x1 = 0, x2 = 1, x5 = ∞}, one can evaluate the above
inner product as:

⟨Ξ∆,ℓ,F0⟩ =
∫

d2x1 · · · d2x5

vol(SO(2, 2))

|x12|∆1+∆2|x34|∆3+∆4

|x12|4|x34|4

(
|x14|
|x23|

)∆21
(
|x14|
|x13|

)∆34

Ψ∆12,∆34

∆+1,ℓ (x1, . . . , x5)F
1+ 1

2∆Φ
0

∣∣∣∣
G

(B.15)

in our definition,

Ψ∆12,∆34

∆,ℓ =

∫
ddx5

|x12|∆−∆1−∆2

|x25|∆2+∆−∆1 |x15|∆1+∆−∆2

|x34|∆̂−∆3−∆4

|x35|∆3+∆̂−∆4 |x45|∆4+∆̂−∆3

Ĉℓ(η) (B.16)

where

|n|J |m|JĈJ

(
n ·m
|n||m|

)
= (nµ1 · · ·nµJ − traces ) (mµ1 · · ·mµJ

− traces ) (B.17)

and

η =
|x15| |x25|

|x12|
|x35| |x45|

|x34|

(
x⃗15

x2
15

− x⃗25

x2
25

)
·
(
x⃗35

x2
35

− x⃗45

x2
45

)∣∣∣∣
G

=
1⃗ · x⃗34

|x34|
(B.18)

And the zero rung ladder under the gauge is normalized as:

F0 =
|x12|2∆Φ|x34|2∆Φ

|x13|2∆Φ|x24|2∆Φ
(B.19)

Inserting Eq.(B.16)(B.17)(B.18)(B.19) into Eq.(B.15), we have:

⟨Ξ∆,ℓ,F0⟩ = N (∆, ℓ)
2

π

∫
d2x3d

2x4
|x34|2∆Φ−∆−2

|x4|2|x3|2∆Φ|1− x4|2∆Φ
(−1)ℓĈℓ

(
1⃗ · x⃗34

|x34|

)
= N (∆, ℓ)I(∆, ℓ)

(B.20)
2
π

comes from the Berzinian under this gauge. The integral can be evaluated as:

2

π

∫
d2x3d

2x4
|x34|2∆Φ−∆−2

|x4|2|x3|2∆Φ|1− x4|2∆Φ
(−1)ℓĈℓ

(
1⃗ · x⃗34

|x34|

)

=
2

π

∫
d2x43d

2x4
|x43|2∆Φ−∆−2−ℓ(xµ1

43 . . . x
µℓ
43 − traces)

|x4|2|x4 − x43|2∆Φ|1− x4|2∆Φ
(eµ1 · · · eµJ

− traces )

=
2

π
F (∆Φ − 1− ∆

2
− ℓ

2
,−∆Φ, ℓ) (eµ1 · · · eµℓ

− traces )

∫
d2x4

xµ1

4 . . . xµℓ
4 − traces

|x4|∆+ℓ+2|1− x4|2∆Φ

=
2

π
F (∆Φ − 1− ∆

2
− ℓ

2
,−∆Φ, ℓ)F (−∆

2
− ℓ

2
− 1,−∆Φ, ℓ)Ĉℓ(⃗1) (B.21)
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where

F (a, b, s) ≡ π
sin π(a+ s)

sin π(a+ b+ s+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(a+ s+ 1)

Γ(a+ b+ 2)Γ(a+ b+ s+ 2)Γ(−b)
. (B.22)

Ĉℓ(1) = (eµ1 · · · eµℓ − traces ) (eµ1 · · · eµℓ
− traces ) =

1

2ℓ
. (B.23)

Since we have collected all the necessary data, we can get the spectral coefficient function:

ρMFT =
⟨Ξ∆,ℓ,F0⟩S∆̃,ℓ

⟨Ξ∆,ℓ,Ξ∆,ℓ⟩
=

N (∆, ℓ)2I(∆, ℓ)S∆34=−1
1−∆,ℓ

N (∆, ℓ)2n∆+1,ℓ

=
I(∆, ℓ)S∆34=−1

1−∆,ℓ

n∆+1,ℓ

=− 21−2∆Φ+ℓ csc

(
1

2
π(∆− ℓ+ 2∆Φ)

)
sin

(
1

2
π(∆− ℓ− 2∆Φ)

)
×

Γ(1−∆Φ)
2Γ
(
1
2
(1−∆+ ℓ)

)
Γ
(
1
2
(∆ + ℓ)

)
Γ(∆Φ)2Γ

(
1
2
(2−∆+ ℓ)

)
Γ
(
1
2
(1 + ∆ + ℓ)

)
×

Γ
(
−∆

2
− ℓ

2
+∆Φ

)
Γ
(
1
2
(−∆+ ℓ) + ∆Φ

)
Γ
(
1
2
(2−∆− ℓ− 2∆Φ)

)
Γ
(
1
2
(2−∆+ ℓ− 2∆Φ)

)
(B.24)

C Two dimensional central charge

Under the gauge {θ̄1 = θ2 = θ3 = θ̄4 = 0}, the superconformal block expansion of four point
function for identical complex scalar reads:

W
(
X̄1, X2, X3, X̄4

)∣∣
θ̄1=θ2=θ3=θ̄4=0

=

〈
ϕ̄ (x1)ϕ (x2)ϕ (x3) ϕ̄ (x4)

〉〈
ϕ̄ (x1)ϕ (x2)

〉 〈
ϕ (x3) ϕ̄ (x4)

〉 =
∑

O∈Φ×Φ̄

|cΦΦ̄O|
2 G∆,ℓ(u, v)

(C.1)

The superconformal block can be regarded as linear superposition of conformal block:

G∆,ℓ = G∆,ℓ + a1(∆, ℓ)G∆+1,ℓ+1 + a2(∆, ℓ)G∆+1,ℓ−1 + a3(∆, ℓ)G∆+2,ℓ (C.2)

a1 =
(∆ + ℓ)

2(∆ + ℓ+ 1)

a2 =
(∆− ℓ)

8(∆− ℓ+ 1)

a3 =
(∆ + ℓ) (∆− ℓ)

16(∆ + ℓ+ 1)(∆− ℓ+ 1)

(C.3)

notice that when (∆, ℓ) = (1, 1), a2 = a3 = 0. In the limit of u → 0, v → 1, the conformal
block goes to:

G∆,ℓ(u, v) →
(−1)ℓ

2ℓ
u

∆−ℓ
2 (1− v)ℓ (C.4)
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By using the OPE, we have the contribution from stress tensor in the above four point
function:

1 +
C2

ϕϕ̄T

c

V 2
S1

u−1v

(
(u+ v − 1)2

4uv
− 1

2

)
⊂

〈
ϕ̄ (x1)ϕ (x2)ϕ (x3) ϕ̄ (x4)

〉〈
ϕ̄ (x1)ϕ (x2)

〉 〈
ϕ (x3) ϕ̄ (x4)

〉 (C.5)

compare with the linear combination of superconformal blocks, we have:

a1(∆, ℓ)
∣∣CΦ̃ΦR

∣∣2 = ∣∣Cϕ̄ϕT

∣∣2
c

V 2
S1 (C.6)

where the Ward identity fixes the OPE coefficient |Cϕ̄ϕT |:

|Cϕ̄ϕT | =
∆Φ

π
(C.7)

together with Eq.(C.3) and Eq.(C.6), we have:

c =
12∆2

Φ

|CΦ̃ΦR|2
(C.8)
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