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Electromagnetic corrections in hadronic tau decays
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Abstract

We briefly review electromagnetic radiative corrections in semileptonic tau decays and
their main applications.
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1 Introduction9

The tau lepton is the only one massive enough to decay into hadrons, making it a valuable10

tool for studying the hadronization of QCD at low energies in rather clean conditions [1].11

Table 1 summarizes the branching fraction precision of the main hadron tau decay channels,12

the knowledge of the corresponding radiative corrections (RadCors) and the main applica-13

tions of these analyses. We used: LFU (Lepton Flavor Universality) and NSI (non-standard14

interactions), Vus enters Cabibbo unitarity tests.15

The electromagnetic RadCors require the inclusion of virtual and real photons. The structure-16

independent (SI) contributions to the Kπ channel were studied in Refs. [15,16]. In Ref. [14]17
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H− Branching ratio precision [2] RadCors Application(s)
π− 0.5% [3–6] LFU, NSI
K− 1.4% [3–6] Vus , LFU, NSI
π−π0 0.4% [7–14] ρ(′), (g − 2)µ, NSI
K−K0 2.3% [14] ρ′, NSI
K̄0π− 1.7% [14–16] K ∗, Vus , CPV, NSI
K−π0 3.5% [14–16] K ∗, Vus , NSI
K−η 5.2% [14] K ∗(′), NSI
π−π+π− 0.5% x a1, NSI
π−π−π0 1.1% x a1, NSI

Table 1: Main semileptonic tau decay channels, precision of their measurement, Rad-
Cors available (x when missing) and main applications. Short-distance corrections
were computed in Refs. [17,18].

we first computed the structure-dependent (SD) corrections for these decays and the remain-18

ing two-meson modes. Virtual photon corrections are IR divergent and induce a shift (and a19

dependence on an additional variable, u, due to the four-body kinematics) to the form factors,20

which was studied -within Chiral Perturbation Theory, χPT [19–21]- in Ref. [7]. We recall21

that the SI part of the radiative process is introduced via Low’s theorem [22], so that the lead-22

ing term in the photon low-energy expansion is fully determined by the non-radiative decay23

amplitude.24

2 Amplitude, observables, RadCors and new physics tests25

The most general amplitude for the processes τ−(P) → P−(p−)P0(p0)ντ(q)γ(k) is given26

by [11,23]27

M =
eGFV∗

ud
p

2
ε∗µ

�

Hν(p−, p0)

k2 − 2k · P
ū(q)γν(1−γ5)(Mτ+/P−/k)γµu(P)+(Vµν−Aµν)ū(q)γν(1−γ5)u(P)

�

,

(1)
where the hadron matrix element is28

Hν(p−, p0) = CV F+(t )Q
ν + CS

∆−0

t
qνF0(t ) , t = q2 , (2)

with qν = (p−+p0)ν, Qν = (p−−p0)ν−
∆−0

t qν and∆i j = m2
i
−m2

j
. The vector and axial-vector29

contributions can be split into the SI and SD parts, according to the Low and Burnett-Kroll30

[22,24] theorems: Vµν = VµνSI +VµνSD , Aµν = AµνSD at leading order in χPT and fulfill kµAµν = 0,31

kµVµν = Hν(p−, p0) due to gauge invariance. For the K−π0 channel CV = CS = 1/
p

2, the32

coefficients for the other modes can be checked in Ref. [14]. The required form factors that we33

use have been constructed, within a dispersive framework, in Refs. [25–29]. At leading order,34

the Vµν are saturated by the exchange of (axial-)vector resonances. QCD short-distance con-35

straints specify the resonance couplings that contribute up to next-to-leading order in χPT36

in terms of the pion decay constant, F [30, 31]: FV =
p

2F, GV = F/
p

2, FA = F . In order37

to estimate the uncertainty due to missing higher chiral orders we also consider the relations38

that would be obtained adding the couplings at the next order [32–34] (which allow to comply39

with short-distance QCD not only for 2− but also for 3−point Green functions and related form40

factors), that include FV =
p

3F, GV = F/
p

3, FA =
p

2F , and take the difference between the41

results with either set of constraints as a measure of our model-dependent uncertainty. To42
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isolate the SD effects in the decay rates, we consider Ecut
γ ≥ 300 MeV in the decay spectra43

shown in Ref. [14] (in the K−K0 mode they are important even below 100 MeV, given the44

kaon masses). In any case, the Low’s approximation is insufficient to describe these decays45

for Eγ ≥ 100 MeV where SD effects dominate. We also predict that the relation between the46

K̄0π−/K−π0 branching fractions ∼ 2m K/mπ in the Low limit, gets substantially modified for47

larger photon energies due to an accidental cancellation among contributions from different48

orders in Eγ in the K̄0π− case. Measuring the photon/di-meson spectrum in this channel (cut-49

ting the lowest energy photons) would then be an important feedback for our SD input.50

51

The photon-inclusive double differential decay rate can be written as52

dΓ

dt

�

�

�

P−P0(γ)
=

G2
F |VuD F+(0)|2SEWM3

τ

768π3t 3

�

1−
t

M2
τ

�2

λ1/2(t , m2
−, m2

0)GEM(t )

×
�

C2
V |F̃+(t )|

2

�

1+
2t

M2
τ

�

λ(t , m2
−, m2

0) + 3C2
S∆

2
−0|F̃0(t )|2
�

,

(3)

where the function GEM(t ) [7] encodes the long-distance electromagnetic RadCors, D = d, s53

and the tilded form factors are normalized to F+(0). For simplicity, we split the contributions54

to the decay width as55

dΓ

dt

�

�

�

P−P0(γ)
=

dΓ

dt

�

�

�

P−P0
+

dΓ

dt

�

�

�

I I I
+

dΓ

dt

�

�

�

IV/I I I
+

dΓ

dt

�

�

�

rest
, (4)

where the first two terms define the G(0)EM(t ) (namely the leading Low approximation plus non-56

radiative contributions), the third one is negligible and the last one gives the remainder of the57

GEM(t ), which we call δGEM(t ). The second and third term correspond to the Low approxi-58

mation, where we separated (IV/I I I) the phase space accessible through the four-body decay59

but not through the three-body one.60

61

There are two models in the literature for incorporating the RadCors into the form factors.62

Differences between them are negligible in kaon decays, where they were introduced [35,36],63

but we have found this no longer holds in tau decays [14]. Indeed, the dominant source of64

uncertainty of our RadCors comes from the difference between both factorization models in65

defining F+/0(t , u) = F+/0(t ) + δF+/0(t , u), where δF0(t , u) = δF+(t , u) +
t
∆−0
δ f̄−(u). We66

just quote here our preferred factorization approach 1, according to which67

δF+(t , u)

F+(t )
=
α

4π

�

2(m2
− +M2

τ − u)C(u, Mγ) + 2 log

�

m−Mτ
M2
γ

��

+ δ f̄+(u) , (5)

including the regulator for the photon mass, which cancels in all observables, permitting to68

take the vanishing Mγ limit straightforwardly.69

70

Integrating Eq. (3) upon t gives the partial decay width71

ΓP−P0(γ) =
G2

F SEWM5
τ

96π3
|VuD F+(0)|2 IτP−P0(1+ δ

P−P0

EM )2 , (6)

1Reasons are discussed in detail in Ref. [14]. Essentially, it warrants smoother RadCors, which is physically
expected, by construction.
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which defines the RadCor δP−P0

EM , with72

IτP−P0 =
1

8M2
τ

∫ M2
τ

tt hr

dt

t 3

�

1−
t

M2
τ

�2

λ1/2(t , m2
−, m2

0)

�

C2
V |F̃+(t )|

2

�

1+
2t

M2
τ

�

λ(t , m2
−, m2

0)

+ 3C2
S∆

2
−0|F̃0(t )|2
�

.

(7)

73

Our main results correspond to the following RadCors (expressed always in %)74

δK−π0

EM = −
�

0.009+0.010
−0.118

�

, δ K̄0π−

EM = −
�

0.166+0.100
−0.157

�

,

δK−K0

EM = −
�

0.030+0.032
−0.180

�

, δπ
0π−

EM = −
�

0.186+0.114
−0.203

�

, (8)

where the uncertainty due to the so far missing virtual photon SD corrections is taken into75

account (estimating it from the corresponding results in the one-meson modes, [5]). This cor-76

rection will be presented elsewhere. As expected, from the mass-dependence on the radiating77

particle in the Low limit, the RadCors in Eqs. (8) are considerably larger for the modes with78

a π− than for those with a K−. In the latter, the uncertainty is completely asymmetric as it79

is dominated by the missing virtual SD correction (of known sign); while in the former, the80

asymmetry of the error is reduced since the uncertainty associated to the resonance couplings81

(with an effect of unknown sign) is non-negligible. For completeness we also quote our esti-82

mates for the RadCors in the K−η(′) modes, which were obtained exploiting the dominance83

of the vector (η) and scalar (η′) form factor, respectively:84

δ
K−η
EM = −
�

0.026+0.029
−0.163

�

, δ
K−η′

EM = −
�

0.304+0.422
−0.185

�

. (9)

The largest RadCor is obtained for the K−η′ mode due to the dominance of the scalar form85

factor in the decay spectra [26], as the corresponding kinematical dependence enhances the86

effect of the RadCors. Our results for the two-meson RadCors agree with earlier estimations87

(with improved precision) where available, and fill the gap for those yet uncomputed.88

89

Together with our improved computation of the RadCors in the one-meson tau decays90

[5, 6, 37–39], the results presented here enable more precise new physics tests using a low-91

energy Effective Field Theory of the τ− → ūDντ decays [40], which has been exploited in92

Refs. [41–52] (see Ref. [53] for a more detailed summary than the one presented here). Par-93

ticularly, in Ref. [14]we update our fits for either∆S = 0 and∆S = 1 one- and two-meson tau94

decays as well as our joint fit assuming minimal flavor violation [54] to allow for their com-95

bination, breaking thereby a degeneracy in the new physics parameter space. Interestingly,96

the inclusion of our RadCors increases the compatibility with the SM in the largest Wilson97

coefficient appearing in the strangeness-conserving channels (the one accounting for scalar98

non-standard interactions, ετS). The changes induced by our RadCors are, in all other in-99

stances, much smaller and covered by the uncertainties. Our dominant errors are statistical in100

the |∆S| = 1 processes (we emphasize once again the importance of improving the measure-101

ments of the strange tau spectral function and their contributing channels), and theoretical102

both in the ∆S = 0 channels and in the joint analysis. Under the weak coupling assumption,103

our limits push the new physics affecting the τ− → ūDντ processes to energies larger than104

a few TeVs. It will also be interesting to include our improved RadCors in updated studies of105

lepton universality and CKM unitarity using two-meson tau decays.106
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3 Conclusions107

RadCors are needed to improve the precision of new physics analyses beyond the percent108

level. Here we have reviewed our evaluation of those entering two-meson tau decays and109

their application in searches for non-standard interactions. This information was available for110

the π−π0 case and only the SI part, for the Kπ channels, was known before. We have filled111

this gap and computed the SD part stemming from real photons (the corresponding virtual112

contributions were only estimated and their calculation is in progress) in this work, which has113

also included the K−K0 and K−η(′) modes. Our main results are the numerical values (in %)114

of the RadCors in Eqs. (8) (see also Eq. (9)). These are in agreement with earlier publications115

and reduce the uncertainty band to a half, approximately. We have also put forward that116

the factorization prescription is very important in semileptonic tau (contrary to the kaon case)117

decays and explained our preferred choice for it, accounting for the corresponding uncertainty118

in our results. The measurement of the spectra (for Eγ ≳ 100 MeV, to be sensitive to the119

SD contributions) would help us to reduce our theory uncertainty substantially, benefiting all120

related new physics searches.121
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