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In the field of non-equilibrium phase transitions, the classification problem of reaction-diffusion6

processes with long-range interactions is both challenging and intriguing. Determining critical points7

serves as the foundation for studying the phase transition characteristics of these universality classes.8

In contrast to Monte Carlo simulations of statistical system observables, machine learning methods9

can extract evolutionary information from clusters of such systems, thereby rapidly identifying10

phase transition regions. We have developed a new method that uses one-dimensional encoded11

results of the stacked autoencoder to determine critical points, and it has a high level of reliability.12

Subsequently, the critical exponent δ of particle survival probability and the characteristic time tf13

of finite-scale systems can be measured. Utilizing the scaling relation tf∼Lz yields the dynamic14

exponent z. Finally, we discuss an alternative method adopting Lévy distribution to generate15

random walk steps, inserting another global expansion mechanism. The critical points obtained16

through it are very close to the predictions of field theory. This study suggests promising applications17

of autoencoder methods in processes involving such long-range interactions.18

I. INTRODUCTION19

In recent years, machine learning has been widely applied20

in various fields of physics[1]. With the powerful map-21

ping and generalization capabilities of neural networks,22

both supervised and unsupervised learning have found23

numerous applications. Examples include astronomy[2–24

4], quantum information[5–7], high-energy physics[8–10],25

biophysics[11–14], and complexity science[15, 16].The re-26

search methods related to complexity and critical phe-27

nomena include but are not limited to, mean-field theory,28

renormalization, exact diagonalization [17, 18], and nu-29

merical simulation methods such as Monte Carlo (MC)30

simulations[19–21]. Machine learning can be involved31

in both the theoretical and numerical solution processes32

of phase transition models, greatly enriching the solu-33

tion approaches and the scope of their applications. For34

equilibrium systems, statistical methods based on gen-35

eral ensemble theory are well established[22]. However,36

the prevalence of open systems in nature forces us to37

consider the dynamical behavior of non-equilibrium sys-38

tems. The dialectical relationship between equilibrium39

and non-equilibrium systems informs us about the ap-40

plicability of theoretical methods such as mean-field the-41

ory and field theory renormalization in non-equilibrium42

phase transition models[23–26]. It also inspires us to ex-43

plore the possibility of combining MC simulations and44

machine learning for numerical solutions[27].45

Machine learning has made significant progress in some46

equilibrium phase transition models[28–30]. For non-47

equilibrium phase transitions, the absence of detailed48

balance allows for richer critical behavior in systems49

that are far from equilibrium. Absorbing phase tran-50

sitions are a class of continuous phase transitions in non-51

equilibrium systems, where the transition occurs between52

an absorbing state with no surviving particles and an53

active state with active particles, controlled by a series54

of reaction-diffusion processes in the particle dynamics55

evolution. An important universality class of absorbing56

phase transitions is the directed percolation(DP) uni-57

versity class, characterized by consistent critical expo-58

nents and exemplified by the DP model. The mea-59

surement of a series of critical exponents is a vital ref-60

erence for determining the universality class to which61

a model belongs. Within the theoretical approaches,62

the DP universality is identified by several fundamen-63

tal conditions[31, 32]. In a broader context of particle64

reaction-diffusion, the DP universality class is observed65

in branching-annihilating random walks(BAW) processes66

with an odd number of branches[33, 34]. Conversely,67

the BAW models with an even number of branches be-68

long to the parity-conserving(PC) universality class[35–69

37]. The use of supervised and unsupervised machine70

learning methods to study the critical properties of71

non-equilibrium phase transition models appears to of-72

fer promising applications and research potential[38–40].73

Among these approaches, unsupervised learning methods74

provide a way to extract features near the critical point75

of a system[41–44].76

One of the conditions for ensuring the robustness of the77

directed percolation (DP) universality class is to guar-78

antee that the system only exhibits local interactions in79

both time and space, which aligns with the considera-80

tion of reactions and diffusion involving only nearest-81

neighbor particles in processes such as DP and BAW82

model. However, when considering the coupling of in-83

teractions and potential distributions in a lattice model,84

bringing in long-range interactions into reaction-diffusion85

systems can better reflect real physical systems. Tak-86

ing into account Lévy-like flights in DP may alter its87

universality class, and it may find broader applications88

under conditions such as long-range infection, latent pe-89

riods, and memory effects in realistic scenarios[45]. In90

the context of epidemic spread, Mollison proposed an ex-91

tension of directed percolation with non-local spreading92
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mechanisms[46], where diseases spread over a distance93

of r in a d-dimensional space, with r following a typical94

power-law distribution95

P (r)∼ 1

rd+σ
∼ 1

rβ
. (1)

The random walk displacement that satisfies this alge-96

braic distribution is known as Lévy-like flights [47]. Levy-97

like flights have a shorter time scale compared to the98

nearest-neighbor propagation models, resulting in non-99

local effects and longer distance extensions. In the anal-100

ysis of probability density evolution for particle random101

walk models, Lévy flights can be generated by introduc-102

ing nonlinear operators, also known as fractional order103

derivatives[48]. In our numerical simulation approach,104

we incorporate long-range interactions in the reaction-105

diffusion process through the settings of random num-106

bers and step sizes. We discuss the relevant simulation107

details of introducing Lévy-like flights into the DP model108

at the spatial scale, predict critical points, and measure109

several critical exponents, based on the the DP model110

with spatial long-range interactions.111

Utilizing unsupervised learning to identify and predict112

the structural characteristics of the evolution of phase113

transition models is one of the fundamental methods in114

applying machine learning to study phase transition[38].115

Stacked autoencoders (SAE), which combine fully con-116

nected neural networks and autoencoders, are one type117

of unsupervised learning algorithm. The primary objec-118

tive of an autoencoder, involving an encoder, decoder,119

and loss function, is data dimensionality reduction and120

reconstruction. The learning process of an autoencoder121

can be regarded as the minimization of a loss function.122

Fully connected neural networks, on the other hand, pro-123

vide a data compression method when dealing with grid-124

like structured data. When employed as a supervised125

learning algorithm, fully connected neural networks can126

effectively identify critical states of some phase transition127

models[27]. The basic structure of SAE involves gradu-128

ally stacking fully connected layers in the encoding and129

decoding processes. In practice, the structural details of130

SAE often need adjusting according to the system size.131

We consider the potential of utilizing SAE in the encod-132

ing process to identify critical states of spatial Lévy-like133

flights in the DP process, aiming to explore the feasi-134

bility of applying unsupervised learning methods based135

on autoencoders to study the critical properties of long-136

range interaction non-equilibrium phase transition mod-137

els in the context of (1+1)-dimensional spatial Lévy-like138

flights DP models.139

The structure of this paper is as follows: In Sec.II, we140

introduce the specific definition of the DP with spa-141

tial Lévy-like flights (LDP) model and briefly review142

the general results of mean-field theory and renormaliza-143

tion group analysis based on field theory. In Sec.III.A,144

we discuss the simulation details of introducing spatial145

long-range interactions into the DP model and present146

some numerical simulation results of the evolution. In147

Sec.III.B, we outline the general process of SAE meth-148

ods and discuss how certain settings affect the training149

process. Sec.IV.A provides a series of predicted criti-150

cal points based on the one-dimensional encoding output151

using SAE. In Sec.IV.B, we observe the decay behavior152

of the system’s particle density at these critical points153

to determine the critical exponent δ. Furthermore, in154

Sec.IV.C, we investigate the growth of active particles155

at critical points to determine the characteristic time tf156

of finite-scale systems, thereby obtaining the measured157

value of the dynamic exponent z. SAE can effectively158

identify these characteristic times. Finally, in Sec.IV.D,159

we use the measured values of the critical exponents to160

verify the compliance of the scaling relationship (7) and161

study the impact of a new method for generating random162

walk step sizes on critical points. In Sec.V, we summa-163

rize this work and provide an outlook on future research164

directions.165

II. FIELD THEORY APPROACH TO DP WITH166

SPATIAL LÉVY-LIKE FLIGHTS167

In the framework of particle reaction-diffusion, the con-168

tinuous phase transition from an active state to an in-169

active state in a system demonstrates that the dynamic170

evolution of such absorbing phase transitions is truly a171

non-equilibrium process influenced by fluctuations. In172

order to investigate the probability distribution analysis173

of non-equilibrium system structures, it is necessary to174

abandon the detailed balance condition and the Einstein175

relation that controls the long-time evolution direction176

of the system in setting up the dynamics equations for177

such systems [49–51]. The renormalization analysis of178

the DP model with spatial Lévy-like flights is based on179

the construction of the action.180

Before discussing the results of renormalization group181

analysis based on field theory, analyzing the mean-field182

approximation method that neglects high-dimensional183

fluctuation effects can provide insight into the dimensions184

and relevant scaling characteristics where system fluctu-185

ations are important. The ordinary mean-field equation186

for ordinary DP considering only nearest-neighbor inter-187

actions is[31]188

∂

∂t
n(x, t) =

(
τ +DN∇2

)
n(x, t)−λn2(x, t)+ζ(x, t), (2)

where n(x, t) is the density of active particles, and ∇2
189

represents the nearest-neighbor diffusion operator. For190

bringing in the long-range interactions and extending191

reaction-diffusion to the entire system, we consider Lévy-192

like flights with a power-law distribution, where the ran-193

dom walk distance r follows a spatially long-range decay194

according to distribution (1).The extension of equation195

(2) to DP models with long-range interactions requires196

the introduction of a nonlinear operator for non-local in-197

tegration. The mean-field equation for the LDP is given198
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by199

∂

∂t
n(x, t) =

(
τ +DA∇σ +DN∇2

)
n(x, t)−

−λn2(x, t) + ζ(x, t),
(3)

where ∇σ describes the non-local reaction-diffusion be-200

haviour, and the operator ∇σ is known as a fractional-201

order derivative, characterized by its properties as fol-202

lows:203

∇σei⃗k·r⃗ = −|⃗k|σei⃗k·r⃗. (4)

Through the mean-field approximation analysis, they ob-204

tained the upper critical dimension dc = 2σ = 4, mark-205

ing the crossover of the anomalous DP and ordinary DP206

controlled by the critical parameter. Contrasting the ∇2
207

term representing the ordinary DP diffusion mechanism208

in the evolution equation, they found that the ∇σ term209

controls the non-local reaction-diffusion behavior of the210

anomalous DP. Regarding the critical exponents ν∥ and211

ν⊥, when σ > 2, they transition to the universal class of212

ordinary DP, and the mean-field results indicate that ν⊥213

varies continuously.214

Below the upper critical dimension, it is necessary to fully215

consider the system’s fluctuation effects. Field-theoretic216

renormalization group (RG) methods can provide predic-217

tions for the critical exponents of such reaction-diffusion218

systems. By utilizing the expression of equation (3)219

within a bosonic multiparticle system, we can obtain a220

coherent state path integral representation of the pseudo-221

Hamiltonian. Through the extension of the continuum222

limit, an effective action is derived as follows:223

S[ψ̄, ψ] =

∫
ddxdt

[
ψ̄
(
∂t − τ −DN∇2 −DA∇σ

)
ψ+

+
g

2

(
ψ̄ψ2 − ψ̄2ψ

)]
.

(5)
The effective action serves as the foundation of quan-224

tum field theory, allowing for the analysis of higher-225

order diagrams using Feynman diagram methods and226

the determination of critical exponents through RG ap-227

proaches. The paper [52], calculations were conducted228

for the d = 2σ − ϵ dimensional space DP with Lévy-like229

flights using dimensional regularization-based renormal-230

ization methods, providing predictions for critical expo-231

nents under the one-loop diagram approximation. Some232

of the results are as follows:233

ν⊥ =
1

σ
+

2ϵ

7σ2
+O

(
ϵ2
)
,

ν∥ = 1 +
ϵ

7σ
+O

(
ϵ2
)
,

z =
ν∥

ν⊥
= σ − ϵ/7 +O

(
ϵ2
)
,

δ = 1− 3ϵ

7σ
+O

(
ϵ2
)
.

(6)

Due to the correlation between the upper critical dimen-234

sion and σ, by selecting specific parameter values, it may235

be possible to verify one-loop order results near the up-236

per critical dimension. Specifically, we are interested in237

the scaling relation238

1

δ
− β − 2

δ
z = 2, (7)

where β = σ + d. While critical components ν∥, ν⊥ vary239

continuously, β governs the crossover between the anoma-240

lous DP and ordinary DP. By inserting the critical com-241

ponents of ordinary DP [53] [20, 23, 24] into equation242

(7), they obtain the value of critical control parameter243

βc = 3.0776(2) in one spatial dimension. In numerical244

work, we attempt to compare theoretical results by tak-245

ing a series of different β values. Additionally, we seek to246

compare the conditions for generating some of the criti-247

cal exponents of ordinary DP by using different methods248

for generating random walk steps.249

III. MODEL AND AUTOENCODER METHOD250

A. Simulation of the DP with spatial Lévy-like251

flights252

By setting the transition probabilities within the253

Domany-Kinzel automaton (DK), the update rules for254

the ordinary (1+1)-dimensional DP process can be de-255

termined. The basic setup of the DK cellular automaton256

model involves using the occupation status of surround-257

ing lattice points to determine the occupation state of a258

lattice point at the next time step. For the ordinary DP,259

the occupation state of the point si,t depends only on its260

nearest neighbors si−1,t and si+1,t. The update rules for261

bond DP can be expressed as:262

si,t+1 =


1 if si−1,t ̸= si+1,t and zi(t) < p,

1 if si−1,t = si+1,t = 1 and zi(t) < p(2− p),

0 otherwise ,

(8)

where si,t+1 = 1 represents a site being occupied, and263

si,t+1 = 0 represents a site not being occupied. zi(t) is264

a uniformly distributed random number in the interval265

[0, 1], and p is an artificially set hyperparameter repre-266

senting the transition probability.267

A general way to introduce the space Lévy-like flights into268

the ordinary DP process described above is to change the269

influences on the state occupied by the locus at the next270

moment. This entails replacing the nearest neighbors271

si−1,t and si+1,t with si−[L],t and si+[R],t, where [L] and272

[R] represent the largest positive integers not exceeding273

the distances L and R, respectively. In this case, the274
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FIG. 1. The evolution of (1+1)-dimensional ordinary DP and LDP. In the following illustrations, black and blue dots represent
occupied sites, while empty dots indicate unoccupied sites. The left panel depicts the evolution rules (8) for ordinary DP, with
black particles evolving over time steps starting from Si following the black arrows. The blue dots represent an example of
the evolution of LDP at Sj according to rules (9). Unlike ordinary DP, the interaction range of LDP is not limited to nearest
neighbors, allowing particles to appear further apart in a shorter period of time.
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FIG. 2. (a) A one-dimensional random walk conducted based on the step sizes generated according to formula (10) for
β = 2.5,= 3.0. The horizontal axis represents the number of steps in the random walk, while the vertical axis indicates the
position of the particle at the current step. It can be observed from the graph that larger step sizes can be generated for
smaller β values. In (b), with the number of steps set to 2000, a distribution plot of the final positions of particles after
1000 independent random walks is shown. The horizontal axis represents the final positions where particles appear, and the
vertical axis represents the corresponding frequency of those positions. It is evident from the graph that there are pronounced
characteristics of a long-tailed distribution.

update rules for LDP can be expressed as:275

si,t+1 =


1 if si−[L],t ̸= si+[R],t and zi(t) < p,

1 if si−[L],t = si+[R],t = 1 and zi(t) < p(2− p),

0 otherwise .

(9)

When setting the generation rules for L and R, differ-276

ent forms of spatial long-range interactions can be in-277

troduced. Figure 1 represents the evolution of ordinary278

DP and LDP, where the percolation action of the blue279

points is not limited to the nearest neighboring lattice280

points. We are considering the spatial long-range inter-281

actions that follow power-law distributions. It’s worth282

noting that there are multiple methods for generating283

random walk step sizes that satisfy power-law distribu-284

tions, and in this part, we have employed285

[L] =Max(L), L = Z
−1/(β−1)
L ,

[R] =Max(R), R = Z
−1/(β−1)
R .

(10)

to define the generation rule of step size. Here, the func-286

tionMax(L) denotes the maximum integer not exceeding287

L, while ZL, ZR ∈ (0, 1) are random numbers following a288

uniform distribution. β is a positive real number greater289

than 1. It can be verified that L and R conform to a290

normalized probability distribution[54].291

P (r) =

{
β−1
rβ

, if β > 1,

0, otherwise .
(11)

At β = 2.0, 3.0, we generate 500 steps for one-292

dimensional random wandering, as shown in Figure 2(a).293
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FIG. 3. The clusters growth structure starting from an initial set of 10 active seeds for β = 1.5, 2, 3, 10000, with a system
size of L = 500 and a time step setting of t = 500. When β is small, the system may transition to the absorbing state more
rapidly, indicating a decrease in the characteristic time of system evolution, and clusters tend to become more dispersed. As β
increases, the system evolution leads to the formation of larger clusters and a more ordered structure. When β = 10000, the
cluster growth structure closely resembles the evolution of ordinary DP.

From the figure, it can be observed that β is smaller, it294

is possible to generate larger step sizes. In addition, Fig-295

ure 2(b) shows the distribution of step lengths for 2000296

random walks, from which an obvious ”long-tailed dis-297

tribution” can be seen. The diffusion of particles from298

the site si at time t to the site at time t+ 1 depends on299

the generation of step sizes [L] and [R]. We employ the300

Max function to ensure that interactions cover the entire301

lattice. For example, particles at position si can diffuse302

tosi−[L], si−[L−1], ..., si, si+1, si+2, ..., si+[R−1], si+[R].303

We implemented a simulation program in Python7 to304

simulate the evolution rules of LDP, utilizing periodic305

boundary conditions to reduce finite-size effects. In Fig-306

ure 3, we present the growth results of clusters under307

different β values. When β is small, the system is more308

likely to quickly enter an absorbing state, indicating a309

smaller characteristic time and a tendency for clusters to310

disperse. As β increases, the system forms larger clusters311

with a more ordered structure. From the perspective of312

system fluctuations, increasing β tends to enhance the313

influence of fluctuations, leading to an increase of the314

upper critical dimension, consistent with the field theory315

prediction of dc = 2(β − 1).316

B. Method of Stacked Autoencoder317

Different from traditional supervised learning methods,318

unsupervised learning may be capable of predicting the319

critical properties of absorbing phase transitions. In the320

absence of any prior information about the system’s dy-321

namic evolution, the objective of unsupervised learning322

can be to provide the probability distribution of random323

vectors [42, 43]. Among these methods, autoencoders,324

as a mature unsupervised learning approach, have been325

applied in the study of phase transitions and critical phe-326

nomena. An autoencoder is a type of neural network with327

the fundamental training objective of attempting to repli-328

cate the input to the output or perform incomplete input329

replication. By setting different loss functions, the encod-330
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FIG. 4. The general structure of an SAE is designed with layered hidden units to preserve the original cluster graph information
as much as possible. The Encoder output section in the figure is extracted after the training of the SAE. Two brown-colored
neurons are used to analyze structural features, while one red-colored neuron is used to determine the critical point.
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FIG. 5. Two-dimensional feature extraction of (1 + 1) -
dimensional LDP training by SAE.The right color bars rep-
resent different values of directed percolation probabilities.
When approaching the critical point, the points show the
characteristics of fuzzy dispersion.

ing and decoding effectiveness of the autoencoder can be331

evaluated. Considering the effectiveness of autoencoders332

in handling image data, we attempted to use an autoen-333

coder with a fully connected neural network structure to334

process cluster configuration of absorbing phase transi-335

tions. Given the particular LDP model near the critical336

point, our basic approach is to utilize the dimensional-337

ity reduction function of the autoencoder to extract the338

spatial and temporal structural characteristics of the sys-339

tem’s cluster configurations and compare the character-340

istic outputs under different percolation probabilities to341

determine the position of the critical point.342

We designed a SAE structure based on a fully connected343

neural network, and Figure 4 illustrates the encoding and344

decoding processes of the autoencoder. We chose mean345

squared error (MSE) as the loss function to assess the346

data reconstruction capability of the autoencoder. Dur-347

ing the encoding and decoding processes, we used multi-348

ple hidden layers to preserve the structural information349

of the initial data as much as possible and employed dy-350

namic learning rates to optimize the model’s parameter351

configuration. In the parameter updating process, we352

utilized the Adam optimizer to introduce momentum-353

corrected biases and introduced regularization to weaken354

training noise. Finally, we extracted the hidden variables355

encoded to the specified dimension.356

Our basic workflow for using SAE generally includes the357

following steps. Firstly, we fix the value of the hyper-358

parameter β. Cluster graphs with different percolation359

probabilities, as shown in Figure 3, are fed into the SAE,360

corresponding to the ’Input’ layer in Figure 4. Similar361

to the left part of Figure 4, the SAE then encodes the362

original data through fully connected layers with gradu-363

ally decreasing neurons and applies the ReLU activation364

function to provide non-linear mapping. After encoding,365

the original input data is dimensionally reduced, and the366

dimensionality is determined by specifying the number367

of neurons in the ’Encoder output’ layer.368

Decoding is the reverse process of encoding, aiming369

to reshape the original cluster graph using the low-370

dimensional results obtained through encoding. After371

multiple backpropagation and parameter updates, mean372

squared error is used as the loss function to evaluate the373

data reconstruction performance. Once SAE training is374

complete, we retain the encoding results with different375

numbers of neurons. The results of two neurons corre-376

spond to the positions of brown points in Figure 4, while377

the result of one neuron corresponds to the position of378
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FIG. 6. At β = 3.2, the one-dimensional encoding output of the hidden layer in SAEs, and the determination of the LDP
critical point Pc. (a) For a system size of 500 and a time step of 500, we obtained the one-dimensional output of SAEs for 41
percolation probability p in the range of [0.50, 0.70]. The blue dots represent the one-dimensional encoding output of SAEs,
while the red dashed line represents the result of polynomial fitting. Under the settings of Figure (a), the derivative of the
fitted result of the one-dimensional encoding output of SAEs is shown by the blue curve in (b). By identifying the global
minimum in the extreme value of the derivative curve, we determined the position of the system’s critical point characterized
by the percolation probability Pc = 0.6160.
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FIG. 7. At β = 3.4, the one-dimensional encoding output of the hidden layer in SAEs, and the determination of the LDP
critical point Pc. The system settings are consistent with those in Figure 6. Due to the non-uniqueness of the monotonicity
of the fitted results of the one-dimensional encoding output of autoencoders, with different values of β, the critical point can
be determined based on the characteristics of extremum in its derivative curve. According to the global maximum value of
extremum in Figure (b), the system’s critical point is identified as Pc = 0.6223.

the red point in Figure 4. As shown in Figure 5, we use379

different colors to label the results of the two neurons.380

The result of one neuron is represented by a single color,381

such as the blue circle in Figure 6(a).382

IV. AUTOENCODER AND NUMERICAL383

RESULTS384

A. Determination of critical points385

We initially employ an autoencoder to extract and an-386

alyze the two-dimensional features of cluster configura-387

tions from the LDP model. Considering training costs388

and precision, we select 41 p values at intervals of 0.005389

within the range of [0.5, 0.7]. For each p, we repeatedly390

generate cluster configuration, resulting in a training set391

of 41×500 cluster configurations and a test set of 41×50392

cluster configurations. The system size is L = 500 , the393

time step is set to t = 500 , and the value of the hyper-394

parameter β is chosen to be 3.2 firstly.395

To retain as much cluster diagram structural informa-396

tion as possible, we employ full-seed initial conditions.397

By setting the hidden layer to be two-dimensional, we398

extract the two-dimensional structural features of the399

cluster configuration, as illustrated in Figure 5. In the400
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FIG. 8. (a) At β = 3.2 and p = 0.6160, the decay of the system’s active particle density and the goodness of fit. The system
size is L = 10000, and the time step is set to t = 10000. The red dashed curve represents the function curve fitted using
a power-law, and the definition of goodness of fit is described in the text, with a resulting R2 = 0.9986.(b) At β = 3.4 and
p = 0.6223, the decay of the system’s active particle density and the goodness of fit. The system size and time step settings
are the same as in (a), with a goodness of fit of R2 = 0.9962. The optimal value of R2 is 1, and we believe that this method of
determining the critical point is highly reliable.
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FIG. 9. To investigate the relationship between the critical point and the hyperparameter β, we measured a set of numerical
values for the critical point Pc corresponding to different β. Taking β = 2.0 as an example, Figure (a) displays the one-
dimensional encoding output of stacked autoencoders and the polynomial fitting results, while Figure (b) illustrates the critical
point determined by the derivative curve, with Pc = 0.5470. We summarize the other results in Table I.

figure, h1 and h2 represent the coordinates of the two-401

dimensional feature points, and the color bar on the right402

indicates the corresponding colors for different branch-403

ing probability values. The results indicate that near404

the critical point, the feature points are blurred and dis-405

persed, even fractured, suggesting that the autoencoder406

has captured the particularities near the critical point407

of the system. We infer that the autoencoder can dis-408

tinguish the power-law growth characteristics of particle409

density near the critical point and specific structural fea-410

tures of the cluster configuration from regions far from411

the critical point. Based on this idea, we set the hidden412

layer to be one-dimensional and identify the critical point413

through the features of the one-dimensional data.414

We select β = 3.2, 3.4 and input the corresponding train-415

ing and test sets into the autoencoder, obtaining the re-416

sults of the autoencoder’s extraction of one-dimensional417

features from the cluster diagrams, as shown in Fig-418

ure 6(a) and Figure 7(a). Observing the features of419

the curves in Figure 6(a) and Figure 7(a), when p →420

P theoretical
c , the curves appear to reach maximum curva-421

ture. Therefore, we perform a polynomial fitting of the422

curves and plot the relationship between the derivative of423

the fitted curve and p. The results are depicted in Figure424

6(b) and Figure 7(b). We find that the global minimum425

or maximum in the extreme values in the figures corre-426

sponds to the percolation probability, which can be used427

as our estimate for Pc. According to the results in Figure428

6(b) and Figure 7(b), when β = 3.2 and 3.4, we estimate429

their corresponding critical points to be Pc = 0.6160 and430
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FIG. 10. The measurement of the critical exponent δ is conducted with the system settings identical to those in Figure 8. (a)
At β = 3.2, we present the decay of active particle density at the critical point Pc = 0.6160 in a double-logarithmic coordinate
system. According to Equation 12, the critical exponent is estimated as δ≃0.194(4). (b) At β = 3.4, the value of the critical
exponent δ at the critical point Pc = 0.6223 is determined to be 0.188(8).

0.6223. To examine the feasibility of such an approach,431

we counted the decay of the particle density of the system432

with β = 3.4, 3.6 . The decay form of the active particle433

density at the critical point is434

ρ(t)∼t−δ. (12)

We performed a power-law fit to the particle density,435

where the results in ordinary coordinates are shown in436

Fig. 8. We also calculated the goodness of fit437

R2 = 1−
∑

(ya − yp))
2∑

(ya − ym)
2 , (13)

where ya represents the statistically measured actual den-438

sity, yp represents the predicted values corresponding to439

the fitted curve, and ym represents the mean value of the440

actual measurements. When β = 3.4 and 3.6, the good-441

ness of fit R2 = 0.9986 and 0.9962, respectively. Con-442

sidering that the optimal value for R2 is 1, we believe443

that this method of determining the critical point of the444

system has a high level of credibility.445

To investigate the relationship between the critical point446

and the hyperparameter β, we duly select a series β447

to measure Pc. At β = 3.6, 3.4, 3.2, 3.0, 2.8, 2.6, 2.4, 2.2,448

we select 41 p as percolation probabilities at intervals449

of 0.005 within the range of [0.5, 0.7] to generate train-450

ing and test sets. Similarly, at β = 2.0, 1.8, 1.6, 1.4, 1.2,451

we choose 41 p within the range of [0.45, 0.65]. Addi-452

tionally, we measured the critical point at the crossover453

βc = 3.0766 between anomalous DP and ordinary DP454

predicted by the field-theoretic RG. As an example, Fig-455

ure 9 illustrates the representative results at β = 2.0. All456

the measurements of Pc are summarized in Table I.457

B. Measurement of critical exponent δ458

In the above work, we are also able to estimate the den-459

sity decay exponent δ of the system particles. To re-460

duce statistical errors, we measured the particle den-461

sity decay of larger-sized systems based on the crit-462

ical points determined by the autoencoder. Specifi-463

cally, we initially observed the variation in particle den-464

sity for system sizes of L = 10000 and time steps of465

t = 10000 at β = 3.2, 3.4 with Pc = 0.6160, 0.6223.466

To mitigate the impact of random errors, we averaged467

the results of the evolution with 100 different initial468

conditions. As an example, the results of δ obtained469

through linear fitting in double-logarithmic coordinates470

are depicted in Figure 10. The fitting result for Fig-471

ure 10(a) is 0.49195837t−0.19448102, and for Figure 10(b)472

it is 0.51525595t−0.18883931. Subsequently, we measured473

the values of the density decay exponent δ at β =474

3.6, 3.077(6), 3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6, 1.4, 1.2 cor-475

responding to the critical points Pc in Table I. The sum-476

mary of all measurements of the critical exponent δ is477

presented in Figure 11(b) and Table I.478

Regarding the measurement of critical points in 11(a), we479

obtained different values of Pc for various β, suggesting480

that Pc in the LDP model continuously varies based on481

the hyperparameter β. The variation of the critical expo-482

nent δ indicates that, under the control of β, the system483

deviates from the universality class of ordinary DP. This484

demonstrates that the introduction of long-range inter-485

actions alters the symmetry of the ordinary DP system.486

C. Measurement of the dynamic exponent z487

For verifying exact scaling relation (7), we attempt to488

calculate system dynamical exponent z, which, at the489
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FIG. 11. A set of critical points Pc and critical exponents δ corresponding to different values of β. (a) The variation of critical
points corresponding to different values of β (specific values are provided in the text). It can be inferred that the critical points
undergo continuous changes under the control of the parameter β. (b) The variation of the critical exponent δ at different
values of β. Due to the significant dependence of δ measurement on statistical averaging, increasing the measurement cost may
yield smoother results. However, based on Figure (b), it can still be inferred that the critical exponent δ exhibits continuous
changes with the parameter β.

β 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.077(6) 3.2 3.4 3.6
Pc 0.5068 0.5106 0.5191 0.5316 0.5470 0.5618 0.5760 0.5892 0.6000 0.6091 0.6129 0.6160 0.6223 0.6280
δ 0.6331 0.6029 0.5427 0.5171 0.4839 0.4113 0.3421 0.2725 0.2825 0.2537 0.2082 0.1944 0.1888 0.1738

TABLE I. A set of critical points corresponding to β and the critical exponent δ obtained through statistical measurements of
the system’s active particle density.

critical point, obeys the scaling relation490

ξ⊥∼t
1
z . (14)

And ξ⊥ refers to spatial correlation length. Considering491

the relation between dynamical exponent z and mean492

square spreading exponent z̃, where z̃ = 2/z, and z̃ sat-493

isfies the scaling relation494

r2(t)∼tz̃. (15)

It is common to measure mean square spreading r2 of495

surviving clusters from origin in place of the dynamical496

exponent z. However, simulations have shown that r2497

does not exhibit a power-law but diverges at the critical498

point in the presence of long-range interaction[54]. In a499

finite lattice system, there is a non-vanishing probability500

of reaching the absorbing configuration. In the critical501

region, when the spatial size of the system is L, the sys-502

tem reaches an absorbing state after a characteristic time503

tf , which satisfies the relation:504

tf∼Lz. (16)

We utilize finite-size effects to determine the dynamic ex-505

ponent z. In brief, we record the time steps required for506

systems of multiple sizes to reach an absorbing configu-507

ration at critical probability. We then perform a fitting508

on those time steps to determine z.509

Due to computational limitations, the upper time step510

limit set in our simulations is not smaller than the511

characteristic time of ordinary DP universality classes.512

The introduction of long-range interactions leads to513

the clustering structure becoming more discrete, and514

the absorbing state appearing more quickly. Com-515

pared to ordinary DP, such systems have a smaller dy-516

namic exponent when β is small. We selected five517

system sizes (L = 60, 65, 70, 75, 80) for each value of518

β = 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6 and performed finite-519

size scaling analysis with a temporal scale limit of520

1200, 1400, 1600, 1800, 2000 for each system size. To re-521

duce random errors, we performed five times ensemble522

averages for a total of 25000 systems for each system523

size. Figure 12(a) displays the characteristic time tf and524

its standard deviation obtained from ensemble averages525

of systems with β = 3.6 and L = 60. The small stan-526

dard deviation can serve as a reference for measuring527

accuracy. Based on the power-law relationship between528

the characteristic time and finite size, we fitted the tf529

for different system sizes and calculated the dynamical530

exponent z = 1.5765(4), as shown in Figure12(b). The531

dynamical exponents for other values of β are listed in532

TableII.533

We find that both z and tf decrease as β decreases.534

To distinguish the measured values of tf for different535

finite sizes and reduce the system error, we increased536
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FIG. 12. At β = 3.6, the standard deviation of characteristic times for systems with the same size and the measurement of
the critical exponent z for systems with different sizes. (a) For L = 60 and t = 1200, the average values of tf taken every 5000
steps are computed, and the standard deviation of these five measurements is calculated as SD = 1.2441. (b) System sizes
L = 60, 65, 70, 75, 80 with corresponding time step settings of 1200, 1400, 1600, 1800, 2000, respectively, are used to calculate
the statistical values of characteristic times, with each tf being the result of averaging over 25000 statistical measurements.
Utilizing the relationship (16) between characteristic times and dynamic exponent z, the critical exponent is determined as
z = 1.5765(4).
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FIG. 13. At β = 1.8, the standard deviation of characteristic times for systems with the same size and the measurement of the
critical exponent z for systems with different sizes. (a) For L = 300 and t = 600, the average values of tf taken every 5000 steps
are calculated, and the standard deviation of these five measurements is computed as SD = 1.7888. (b) The statistical values of
characteristic times for system sizes L = 100, 200, 300, 400, 500 with corresponding time step settings of 200, 400, 600, 800, 1000,
respectively, are shown. Each tf represents the result of averaging over 25000 statistical measurements. The fitted result for
the critical exponent z is z = 0.920(8).

the system’s spatial scale(L = 100, 200, 300, 400, 500) for537

β = 1.2, 1.4, 1.6, 1.8, 2.0. At the same time, to reduce538

simulation costs, we decreased the temporal scale limit539

of the system(t = 200, 400, 600, 800, 1000). In Figure 13,540

we show the measured value of tf and the fitted value of541

z for β = 1.8, L = 300, t = 600. Figure 14(a) displays the542

curve of z for β.543

After obtaining the above results, we used the cluster di-544

agrams generated at different time scales as both training545

and testing inputs for an autoencoder. Our aim was to546

observe the one-dimensional hidden layer output in or-547

der to capture the critical evolution characteristics of the548

system. For example, under the conditions of β = 3.4549

and Pc = 0.6223, we generated cluster configurations at550

different temporal scales for system size L = 60, with the551

temporal scale ranging from t∈[550, 590]. We generate552

a total of 41×500 cluster configurations as the training553

set and select 1/10 of them as the testing set input into554

the autoencoder. Figure 14(b) demonstrates the results555

of the single latent layer variables. It is evident that the556

latent variable increases suddenly near the characteristic557

time, indicating that the autoencoder is also capable of558

recognizing critical features of the system.559
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FIG. 14. (a) Measurements of the dynamic exponent z corresponding to a set of β values (specific values are provided in
the text) suggest that the dynamic exponent continuously changes with the parameter β. Combining the measurements of the
critical exponents δ and Θ mentioned above, indicates that the universality class to which the DP system belongs under spatial
Lévy-like long-range interactions dynamically changes with the parameter β. (b) At β = 3.4 and Pc = 0.6223, for a system
of size L = 60, the one-dimensional encoding output after training with stacked autoencoders for cluster plots at different
time steps is presented. The presence of larger gaps in the plot, particularly those close to the predicted characteristic time
tf = 569.40, indicates that stacked autoencoders can effectively recognize this evolutionary feature of the system.

β 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.077(6) 3.2 3.4 3.6
z 0.819(9) 0.832(3) 0.860(3) 0.920(8) 1.031(5) 1.13(5) 1.216(9) 1.306(9) 1.379(7) 1.449(8) 1.481(2) 1.515(7) 1.549(6) 1.5765(4)

TABLE II. By statistically analyzing characteristic times for systems of different sizes but the same β, and fitting to obtain
the values of the dynamic exponent z.

D. Validation of a scaling form560

Thus far, we have obtained the critical points and criti-561

cal exponents, δ and z, for multiple values of β. We at-562

tempted to compare the theoretical values of δ with the563

numerical simulation results in one-dimensional space.564

Referring to the scaling form 7, δ can be expressed as565

δ =
1

2
(1− β − 2

z
). (17)

It can be seen that the measured values are in good agree-566

ment with the theoretical values for β ∈ [2.0, 2.6] in Fig-567

ure15. However, for other values of β, the measured val-568

ues deviate from the theoretical calculations. There may569

be several reasons for this. Firstly, when β is small, the570

reaction diffusion distance of the system particles is rela-571

tively large, and the particles have more opportunities to572

survive outside of the finite system. Therefore, finite size573

effects have a significant impact, resulting in a large devi-574

ation in the measurement of the critical point and critical575

exponents. Secondly, due to the intersection of ordinary576

DP and anomalous DP, there is a difference in the crit-577

ical exponents of the two methods when βc = 3.077(6).578

Calculations of the higher-order diagrams based on the579

renormalization group may yield results that are more580

consistent with the simulation. Until β = 3.6, the mea-581

sured value of the dynamic exponent z = 1.5765(4) is582

close to the dynamic exponent zOrdinaryDP = 1.5807(4)583

1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

e

t

FIG. 15. Comparison between the measured and theoreti-
cal values of the critical exponent δ, where δe represents the
experimentally measured value, and δt is the theoretically cal-
culated value based on Equation 17.

of ordinary DP. Modifying the method for generating ran-584

dom walk step sizes may lead to measurement results that585

are more consistent with the theoretical calculations.586

Considering the specific math form of the Lévy distribu-587

tion, we tried a method of generating a random walk step588

length that conforms to the Lévy distribution [55]. The589

step length s is generated by the following equation590

s =
u

|v|1/(β′−1)
, (18)
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FIG. 16. At β′ = 3.0, the measurement of the critical point is
conducted by introducing a global expansion mechanism using
the Lévy distribution to generate random walk step lengths.
The obtained critical point is very close to the critical point
of the ordinary DP, Pc = 0.6447.

where u, v follow normal distribution591

u∼N(0, σ2
u), u∼N(0, σ2

v). (19)

Besides,592

σu =

{
Γ(β′) sin(π(β′ − 1)/2)

Γ(β′/2)(β′ − 1)2(β′−2)/2

}1/(β′−1)

, σv = 1.

(20)

Based on the above rules, we repeatedly generated 2000593

random step lengths at β′ = 2.0, 3.0. The generated step594

sizes follow a power-law distribution L(s)∼|s|−β′
, 1 <595

β′≤3. We replaced the step sizes L and R in Sec.III. A,596

and measured the critical point of the system, at β′ = 3.0,597

to be Pc = 0.6443, which is closer to the critical point of598

ordinary DP, POrdinaryDP
c = 0.6447, as shown in Figure599

16. However, this updating rule can only generate ran-600

dom walks with β′ ∈ (1, 3], and optimizing it may yield601

more complete results, which can be compared with the602

results from the renormalization group.603

V. CONCLUSION604

We investigated the (1+1)-dimensional DP model with605

power-law distributed, spatial long-range interacting606

variables using autoencoders and MC methods. We de-607

termined the critical points of the system for different608

hyperparameters β, measured some critical exponents,609

and attempted to compare the results with those from610

field theory and the renormalization group.611

The results of the cluster diagram indicate that spa-612

tial long-range interactions alter the ordered structure of613

the system, enhancing the influence of fluctuations and614

thereby modifying the upper critical dimension of the615

model. Using a SAE, we identified the critical points of616

the system controlled by the hyperparameter β. Based617

on the one-dimensional encoded results of the SAE. We618

find that the maximum or minimum value in the extreme619

values of the curve derivative can characterize the loca-620

tion well where the critical point is located. Additionally,621

we calculated the goodness of fit R2 = 0.9986, 0.9962 be-622

tween the numerical results of particle density and the623

theoretically predicted power-law decay form, demon-624

strating the high credibility of this unsupervised learn-625

ing approach. Subsequently, we record the variations in626

critical points of the system corresponding to different β627

values, as shown in Figure 11 and Table I. We infer that628

in the DP system with spatial long-range interactions,629

the critical point Pc undergoes continuous changes with630

the parameter β.631

To explore the universality class to which the DP system632

with such Lévy-like spatial long-range interactions be-633

longs, we measured the critical exponents δ and z of the634

system. The results indicate that the universality class of635

the DP system with Lévy-like flights spatial long-range636

interactions changes with the hyperparameter β. In par-637

ticular, we compared the compliance of the scaling rela-638

tion (7) in different β intervals. The results show that639

only when β∈[2.0, 2.6] do the numerical results match640

well with the field theory results. We speculate that this641

defect is caused by the finite-size effect and the updat-642

ing rule of the random walk steps, so we used a new643

steps updating rule for numerical simulations. We found644

that β′ = 3.0 yields a critical point very close to that645

of the ordinary DP, which is consistent with the pre-646

dictions of field theory. Since this algorithm can only647

generate step lengths in the range of β′∈(1.0, 3.0], we ex-648

pect to make reasonable modifications to the algorithm649

or design new methods to generate random walk step650

lengths that comply with the power-law distribution. In651

addition, introducing different forms of long-range inter-652

actions in space and time may broaden the application653

of DP evolution mechanisms. In conclusion, we have ex-654

panded the application of autoencoders, an unsupervised655

learning method, in reaction-diffusion systems with long-656

range interactions, providing a valid reference for com-657

bining machine learning with other numerical simulation658

methods to solve cutting-edge problems.659
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