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Abstract

Tensor networks capture large classes of ground states of phases of quantum matter
faithfully and efficiently. Their manipulation and contraction has remained a challenge
over the years, however. For most of the history, ground state simulations of two-
dimensional quantum lattice systems using (infinite) projected entangled pair states
have relied on what is called a time-evolving block decimation. In recent years, multiple
proposals for the variational optimization of the quantum state have been put forward,
overcoming accuracy and convergence problems of previously known methods. The in-
corporation of automatic differentiation in tensor networks algorithms has ultimately
enabled a new, flexible way for variational simulation of ground states and excited states.
In this work we review the state-of-the-art of the variational iPEPS framework, providing
a detailed introduction to automatic differentiation, a description of a general founda-
tion into which various two-dimensional lattices can be conveniently incorporated, and
demonstrative benchmarking results.
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1 Introduction42

Tensor networks are at the basis of a wealth of methods that are able to efficiently capture43

systems with many degrees of freedom, primarily in the context of interacting quantum sys-44

tems, but also in a wide range of other fields. They have a long history: The beginnings can45

be seen [1] as originating from work on transfer matrices [2] for two-dimensional classical46

Ising models and methods of corner transfer matrices again in the context of classical spin47

models [3]. In more recent times, the rise of tensor networks to describe interacting quan-48

tum many-body systems can be traced back to at least two strands of research. On the one49

hand, the now famous density matrix renormalization group (DMRG) approach [4, 5] can be50

regarded as a variational principle over matrix product states [6–8], a particularly common51

class of one-dimensional tensor network states. What are called finitely-correlated states [9]52

have later been understood as a Heisenberg picture variant of essentially the same family of53

states. These families of quantum states could further be interpreted as basically parametriz-54

ing gapped phases of matter in one spatial dimension. In a separate development, tensor trains55

became a useful tool in numerical mathematics [10]. These strands of research had been de-56

veloping independently for quite a while before being unified in a common language of tensor57

networks (TN) as it stands now as a pillar of research on numerical and mathematical quantum58

many-body physics [11–15].59

Two-dimensional tensor networks, now known as projected entangled pair states [16], again60

have a long history. The intuition why they provide a good ansatz class for describing ground61

states of gapped quantum many-body Hamiltonians [17,18] – as well as other families of states62

– is the same as for matrix product states: Such states are expected to be part of what is called63

the “physical corner” of the Hilbert space. These states feature local entanglement compared64

to the degrees of entanglement unstructured states would exhibit. Ground states of gapped65

phases of matter are thought to satisfy area laws for the entanglement entropy [15]. Even66

though some of the rigorous underpinning of this mindset is less developed in two spatial67

dimensions compared to the situation in one spatial dimension, there is solid evidence that68

projected entangled pair states provide an extraordinarily good and powerful ansatz class for69

meaningful states of two-dimensional quantum systems.70

There is a new challenge arising in such two-dimensional tensor networks. In contrast to71

matrix product states, they cannot be exactly efficiently contracted: On general grounds, there72

are complexity theoretic obstructions against the efficient contraction of projected entangled73

pair states in worst case [19] – and even in average case [20] – complexity. The burden74

can be lessened by acknowledging that projected entangled pair states can be contracted in75

quasi-polynomial time [21]. These more conceptual insights constitute an underpinning of a76

quite practically minded question: This shows that to develop ways of efficiently and feasibly77

approximating tensor network contractions in two spatial dimensions is at the heart of the78

method development in the field.79

Consequently, over the years, several numerical methods of approximately contracting pro-80

jected entangled pair states have been developed. In fact, much of the method development81

has been along these lines. In the focus of attention in this work are projected entangled pair82

states directly in the thermodynamic limit, commonly referred to as infinite projected entan-83

gled pair states (iPEPS) [22–24]. The contraction necessary to compute expectation values84

of local observables gives rise to the challenge of approximately calculating effective environ-85

ments. Over the years, several methods have been introduced and pursued, including methods86

based on boundary matrix product states [22], corner transfer matrix methods [24–26] – par-87

ticularly important for the method development presented here – and tensor coarse-graining88

techniques [27–30].89

Variational optimization algorithms for uniform matrix product states have been developed90
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that combine density matrix renormalization group methods with matrix product state tangent91

space concepts to find ground states of one dimensional quantum lattices in the thermody-92

namic limit [31,32], building on earlier steps of devising geometrically motivated variational93

principles for tensor network states [33,34]. The pursuit of such variational optimization has94

been particularly fruitful in the two dimensional case of iPEPS. Initially proposed methods95

constructed the gradient of the energy explicitly using specialized environments [35,36].96

Recently, as an element of major method development, the programming technique called97

automatic differentiation, widely used in the machine learning community, has been utilized for98

the task of calculating the gradient [37] in tensor network optimization. This step drastically99

simplifies the programming involved and allows one to use variational ground state search on,100

e.g., more exotic lattice geometries with little additional effort. Such variational approaches101

for iPEPS constitute the basis for this work. Automatic differentiation has also been employed102

in further fashions in the tensor network context in several works recently [38–41, 41–49],103

some of which are accompanied by publicly available code libraries [50–53]. Notably, even for104

gapped local Hamiltonians with chiral topological ground states, for which the numerical appli-105

cability of PEPS was unclear due to no-go theorems in related cases [54], the use of variational106

optimization has proven successful [41,49,55]. As a novel programming paradigm, automatic107

differentiation composes parameterized algorithmic components in such a way that the pro-108

gram becomes differentiable and its components can be optimized using gradient search. It is109

a sophisticated way to evaluate the derivative of a function specified by a computer program,110

specifically by applying the chain rule to elementary arithmetic operations. Again, it has only111

recently been appreciated how extremely powerful such tools are in the study of interacting112

quantum matter by means of tensor networks.113

In this review article, we elaborate on these developments and comprehensively present114

ideas for a variational iPEPS method based on automatic differentiation. This includes a de-115

tailed description of the methodology and practical insights for implementations, complement-116

ing and extending the existing body of literature. We further introduce a versatile framework,117

that allows arbitrary unit cells and different two-dimensional lattices to be treated on a com-118

mon footing. At the same time, this work accompanies the publicly available numerical library119

variPEPS – a versatile tensor network library for variational ground state simulations in two120

spatial dimensions – which implements the methods described in this review [56–58].121

The content of this work is organised in three main sections. In Sec. 2, we describe the122

central methods that are being used in the variational iPEPS framework as well as practical123

remarks regarding implementation. Furthermore, we explain in detail the basics of automatic124

differentiation and its application in state-of-the-art ground-state search. In Sec. 3, we then125

turn to explaining how to conveniently map generic lattice structures to a square one, over126

which the variational iPEPS methods naturally operate. Following up on this, in Sec. 4, we127

present numerical benchmarks obtained with the methods outlined in the previous sections128

and implemented in the variPEPS library, in comparison to other customary methods like exact129

diagonalization, iPEPS imaginary-time evolution and variational Monte Carlo methods.130

2 Variational iPEPS131

We seek to find the the TN representation of the state vector |ψ〉TN that best approximates the132

true ground state vector |ψ0〉 of an Hamilton operator of the form133

H =
∑

j∈Λ
T j(h) , (1)

where T j is the translation operator on the lattice Λ, and h is a generic k-local Hamiltonian,134

i.e., it includes an arbitrary number of operators acting on lattice sites at most at a (lattice)135
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distance k from a reference lattice point. Such a situation is very common in condensed matter136

physics, to say the least. To this aim, we employ the variational principle137

〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0 ∀ |ψ〉 , (2)

and use an energy gradient with respect to the tensor coefficients to search for the minimum138

– the precise optimization strategy being discussed later. Such an energy gradient is accessed139

by means of tools from automatic differentiation (AD), a set of techniques to evaluate the140

derivative of a function specified by a computer program that will be summarized below. Since141

we directly target systems in the thermodynamic limit, a corner transfer matrix renormalization142

group (CTMRG) procedure constitutes the backbone of the algorithm, and also will come in143

handy for AD purposes. This is used to compute the approximate contraction of the infinite144

lattice, which is crucial in order to compute accurate expectation values in the first place.145

Importantly, the CTMRG routine is always performed on a regular square lattice, for which it146

can be conveniently defined. Support for other lattices, also non-bipartite ones, is possible by147

different lattice mappings, as we will demonstrate.148

The method we will present in this section gives rise to an upper bound of the ground149

state energy in the sense of the variational principle as stated in Eq. (2). But we wish to point150

out at this point that for that to be strictly true it would be necessary to choose the CTMRG151

refinement parameter χE , introduced in detail in Sec. 2.2, to be χE →∞. However, in practice152

we increase this refinement parameter χE until all observables are converged.153

2.1 iPEPS setup154

As introduced in the last section, we aim to simulate quantum many-body systems directly in155

the thermodynamic limit. To this end, we consider a unit cell of lattice sites that is repeated156

periodically over the infinite two-dimensional lattice. Reflecting this, the general configura-157

tions of the iPEPS ansatz are defined with an arbitrary unit cell of size (Lx , L y) on the square158

lattice. The lattice setup, denoted by L, can be specified by a single matrix, which uniquely159

determines the different lattice sites as well as their arrangement. Let us consider a concrete160

example of an (Lx , L y) = (2, 2) state with only two and all four individual tensors, denoted by161

L1 =

�

A B
B A

�

, L2 =

�

A C
B D

�

. (3)

The corresponding iPEPS ansätze are visualized in Fig. 1. Here, the rows/columns of L cor-

x

y

A

B

B

A

x

y

A

B

C

D

Figure 1: iPEPS ansätze with a unit cell of size (Lx , L y) = (2, 2) and only two (left)
and four (right) different tensors as defined in Eq. (3).

162

respond to the x/y lattice directions. The unit cell L is repeated periodically to generate the163

full two-dimensional system. As usual, the bulk bond dimension of the iPEPS tensors, denoted164

by χB, controls the accuracy of the ansatz. An iPEPS state with N different tensors in the unit165

cell consists of N pχ4
B variational parameters, which we aim to optimize such that the iPEPS166
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Figure 2: The norm of an iPEPS (here with a single-site unit cell) at a bulk bond
dimension χB is approximated by a set of eight fixed-point environment tensors. The
environment bond dimension χE controls the approximations in the CTMRG routine.

wave function represents an approximation of the ground state of a specific Hamiltonian. The167

parameter p denotes the dimension of the physical Hilbert space, e.g., p = 2 for a system of168

spin-1/2 particles.169

The right choice of the unit cell is crucial in order to capture the structure of the targeted170

state. A mismatch of the ansatz could not only lead to a bad estimate of the ground state, but171

also to no convergence in the CTMRG routine at all. Different lattice configurations have to172

be evaluated for specific problems to find the correct pattern.173

To circumvent the problem of a fixed and a priori chosen unit cell structure, recently an174

alternative description to the periodic structure has been proposed [59]. This approach is175

applicable if the Hamiltonian has a certain global symmetry, where the additional degree of176

freedom can be employed to reduce the description of the state to a subspace, e.g. SU(2) for177

spin-1/2 systems. Here the state is described by the smallest possible unit cell, i.e. a single site178

for a square lattice, as well as a product of local unitary operators parameterized by a wave179

vector k = (kx , ky). A fixed choice of the wave vector then corresponds to the specification180

of a unit cell structure in the common iPEPS setup. This approach allows for a variational181

optimization of the wave vector along with the translationally invariant iPEPS tensor, removing182

the need to choose a fixed unit cell structure altogether.183

In this work we restrict the description of the method to the common iPEPS setup with184

not only trivial unit cells. This enables the adaption of the framework to arbitrary, in general185

non-symmetric Hamiltonian models.186

2.2 CTMRG backbone187

One major drawback of two-dimensional TNs such as iPEPS is that the contraction of the188

full lattice can only be computed approximately. This is due to complexity theoretic obstruc-189

tions [19,20] and – practically speaking – the lack of a canonical form, which can only be found190

in loop-free tensor networks, for instance in matrix product states [8]. In order to circumvent191

the unfeasible exact contraction of the infinite 2d lattice, we employ an approximation scheme,192

the directional corner transfer matrix renormalization group (CTMRG) routine for iPEPS states193

with arbitrary unit cells of size (Lx , L y). The CTMRG method approximates the calculation194

of the norm 〈ψ|ψ〉 of the quantum state on the infinite square lattice by a set of effective195

environment tensors. This is achieved by an iterative coarse-graining procedure, in which all196

(local) iPEPS tensors in the unit cell L are successively absorbed into the environment ten-197

sors towards all lattice directions, until the environment converges to a fixed-point. We will198

present a summary of the directional CTMRG methods for an arbitrary unit cell, following199

the state-of-the-art procedure [60–62]. The effective environment is displayed in Fig. 2, here200

for simplicity for a square lattice with a single-site unit cell L =
�

A
�

. It consists of a set of201

eight fixed-point tensors, four corner tensors {C1, C2, C3, C4} as well as four transfer tensors202
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C1 T1 C2

T2
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ti
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C̃1 T1 C2
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C3T3C̃4

T̃4

Figure 3: Main steps of a left CTMRG move. One column of tensors is inserted into
the network. Upon absorption of these tensors, the environment bond dimension
grows rapidly, requiring a renormalisation step.

{T1, T2, T3, T4}, the latter sometimes also called edge tensors. In case of a larger unit cell, such203

a set of eight environment tensors is computed for each individually specified iPEPS tensor in204

the unit cell. The unavoidable approximations in the environment calculations are controlled205

by a second refinement parameter, the environment bond dimension χE .206

In one full CTMRG step, the complete iPEPS unit cell is absorbed into the four lattice di-207

rections, such that the eight CTMRG tensors are updated for every iPEPS tensor. This is done208

column-by-column or row-by-row, depending on the direction. In each absorption step the209

environment bond dimension χE grows by a factor of χ2
B . To avoid an exponential increase210

in memory consumption and computation time, we need a method to truncate the bond di-211

mension back to χE . In order to do this, we calculate renormalization projectors for each row212

or column. Projectors are computed from a suitable patch of the iPEPS state including the213

effective environments, to find a best-possible truncation of the bond dimension. Different ap-214

proaches for their calculations have been proposed in the literature, which we will discuss in215

detail below, especially in the context of AD. In the following description of the CTMRG proce-216

dure we focus on a left absorption move, which grows all left environment tensors {C4, T4, C1}.217

The main steps of insertion, absorption and renormalization are shown in Fig. 3. In Sec. 2.2.1,218

we will explain the full absorption procedure including renormalization, as it is done in prac-219

tise. Although projectors need to be calculated before the absorption, their motivation and the220

calculation of different projects is discussed later in Sec. 2.2.2.221

2.2.1 Absorption of iPEPS tensors222

In order to generate the CTMRG environment tensors, such that they converge to a fixed-223

point eventually, the iPEPS tensors are absorbed into them. To this end, we start with the224

network of one iPEPS tensor in the unit cell and its accompanying environment tensors. This225

is depicted in Fig. 3 in the top left. As shown on the top right of this figure, the network226

is extended by inserting one column, consisting of an iPEPS tensor and the top and bottom227

transfer tensors. While we depict the case of a single-site unit cell in Fig. 3, we note that228

the column of tensors to be inserted is generally dictated by the unit cell structure of the229

iPEPS ansatz, i.e., the left neighbor with the corresponding environment tensors for a left230

move. This crucial positional information for multi-site unit cells is specified by the coordinate231
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superscripts in the descriptions below. As indicated by the dashed line in Fig. 3, we absorb232

the inserted column into the left environment tensors by contracting all left pointing edges.233

This yields new environment tensors whose bond dimensions have grown by a factor χ2
B due234

to the virtual iPEPS indices, thus we need a way to truncate the dimension back to the CTMRG235

refinement parameter χE . This is done using the projectors we will discuss and compute in236

the next section. For now we introduce them as abstract objects labeled P that implement237

the dimensional reduction (i.e., the renormalization step) in an approximate but numerically238

feasible way. The updated tensor C ′1 is then given by the contraction in Fig. 4. As discussed

C ′
1
[x,y+1]

=

P
[x−1,y]
LB

C
[x,y]
1 T

[x,y]
1

Figure 4: Update of the corner tensor C1 in a left CTMRG step.

239
before, the correct tensors and projectors have to be used in accordance with the periodicity240

of the unit cell. The iPEPS tensor is now absorbed into the left transfer matrix T ′4, where two241

projectors are needed to truncate the enlarged environment bond dimension. This is visualized242

in Fig. 5. Finally, the lower corner tensor C ′4 is updated, by absorbing a transfer matrix T3 and

T ′
4
[x,y+1] =

P
[x−1,y]
LT

P
[x,y]
LB

T
[x,y]
4

Figure 5: Update of the transfer matrix T4 in a left CTMRG step. Here the projectors
generally belong to different subspaces, unless the system is one-site translational
invariant.

243
using another projector. The three absorption steps in Figs. 4, 5 and 6 are performed for all

C ′
4
[x,y+1]

=

P
[x,y]
LT

C
[x,y]
4 T

[x,y]
3

Figure 6: Update of the corner tensor C4 in a left CTM step.

244

rows x at a fixed column y , before moving to the next column y+1. The process of computing245

projectors and growing the environment tensors is repeated for each column of the iPEPS unit246

cell, until the complete unit cell of Lx×L y tensors has been absorbed into the left environment.247

This yields updated tensors C ′1, T ′4 and C ′4 for all [x , y].248

The absorption of a full unit cell is then performed for the other three directions. In a top249

move the tensors C1, T1 and C2 are grown, in a right move the tensors C2, T2 and C3 and in250

a bottom move the tensors C3, T3 and C4. This completes a single CTMRG step, which is then251

8
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ρT

ρB

Figure 7: Network of 2 × 2 iPEPS tensors and the corresponding CTMRG tensors,
used as a starting point to compute the truncation projectors. For a left CTMRG step
the top and bottom part is contracted into the matrices ρT and ρB with dimension
(χEχ

2
B)×(χEχ

2
B). The red dashed line indicates the bonds that are renormalized back

to a bond dimension χE .

repeated in the directional procedure until convergence is reached. In Sec. 2.2.3 we discuss252

appropriate convergence measures.253

2.2.2 Calculation of projectors254

In order to avoid an exponential increase of the bond dimension while growing the environ-255

ment tensors, projectors are introduced to keep the bond dimension at a maximal value of256

χE . Here, we will describe a common scheme to compute those projectors [61] and discuss257

some properties of their use in combination with AD [42]. The task of finding good projectors258

essentially comes down to finding a basis for the virtual space, whose bond dimension we aim259

to reduce, that can be used to distinguish between “more and less important” sub-spaces. This260

way, we can ideally reduce the dimension while keeping the most important sub-space. In261

what follows, we consider the lattice environment of the virtual space that we aim to truncate262

using the CTMRG environment tensors. To this end, we use a singular value decomposition263

(SVD) to identify the basis, in which the bond is optimally truncated such that we keep the264

most relevant information of this lattice environment. The lattice environment that we con-265

sider is shown in Fig. 7, where the red dotted line identifies the bonds that we aim to optimally266

truncate, illustrated for the example of a left absorption step. The arrangement of the tensors267

in the network of Fig. 7 follows the unit cell definition L. For the trivial, single-site unit cell268

L=
�

A
�

, all four iPEPS tensors are the same. We note that for a larger unit cell, cf. Fig. 1, the269

iPEPS tensors and their adjacent environments have to be chosen according to its periodicity.270

This setup for the arrangement is favorable, since it incorporates the (approximated) effect of271

the infinite environment by including all CTM tensors for the different lattice directions.272

The projectors are used to renormalize the three left open tensor indices with combined273

bond dimension χEχ
2
B back to the environment bond dimension χE in a left absorption step.274

In order to compute them, we start by defining the matrix275

M= ρB ·ρT (4)

that represents the lattice environment of the virtual bond that we would like to truncate, as276

visualized in Fig. 8.277

The procedure outlined here aims to find projectors PLT and PLB, such that the truncated278

matrix279

Mtrunc = ρB · PLT · PLB ·ρT, (5)

9
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M =

ρT

ρB

Figure 8: Matrix M as defined by Eq. (4) in graphical TN notation. The red dashed
line indicates the bonds that are renormalized back to a bond dimension χE .

is an optimal approximation to M. To achieve this, we perform a singular value decomposition280

on M, i.e.,281

M= ULSLV †
L . (6)

This factorization introduces a basis which allows for a separation of more relevant and less282

relevant sub-spaces. To this end, we choose the largest χE singular values and their corre-283

sponding singular vectors for the construction of the projectors. Furthermore, we define284

S+L = inv
�p

SL

�

, (7)

where a pseudo-inverse with a certain tolerance is used. To increase the numerical stability, a285

threshold of typically 10−6 (corresponding to a threshold of 10−12 for the singular values) is286

used. Smaller singular values are set to zero. The use of a pseudo-inverse in the generation287

of the projectors is equivalent to the construction of a projector with lower environment bond288

dimension. Finally, the projectors to renormalize the left absorption step are construced as289

PLT = ρT · VL · S+L ,

PLB = S+L · U
†
L ·ρB.

(8)

Here ρT and ρB again denote the top and bottom part of M as introduced in Fig. 7. We290

would like to point out the fact that without a truncation in the SVD above, the product of the291

projectors we create in this way assembles the identity292

PLT · PLB = ρT · VL · S−1
L · U

†
L ·ρB

= ρT · (ρB ·ρT)
−1 ·ρB = 1.

(9)

We stress again, that the choice of truncation in the calculations of the projectors is optimal in293

order to approximate the lattice environment M. A graphical representation of these projec-294

tors is given in Fig. 9.295

During a left-move, described in the previous section, we absorb the iPEPS tensors in the296

unit cell column-by-column into the left environments. A renormalization step is required for297

each of those moves, resulting in projectors that are specific to every bond. We therefore label298

them by the positions in the unit cell, i.e., P[x ,y]
LT and P[x ,y]

LB .299

The process to generate the projectors described above uses the full lattice environment300

M, and thus we call them full projectors. It should be noted that Fishman et al. have proposed301

a scheme to calculate equivalent projectors in a fashion that is numerically more stable, at the302

cost of being computationally more expensive [62]. Their method is particularly useful in the303

case of a singular value spectrum of M that decays very fast.304

Finally, different lattice environments of the virtual bond in question can be used to gener-305

ate projectors. A very practical version are the so called half projectors. For those we choose a306

lattice environment as illustrated in Fig. 10. These projectors are computationally less costly,307

as they require a smaller network to be contracted. They only take into account correlation308

10
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P
[x,y]
LT =

S+
L

VL

ρT

P
[x,y]
LB

=

ρB

U†
L

S+
L

Figure 9: Calculation of top and bottom projectors for a left CTMRG absorption step.
The red dashed line indicates the bonds that are renormalized back to a bond dimen-
sion χE .

ρT

ρB

Figure 10: Network of 2 × 1 iPEPS tensor and the corresponding CTMRG tensors,
which is used as a reduced network to calculate the half projectors for a left CTMRG
step. The red dashed line indicates the bonds that are renormalized back to a bond
dimension χE .

within one half of the network, however this proves to be sufficient in many different applica-309

tions. Lately, there have been proposals for even cheaper alternatives of lattice environments310

and projector calculations [63], which yet have to be tested in the context of automatic differ-311

entiation and variational iPEPS optimization.312

2.2.3 Convergence and CTMRG fixed-points313

The CTMRG routine as described above is a power-method that eventually converges to a314

fixed-point. At this fixed-point, the set of environment tensors describes the contraction of315

the infinite lattice with an approximation controlled by the environment bond dimension χE .316

Convergence of the CTMRG tensors to the fixed-point can be monitored in different ways.317

In regular applications (those that do not involve automatic differentiation and gradients) the318

singular value spectrum of the corner tensors is typically a good quantity. Once the norm differ-319

ence of the spectrum between two successive CTM steps converges below a certain threshold,320

the environment tensors are assumed to be converged.321

One peculiarity that is however not incorporated in this convergence check is sign or phase322

fluctuation for real or complex tensor entries, respectively. This means that, while projectors323

and hence the CTMRG tensors converge in absolute value, their entries can have different324

signs/phases in consecutive CTM steps. For reasons that become clear in Sec. 2.5 it is however325

required to reach element-wise convergence in the environment tensors for them to represent326

an actual fixed-point [42]. Those fluctuations originate from the gauge freedom in the SVD327

performed in Eq. (6). This is reflected in the freedom of introducing a unitary (block-)diagonal328

matrix Γ in an SVD,329

M= USV † = (UΓ )S
�

Γ †V †
�

, (10)
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which leaves the expression invariant. The gauge freedom from the SVD directly affects the cal-330

culation of the projectors, such that we aim to fix the phases while computing these projectors.331

By eliminating this gauge freedom, at the true fixed-point, both projectors and environment332

tensors should be converged element-wise.333

To fix the gauge, we introduce a diagonal unitary matrix Γ that redefines the phase of334

the largest entry (in absolute value) of every left singular vector to place it on the positive335

real axis [42]. To avoid instabilities of this gauge-fixing procedure due to numerical quasi-336

degeneracies, we always pick the first of such largest elements in basis order. Other choices,337

like addressing the first element with magnitude above a fixed threshold, are also possible.338

We further note that an alternative scheme to archive a fixed point in the CTMRG has recently339

been proposed [64].340

2.3 Energy expectation values341

Computing the energy expectation value required for the energy minimization is straightfor-342

ward using the CTMRG environment tensors. Assuming a Hamiltonian with only nearest-343

neighbour interaction terms, individual bond energies can be computed as shown in Fig. 11.344

The full energy expectation value, 〈ψ|H|ψ〉/ 〈ψ|ψ〉, is obtained by collecting all different en-345

ergy contributions, i.e., all different terms in the Hamiltonian. Longer-range interaction can346

be treated as well, by simply enlarging the diagrams of Fig. 11 and performing more expensive347

contractions, which however occur only once per optimization step. In order to formulate a348

variational optimization of the tensor coefficients parametrizing the wave function, a gradient349

for the energy expectation value – including the foregone fixed-point CTMRG routine – is re-350

quired. This is achieved by the concept of automatic differentiation, as we will describe next.351
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Figure 11: Expectation values of a (horizontal) nearest-neighbour Hamiltonian term
〈ψ|hi, j|ψ〉/ 〈ψ|ψ〉 in tensor network notation, using the fixed-point CTMRG environ-
ments.

352

2.4 Automatic differentiation353

x⃗1 x⃗2 x⃗3 x⃗4

f1 f2 f3

E

Figure 12: Example of a computational graph for the function decomposition in
Eq. (11).

Automatic differentiation (AD), sometimes also referred to as algorithmic differentiation or354

automated differentiation, is a method for taking the derivative of a complicated function which355
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is evaluated by some computer algorithm. It has been an important tool for optimization tasks356

in machine learning for many years. An introduction can be found in e.g. Ref. [65]. After357

its initial introduction in a foundational work [37], AD has found increasing applications in358

numerical TN algorithms in recent years [38, 39, 41, 42, 44, 45]. For the sake of simplicity,359

let us consider a function E : Rn −→ Rm for which we would like to evaluate the deriva-360

tive. Noticeably, extensions to complex numbers are possible, and we provide some additional361

comments in Appendix B. We have the particular use-case of the energy expectation value362

E(|ψ〉) = 〈ψ|H|ψ〉/ 〈ψ|ψ〉 of an iPEPS in mind, in which case the co-domain of the function363

E is R. As we explain below, this has some important consequences for the use of AD.364

Automatic differentiation makes use of the fact that many functions and algorithms are365

fundamentally built by concatenating elementary operations and functions like addition, mul-366

tiplication, projection, exponentiation and taking powers, whose derivatives are known. The367

central insight is now that we can build up the gradient of a more complicated function from368

the derivatives of its elementary constituents by the chain rule of differentiation. In principle369

this even allows for a computation of the gradient to machine precision. It should be noted370

however, that it is neither necessary nor useful to deconstruct every function into its most371

elementary parts. Rather it is advantageous to deconstruct the function at hand only into a372

minimal amount of constituent-functions for which a derivative can be determined. These373

functions are often referred to as the primitives of the function of interest E. Primitives might374

themselves be a composition of many constituents but the derivative of the primitives them-375

selves is known as a whole. An illustrative example for a primitive is a function that takes376

two matrices as an input and outputs the multiplication of them. On an elementary level this377

function is composed out of many multiplications and additions, but one can write down the378

derivative w.r.t. its inputs immediately. The choice of primitives describes the level of coarse-379

ness on which the AD process needs to know the details of the function E to compute the380

desired gradient. Defining large primitives of a function can reduce memory consumption, as381

well as increase performance and numerical stability of the AD process, e.g., by avoiding spuri-382

ous divergences. Once the high-level function E has been decomposed into its minimal number383

of primitives, we can represent this decomposition with a so called computational graph. The384

computational graph is a directed, a-cyclic graph whose vertices represent the data generated385

as intermediate results by the primitives and the edges represent the primitives themselves,386

that transform the data from input to output.387

As an example let us suppose we are able to decompose the function E into three primitives388

f1, f2 and f3, such that E = f3 ◦ f2 ◦ f1. The primitives are maps between intermediate spaces389

E : Rn1
f17−→ Rn2

f27−→ Rn3
f37−→ Rn4 (11)

and we refer to the variables in theses spaces as x⃗ i ∈ Rni . The computation graph illustrating390

this situation is shown in Fig. 12. AD can be performed in two distinct schemes, often called391

forward- and backward-mode AD. In the following we will demonstrate the two AD modes with392

the example of our previously introduced function E and its primitives. This will also serve to393

illustrate the computational cost of these AD schemes for the iPEPS use-case. Since f1, f2 and394

f3 are said to be primitives, their Jacobians395

J i : Rni −→ Rni+1 ×Rni ,

J i( x⃗0
i ) =
�

∂ fi

∂ x⃗ i

�

�

�

�

�

x⃗ i= x⃗0
i

(12)

are known. An AD evaluation of the gradient of E at a specific point x⃗0
1 is then given by the396

chain rule, the concatenation of the Jacobians of the primitives397

∇E( x⃗0
1) = J3( x⃗0

3) · J
2( x⃗0

2) · J
1( x⃗0

1), (13)

13



SciPost Physics Lecture Notes Submission

x⃗1 x⃗2 x⃗3 x⃗4

J1(x⃗0
1) J2(x⃗0

2) J3(x⃗0
3)

G1 G2 ∇E1

f1 f2 f3

E

J1 J2 J3

building up
the gradient

Figure 13: Illustration of forward-mode AD as described in Eq. (14) for the function
decomposition in Eq. (11).

with fi( x⃗0
i ) = x⃗0

i+1. The difference between the forward- and backward-mode AD essentially398

comes down to the question from which side we perform the multiplication of the Jacobians399

above.400

In the forward-mode AD scheme, the gradient is built up simultaneously with the evaluation401

of the primitives f1, f2 and f3, according to the following prescription for the i-th step:402

fi( x⃗
0
i ) = x⃗0

i+1

Gi = J i( x⃗0
i ) · Gi−1

(14)

with the starting condition G0 := 1n1×n1
and the final result G3 = ∇E( x⃗0

1) ∈ R
n4×n1 . We see403

that in this case we build up Eq. (13) from right to left or “along the computational graph”404

as illustrated in Fig. 13. At first sight, such a procedure offers the potential advantage of not405

requiring to store intermediate results of the primitives in memory. However, if the dimension406

of the input (domain of E) is much larger than the dimension of the output (co-domain of407

E) – as it is the case in our use-case of iPEPS – this procedure becomes computationally very408

heavy. Indeed, saving and multiplying the large Jacobians in Eqs. (14) is often impractical.409

Thus, it is common to split up the starting condition G0 := 1n1×n1
into the n1 canonical basis410

vectors {e⃗i}i=1,...,n1
. The procedure to generate the gradient from Eq. (14) is then repeated n1411

times, each iteration generating a single component i. In this case, each step of the process of412

generating a component of the gradient is done by calculating a Jacobian-vector product (JVP),413

so that only the resulting vector has to be stored. In order to create the full gradient in this414

way we need to repeat the procedure n1 times, and the cost of calculating the full gradient415

scales as O(n1)×O(E), where O(E) is the cost of evaluating E.416

The backward-mode AD scheme works instead by first evaluating the function E and storing417

all intermediate results of the primitives along the way, and by then applying the iterative418

prescription419

Ḡi = Ḡi+1 · J i( x⃗0
i ) (15)

with the starting condition Ḡ4 = 1n4×n4
and the final result Ḡ1 = ∇E( x⃗0

1) ∈ R
n4×n1 . In the420

AD literature the objects Ḡi are called adjoint variables and the functions that map the ad-421

joint variable on to each other, defined by Eq. (15), are called adjoint functions. We refer422

to Appendix A for more details on the adjoint functions and adjoint variables. In some parts423

of the literature the adjoint functions are also called pullbacks, which can be understood by424

looking at AD in language of differential geometry, cf. Appendix D. We see that in this case we425

build up Eq. (13) from left to right or as graphically illustrated in Fig. 14. This scheme has426
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x⃗1 x⃗2 x⃗3 x⃗4
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Figure 14: Illustration of backward-mode AD as described in Eq. (15) for the function
decomposition in Eq. (11).

the advantage of being computationally much cheaper if the output (co-domain) dimension is427

smaller than the input (domain) dimension – precisely the situation of our iPEPS setup, with428

n1 = N pχ4
B and n4 = 1. We indeed only need to compute vector-Jacobian products (VJP) when429

evaluating the gradient, and, moreover, the full gradient is computed at once, instead of just430

a single element at a time as in the forward-mode AD scheme. This is why the cost of calcu-431

lating the gradient of the energy expectation value with backwards-mode AD is O(1)×O(E),432

which is superior to the cost of forward-mode AD. However, since we need to save all inter-433

mediate results of the primitives along the way in order to compute the gradient, the memory434

requirement for this scheme is in principle unbounded. Fortunately, the fixed-point condition435

for the iPEPS environments can be used to guarantee that the memory remains bounded in436

our calculations, as we illustrate in the following section.437

2.5 Calculation of the gradient at the CTMRG fixed-point438

Computationally, the CTMRG routine represents the bottleneck of the full iPEPS energy func-439

tion. It involves many expensive contractions and SVDs. Moreover, it requires an a priori440

unknown number of CTMRG iterations to reach convergence of the environment tensors. This441

would be especially disadvantageous for the gradient evaluation using plain-vanilla backward-442

mode AD, since this would require unrolling all the performed CTMRG iterations and paying443

a memory consumption linear in their number. However, this can be avoided by leveraging444

that fact that the CTMRG iteration eventually converges to a fixed point, and this is precisely445

the condition under which the energy evaluation is then performed. As soon this fixed point446

is reached, all CTMRG iterations are identical, i.e., reproducing the converged environment447

tensors. We can, in this situation, get away with only saving intermediate results from such a448

converged CTMRG iteration. This reduces the memory requirements by a factor of the num-449

ber of CTMRG iterations that we perform [37]. We stress here that, for this approach to work,450

we must make sure that the CTMRG procedure reaches an actual fixed point, meaning that451

all CTMRG environment tensors are converged element wise as discussed in Sec. 2.2.3. The452

fixed-point equation can be written as453

e∗(A) = c(A, e∗(A)), (16)

where the function c is one full CTMRG iteration, A are the iPEPS tensors which are constant454

during the CTMRG procedure and e∗(A) represents the CTMRG environment tensors at the455

fixed-point. E is the function that maps the iPEPS tensors with the fixed point environment456
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Figure 15: Computational graph of the CTMRG procedure for calculating the energy
density at fixed point.

tensors and the Hamiltonian operators to the energy expectation value. The computational457

graph for the ground state energy is illustrated in Fig. 15. From it we can construct the form458

of the gradient of the energy expectation value with respect to the parameters of the iPEPS459

tensors A,460

∂ 〈H〉
∂ A

=
∂ E
∂ A
+
∂ E
∂ e∗

∞
∑

n=0

�

∂ c
∂ e∗

�n ∂ c
∂ A

. (17)

In practice this infinite sum is evaluated to finite order until the resulting gradient is converged461

to finite accuracy. An alternative viewpoint on the gradient at the fixed-point of the CTMRG462

procedure is presented in the Appendix C. It has recently been noted in Ref. [64] that the sta-463

bility and accuracy of the SVD derivative can be improved by including a previously neglected464

gradient contribution from the truncated part of the singular value spectrum.465

2.6 Optimization466

As discussed in the introduction of Sec. 2 we seek to find the iPEPS approximation |ψ〉TN of the467

ground state vector |ψ0〉. Employing the methods discussed in the last sections we can describe468

this energy calculation as function E(|ψ〉TN), consisting of the CTMRG power-method and the469

expectation value approximation using the resulting CTMRG environment tensors. Since we470

can calculate the gradient ∇E(|ψ〉TN) of this real scalar function it is straightforward to use471

well-known optimization methods to find the energy minimum. We would like to stress that472

the state vector |ψ〉TN, and thus the energy function, only depends on the tensors defining473

the iPEPS ansatz and not the environment tensors since they are implicitly calculated from474

the ansatz. In this discussion we focus on two types of methods based on the gradient: The475

(nonlinear) conjugate gradient (CG) [66–70] and the quasi-Newton methods [71–76].476

A naive approach to find the minimum of a function E(|ψi〉), of which the gradient∇E(|ψi〉)477

is known, is to shift the input parameters |ψi〉 sufficiently along the negative gradient so that478

we find a new position |ψi+1〉 where the function value is reduced. At the end of this section479

we discuss what a sufficient step size means in this context. Iterating this procedure to a point480

where the gradient of the function vanishes (within a pre-defined tolerance) yields a solution481
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to the optimisation problem. Thus either a saddle point or a (local) minimum is reached then.482

This method is called steepest gradient descent. Although it resembles one of the simplest483

methods to find a descent direction, it is known to have a very slow convergence for difficult484

problems, e.g., for functions with narrow valleys [77]. Therefore, we use in practice more485

sophisticated methods to determine the descent direction.486

The family of nonlinear conjugate gradient as generalization of the linear conjugate gra-487

dient method modifies this approach. Instead of using the negative gradient as a direction in488

each iteration step it uses a descent direction which is conjugated to the previous ones. For489

the linear conjugate gradient method there is a known factor βi to calculate the new descent490

direction di = gi + βidi−1 from the gradient gi of the current step and the descent direction491

di−1 of last step. In the generalization for nonlinear functions this parameter is not uniquely492

determined anymore, however there are different approaches to estimate this parameter in the493

literature [67–69]. In our implementation we chose the nonlinear conjugate gradient method494

in the formulation as has been suggested by Hager and Zhang [70],495

β̃HZ
i =

1

dT
i−1 yi

�

yi − 2di−1
∥yi∥

2

dT
i−1 yi

�T

gi ,

ηi =
−1

∥di−1∥min(η,∥gi−1∥)
,

βHZ
i =max(β̃HZ

i ,ηi),

(18)

with ∥·∥ the Euclidian norm, yi = gi − gi−1 and η > 0 a numerical control parameter which496

has been set to η = 0.01 in the work by Hager and Zhang. In our tests and benchmarks this497

choice for βi has been proven to be numerically stable.498

The other family of optimization methods we use in our implementation are the quasi-499

Newton methods, concretely the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [73–500

76] and its low-memory (L-BFGS) variant [72, 78]. These methods are based on the Newton501

method where the descent direction is calculated using not only the gradient, but also the502

second derivative (the Hessian matrix). Unfortunately, it is computationally expensive to cal-503

culate the Hessian for large sets of input parameter, which makes this method only feasible504

for small parameter sets (i.e., iPEPS ansätze with a small number of variational parameters).505

Quasi-Newton methods solve this problem by not calculating the full Hessian, but an approx-506

imation of it. To this end, the gradient information from successive iteration steps is used to507

update the approximation in each step. The BFGS algorithm stores the full approximated Hes-508

sian matrix, including the information from all previous steps. In contrast, the L-BFGS method509

calculates the effective descent direction in an iterative manner from the last N optimization510

steps. This way not the full (approximated) Hessian has to be stored in memory but only the511

gradients of the last N steps. This reduces the memory consumption by an order of magnitude.512

The disadvantage is that not the full information of all previous steps is considered, but only513

a fraction of it. Nevertheless, due to the memory requirements to store the full approximated514

Hessian in the standard BFGS method for larger iPEPS bond dimensions we use L-BFGS as the515

default quasi-Newton method.516

As noted before, we would like to shift the variational parameters x i along the descent517

direction di determined by the different algorithms discussed above. With this shift we aim to518

find a new ansatz x i+1 = x i + αidi with αi the step size along the descent direction. Ideally,519

we would like to find the optimal step size αi = minα E(x i + αdi) minimizing the function520

value along the descent direction. However, determining this optimal value is computationally521

expensive and thus in practice, we stick to a sufficient step size fulfilling some conditions. The522

procedure to find this step size is called line search [79–82]. In our implementation we use523

the Wolfe conditions [80–82], since they guarantee properties which are feasible particularly524

for the (L-)BFGS method and its iterative update of the effect of the approximate Hessian.525

17



SciPost Physics Lecture Notes Submission

2.7 Pitfalls and practical hints526

2.7.1 Iterative SVD algorithm527

We also advertise the use of iterative algorithms for the calculation of the SVD in the CTMRG528

procedure. This can be quite advantageous computationally, since only χE singular values are529

needed for a matrix of size (χEχ
2
B)× (χEχ

2
B) during the CTMRG. To this end we use the use530

the Golub-Kahan-Lanczos (GKL) bidiagonalization algorithm with additional orthogonalization531

for the Krylov vectors. This algorithm is available, e.g., in packages like KRYLOVKIT.JL [83] or532

ITERATIVESOLVERS.JL [84] in the JULIA programming language. We highlight the utility of this533

type of algorithm for the calculation of the SVD with the comparison of the computational534

time of the different algorithms in the iPEPS use case in Fig. 16.
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Figure 16: Comparison of the computational time for the calculation of the first
χE singular values/vectors of a matrix of dimension (χEχ

2
B) × (χEχ

2
B) obtained in

a CTMRG procedure with bond dimension χB = 6. The conventional SVD (blue),
which is truncated only after calculating the full SVD spectrum is substantially slower
than the iterative GKL methods. The GKL algorithm in the CTMRG use case was
showed comparable performance when constructing the χEχ

2
B matrix explicitly (or-

ange) or by just implementing its action of a vector (green). While the GKL algorithm
for the case at moderate d and χE constructing the matrix usually is faster, at larger
χB and χE it can become advantages to only implement the action of the matrix.

535

2.7.2 Stability of the CTMRG routine536

One of the basic prerequisite for a stable variational iPEPS optimization is a robust CTMRG537

routine fulfilling the convergence requirements discussed in Sec. 2.2.3. Obviously, there is538

the environment bond dimension χE to control the accuracy of the approximation of the envi-539

ronment. If the environment bond dimension is chosen too low, the approximation is invalid540

and the CTMRG routine can yield an inaccurate result for the expectation value. This could541

further lead to an unstable variational update. To check heuristically whether the refinement542

parameter χE is chosen sufficiently high, one can check the singular value spectrum obtained543

during the projector calculation as described in Sec. 2.2.2. As a reliable criteria for the amount544

of information loss, we compute the truncation error ϵT given by the norm of the discarded545

18



SciPost Physics Lecture Notes Submission

singular values of the normalized spectrum [85]. If the truncation error is larger than some546

threshold (e.g., ϵT > 10−5), one can assume that the environment bond dimension is chosen547

too low and has to be increased. Employing this procedure, the bond dimension can automat-548

ically be increased during the variational optimization if necessary. A sufficiently large χE is549

crutial as the AD optimization can otherwise exploit the inaccuracies of the CTMRG procedure,550

leading to false ground states with artificially low energy.551

2.7.3 Prevention of local minima552

An ideal iPEPS optimization finds the global energy minimum of the input Hamiltonian within553

the iPEPS ansatz class of fixed unit cell and bond dimension. In practice, however, it is possible554

– and likely – that the algorithm gets stuck in local minima. In order to avoid local minima555

and reach the global optimum, there are a number of possible tricks. The naive way is to start556

several simulations with different random initial states. This is typically a practicable solution,557

although it is not well controllable and requires large computational resources.558

An optimization of a system with a tendency for local minima might still be successful, if a559

suitable initial state is provided. One possibility are initial states obtained by imaginary-time560

evolution methods (simple update, full update [22,23,86]). While this is typically a convenient561

solution, it is sometimes necessary to perturb the input tensors with a small amount of noise562

(e.g., 10−2 in relative amplitude) to actually avoid local minima. As an alternative, one can563

input a converged state obtained from energy minimization of a different TN ansatz, provided564

there is a suitable mapping between the different structures. Examples for this technique are565

provided for benchmarks on different lattices in Sec. 4.566

Finally, the method of perturbing a suitable initial state with small amount of random567

noise of course could also be applied to the result of one optimization run. As suggested in568

the literature [87], this could help to escape possible local minima. Therefore, one could retry569

this method a few times and keep the best result of all runs.570

2.7.4 Recycling of environments571

The calculation of the environment tensors with the CTMRG routine is expensive and time572

consuming. During an optimization process one can reuse the environment tensors of the573

previous optimization step as input for the next. This is advisable in the advanced stages of574

the optimization, in which the gradient is already small. In this scenario the iPEPS tensors575

usually only change minutely, such that starting the CTMRG routine from the environments576

of the last PEPS tensor can reduce the number of CTMRG steps required for convergence577

substantially.578

2.7.5 Analysing iPEPS data at finite bond dimensions579

Data generated with the variational iPEPS setup inevitably carries finite iPEPS bond dimension580

χB (or even finite environment bond dimension χE) effects. Several schemes are available to581

utilize the correlation length of the optimal tensors at a certain value of χB to extrapolate the582

values of observables [88–90]. Additionally, a extrapolation scheme using data of an optimized583

iPEPS state at finite χB and finite but suboptimal χE has been proposed and shown useful [91].584

2.7.6 Degenerate singular values585

Although very rare, a degenerate singular value spectrum in the calculation of the projec-586

tors can be an obstacle. The gradient of the SVD becomes ill-defined in this case, due to terms587

Fi, j = 1/(s2
j − s2

i ) in the derivative [45], where si are the singular values. Naturally, it would be588
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Figure 17: Honeycomb and topologically equivalent brick-wall lattice.

desirable to remove the degeneracy by constraining the system to the correct physical symme-589

try, thereby grouping the degenerate singular values to common multiplets of the underlying590

symmetry group. If this is not possible or the degeneracies appear independently of a symme-591

try (“accidental” degeneracy), workarounds have to be used. One possibility is to add a small592

amount of noise in the form of a diagonal matrix X X−1 on the CTMRG environment links, with593

the elements of X drawn from a tiny interval [1 − ϵ, 1 + ϵ]. This can space out the singular594

value spectrum and stabilize the SVD derivative [92]. Recently an alternative procedure to595

eliminate divergences in the derivative of the SVD with degenerate spectrum has been pro-596

posed in Ref. [64]. Here, for the case of a rotationally invariant CTMRG, the divergent term597

is canceled out by a particular gauge fixing of the environment tensors.598

3 Extension to other lattices599

The directional CTMRG routine on the square lattice is very convenient for its orthogonal600

lattice vectors and definition of the effective environments. It is therefore natural to exploit601

the implemented routines for different kind of lattices that can be mapped back to the square602

lattice. This can typically be achieved by a suitable coarse-graining, in which a collection of603

lattice sites on the original lattice is mapped into an effective site on the square lattice. Energy604

expectation values can then be directly evaluated in the coarse-grained picture as well. This is605

even advantageous for the AD optimization procedure, since the energy can often be computed606

with a smaller number of individual terms. In this section we will present the mapping for four607

types of lattices frequently found in condensed matter systems – the honeycomb, Kagome,608

square-Kagome and triangular lattice. Naturally, the framework can be extended by other609

suitable two-dimensional lattices, such as dice, square-octagon, maple-leaf and others. As610

an alternative to the coarse-graining approach, CTMRG methods that directly operate on the611

original lattice structures can also be defined [46,93].612

3.1 Honeycomb lattice613

The honeycomb, hexagonal or brick-wall lattice is of broad interest in material science and of-614

ten appears in the context of quantum many-body systems. For instance, the Kitaev honeycomb615

model is a paradigmatic example hosting different kinds of phases supporting different types616

of anyons, both Abelian and non-Abelian [94]. We will now describe the general technical617

framework to simulate honeycomb lattices with the backbone CTMRG procedure described618

in Sec. 2.2. To this end we consider an elementary unit cell of the honeycomb lattice. Here619

we choose to define it along so-called x-links for reasons that become clear soon. Alterna-620

tively and equivalently, it could as well be defined along y- or z-links. As an example with621

eight different tensors on the honeycomb lattice, corresponding to four elementary unit cells622
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Figure 18: iPEPS ansatz on the honeycomb lattice with four elementary unit cells,
resulting in eight different lattice sites. x-, y- and z-links denote the three types of
inequivalent links in the lattice. Coarse-graining this state to a square lattice results
in a (Lx , L y) = (2, 2) configuration, with an arrangement as in Eq. (3) / Fig. 1.

is shown in Fig. 18. Coarse-graining the two lattice sites along x-links of the honeycomb lat-623

tice directly results in a square lattice, as shown in Fig. 19. Here, the (mapped) unit cell has624

size (Lx , L y) = (2,2) with an arrangement as in Eq. (3) and Fig. 1. The green color is used625

to highlight the coarse-graining along x-links. In contrast to the regular square lattice, each626

coarse-grained tensor has two physical indices that can be reshaped to a single, combined index627

before feeding it into the CTMRG procedure. A trivial unit cell on the square lattice, consisting628

of only a single-site tensor, results in two different tensors on the honeycomb lattice.629

The CTMRG routine can then be run as described above, just with a larger physical di-630

mension. This does not change anything in the contractions, it is just computationally more631

expensive. Expectation values can now be evaluated accurately using the CTMRG environ-632

ment tensors. Assuming nearest-neighbour terms again, expectation values along x-links can633

be computed by a single-site TN, while y- and z-bonds remain two-site TNs similarly to Fig. 11.634

3.2 Kagome lattice635

Another important and often encountered lattice in condensed matter physics is the Kagome636

lattice. It is of special interest due to its corner-sharing triangles, which lead a strong geomet-637

ric frustration for anti-ferromagnetic models. Using a simple mapping of the Kagome lattice to638

a square lattice, we can directly incorporate it into our variational PEPS library. The Kagome639

lattice is shown in Fig. 20a. Naturally, we can define a unit cell of tensors that is repeated640

periodically over the whole two-dimensional lattice. In our setting we consider an upward tri-641

angle on the Kagome lattice as an elementary unit cell, highlighted by the gray dotted area in642

Fig. 20a. By choosing a coarse-graining, we can represent the three lattice sites in the unit cell643

by a single iPEPS tensor, which connects to its neighbours by four virtual indices. This direct644

mapping is shown in Fig. 20b. Nearest-neighbour links in the Kagome lattice get mapped to645

nearest-neighbour or second-nearest-neighbour links in the square lattice. Every iPEPS site on646

Figure 19: Using a mapping the brick-wall lattice is transformed to the square lattice.
The green color of the tensors is just to highlight the coarse-graining along x-links,
while y- and z- links remain in the network.
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(a) (b)
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Figure 20: (a) Regular Kagome lattice with corner-sharing triangles and an elemen-
tary unit cell consisting of three lattice sites. (b) Regular Kagome lattice mapped to
a square lattice by coarse-graining of the three spins in each unit cell.

x

y

Figure 21: Honeycomb lattice (dual to the Kagome lattice) with spins residing on
the lattice links and additional simplex tensors on the lattice sites. Unit cells are
highlighted by the gray dotted areas. Upon coarse-graining of the unit cells, the dual
honeycomb lattice is mapped to the regular square lattice. Physical indices of the
corresponding TN states are not shown.

the square lattice has a physical dimension of p3. As an alternative mapping, which results647

in the same coarse-grained TN structure, we move from the Kagome lattice to its dual, the648

honeycomb lattice. Here the spins live on the links instead of the vertices. The honeycomb649

mapping presented in Sec. 3.1 is therefore not directly applicable and additional simplex ten-650

sors are necessary to connect the lattices sites. This TN structure is shown in Fig. 21, which651

is commonly known as the infinite projected entangled simplex state (iPESS) [95]. Due to this652

particular mapping, three Kagome lattice sites (along with two simplex tensors) are coarse-653

grained into a single iPEPS site on the square lattice. While the mappings in Fig. 20b and654

Fig. 21 result in the same square lattice TN, they differ in the number of variational param-655

eters in the ansatz. In the direct iPEPS ansatz, every unit cell tensor has p3χ4
B parameters,656

while there are only (3pχ2
B + 2χ3

B) parameters for the iPESS ansatz. Moreover, quantum cor-657

relations between lattice sites are exactly captured within the coarse-grained cluster for the658

iPEPS, whereas they are limited by the bulk bond dimension for the iPESS. In the ladder case,659

however, there is no bias between lattice sites within one cluster and sites belonging to differ-660

ent clusters. The nearest neighbor interactions on the Kagome lattice are mapped to on-site,661

nearest neighbor and next-nearest neighbor interactions on the square lattice. As a concrete662

mapping example which has particular use in the study of the regular Heisenberg model in a663
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Figure 22: Kagome lattice structure corresponding to a square lattice unit cell ac-
cording to Eq. (19).

Figure 23: Square-Kagome lattice. Similarly to the regular Kagome lattice, it features
corner-sharing triangles. The elementary unit cell consists of six sites, as shown in
Fig. 24.

magnetic field, we consider the iPEPS configuration664

L=





A B C
B C A
C A B



 (19)

on the square lattice. This configuration results in the Kagome lattice structure shown in665

Fig. 22.666

3.3 Square-Kagome lattice667

As a third lattice that has gained a lot of interest in recent time is the square-Kagome lattice.668

Similar to the regular Kagome lattice it features corner-sharing triangles and it is expected to669

host exotic quantum phases due to the geometric frustration for antiferromagnetic spin models.670

The square-Kagome lattice structure is shown in Fig. 23. Naturally, a coarse-graining of the six671

spins in the elementary unit cell can be used, which directly maps the square-Kagome lattice672

to a square lattice as depicted in Fig. 24. Following the same construction as for the regular673

Kagome lattice, we can generalize the iPESS ansatz to the dual of the square-Kagome lattice,674
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Figure 24: Regular square-Kagome lattice mapped to a square lattice by coarse-
graining the six spins in each elementary unit cell.

x

y

Figure 25: Square-octagon lattice (dual to the square-Kagome lattice) with spins
residing on the lattice links and additional simplex tensors on the lattice sites. Unit
cells are highlighted by the gray dotted areas. Upon coarse-graining of the unit cells,
the square-octagon lattice is mapped to the regular square lattice. Physical indices
of the corresponding TN states are not shown.

the so-called (4, 82) Archimedean lattice. This results in an ansatz with four simplex tensors675

and six lattice site tensors per elementary unit cell, as illustrated in Fig. 25. Counting the676

number of variational parameters in both TN ansätze, we find a drastic reduction in the iPESS677

ansatz, again. Here the iPEPS has p6χ4
B parameters, while the iPESS only has (6pχ2

B + 4χ3
B)678

parameters for each tensor in the unit cell. In Table 1, we reinforce the difference for usual679

iPEPS bond dimensions, which has a strong influence on the expressivity and optimization680

of the different TN structures. As in the case of the Kagome lattice, the first coarse-graining681

captures quantum correlations within the cluster exactly. While this is not the case for the682

iPESS mapping, it does not introduce a bias for the different lattice sites within and across683

clusters. Both mappings result in a large physical bond dimension of p6, with p the Hilbert684

space dimension of the original degrees of freedom (e.g., p = 2 for a spin-1/2). This makes685

especially the CTMRG routine computationally expensive. As an example we consider a two-686

site checkerboard pattern ((Lx , L y) = (2, 2) with only two different tensors) on the square687
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χB p6χ4
B (6pχ2

B + 4χ3
B) ratio

2 1024 80 12.8
3 5184 216 25.0
4 16384 448 36.6
5 40000 800 50.0
6 82944 1296 64.0
7 153664 1960 78.4
8 262144 2816 93.1

Table 1: Number of variational parameters (per elementary unit cell) in the iPEPS
and iPESS TN ansatz of the square-Kagome lattice for p = 2, assuming real tensor
elements.

x

y

Figure 26: Square-Kagome lattice structure for a square lattice unit cell according
to Eq. (20). The ansatz has twelve different lattice sites with two-site translation
invariance in both x- and y-direction.

lattice, given by688

L=
�

A B
B A

�

. (20)

This results in a square-Kagome state with twelve different lattice sites, as shown in Fig. 26.689

Assuming nearest-neighbour interactions in the Hamiltonian, the ground state energy can690

be computed by single-site as well as horizontal and vertical two-site expectation values.691

3.4 Triangular lattice692

The triangular lattice, shown in Fig. 27 is another two-dimensional lattice variant that appears693

frequently in condensed matter systems. Due to its large connectivity to six nearest neighbours,694

it is a typical playground for frustrated systems, hosting a variety of different quantum phases.695

As a consequence of this, the large connectivity makes it more challenging for numerical sim-696

ulations. The triangular lattice can be directly interpreted as a square lattice with additional697

diagonal interactions. The entanglement between diagonal sites is then mediated by the reg-698

ular virtual links in the square lattice tensor network. Nearest-neighbour interactions on the699

triangular lattice are again mapped to nearest-neighbour and next-to-nearest-neighbour inter-700

action on the coarse-grained square lattice.701
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Figure 27: Regular triangular lattice with a connectivity of six, i.e., every lattice site
is connected to six nearest neighbours.

x

y

Figure 28: iPESS ansatz for the triangular lattice consisting of only two tensors per
triangular lattice site. When one lattice site and one simplex tensor are combined,
the triangular lattice is directly mapped onto a regular square lattice.

An alternative TN representation of the triangular lattice can be constructed using again702

the iPESS ansatz. In contrast to the iPESS for Kagome and square-Kagome lattices, here the703

lattice sites have three virtual indices, too. The mapping is visualized in Fig. 28 with the iPESS704

ansatz being a honeycomb lattice. Similarly to the first interpretation, this iPESS honeycomb705

ansatz can be mapped to a regular square lattice with additional next-to-nearest-neighbour706

interactions. While the first approach as pχ4
B parameters per unit cell tensor, the iPESS map-707

ping only has (pχ3
B +χ

3
B) coefficients. Finally, and as an alternative to the previous mappings,708

a reverse transformation could be used, which involves a fine-graining of the lattice sites [96].709

3.5 Comments about different structures710

In general there is no unique way to map a given lattice structure to the square lattice. The711

different approaches mainly differ in the number of variational parameters. While the energy712

for an ansatz with fewer parameters can be optimized with fewer resources, an ansatz with a713

higher variational freedom might be able to capture the physical system more accurately. At714

the same time the optimization becomes more complex due to the need to calculate bigger gra-715

dients. In practice, choosing the right ansatz depends on the spatial structures of the quantum716

state, the amount of entanglement present in the system and the required accuracy. One strat-717

egy that works well is a step-wise optimization. In the first step one can choose, e.g., an iPESS718

ansatz with fewer variational parameters. Once an optimized wave function has been found,719

the iPESS ansatz is coarse-grained into a TN with a higher number of variational parameters,720

e.g., a direct iPEPS ansatz. A second optimization of this more expressive ansatz might then721

result in lower ground state energies. In the following sections we will present benchmarks,722

where several of the lowest data points have been obtained with such a two-step procedure.723
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4 Benchmarks and discussions724

In this section, we will present benchmarks for a challenging and paradigmatic models on725

the different currently supported lattices. Due to its prominence and availability of bench-726

marks to different numerical techniques, we generally focus on the spin-1/2 Heisenberg anti-727

ferromagnet. The Heisenberg Hamiltonian is given by728

H = J
∑

〈i, j〉

S⃗i · S⃗ j , (21)

where 〈i, j〉 denotes nearest neighbours and S⃗i are the spin-1/2 operators on the lattice sites.729

We consider isotropic anti-ferromagnetic interactions at J = 1.0 throughout the benchmark730

section. Variational energies obtained with our implementation are denoted by “variational731

update” (VU). Where applicable, we include different TN variants (e.g., iPESS and iPEPS) in732

the numerical benchmarks, to highlight the effect of different numbers of variational param-733

eters. Imaginary time-evolution in the form of a “simple update” (SU) on the different lattice734

structures can provide initial states for the variational update as discussed in Sec. 2.7.3. When-735

ever we use initial tensors from the SU, we add a small amount of random noise to the input736

tensors prior to the variational update, in order to circumvent possible local minima in the737

imaginary time evolution.738

In the plots of this section we include the energies calculated by the mean-field environ-739

ment (MF) used in the simple update. Using this approximation much larger iPEPS bond740

dimensions are computationally feasable but we would like to point out that this method is741

not guaranteed to be variational in the sense that the energy is an upper bound to the ground742

state energy. Thus, it is only sensible to rigorously compare results for which energy expecta-743

tion values are computed by CTMRG. We include the non-variational MF energies for higher744

iPEPS bond dimensions for a rough comparison.745

We add for each benchmark a table with the comparison of the results obtained by the746

simple update simulations and the best result throughout all variational updates for a fixed747

iPEPS bond dimension χB. Both expecation values have been calculated by CTMRG.748

4.1 Comments on lower bounds in variational principles749

As a further conceptual point, it is important to stress that variational principles can be bench-750

marked as well by resorting to lower bounds to ground state energies. Such lower bounds can751

be efficiently computed and hold in the thermodynamic limit up to a small constant error in752

the energy density [97]. If the Hamiltonian H is seen as being written as a sum of terms753

H =
∑

j

h j (22)

where each h j is a patch that contains as many unit cells that can be accommodated in an754

exact diagonalization, then755

〈ψ|H|ψ〉
〈ψ|ψ〉

≥ E0 ∀ |ψ〉 , E0 ≥ λmin(h j), (23)

where λmin(h j) denotes the smallest eigenvalue of the patch h j with open boundary conditions.756

In this way, the quality of the variational principle giving rise to upper bounds to the ground757

state energy can be certified by lower bounds.758
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Variational iPEPS value from [98]
Coupled cluster value from [99]

χB E0 (SU) E0 (VU)
2 -0.53533 -0.537600
3 -0.53969 -0.541145
4 -0.54346 -0.544159
5 -0.54398 -0.544474
6 -0.54409 -0.544536
7 -0.54412 -0.544543

Figure 29: Benchmarking results for the isotropic spin-1/2 Heisenberg model on the
honeycomb lattice. For comparison we include the variational result obtained by an
iPEPS study in Ref. [98]. Additionally, the result calculated by the coupled cluster
method in Ref. [99] is shown, which is due to extrapolation not variational either.

4.2 Honeycomb lattice759

For the simulations of the Heisenberg on the honeycomb lattice we choose a single-site unit cell,760

consisting of only two different tensors on the honeycomb lattice. A mapping to the square lat-761

tice yields a fully translationally invariant iPEPS with a local Hilbert space dimension of p2 = 4.762

We optimize the ground states on both TN structures with 2pχ3
B and p2χ4

B numbers of varia-763

tional parameters, respectively (assuming real tensor coefficients). The model is known to be764

in a gapless Néel ordered phase [100–102]. Therefore, high environment bond dimensions χE765

are required to capture the large correlation lengths of the critical state. Ground state energies766

are reported in Fig. 29. The critical property of the ground state is already nice reflected in the767

significant difference between simple update MF and CTMRG expectation values. The CTMRG768

environments treat quantum correlations much more carefully, which leads to improved ener-769

gies for the infinite TN state. The VU provides lower energies than the SU with CTMRG and770

our results using the VU are compatible with previous results using variational iPEPS with a771

different CTMRG procedure [98] as well as extrapolated and thus non-variational results from772

the coupled cluster method [99].773

4.3 Kagome lattice774

The Heisenberg model on the Kagome lattice can be considered one of the most enigmatic and775

well studied models in the field of frustrated magnetism [104]. While a spin liquid ground776
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χB E0 (SU) E0 (VU)
2 -0.38620 -0.40454
3 -0.41786 -0.42688
4 -0.42323 -0.43038
5 -0.42866 -0.43286
6 -0.43188 -0.43451
7 -0.43313 -0.43527
8 -0.43391 -0.43552

Figure 30: Benchmarking results for the isotropic spin-1/2 Heisenberg model on the
Kagome lattice. For comparision, we show the outcome obtained by extrapolated
iPESS results in Ref. [103], which, to be strict, is not variational as the authors noted.
Additionally, we include the result computed by exact diagionalization in Ref. [104].

state is well established, the actual type of ground state is still under debate with different777

methods supporting different states (e.g., Z2 gapped spin liquid [105,106], U(1) gapless spin778

liquid [103,107]).779

Since the ground state is known to be a spin liquid state, that does not form any magnetic780

ordering down to zero temperature while preserving lattice translation and rotation symmetry,781

we use the smallest unit cells of only three sites in our simulations. The SU then works on the782

three-site iPESS ansatz. The VU is performed both on the honeycomb iPESS and on a coarse-783

grained, fully translationally invariant iPEPS state. The number of variational parameters are784

hence (3pχ2
B + 2χ3

B) for the iPESS and p3χ4
B for the iPEPS. Again, the iPEPS state is more785

expressive and produces lower variational energies, that follow a smoother convergence with786

bond dimension χB, see Fig. 30. The ED energy provides a lower-bound for the energy, as787

argued in Sec. 4.1. Our energies are compatible with other state-of-the-art numerical methods788

as the extrapolated iPESS result from Ref. [103], but we would like to point out that the authors789

noted that their results are not variational and hence the comparison is slightly tainted. Our790

result showcases the purpose of variational iPEPS optimization for highly frustrated systems791

to obtain a real upper bound to the ground state energy.792
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2 -0.42802 -0.43364
3 -0.43511 -0.43738
4 -0.43924 -0.43988
5 -0.43967 -0.44017
6 -0.44006 -0.44039
7 -0.44038 -0.44060

Figure 31: Benchmarking results for the isotropic spin-1/2 Heisenberg model on
the square-Kagome lattice. For comparison, we include the variational Monte-Carlo
results presented in Ref. [108]. Additionally, we show the extrapolated iPEPS result
obtained in Ref. [109], which, to be strict, is not variational. We stress that the mean-
field energies also are not variational as discussed in Sec. 4.

4.4 Square-Kagome lattice793

As a third benchmark model, we simulate the Heisenberg model on the square-Kagome lattice,794

a lattice that has gained attention as a class of promising quantum spin liquid materials [110].795

It consists of corner-sharing triangles, that generate a high geometric frustration similar to the796

Kagome lattice. Its ground state has been found to be non-magnetic, however the existing797

subtle competition between different types of valence bond crystal (VBC) states has only been798

resolved recently in a TN study [109], in favor of a VBC with loop-six resonances. Simulations799

of the model are performed for a twelve-site checkerboard unit cell, as shown in Fig. 26.800

Results for the ground state energy are presented in Fig. 31. Due to the VBC ground state801

with a small correlation length and an energy gap in the model, the simple update MF and802

CTMRG energies are nearly identical. The variational update is performed on a so-called semi-803

PEPS structure as described in Ref. [109] and also on a coarse-grained iPEPS TN as introduced804

in Fig. 24, a structure that is unfeasible for SU simulations due to the large imaginary time805

evolution operators. Although the VU cannot significantly improve the ground state energy for806

the semi-PEPS ansatz, the VU on the full coarse-grained iPEPS structure improves the energies807

at the same bond dimension χB. This is connected to the larger expressivity of the coarse-808

grained structure.809

Our results outperform variational Monte-Carlo simulations in Ref. [108] and are compa-810
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3 -0.54181 -0.54503
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5 -0.54756 -0.54990
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Figure 32: Benchmarking results for the isotropic spin-1/2 Heisenberg model on the
triangular lattice with an ABC−BCA−CAB 3×3 unit cell structure. For comparision,
we include the extrapolated, thus non-variational coupled cluster results presented in
Ref. [99]. Additionally, we show the extrapolated iPESS result obtained in Ref. [111],
which, to be strict, is not variational.

rable to state-of-the-art iPEPS results in Ref. [109]. We emphasize that the latter result is in811

the extrapolation, strictly speaking, not variational so that a comparison is slightly tainted.812

4.5 Triangular lattice813

As a last benchmark model we consider the Heisenberg model on the triangular lattice. Due to814

its connectivity of six, the triangular lattice exhibits a large amount of geometric frustration.815

The ground state is believed to be a three-sublattice 120◦ magnetically ordered state [112,816

113]. The ground state of the Heisenberg model on the triangular lattice is computed using817

a three-sublattice unit cell arranged in an ABC-BCA-CAB structure. The simple update data818

has been produced by an iPESS ansatz with the simplices sitting in the upward triangles (see819

Fig. 28). The VU is performed in two steps, using the converged iPESS state as input for second820

coarse-grained optimization run.821

The results of our benchmark are shown in Fig. 32. In the case of the triangular lattice822

it generally helps to add some noise on the SU input state to reach better ground states and823

energies. We compare against a recent iPESS study based on the simple update [111], that824

predicts a zero-temperature magnetisation consistent with previous Monte Carlo studies [114]825

and additionally against a result obtained by the extrapolated, thus non-variational coupled826

cluster method [99]. We would like to point out that the iPESS result was extrapolated and827

is, strictly speaking, not variational.828
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4.6 Comments on excited states829

In this work, we have primarily focused on providing a comprehensive discussion of the use of830

AD for the study of ground state properties of interacting quantum lattice models. It should go831

without saying, however, that excited states can be included in a straightforward manner. The832

study of excited states has first been initiated in the realm of matrix product states [115], but833

has later been generalized to iPEPS [116–118], allowing for constructing variational ansatzes834

for elementary excitations on PEPS ground states that facilitate computing gaps, dispersion835

relations, and spectral weights in the thermodynamic limit.836

More recently, automatic differentiation has also found its way into the optimisation of ex-837

cited states [42]. The central idea is to construct the excited state with momentum k⃗ = (kx , ky)838

as a superposition of the ground state vector, perturbed by a single tensor B at position x⃗ = (x , y)839

and appropriate phase factors according to840

|φ(B)k⃗〉=
∑

x⃗

eik⃗ x⃗ |φ(B) x⃗〉 . (24)

The coefficients of tensor B are then determined by energy minimisation of the excited state,841

for which AD can again be used [42,119]. In contrast to the regular ground state optimisation,842

here the CTMRG routine must be extended to include the appropriate phase factors in the843

directional absorption. Moreover, instead of only eight environment tensors per iPEPS tensor844

in the unit cell, the action of B, B† and the product of B and B† has to be tracked in three845

additional sets of eight tensors.846

The excited state approach can be directly extended to different lattice geometries. To847

this end, we have to generalize the absorption of iPEPS tensors (growing the CTMRG transfer848

tensors T1, T2, T3 and T4) to include the basis of the lattice, respecting relative phase factors849

of the basis vectors. Depending on the actual structure of the basis, a separate tensor Bn is850

chosen as a perturbation for each of the basis site. Our implementation already contains the851

main building blocks of a robust and flexible CTMRG routine, calculation of gradients using AD852

at the fixed-point and minimisation of an energy cost function. The extension of the framework853

to include excited states is therefore natural. It is planned as a future feature.854

4.7 Comments on fermionic systems855

As a final comment we stress that for clarity and to be concise, we have focused in our pre-856

sentation on quantum spin models. It should be clear, however, that the machinery developed857

here readily carries over to the study of interacting fermionic systems, with little modifications.858

Naively, one might think that the simulation of two-dimensional fermionic models is marred859

by substantial overheads that emerge when invoking a spin-to-fermion mapping. This is, how-860

ever, not the case, and the respective book-keeping of the signs can be done with negligible861

overhead [120, 121]. On the formal level, such tensor networks involve a particular choice862

of what is called a spin structure [122, 123]. Practically speaking, one can modify much of863

the bosonic code for PEPS to the fermionic setting, readily incorporating the relevant signs864

to capture interacting fermions, in what is called fermionic PEPS [120,124,125]. This insight865

is important as some of the most compelling test cases of interacting quantum many-body866

systems are of a fermionic nature.867

5 Conclusion and prospects868

In this review we present a comprehensive introduction into automatic differentiation in the869

context of two-dimensional tensor networks, leading to the recently emerging variational870
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iPEPS framework for ground state optimization. We provide implementation details and dis-871

cuss obstacles that arise in practice, as well as techniques to mitigate these. At the same time,872

we coherently present ideas that have to date only been mentioned in a fragmented fashion873

in the literature. We hope that the present work can serve as a useful reference and review in874

the variational study of 2d tensor networks.875

This work accompanies the variational iPEPS library variPEPS, a comprehensive and ver-876

satile code base for optimizing iPEPS in a general setting. We expect this library to be a helpful877

tool for performing state-of-the-art tensor network analyses for a wide range of physical mod-878

els, featuring multiple two-dimensional lattices. The library is designed to be extended with879

additional simulation techniques based on automatic differentiation, such as excited states and880

structure factors.881

The variPEPS library is publicly available in both a Julia and a Python version on GitHub [56],882

with stable references in the corresponding Zenodo repositories [57,58].883

5.1 CO2-emissions table884

For the sake of completeness and for promoting carbon footprint awareness, we display an885

estimated lower bound of the carbon emissions generated during the course of this work in886

Table 2.887

Numerical simulations
Total Kernel Hours [h] ≥ 255276
Thermal Design Power Per Kernel [W] 12
Total Energy Consumption Simulations [kWh] ≥ 3063
Average Emission Of CO2 In Germany [kg/kWh] 0.441
Total CO2-Emission For Numerical Simulations [kg] ≥ 1351
Were The Emissions Offset? Yes
Air Travel
Total CO2-Emission For Air Travel [kg] 924
Were The Emissions Offset? Yes
Total CO2-Emission [kg] ≥ 2275

Table 2: Summary of the estimated lower bound of the carbon cost generated during
the development of this work. The estimations have been calculated using the exam-
ples of the Scientific CO2nduct project [126] and include the costs of the numerical
calculations and air travel for collaborations.
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Appendix: Background on automatic differentiation918

A Adjoint functions and variables919

In the literature it is common to use so called adjoint functions and adjoint variables when920

using backwards-mode AD. These adjoint functions map the adjoint variables onto each other,921

as in Eq. (15) when building up the gradient. In this section, we will briefly introduce the922

basic notation of adjoint functions and variables following Ref. [133]. Explicit constructions923

of adjoint functions, which are vector-Jacobian-products in the practical implementation, for924

a large number of useful operations including those for the iPEPS use-case can be found in925

Refs. [133–135].926

As an example throughout this section, we consider the function h, composed out of two927

primitive functions h1 and h2 which are concatenated as928

h= h2 ◦ h1,

h1 : Mn×n ×Mn×n −→ Mn×n,

h2 : Mn×n −→ R,

(A.1)

with variables (A, B) ∈ Mn×n ×Mn×n, C ∈ Mn×n and x ∈ R. We start by examining the differ-929

ential of the output variable x930

d x =
∂ h2

∂ C
dC =:
∑

i, j

C̄i, jdCi, j = Tr(C̄TdC). (A.2)

In the first equation, we have suppressed the sum over the indices of C . Eq. (A.2) defines the931

adjoint variable C̄ of C . We see that the adjoint variable C̄ is the derivative of the scalar output932

of the function h2 w.r.t. C . Thus, for the case of a scalar output the variable C and the adjoint933

variable C̄ have the same dimension. Now, in order to get the gradient ∇h we are interested934

in the derivative of the output w.r.t. the input variables (A, B). To this end we consider the935

differential of the intermediate variable936

dC =
∂ h1

∂ A
dA+

∂ h1

∂ B
dB. (A.3)

Inserting this into Eq. (A.2), we obtain937

d x = Tr
�

C̄T ∂ h1

∂ A
︸ ︷︷ ︸

ĀT

dA
�

+ Tr
�

C̄T ∂ h1

∂ B
︸ ︷︷ ︸

B̄T

dB
�

. (A.4)

Here we have already implicitly used the adjoint function h̄1 that maps the adjoint variable C̄938

to the adjoint variables Ā and B̄ according to939

h̄1 : C̄T 7−→ (ĀT, B̄T)T =
�

C̄T ∂ h1

∂ A
, C̄T ∂ h1

∂ B

�T
. (A.5)

Given the fact that we are dealing with a scalar output variable x , we recall that C̄ can be940

considered a vector, such that the adjoint function is a vector-Jacobian-product (vJP). We can941

see that the this maping of the adjoint variables with adjoint functions eventually produces942

the gradient943

∇h=
�

Ā, B̄
�

=
�

∂ h1

∂ A
C̄ ,
∂ h1

∂ B
C̄
�

=
�

∂ h1

∂ A
∂ h2

∂ C
,
∂ h1

∂ B
∂ h2

∂ C

�

.
(A.6)
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B Automatic differentiation for complex variables944

Some extra attention has to be given to the case in which the primitive functions are complex945

valued. This is because not all functions one might want to consider are complex-differentiable946

(holomorphic) and as such the derivative depends on the direction we move in the complex947

plane when taking the limit for the derivative. In such a case one needs to resort to the calculus948

of two sets of independent real variables. For a generic function f : C −→ C this can be done949

by treating x and y in z = x + i y as independent variables or alternatively, by choosing z950

and z∗ and making use of Wirtinger calculus. However we should also note that in the iPEPS951

use case we deal with a function E : Cn −→ R, which removes the necessity to think about952

holomorphism.953

C The implicit function theorem and its use at the CTMRG fixed-954

point955

In this section, we are going to present an alternative approach to taking the derivative of the956

energy function by utilizing the fixed point of the CTMRG procedure. To this end, we can957

make use of the implicit function theorem [136] to calculate the derivative of the full fixed-958

point routine. Our discussion will follow the description of Refs. [137, 138]. Differentiating959

Eq. (16) on both sides we end up with960

∂Ae∗(A) = ∂Ac(A, e∗) + ∂e∗ c(A, e∗)∂Ae∗(A). (C.1)

Introducing the shorthand writing for the Jacobians L = ∂Ac(A, e∗(A)) and K = ∂e∗ c(A, e∗(A))961

and rearranging the equation we find962

∂Ae∗(A) =(L + K∂Ae∗(A))

=

�∞
∑

n=0

K

�

L = (1− K)−1 L.
(C.2)

As discussed in Appendix A, we aim at finding the adjoint function of the CTMRG iteration at963

the fixed point, which is a vector-Jacobian product (vJP) vT∂Ae∗(A). Inserting Eq. (C.2) yields964

vT∂ e∗(A) = vT(1− K)−1 L =wTL, (C.3)

where we have introduced wT := vT(1−K)−1. The second equality in the equation above can965

be rearranged into another fixed-point equation966

wT = vT +wTK . (C.4)

Here wTK is another vJP but this time only dependent of the derivative of a single absorption967

step evaluated at the fixed-point of the CTMRG routine. Solving Eq. (C.4) we can find wT
968

to calculate the vJP of the CTMRG routine from Eq. (C.3). In the end we reduced the naive969

effort of unrolling the fixed-point iterations to just calculate the derivative of a single CTMRG970

iteration and another fixed-point iteration which both are much less memory intensive.971

D Automatic differentiation in the language of differential geom-972

etry973

In order to unify the different frameworks for thinking about forward- and backwards-mode974

AD, we will briefly introduce a mathematical notation for AD. It also serves to give some975

36



SciPost Physics Lecture Notes Submission

more precise meaning to the terms “push-forward” and “pullback”, that are sometimes used in976

forward- and backwards-mode AD discussions, respectively. For this we first recall the general977

concept of a push-forward and a pullback for the simple case of functions and distributions.978

Imagine two functions f : M −→ N and g : N −→ R. The pullback of g along f allows us to979

construct a function f ∗g : M −→ R for which the domain of the function g is “pulled back” to980

the domain of the function f . This is done by a simple concatenation of f and g981

f ∗g( m
︸︷︷︸

∈M

) = (g ◦ f )(m) = g( f (m)). (D.1)

This construction can now be used to define a push-forward on the dual objects of the functions982

under integration. These dual objects are distributions. With a distribution, we can integrate983

a function984

∫

M
• µ : F(M) −→ R,

f 7−→
∫

M
f µ,

(D.2)

where F(M) are just the functions on M and µ is the distribution. Given such a distribution985

on M we can now integrate functions on M . The push-forward f∗µ of µ allows us to integrate986

functions on N by defining a distribution that is “pushed forward” to N . This works as987

∫

N
h( f∗µ) =:

∫

M
( f ∗h)µ, (D.3)

where h is a function on N .988

This type of construction for the pullback and push-forward generalizes to many mathe-989

matical objects that have a pairing dual. The relevant mathematical objects for AD are the990

derivative ∂ /∂ x i and its pairing dual, the differential d x i .991

It might be useful, beyond the conceptual clarity of this notation, to look at AD in this992

way because one can easily imagine situations where the intermediate data of a function is993

restricted by constraints such that the “data-space” becomes geometrically non-trivial. An994

example could be vectors in Rn restricted to unit length or matrices in Mn,m restricted to be995

unitary. We note that an optimisation in these situations requires some additional concepts,996

like finding a path on the given space from a tangent vector. This requires some extra care and997

is not discussed here.998

We now introduce the mathematical notation that we need in order to talk about AD in
this language. We will not be particularly rigorous in this endeavour and leave out all details
that are not explicitly needed. We start with a manifold M on which we can consider points
p ∈ M , as well as functions f : M −→ R. For each point p ∈ M we can define a vector space
TpM (call it the tangent-space at p) of tangent-vectors at that point. The elements in TpM act
like derivatives on functions on M

e.g.:
∂

∂ x i
= ei ∈ TpM ,

∂

∂ x i
( f ) =

∂ f
∂ x i

.

Here we have assumed that we have equipped the manifold M with coordinates via a chart
φ : M −→ Rm around the point p, where m= dim(M). Our tangent-space TpM has dimension
m and we can choose a canonical basis

§

∂

∂ x i
, . . . ,

∂

∂ xm

ª

= {e1, . . . , em}.
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One further defines the dual vector space T ∗p M of the tangent vector space, called cotangent-

space. This cotangent-space contains the dual vectors to the derivatives ∂
∂ x i

. These cotangent
vectors from the cotangent-space are the differentials d x i . The cotangent-space also has di-
mension m and we can choose the canonical basis

{d x1, . . . , d xm}.

Obviously, given the canonical basis for the tangent-space and cotangent-space we can expand999

arbitrary vectors in these spaces in the basis. Take v ∈ TpM and d f ∈ T ∗p M we can expand as1000

v =
∑

i

vi
∂

∂ x i
=
∑

i

viei , (D.4)

d f =
∑

i

∂ f
∂ x i

d x i . (D.5)

We have a pairing between the derivatives that live in the tangent-space TpM and the differ-1001

entials that live in T ∗p M as1002

d x j

�

∂

∂ x i

�

:=
∂ x j

∂ x i
= δi, j . (D.6)

Note that by this pairing relation we see that tangent and cotangent vectors are “pairing duals”1003

and we can use an analogous construction for pullbacks and push-forwards as we did for1004

functions and distribution above. Since TpM and T ∗p M are isomorphic, we can introduce a1005

correspondence transformation between the canonical basis of the two spaces1006

•♭ : TpM −→ T ∗p M , ei 7−→ d x i = e♭i , (D.7)

•♯ : T ∗p M −→ TpM , d x i 7−→ ei = d x ♯i . (D.8)

We now have assembled all nessessary tools to formulate what a “gradient” is in this language.1007

It is given by1008

∇ f := (d f )♯, (D.9)

which matches the common formula1009

∇ f =

�

∑

i

∂ f
∂ x i

d x i

�♯

=
∑

i

∂ f
∂ x i

ei

=
�

∂ f
∂ x1

, . . . ,
∂ f
∂ xm

�

,

(D.10)

where we have taken ei just as the i-th unit vector of TpM .1010

Now it is easy to construct the pullbacks and push-forwards in this context analogous to our1011

treatment of functions and distributions. For this we start from manifolds M and N with points1012

p ∈ M and q ∈ N , and with the two functions f : M −→ N and g : N −→ R. We can consider a1013

differential d g ∈ T ∗q N which we want to “pull back” along the function f and associate it with1014

and element of T ∗f −1(q)M , where f −1(q) ∈ M . We do this with the familiar definition1015

f ∗d g
︸︷︷︸

∈T ∗
f −1(q)

M

:= d(g ◦ f ) (D.11)

which uses a concatenation of f and g just as in the first example. For a tangible example1016

consider g = x i to be a coordinate function. We then get f ∗d x i = d(x i ◦ f ) = d( fi). As1017
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before the push-forward can be defined via the pullback just as we had done for functions and1018

distributions. In this case, we start with a tangent vector ∂
∂ x i

in TpM and want to “push it1019

forward” along f into T f (p)N . This works as1020

( f∗

�

∈Tp M
︷︸︸︷

∂

∂ x i

�

︸ ︷︷ ︸

∈T f (p)N

)(g) :=
∂

∂ x i
( f ∗g) =

∂

∂ x i
(g ◦ f ). (D.12)

Now that we are equipped with the pullback and push-forward of differentials and derivatives1021

we see how the gradient is calculated in the forward- and backward-mode AD. For this we will1022

go back to our neat example from Sec. 2.4 and slightly generalize. Say, we would like to take1023

the gradient ∇E of a function that is composed of three primitive functions E = f3 ◦ f2 ◦ f1.1024

We say these primitive functions map between manifolds1025

E : M1
f17−→ M2

f27−→ M3
f37−→ R. (D.13)

Lets first look at what happens when we build the gradient using backwards-mode AD. In this1026

case we start with the differential d f3 of the last primary function of E. This differential lives1027

in T ∗k M3, where k ∈ M3 is a point in M3. We can now use the pullback along the functions f21028

and then f1 to pull back this differential to M11029

f ∗1 ( f
∗

2 (d f3))
pullback
←−−−− f ∗2 (d f3)

pullback
←−−−− d f3. (D.14)

With the definitions above we see that in this way we construct the gradient1030

f ∗1 ( f
∗

2 (d f3)) = f ∗1 ((d( f3 ◦ f2))) = d( f3 ◦ f2 ◦ f1) = dE. (D.15)

With our identification between tangent and cotangent vectors we finalize to ∇E = (dE)♯. If1031

we express the differential that we start from d f3 in coordinates, we straightforwardly obtain1032

the product of Jacobians as a result for the gradient. This also establishes the connection to1033

the adjoint functions we talked about in the previous section and the vector-Jacobian product1034

as discussed in Sec. 2.4.1035

In the case of forward-mode AD we start from a tangent vector ∂
∂ x i

, which lives in Tl M1,1036

where l ∈ M1 is a point in M1. We can now push this tangent vector forward into a tangent1037

space of M3 with successive push-forwards along f1 followed by f21038

∂

∂ x i

push-forward
−−−−−−−→ f1∗

�

∂

∂ x i

�

push-forward
−−−−−−−→ f2∗

�

f1∗

�

∂

∂ x i

��

. (D.16)

With the definitions for the push-forward we see that the gradient we obtain in this way is1039

given by1040

∑

i

f2∗

�

f1∗

�

∂

∂ x i

��

( f3) ei =
∑

i

f1∗

�

∂

∂ x i

�

( f3 ◦ f2) ei

=
∑

i

∂

∂ x i
( f3 ◦ f2 ◦ f1
︸ ︷︷ ︸

=E

) ei

=∇E.

(D.17)
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