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Abstract

We propose a real-space formalism of the topological Euler class, which characterizes the
fragile topology of two-dimensional systems with real wave functions. This real-space
description is characterized by local Euler markers whose macroscopic average coin-
cides with the Euler number, and it applies equally well to periodic and open boundary
conditions for both crystals and noncrystalline systems. We validate this by diagnosing
topological phase transitions in clean and disordered crystalline systems with the real-
ity endowed by the space-time inversion symmetry IST . Furthermore, we demonstrated
the topological Euler phases in quasicrystals and even in amorphous lattices lacking any
spatial symmetries. Our work not only provides a local characterization of the frag-
ile topology but also significantly extends its territory beyond IST -symmetric crystalline
materials.
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1 Introduction36

Topological phases have garnered attention for their unique properties, originating with the37

integer quantum Hall effect which is characterized by the topological invariant called the38

Chern number [1–3] and associated chiral edge modes [4, 5]. Mathematically, the Chern39

number is derived from the Chern class, a cohomology class characterizing complex vector40

bundles. Typically, Chern numbers can be determined from complex Bloch wave functions via41

a momentum-space expression that relies on the translation invariance of crystalline solids42

[6–9]. However, in open-boundary systems, or in the presence of disorder, the lack of transi-43

tional invariance renders the momentum-space expression no longer available. This has led44

to the development of a real-space representation of the Chern number [10], including local45

Chern markers [11, 12] and the nonlocal Bott index [13, 14], which triggers extensive study46

on the real-space characterizations of more topological states of matter [15–41].47

Recently, novel topological phases characterized by Euler and Stiefel-Whitney classes have48

been proposed in orientable real vector bundles associated with real Bloch states [42–47].49

Physically, two-dimensional real wave functions can be topologically classified by the Stiefel-50

Whitney numbers [48–50] which are Z2 invariants taking either 0 or 1, and each two-band51

subspace may exhibit a fragile topology that is characterized by an integer Euler number52
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e ∈ Z [51–53]. Similar to the Chern number, the Euler number can be expressed as an integral53

in momentum space for real orientable two-band subsystems, and its parity is identical to the54

second Stiefel-Whitney number w2, implying a close relationship between these two classes.55

Unlike the Chern insulator, the fragile topology of the Euler class can be tuned by adding trivial56

bands, implying its non-additive feature [49, 50]. Nevertheless, such a fragile topology pro-57

tects the nonzero superfluid weight in twisted bilayer graphene [54]. Moreover, the Euler class58

also serves as non-Abelian topological invariants to characterize the band nodal braiding in59

multi-gap systems [55], which is in stark contrast to the single-gap Abelian topology within the60

ten-fold way classification [56]. Such multi-gap non-Abelian topology has been implemented61

in various systems such as crystalline materials [47,57], acoustic metamaterials [58–60], and62

photonic systems [61–64], stimulating rapid recent progress in this ever-growing field [65–68].63

Typically, the real Bloch states in crystals are enforced by the space-time inversion sym-64

metry IST (time-reversal T combined with inversion P or two-fold rotation C2z) [69], which65

can be destroyed locally in the presence of disorder. Moreover, in a finite nonmagnetic sys-66

tem with open boundaries, IST symmetry is not even essential for the reality condition. The67

limitation of the momentum-space formula makes it urgent to search for a local characteriza-68

tion of real topological phases in systems with disorder and more generally in open-boundary69

systems inherently lacking translation and IST symmetries, such as quasicrystals [70–75] and70

amorphous systems [76–81].71

In this Letter, we develop a real-space formalism for Euler class topology in 2D systems.72

In an analogy to the Chern class, we introduce a local Euler marker e(r) to directly map the73

Euler topology in real space for both crystals and noncrystalline systems. The macroscopic74

average of e(r) coincides with the Euler number regardless of periodic or open boundary con-75

ditions. We validate our real-space formalism by verifying topological Euler and trivial phases76

in clean systems, yielding consistent results with k-space approaches. Additionally, we ap-77

ply our method to a particular PT -symmetric disordered system, successfully diagnosing the78

disorder-induced topological phase transition. Furthermore, our real-space formalism proves79

powerful in characterizing fragile topological phases in quasicrystals and even in amorphous80

systems lacking any spatial symmetries.81

2 Characteristic class in k- versus r-space82

The Euler class is a characteristic class of oriented real vector bundles. It can be constructed us-83

ing an orthonormal basis {|un(k)〉}, where |un(k)〉 represents the cell-periodic part of the n-th84

occupied Bloch state 〈r |ψn(k)〉= eik·r 〈r |un(k)〉. Utilizing this basis, we obtain the curvature85

matrix F with its entries given by:86

Fmn(k) = 〈∂[kx
um(k)|∂ky ]un(k)〉dkx ∧ dky , (1)

where [· · · , · · · ] denotes the commutator applied to the index kx and ky . When there are two87

occupied bands, the Euler class can be expressed as a differential 2-from in k space,88

e(F) = 1
2π

Pf(F),

=
1

2π
〈∂[kx

u1(k)|∂ky ]u2(k)〉dkx ∧ dky , (2)

where Pf denotes the Pfaffian acting on the matrix F . The Euler number e is an integer topo-89

logical invariant for two real bands, which can be expressed as a simple k-space integral [82],90

e =
1

2π

∫

BZ
〈∂[kx

u1(k)|∂ky ]u2(k)〉dkxdky . (3)
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To derive the expression of the Euler number in r -space, we start by replacing the occupied91

states in the above expression with a projection operator P̂(k) =
∑

occ |un(k)〉〈un(k)| in the92

occupied subspace [11]. After some algebra (see appendix B), we obtain the k-space formula93

of Euler number e represented by P̂(k),94

e =
1

2π

∫

BZ
d2kPfocc(P̂(k)[∂kx

P̂(k),∂ky
P̂(k)]), (4)

where Pfocc denotes the Pfaffian taken over the occupied subspace.95

To generalize a formula of topological system defined in k space to its real-space form96

applicable to disordered system, a standard mathematical framework is the non-commutative97

geometry [83], which provides the duality (see the equivalence at least for translational in-98

variant systems in appendix C),99

∫

BZ

d2k
(2π)2/A

→ Tr,

∂kx
P̂(k) →

Lx

2π
(Û P̂ Û† − P̂),

∂ky
P̂(k) →

L y

2π
(V̂ P̂ V̂ † − P̂), (5)

where A= Lx L y is the area of the system, Û = exp(2πiX̂/Lx) and V̂ = exp(2πiŶ /L y) are the100

unitary position operator, Tr is the trace over the coordinate space, and P̂ is the r -space projec-101

tion operator. Note that the order of P̂ is determined by both the site coordinates ri = (x i , yi),102

dependent on the lattice size, and the internal index n, matching the order of P̂(k). Therefore,103

we can divide the space on which P̂ operates into two subspaces, S(P̂) = l2(T2)⊗RN . Here,104

l2(T2) is the coordinate space, where T2 denotes the two-torus, a rectangle with edge length105

Lx and L y with periodic boundary conditions (PBC) [14]. And RN is internal space with the106

internal degrees of freedom N which are those degrees of freedom except for the coordinate107

k or {ri}. Consequently, we arrive at the r -space expression for the Euler number:108

e =
1

2π
TrPfocc(P̂[Û P̂ Û†, V̂ P̂ V̂ †]), (6)

where Pfocc denotes the Pfaffian taken over the occupied submatrix in the internal space (see109

appendix D for more details). Formally, Eq. (6) share a similar expression to the real-space110

Chern number except for the substituting from Tr to Pfocc. Thus analogous to prior work on111

the local Chern marker [11], we propose defining the local Euler marker e(r) as the expression112

in Eq. (6) before taking the trace, i.e.,113

e(r) =
1

2π
Pfocc(〈r|P̂[Û P̂ Û†, V̂ P̂ V̂ †]|r〉). (7)

where |r〉 denotes the basis to construct the external space indexed by the Wannier cell r.114

The r -space Euler number (6) and local Euler marker (7) apply well to both crystalline and115

noncrystalline systems. They not only provide an intuitive local perspective of global topology116

but also serve as a valuable tool for distinguishing topological phases in aperiodic systems117

without translational symmetry.118

3 Remarks on r-space Euler number119

Before proceeding, we have a few remarks. First, the analysis we’ve conducted thus far can120

be directly applied to the Chern class, and the resultant r -space expression is nothing but121
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the Bott index, Bott(Û , V̂ ) = (1/2π)ImTr log(Û V̂ Û−1V̂−1) with Û = P̂ exp(2πiX̂/Lx)P̂ and122

V̂ = P̂ exp(2πiŶ /L y)P̂, which offers an equivalent topological classification to the Chern num-123

ber [14,15]. However, there are significant differences between the r -space formulation of the124

Euler and Chern number. The r -space Chern number only requires a simple trace performed125

consistently in both coordinate and internal space. In contrast, for the r -space Euler number,126

it becomes essential to distinguish between the coordinate and internal space, which requires127

trace and Pfaffian operations, respectively.128

Secondly, to decompose the coordinate and internal spaces for extracting the occupied sub-129

matrix needed for Pfaffian calculation, we apply a unitary transformation to the eigenstates130

which makes P̂ block-diagonal. This unitary transformation corresponds to constructing a set131

of composite Wannier functions, which can be determined by an explicit algorithm of localiza-132

tion functional minimization proposed by Marzari and Vanderbilt [84,85] (see appendix H.5).133

Importantly, while a nontrivial topological invariant may pose a topological obstruction for134

constructing Wannier representations composed of exponentially localized states in line with135

lattice symmetries [49, 51, 86, 87], it does not hinder the search for composite Wannier func-136

tions with optimal power-law decay [88–93].137

Thirdly, the distinct treatments of Chern and Euler numbers in real space also lead to138

different behaviors in finite samples under open boundary conditions (OBC). It’s well-known139

that the summation of the local Chern marker over an entire open system must equal zero,140

regardless of whether the system is a Chern insulator or not. This is because the local Chern141

marker in the bulk is always offset by the significant deviation at the boundary [11, 14]. In142

contrast, the local Euler marker near the open boundary fades away and thus doesn’t suffer143

from the counteraction under OBC, making the choice of boundary condition irrelevant for144

the r -space Euler number (see appendix E).145

4 Tight-binding model146

To numerically validate the r -space formula of Euler number, we consider a general PT -147

symmetric tight-binding model with the basis (ipx , ipy , dx y , dx2−y2) per site. The Hamiltonian148

is given by149

H =
∑

iµ

εµc†
iµciµ +
∑

〈i j〉

∑

µν

tµν(ri j)c
†
iµc jν, (8)

where c†
iµ(ciµ) is electron creation (annihilation) operator on the µ orbital at the i-th site. εµ is150

the on-site energy and tµν(ri j) is the Slater-Koster parameterized hopping integral [94,95] and151

has an inverse-square decay with the distance (i.e., |ri j|−2) [96] (See details in appendix H.1).152

It has been proven that a PT -symmetric Hamiltonian can become real-valued through the153

Takagi decomposition [49, 97]. Here we intentionally chose the p orbitals to be imaginary,154

which results in PT = K̂ with the complex conjugation operator K̂ . The invariance of the155

Hamiltonian under PT imposes the reality condition on H. It was previously known that a156

fragile topological state with a nontrivial Euler number e = 1 can be achieved by considering a157

double band inversion between px ,y and dx2−y2,x y orbitals [98]. Here we verify the validity of158

the r -space Euler number in both crystalline and noncrystalline systems based on this model.159

We also validate our expression using other models with different Euler numbers, which are160

detailed in the appendix I.8.161
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Figure 1: (a) Orbital-resolved band structures of the square lattice with a double
band inversion between px ,y and dx2−y2,x y orbitals. The parameters used are εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.865, Vppπ=-0.144, Vpdσ=0.173, Vpdπ=0.135,

Vddσ=0.144, Vddπ=0.124, Vddδ=0.259 eV. (b) The variation of the Euler number
as the on-site energy difference ∆ = εp − εd changes. Other parameters remain un-
changed and the lattice size is L = 201. (c) The r -space Euler number as a function
of the disorder strength W in 31× 31 square lattices with periodic boundary condi-
tion (PBC). (d) The lattice size L dependence of the r -space Euler number calculated
without and with on-site energy disorder (W = 1.0 eV) using PBC and open bound-
ary condition (OBC). For each L and W , the configuration average is performed over
100 realizations.
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5 Diagnosis of Topological phase transitions162

With the well-defined r -space Euler number, we first diagnose topological phase transitions in163

a square lattice based on the model in Eq. (8). As shown in Fig. 1(a), the orbital-resolved band164

structure displays signs of a double band inversion between px ,y and dx2−y2,x y orbitals around165

the Γ point, implying their nontrivial electronic topology. We compute the Euler number in166

both k-space and r -space, consistently yielding a value of e = 1, thus confirming the nontrivial167

Euler topology. We further examine the evolution of the Euler number in both k- and r -168

spaces with increasing the on-site energy difference ∆ = εp − εd . In Fig. 1(b), the system169

undergoes a topological phase transition from a topological Euler insulator with e = 1 (region170

I) to an intermediate gapless state (II) and eventually transitions into a trivial insulator with171

e = 0 (III). The calculated r -space Euler number matches with the k-space one, except for the172

intermediate gapless phase (region II) where the Euler number is ill-defined. This transition173

can be understood by tracing the evolution of band inversion (see appendix I.1): Starting174

from a double inverted band order, the nontrivial energy gap gradually decreases to zero with175

increasing ∆, then remains closed over a finite ∆ range, and eventually reopens with a trivial176

normal band order.177

Next, we demonstrate the applicability of the r -space Euler number for aperiodic sys-178

tems by introducing the disorder term in the on-site energies of the aforementioned model.179

We specifically consider disorder term that preserves PT symmetry, which is represented by180

Vdis =
∑

i∈τ1/2
λi(c

†
i ci+c†

P icP i)with the random variables {λi} distributed uniformly within the181

interval [−W, W ] on half of the sites (τ1/2) in the sample, where W is the disorder strength.182

The annihilation operators ci and cP i act on the site at ri and its inversion partner P ri , respec-183

tively. The averaged r -space Euler number as a function of W is shown in Fig. 1(c). For mod-184

erate disorder, the r -space Euler number e remains around 1, indicating the system remains185

topologically nontrivial. Remarkably, as disorder strength W increases, e gradually decreases186

to 0, diagnosing a topological phase transition (see appendix I.5). Our results confirm the187

disorder-induced topological phase transition classified by the topological Euler class [99,100],188

and validate the r -space formalism of Euler number in disordered systems.189

(a) (c)
D
b

D
b

(b)

Figure 2: Fragile topological state characterized by e = 1 in the Ammann-Beenker-
tiling quasicrystal based on the model in Eq. (8). Parameters are εpx ,py

= 1.58,
εdx2−y2,x y

= -0.42, Vppσ = −1.783, Vppπ = −0.299, Vpdσ = 0.359, Vpdπ = 0.280,
Vddσ = 0.299, Vddπ = 0.257, Vddδ = 0.537 eV. (a) Energy spectrum of the quasicrystal
containing 1168 sites with OBC or twisted boundary condition (TBC). Insert shows
8 corner states (highlighted by red stars) in the bulk gap. (b) Spatial distribution of
the in-gap corner states [red stars in (a)]. (c) The distribution of local Euler markers
e(r) in the quasicrystal with OBC.

We further check the effect of lattice size and different boundary conditions on the r -190

space Euler number, as shown in Fig. 1(d). All calculated r -space Euler numbers converge191
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(c)(a) (b)

Figure 3: Fragile topological state characterized by e = 1 in the amorphous square
lattice based on the model in Eq. (8). Each atom is assigned with a random dis-
placement following the Gaussian distribution with standard deviation σ = 0.2. Pa-
rameters are L=31, εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.565, Vppπ=-0.044,

Vpdσ=0.773, Vpdπ=0.335, Vddσ=0.444, Vddπ=0.224, Vddδ=0.659 eV. (a) Energy
spectrum of the amorphous square lattice with PBC and OBC. Four corner states
in the gap are highlighted by red stars. (b) Spatial distribution of the corner states
[red stars in (a)]. (c) The distribution of e(r) for the amorphous system with OBC.

to the limit of 1 with different rates by increasing the lattice size, demonstrating the faithful192

formalism of the Euler number. Importantly, the OBC results exhibit a deviation from PBC due193

to the presence of open boundaries, but this difference can be diminished by increasing lattice194

size (see appendix I.4).195

This suggests that the r -space formula remains reliable regardless of the boundary condi-196

tions, which is notably different from the Chern number.197

It is also noted that the disordered case converges much slower than the pristine PBC case.198

Because the disordered system is close to the critical point, the energy gap reduces signifi-199

cantly and the correlation length increases, which demands larger lattice sizes for accurate200

calculations of the real-space Euler number 0. Our results show that the r -space Euler number201

equals the exact one within a correction of order O(1/(L∆E)) for systems with lattice size L202

and energy gap ∆E, which resembles the case of Bott index and Chern number [14].203

6 Fragile topology in quasicrystals and amorphous lattices204

As an application of our proposed r -space formula, we explore the Euler topology in qua-205

sicrystals and amorphous lattices. Specifically, we consider the 2D Ammann-Beenker-tiling206

quasicrystal, which possesses 8-fold rotational symmetry but lacks transitional symmetry. In207

the finite octagonal quasicrystal sample with open boundary conditions (OBC), 8 degenerate208

states emerge within the bulk gap region (grey area), as shown in Fig. 2(a). The bulk gap209

estimation utilizes a twisted boundary condition (TBC) to preserve octagonal symmetry and210

eliminate boundary effects (see appendix H.4). We plot the spatial distribution of these in-gap211

states [see Fig. 2(b)], and find that they are well localized at 8 corners of the octagonal qua-212

sicrystal, implying its feature of higher-order topology. We also examine the local Euler marker213

distribution in the finite quasicrystal sample, as depicted in Fig. 2(c). The plot confirms that214

the local Euler markers e(r) closely match the expected value of 1 within the bulk but deviate215

at the edges. As expected, the average of e(r) over the entire finite sample does not vanish but216

yields e ≈ 1, verifying the nontrivial Euler topology of the quasicrystal.217

We further study a finite amorphous lattice constructed by assigning random site displace-218

ments away from their equilibrium position in an initial square lattice. Consequently, all spatial219

8
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symmetries are broken, including P or C2z demanded by IST symmetry for real Bloch states in220

periodic crystals. Nevertheless, for the spinless model (8) in any amorphous lattice with OBC,221

it is always possible to choose a real gauge so that both the Hamiltonian and eigenstates can222

be taken real (see appendix G). This implies that the r -space Euler number is still applicable to223

identify its Euler topology. As shown in Fig. 3(a), the energy spectrum of the finite amorphous224

lattice with OBC exhibits 4 corner states at the Fermi level in the bulk gap estimated using225

artificial PBC (grey area). The spatial distribution of these states supports that they are indeed226

localized at 4 corners of the finite sample [see Fig. 3(b)]. As shown in Fig. 3(c), local Euler227

markers e(r) are dominated in the internal area but tend to vanish at the boundary of the fi-228

nite amorphous sample. The sum of e(r) over the entirety of the finite sample yields a nonzero229

Euler number which is expected to converge to the quantized value of 1 with increasing lattice230

size.231

7 Conclusion and discussion232

We have proposed an explicit real-space formula for the Euler number to identify the fragile233

topological phases in both crystalline and noncrystalline systems whose wave functions are234

real. Specifically, the local Euler marker e(r) whose macroscopic average coincides with the235

Euler number e, is introduced to characterize the topological order in real space. Notably,236

this applies equally well to periodic and open boundary conditions. We have validated our237

expression by diagnosing the topological phase transition in crystals and disordered systems238

with PT symmetry. Furthermore, we have also uncovered the topological Euler phases in239

quasicrystals and amorphous lattices without any spatial symmetry. Our work greatly extends240

the concept of real-space topological markers to topological states in real Hilbert space and241

would hopefully inspire future exploration in more topological characteristic classes in real242

space.243

Despite the progress made, several critical issues remain open for further investigation.244

Given the multi-gap nature of the Euler number, it is essential to develop real-space Wannier245

functions that can effectively disentangle the internal space from the full system during nu-246

merical calculations. Rigorously defining the Pfaffian marker in real space without reference247

to translationally invariant cases remains a challenging task. While the main text presents sev-248

eral examples, it does not yet explore a purely amorphous case that operates independently of249

any translationally invariant lattices. Additionally, a comprehensive mathematical framework250

has yet to be fully developed. We hope this work inspires future research efforts aimed at251

applying tools from non-commutative geometry to address the intricate challenges associated252

with the Euler number.253
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A Orientability of our models265

In this section, we examine the orientability of our models. The Euler class e(F) is defined as266

e(F) = 1
2π

Pf(F), (A.1)

where Pf denotes the Pfaffian acting on the curvature matrixF . Under the basis transformation267

O, the Euler class acquires an additional factor det(O), as shown below:268

e(F) → e(O−1FO),

=
1

2π
Pf(O−1FO),

=
1

2π
Pf(OTFO), (A.2)

where the last equality originates from the orthonormality property of the real wave functions,269

which means O−1 = OT . It’s worth noting that for a 2n× 2n skew-symmetric matrix A and an270

arbitrary 2n× 2n matrix B, the Pfaffian satisfies the identity Pf(BT AB) = Pf(A)det(B). There-271

fore, since the curvature matrix F is skew-symmetric, we can simplify the expression further272

as:273

e(F) → 1
2π

Pf(F)det(O),

= e(F)det(O). (A.3)

For the Euler class e(F) to be a characteristic class, it must remain invariant under any ba-274

sis transformation. Therefore, a certain transformation matrix O with det(O) = 1 is essential.275

Since O is the transformation matrix between orthonormal basis, it naturally satisfies the con-276

dition |det(O)|=1. Thus, system orientability is necessary to prevent det(O) = −1 and ensure277

the invariance of the Euler class.278

In fact, the orientability of the Brillouin zone is determined by the first Stiefel-Whitney279

class w1, which is the total Berry phase of the occupied states over the Brillouin zone [45].280

Because the Chern number of a time-reversal symmetric system is always trivial, a complex281

smooth gauge can be found in this system. Given a Berry connection A that satisfies F = dA282

in this gauge, we have283

w1|C =
1
π

∮

C
dk · TrA(k). (A.4)

Therefore, our models are easily confirmed to be orientable with a trivial w1 = 0, allowing us284

to proceed with our discussion on the Euler class and the second Stiefel-Whitney class.285

B Derivation of Eq. (4) in the main text286

In this section, we derive Eq. (4) in the main text, beginning with the relation between the287

Chern and Euler class in a two-dimensional system. Specifically, there is a correspondence288

between the first Chern class c1 and the Euler class e:289

c1(FC) = e(F), (B.1)

10
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where FC is the curvature over a complex number field, isomorphic to F over a real number290

field through an isomorphism C∼= R⊕R. In particular, for a system with two occupied bands291

(Nocc = 2), we can construct a complex Bloch state292

|u〉=
1
p

2
(|u1〉+ i|u2〉), (B.2)

where |un〉 (n= 1,2) represents the cell-periodic part of the n-th occupied Bloch state |ψn(k))〉.293

Note that for brevity, we omit the explicit dependence of k in this section for |un(k)〉, |u(k)〉,294

and the projection operator P̃(k). Based on the complex Bloch states, the first Chern class is295

given by296

c1(FC) =
1

2πi
FC =

1
2πi
〈∂[kx

u|∂ky ]u〉dkx ∧ dky . (B.3)

This allows us to derive the expression of the Euler class from the first Chern class.297

To begin with, we can express the first Chern number as a k-space integral:298

c1 =
1

2πi

∫

BZ
d2kTr(P̃∂[kx

P̃∂ky ] P̃), (B.4)

where the integral is over the Brillouin zone (BZ) and P̃ = |u〉〈u| is the projection operator,299

with its real and imaginary parts given by:300

ReP̃ =
1
2
(|u1〉〈u1|+ |u2〉〈u2|) (B.5)

and301

ImP̃ =
1
2
(|u2〉〈u1| − |u1〉〈u2|). (B.6)

Using Eq. (B.2), we can rewrite Eq. (B.4) as302

c1 =
1

2πi

∫

BZ
d2k〈u|[∂kx

P̃,∂ky
P̃]|u〉, (B.7)

and then the Euler number is given by303

e =
1

4πi

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u1〉+

1
4πi

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u2〉

+
1

4π

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u2〉 −

1
4π

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u1〉. (B.8)

To keep the Euler number e real, we can simplify the operators [∂kx
P̃,∂ky

P̃] in Eq. (B.8) to304

i[∂kx
ReP̃,∂ky

ImP̃] + i[∂kx
ImP̃,∂ky

ReP̃] (B.9)

for the first two terms and305

[∂kx
ReP̃,∂ky

ReP̃]− [∂kx
ImP̃,∂ky

ImP̃] (B.10)

for the other terms. Since {|un〉} are orthonormal, we have the following identities:306

〈un|um〉 = δn,m (B.11)
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and307

〈un|∂ki
un〉 =

1
2
∂ki
(〈un|un〉) = 0. (B.12)

Therefore, we have308







































∂ki
ReP̃|u1〉=

1
2
(|∂ki

u1〉+ |u2〉〈u1|∂ki
u2〉)

∂ki
ReP̃|u2〉=

1
2
(|∂ki

u2〉 − |u1〉〈u1|∂ki
u2〉)

∂ki
ImP̃|u1〉=

1
2
(|∂ki

u2〉 − |u1〉〈u1|∂ki
u2〉) = ∂ki

ReP̃|u2〉

∂ki
ImP̃|u2〉= −

1
2
(|∂ki

u1〉+ |u2〉〈u1|∂ki
u2〉) = −∂ki

ReP̃|u1〉,

(B.13)

with ki denoting kx or ky . Since ReP̃ is a Hermitian operator and ImP̃ is an anti-Hermitian309

operator, we have:310

〈un|∂ki
ReP̃ = (∂ki

ReP̃|un〉)† (B.14)

and311

−〈un|∂ki
ImP̃ = (∂ki

ImP̃|un〉)†, (B.15)

where the additional minus sign in Eq. (B.15) can be canceled by the minus sign in the com-312

mutators in Eq. (B.9) and Eq. (B.10).313

Therefore, the first term in Eq. (B.8) is314

1
4πi

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u1〉

=
1

4π

∫

BZ
d2k〈u1|([∂kx

ReP̃,∂ky
ImP̃] + [∂kx

ImP̃,∂ky
ReP̃])|u1〉

=
1

2π

∫

BZ
d2k(〈u1|∂kx

ReP̃∂ky
ImP̃|u1〉 − 〈u1|∂ky

ReP̃∂kx
ImP̃|u1〉)

=
1

2π

∫

BZ
d2k(〈u1|∂kx

ReP̃∂ky
ReP̃|u2〉 − 〈u1|∂ky

ReP̃∂kx
ReP̃|u2〉)

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉. (B.16)

The analysis of the second term in Eq. (B.8) is similar, with the only difference being an addi-315

tional minus sign from Eq. (B.15) as316

1
4πi

∫

BZ
d2k〈u2|[∂kx

P̃,∂ky
P̃]|u2〉

= −
1

2π

∫

BZ
d2k〈u2|∂[kx

ReP̃∂ky ]ReP̃|u1〉

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉, (B.17)
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where the last equality holds due to the Hermiticity of ReP̃ and the reality of |un〉. Now, let’s317

consider the third term in Eq. (B.8), which is318

1
4π

∫

BZ
d2k〈u1|[∂kx

P̃,∂ky
P̃]|u2〉

=
1

4π

∫

BZ
d2k(〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 − 〈u1|[∂kx

ImP̃,∂ky
ImP̃]|u2〉)

=
1

4π

∫

BZ
d2k(〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉 − 〈u2|[∂kx

ReP̃,∂ky
ReP̃]|u1〉)

=
1

2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉. (B.18)

Likewise, the final term in Eq. (B.8) can be expressed as:319

1
2π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉, (B.19)

due to the anti-symmetry of |u1〉 and |u2〉.320

Therefore, Eq. (B.8) is now simplified to321

e =
2
π

∫

BZ
d2k〈u1|[∂kx

ReP̃,∂ky
ReP̃]|u2〉. (B.20)

The relevant operator in the above expression is ReP̃. By introducing the real projector322

P̂ :=
occ
∑

n

|un〉〈un|, (B.21)

we obtain the following identities:323

P̂ = 2ReP̃ (B.22)

and324

P̂|un〉 = |un〉. (B.23)

Thus, the formula Eq. (B.20) of the Euler number can be further expressed as:325

e =
1

2π

∫

BZ
d2k〈u1|P̂[∂kx

P̂,∂ky
P̂]|u2〉. (B.24)

Due to the symmetry of kx ,y and |u1,2〉, the final form of the Euler number in k-space is326

e =
1

2π

∫

BZ
d2kPfocc(P̂[∂kx

P̂,∂ky
P̂]), (B.25)

which is nothing but the Eq. (4) in the main text. Here Pfocc denotes the Pfaffian taken over327

the occupied subspace. To be specific, in the eigenbasis, a general matrix M can be represented328

as a block matrix329

M=

�

M1 M2
M3 Mocc

�

, (B.26)

where Mocc is the submatrix of M constructed by occupied eigenbasis. Therefore, Pfocc, which330

is the Pfaffian taken over the occupied subspace, is defined as331

Pfocc(M) := Pf(Mocc). (B.27)
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C Derivation of Eq. (6) in the main text332

In this section, we derive Eq. (6) in the main text, demonstrating its equivalence to Eq. (4) in333

the main text under translational invariance.334

Before proceeding, we first introduce some basic basis for the operators used in the deriva-335

tion. Firstly, we use a k-mesh form instead of the continuous form of the system. In real space,336

the Hamiltonian Ĥ is constructed under a certain initial local basis {|αr 〉}with |αr 〉= |r 〉⊗|α〉,337

i.e.,338

Ĥ =
∑

α′r ′,α′′r ′′
|α′r ′〉〈α′′r ′′|Hα′r ′,α′′r ′′ , (C.1)

where α and r denote the internal and coordinate index, respectively. In k space, it is con-339

venient to use the Bloch basis {|ψn(k)〉} satisfying |ψn(k)〉 = |k〉 ⊗ |un(k)〉 where {|k〉} is the340

plane wave basis with 〈r |k〉 = 1p
A
e−ik·r and A = Lx L y being the area of the system. We can341

thus construct the k-space Hamiltonian Ĥ(k) as342

Ĥ(k) = 〈k|Ĥ|k〉
=
∑

α′,α′′
|α′(k)〉〈α′′(k)|Hα′,α′′(k)

=
∑

n

|un(k)〉〈un(k)|En(k). (C.2)

Here, the second equality is established due to the translational invariance of the Hamiltonian.343

Additionally, the cell-periodic Bloch basis {|un(k)〉} is the eigenbasis of Ĥ(k).344

Then, we can define the projection operator acting on different basis sets as [85]345

P̂ =
occ
∑

nk

|ψn(k)〉〈ψn(k)|

=
∑

k

|k〉〈k|
occ
∑

n

|un(k)〉〈un(k)|

=
∑

k

|k〉〈k|
∑

α′,α′′
|α′(k)〉〈α′′(k)|Pα′,α′′(k)

=
∑

k,α′,α′′
|α′k〉〈α′′k|Pk,α′,α′′

=
∑

α′r ′,α′′r ′′
|α′r ′〉〈α′′r ′′|Pα′r ′,α′′r ′′ . (C.3)

So the k-space projector P̂(k) =
∑occ

n |un(k)〉〈un(k)| can be explicitly represented as a matrix346

P(k) under basis {|α(k)〉}. For convenience, we can create a new projection matrix Pk , which347

is a quasi-diagonal matrix with P(k) as diagonal blocks. In fact, Pk represents P̂ under basis348

set {|αk〉} and is related to P under basis set {|αr 〉} via a unitary basis transformation. Specif-349

ically, we can construct a transformation matrix Uk,r with the entries as 〈r |k〉 to denote this350

basis transformation. Notice that Uk,r is indeed a unitary matrix in the thermodynamic limit351

A→∞. Therefore, we can obtain the r -space projection matrix P under the local basis by352

transforming Pk using the the transformation:353

Pk = Uk,r PU†
k,r . (C.4)

Now we start to derive Eq. (6). Since the integral is now discretized as354

A
(2π)2

∫

BZ
d2k →
∑

k

, (C.5)
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we can define its equivalent operation Trk acting on the block index k of Pk . Therefore, the355

k-space Euler number can be expressed in the matrix form as356

e =
2π
A

TrkPfocc(Pk[∂kx
Pk ,∂ky

Pk]). (C.6)

In a translational invariant system, the k space and the coordinate space can be connected357

via the Fourier transformation. Therefore, we have358

∂kx
P̂(k) →

1
δkx
(Pk+δk − Pk)

=
1
δkx
(Uk+δk,r PU†

k+δk,r − Uk,r PU†
k,r )

= Uk,r [
1
δkx
(Uδk,r PU†

δk,r − P)]U†
k,r , (C.7)

where δk = (δkx , 0). If we set δkx =
2π
Lx

, then Uδk,r is just the unitary position matrix359

U = ei 2π
Lx

X . Similarly, the relation applies to the other unitary position matrix V = e
i 2π

L y
Y

.360

Based on these quantities defined in r space, the Euler number in Eq. (C.6) can be refor-361

mulated as362

e =
1

2π
Pfocc

∑

k

Uk,r P[U PU†, V PV †]U†
k,r

=
1

2π
PfoccTr(Uk,r P[U PU†, V PV †]U†

k,r )

=
1

2π
PfoccTr(P[U PU†, V PV †]),

(C.8)

where the last equation holds because of the invariant property of the trace under any unitary363

transformation. Since the trace and Pfaffian operations act on different individual subspaces,364

they are commutative as operators on the Wannier basis with Nocc = 2, which proves exactly365

the Eq. (6).366

In principle, when δkx
is small enough, one can perform the Taylor expansion up to the367

first order368
1
δkx
(Uδk,r PU†

δk,r − P)≈ i[X , P] (C.9)

to the right side of Eq. (C.7). However, for a PT -symmetric system with real eigenbasis369

{|un(k)〉}, both the projection operator Pk and its derivative ∂kx
Pk are supposed to be real-370

valued. The first-order expansion term i[X , P], which deviates from the real field R, should371

cancel with some other first-order terms (and higher-order terms may contribute significantly)372

to ensure the real-valued final expression. Therefore, the additional real-value limitation from373

the PT symmetry necessitates the use of the unitary position matrix U instead of the usual374

position matrix X in our final expression of the r -space Euler number. This is different from375

the case of the Chern number where the first-order expansion is applicable to yield a simplified376

r -space formula in Ref. [11,14].377

D Numerical implementation of the real-space Euler number378

In this section, we demonstrate the practical calculation of Eq. (6) in the main text. We begin379

by selecting a suitable basis for expressing the operators in the equation. Once this basis is380

established, we can straightforwardly apply trace and Pfaffian operations.381
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We initially work with a set of local coordinate space bases, from which we construct382

diagonal matrices representing the unitary position operators Û and V̂ . The projector P̂ is383

defined as384

1occ =

�

0 0
0 1

�

(D.1)

in the eigenbasis of the Hamiltonian, with eigenvalues arranged in descending order. Here, 0385

and 1 represent the null matrix and identity matrix, respectively.386

To proceed, we diagonalize the Hamiltonian to obtain the eigenvalues and eigenvectors in387

the local basis. This allows us to create a unitary transformation matrix from the local basis to388

the eigenbasis of the system. In other words, we have389

H = ΠDΠ−1, (D.2)

where D is a diagonal matrix with the eigenvalues in descending order, and the columns of Π390

are the corresponding eigenvectors. Subsequently, we determine the explicit expression of the391

projector P̂ through this unitary transformation of the basis, as follows:392

P = Π1occΠ
−1. (D.3)

All operators are now represented in a unified local basis, simplifying the matrix calcula-393

tions. To carry out the trace and Pfaffian operations, a basis transformation from the initial lo-394

cal basis to a composite Wannier basis is required. This Wannier basis can be constructed from395

the eigenbasis by minimizing the Marzari-Vanderbilt localization functional [84,85]. Once we396

have the transformation matrix Π from the eigenbasis to the local basis and S from the eigen-397

basis to the composite Wannier basis, we can obtain the matrix form of the expression within398

the brackets in Eq. (C.8):399

M = SΠ−1P[U PU†, V PV †]ΠS−1. (D.4)

In this basis, the matrix entries are denoted as Mn′n′′,r ′r ′′ . Then the trace operation simply400

involves summing over the coordinate index r , expressed as401

Tr :=
∑

r ′,r ′′
δr ′,r ′′ . (D.5)

Finally, the r -space Euler number can be obtained by performing the Pfaffian over occupied402

space as 1
403

Pfocc(TrM) = Pf(TrM)occ. (D.6)

The final step of basis transformation is crucial for accurately calculating the r -space Euler404

number. This transformation is necessary because only on the Wannier basis can we effec-405

tively separate the total space into internal and coordinate spaces. When using a set of local406

basis functions with high localization properties, such as atomic orbitals, the hopping terms407

of the Hamiltonian naturally mix the coordinate and internal spaces. As a result, it becomes408

challenging to distinguish the occupied subspace within the internal space, making it difficult409

to perform the Pfaffian operation using this basis. On the other hand, the eigenbasis of the410

Hamiltonian is not suitable either. Although it allows for the easy identification of the occupied411

subspace, this highly delocalized basis presents difficulties in aligning it in a meaningful way412

to perform the trace and Pfaffian operations correctly.413

1The package code is available at https://github.com/li-dexin-phy/realeulernum .
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E The distinction between the real-space Chern and Euler num-414

bers415

In this section, we give some remarks on the distinction between the real-space Chern and416

Euler numbers. First, the analysis we’ve conducted can be directly applied to the Chern class,417

and the resultant r -space expression is nothing but the Bott index,418

Bott(Û , V̂ ) =
1

2π
ImTr log(Û V̂ Û−1V̂−1), (E.1)

with Û = P̂ exp(2πiX̂/Lx)P̂ and V̂ = P̂ exp(2πiŶ /L y)P̂, which measures the commutativity419

of the position operators and offers an identical topological classification as the Chern number420

[14, 15]. The Bott index can be further simplified by applying the Taylor expansion of the421

unitary position operator up to the first order, which yields the conventional r -space formula422

of the Chern number in Ref. [11,14]423

c1 =
4π
L2

ImTr′(P̂[X̂ , P̂][Ŷ , P̂]), (E.2)

where X̂ , Ŷ are the usual position operators and Tr′ is the usual trace operation acting on the424

whole space, distinguished from the aforementioned Tr acting on coordinate subspace only.425

However, there are significant differences between the r -space formulation of the Euler426

defined in Eq. (6) and Chern number. This distinction arises because the Chern and Euler427

classes are defined by distinct invariant polynomials of the curvature [82]. When calculating428

the Chern number in real space, the trace operation is applied to both the internal and coordi-429

nate spaces, resulting in a simplified expression with only a single trace operation. In contrast,430

when calculating the r -space Euler number, it becomes essential to distinguish between the431

coordinate space and the internal space, which requires trace and Pfaffian operations, respec-432

tively.433

The discussion is more clear in the frame of matrix form. For any operator of the form434

M =

�

0 0
0 Mocc

�

with 0 being the null matrix, the relation Trocc M := TrMocc = Tr

�

0 0
0 Mocc

�

435

always holds. This is because the trace operation is just to sum over the diagonal of the matrix436

M , which means that the trace over a specific matrix is equal to the trace over the direct sum437

of this matrix and any null matrix. Therefore, we can safely consider the whole space without438

further restriction in the occupied space and the result remains the same. However, the Pfaf-439

fian does not possess this property, i.e., Pf(

�

0 0
0 Mocc

�

) = 0. What’s more, the ordering of the440

basis does not matter for the trace since the sum operation is commutative, while the order-441

ing is crucial in the definition of the Pfaffian. Therefore, although a single Tr′ is enough for442

calculating the r -space Chern number, it is important to find such a basis that can distinguish443

the internal space from the coordinate space.444

This distinction is already evident in the k-space scenario. In a periodic lattice, the Bloch445

states {|ψn(k)〉} can be transformed into Wannier states, which inherently distinguish the446

coordinate space from the internal space. Specifically, in such a translational invariant system,447

the Hamiltonian commutes with the translation operator, indicating a common eigenvalue for448

both operators. Since the energy index n and k denoting quasi-momentum are independent449

of each other, it is straightforward to change the basis of k via the Fourier transformation450

to r without mixture from n and derive the Wannier basis. However, if the system lacks451

translational invariance, the usual Fourier transformation from Bloch states fails to generate452

Wannier states. Consequently, it becomes crucial to consider composite Wannier functions453
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defined in real space via a unitary transformation from energy eigenstates, without imposing454

further restrictions.455

Secondly, It is worth noting that there is a gauge freedom in the Wannier functions and the456

determination of the exponentially localized Wannier functions is significant [84]. The exis-457

tence of the nontrivial Euler number prohibits finding such a basis of Wannier functions, which458

means that in a space-time inversion symmetric two-dimensional system, the exponentially lo-459

calized Wannier functions can not be constructed in a phase with nontrivial Euler number [49].460

Nevertheless, this is not an obstacle to search for the required composite Wannier functions461

that are not exponentially localized [88].462

F Averaging the local Euler marker in finite systems with OBC463

In finite systems with OBC, a striking contrast emerges between the local Chern marker and the464

local Euler marker. While averaging the local Chern marker over such systems yields vanishing465

results, the same averaging process for the local Euler marker results in non-vanishing values.466

This disparity highlights a fundamental distinction between the Chern number and the Euler467

number when calculated in finite systems under OBC, as elaborated below.468

To calculate the r -space Chern number c1 in Eq. (E.2), we employ standard position op-469

erators X̂ and Ŷ to construct the operator P̂[X̂ , P̂][Ŷ , P̂]. Notably, the imaginary part of this470

operator is directly proportional to c1 when subjected to a trace operation [11,14]:471

c1∝ ImTr′(P̂[X̂ , P̂][Ŷ , P̂]). (F.1)

Utilizing the transpose invariance and the cyclic property of the trace operation and consider-472

ing the symmetry of operators X̂ and Ŷ , we can rigorously demonstrate the vanishing of the473

r -space Chern number under OBC [14]:474

c1 ∝ ImTr′(P̂[X̂ , P̂][Ŷ , P̂])

= ImTr′(P̂(X̂ P̂ − P̂ X̂ )(Ŷ P̂ − P̂ Ŷ ))

= ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ P̂2Ŷ − P̂2X̂ Ŷ P̂ + P̂2X̂ P̂ Ŷ )

= ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ P̂ Ŷ − P̂ X̂ Ŷ P̂ + P̂ X̂ P̂ Ŷ )

= ImTr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂), (F.2)

where we utilize the property of the projection operator, P̂2 = P̂. Note that P̂, X̂ and Ŷ are all475

Hermitian, we can further simplify c1 by expending the imaginary part as the subtract of the476

operator with its conjugate,477

c1 ∝
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)∗)

=
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)†)

=
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂ − P̂ X̂ Ŷ P̂)− Tr′(P̂ Ŷ P̂ X̂ P̂ − P̂ Ŷ X̂ P̂)). (F.3)

This relationship is established through the transpose invariance of the trace operation, i.e.,478

Tr′Â= Tr′ÂT, (F.4)

which leads to479

ImTr′Â=
1
2i
(Tr′Â− Tr′Â∗) =

1
2i
(Tr′Â− Tr′Â†). (F.5)
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Then, using the well-known cyclic property of trace operation, i.e., for general matrices Â and480

B̂, it is known that481

Tr′(ÂB̂) = Tr′(B̂Â), (F.6)

c1 can be further simplified as482

c1 ∝
1
2i
(Tr′(P̂ X̂ P̂ Ŷ P̂)− Tr′(P̂ X̂ Ŷ P̂)− Tr′(P̂ Ŷ P̂ X̂ P̂) + Tr′(P̂ Ŷ X̂ P̂))

=
1
2i
(Tr′(X̂ P̂ Ŷ P̂2)− Tr′(X̂ P̂2Ŷ P̂)− Tr′(X̂ Ŷ P̂2) + Tr′(Ŷ X̂ P̂2))

=
1
2i
(Tr′(X̂ P̂ Ŷ P̂)− Tr′(X̂ P̂ Ŷ P̂)− Tr′(X̂ Ŷ P̂) + Tr′(Ŷ X̂ P̂)

= −
1
2i

Tr′(X̂ Ŷ P̂ − Ŷ X̂ P̂)

= −
1
2i

Tr′([X̂ , Ŷ ]P̂)

= 0, (F.7)

where we have used the the symmetry of operators X̂ and Ŷ483

[X̂ , Ŷ ] = 0. (F.8)

In summary, the vanishing of the r -space Chern number under OBC arises from a cancel-484

lation effect, driven by three key factors:485

• Transpose invariance of the trace operation: Tr′Â= Tr′ÂT.486

• Cyclic property of the trace operation: Tr′(ÂB̂) = Tr′(B̂Â).487

• Symmetry of standard position operators X̂ and Ŷ : [X̂ , Ŷ ] = 0.488

In contrast, calculating the r -space Euler number doesn’t encounter a similar cancellation489

effect, primarily due to the distinct properties of the trace operation and the Pfaffian. First,490

the transpose invariance, which holds for the trace operation, does not apply to the Pfaffian.491

For a general skew-symmetric matrices Â, we have492

PfÂT = Pf(−Â) = ±PfÂ, (F.9)

with the additional sign depending on Nocc. Second, unlike the trace operation, the Pfaffian493

lacks the necessary cyclic properties for straightforward cancellation,494

Pf(ÂB̂) ̸= Pf(B̂Â). (F.10)

To be more specific, we now defined a r -space quantity ζ with trace operation only as495

ζ =
1

2π
Tr′(P̂[P̂U , P̂V ])

=
1

2π
Tr′(P̂ P̂U P̂V − P̂ P̂V P̂U) (F.11)

where P̂U = Û P̂ Û† and P̂V = V̂ P̂ V̂ † are defined analogous to the expression of r -space Euler496

number.497

Since the projector P̂ is Hermitian and Û/V̂ are both unitary operators, it is easy to prove498

that both operators are Hermitian operators. In addition, we further express the unitary posi-499

tion operators Û† and V̂ † as500

Û† = Û−1 = exp(2πi(−X̂ )/Lx) = Î Û Î

and V̂ † = V̂−1 = exp(2πi(−Ŷ )/LY ) = Î V̂ Î . (F.12)
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where Î is the inversion operator. And in PT -symmetric system, the projector P̂ is invariant501

under such inversion.502

Since both Hamiltonian Ĥ and projector P̂ satisfy the reality condition, the operators share503

the transpose invariant property as504

P̂T = P̂∗† = P̂† = P̂,

Û T = Û ,

V̂ T = V̂ ,

P̂T
U = Û† P̂ Û ,

and P̂T
V = V̂ † P̂ V̂ . (F.13)

Now we can obtain the equivalent form of the first term in Eq. (F.11) as505

1
2π

Tr′(P̂ P̂U P̂V ) =
1

2π
Tr′(P̂ P̂U P̂V )

T =
1

2π
Tr′(P̂T

V P̂T
U P̂) =

1
2π

Tr′((V̂ P̂ V̂ †)T P̂T
U P̂)

=
1

2π
Tr′(V̂ † P̂ V̂ P̂T

U P̂) =
1

2π
Tr′( Î V̂ Î P̂ Î V̂ † Î P̂T

U P̂) =
1

2π
Tr′( Î P̂V Î P̂T

U P̂) =
1

2π
Tr′( Î P̂V P̂U P̂ Î)

=
1

2π
Tr′(P̂ P̂V P̂U), (F.14)

which is just the second term of Eq. (F.11). Therefore, we prove that ζ is trivial. Again, we506

notice that Eq. (F.4) and Eq. (F.5) are used in the first and the last equality respectively.507

However, in the case of r -space Euler number e, as we have already discussed via Eq. (F.9)508

and Eq. (F.10), such cancellation doesn’t exist. Hence, it becomes possible to calculate the509

r -space Euler number under OBC.510

G Brief discussion of the reality condition in PT -broken systems511

Although we focus on the PT -symmetric system in the main text, it is not a constraint on512

calculating the r -space Euler number. In k space, since the time reversal T can be consid-513

ered a conjugate operator combined with a unitary matrix and a sign flip of k, a T -invariant514

Hamiltonian H(k) satisfies H(k) = T̂ H(k)T̂−1 = H⋆(−k) under a proper basis obtained from515

Takagi decomposition. Therefore, only in a few time-reversal invariant momenta with k = −k516

can we derive a real Hamiltonian. To keep the Hamiltonian real in the whole k-space, an-517

other operator such as P and C2z that can reverse the sign of k is essential. However, in r518

space, the time reversal T no longer acts on the sign of k. This means that the symmetry519

requirement for the reality condition is only the time reversal T . Therefore, in a finite system520

with OBC lacking spatial symmetry, we can again obtain the necessary basis from the initial521

local basis via a transformation matrix given by the Takagi decomposition. Under the new522

basis, the Hamiltonian is real-valued. By solving the eigenvalue problem of the Hamiltonian523

in such basis, the transformation matrix constructed by all eigenfunctions of the Hamiltonian524

is real-valued as well. This is just the reality condition necessitated for the definition of the525

Euler class. Consequently, one can apply the real-space formula of the Euler number to any526

nonmagnetic aperiodic systems with open boundary, such as quasicrystals, and amorphous527

materials without any spatial symmetries.528
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H Details of the model and method529

H.1 Model530

All the calculations are performed based on the tight-binding Hamiltonian in Eq. (8). The531

hopping integral tµν(ri j) follows the Slater-Koster parameterization which depends on the532

orbital type and the directional cosines of the intersite vector ri j = ri− r j . To be more specific,533

the explicit expression of Slater-Koster parameterized hopping integral are listed:534

tpx ,px
= l2Vppσ + (1− l2)Vppπ,

tpy ,py
= m2Vppσ + (1−m2)Vppπ,

tpx ,py
= lm(Vppσ − Vppπ),

tdx2−y2 ,dx2−y2 =
3
4

Vddσ(l
2 −m2)2 + (l2 +m2 − (l2 −m2)2)Vddπ +

1
4
(l2 −m2)2Vddδ,

tdx y ,dx y
= l2m2(3Vddσ − 4Vddπ + Vddδ) + Vddπ,

tdx y ,dx2−y2 =
3
2

lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ +
1
2

lm(l2 −m2)Vddδ,

tpx ,dx2−y2 =
p

3
2

l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ,

tpy ,dx2−y2 =
p

3
2

m(l2 −m2)Vpdσ −m(1+ l2 −m2)Vpdπ,

tpx ,dx y
=
p

3l2mVpdσ + (1− 2l2)mVpdπ,

tpy ,dx y
=
p

3lm2Vpdσ + (1− 2m2)lVpdπ,

tpy ,px
= tpx ,py

,

tdx2−y2 ,dx y
= tdx y ,dx2−y2 ,

tdx2−y2 ,px
= −tpx ,dx2−y2 ,

tdx2−y2 ,py
= −tpy ,dx2−y2 ,

tdx y ,px
= −tpx ,dx y

,

tdx y ,py
= −tpy ,dx y

, (H.1)

where r̂i j = (l, m) is the unit direction vector. The hopping strength is chosen to have an535

inverse-square decay with the distance as tµν(ri j)∝ |ri j|−2. We adopt the equilibrium inter-536

atomic bond length as the unit length a of the systems, which is the lattice constant for the537

perfect square lattice and the side length of basic building blocks (square and rhombus) for538

the Ammann-Beenker-tiling quasicrystals. In numerical calculations, we set the unit length of539

the system a = 1 for simplicity.540

We consider a 2D square lattice with a band inversion at the Γ -point in k-space between541

degenerate px ,y and dx2−y2,x y orbitals, as shown in Fig. 1(a). In real space, we investigate542

L×L supercells of the square lattice with periodic boundary condition (PBC) or open boundary543

condition (OBC). For convenience, we choose the lattice size L to be an odd integer, which544

allows the supercell to possess an inversion center located at its central site.545

H.2 Disorder of on-site energy546

The tight-binding Hamiltonian with the onsite disorder is under our consideration as well.547

Therefore, we introduce a disorder term to the Hamiltonian H as548

H({λi}) = H +
∑

iµ

λic
†
iµciµ, (H.2)
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where {λi} is a set of random on-site energy added to one-half sites of the whole sample. Here549

{λi} distribute uniformly within the interval of [−W, W ] with W being the disorder strength.550

To preserve the inversion symmetry, the on-site energies of the rest sites of the sample are551

determined by inversion. Namely, each pair of sites connected by the inversion symmetry552

shares the same on-site energy. The calculations are performed in samples with lattice size553

L = 31. Because of the random character, we average the r -space Euler number over 100554

sample configurations for every W . A higher accuracy can be achieved by adopting samples555

with larger sizes and doing the statistical average for more samples.556

H.3 Structural disorder557

In order to further investigate the applicability of the real-space formula of the Euler number,558

we study the effect of in-plane structural disorder in finite samples which lack the translational559

periodicity and all other spatial symmetries [101–103]. To illustrate this effect, we assign560

random atomic displacement δ = (d cosθ , d sinθ ) away from its equilibrium position for each561

atom of the aforementioned 2D perfect square lattice, as depicted in Fig. S7(a). Here, θ is a562

random azimuth angle uniformly distributed in the interval [0,2π). The amplitude d of atomic563

displacements are determined by Gaussian distributions with standard deviation σ = 0.2. For564

the special structural disorder case but preserving the inversion symmetry, one can assign the565

random atomic displacement only to the first half of the lattice, and determine the locations566

of atoms in the other half of the lattice by the inversion symmetry. As the structure becomes567

disordered, the hopping integrals in Eq. (8) also adjust according to local structural distortions.568

H.4 Twisted boundary condition for quasicrystals569

For an octagonal sample of the Ammann-Beenker-tiling quasicrystal, we calculate the energy570

spectrum using both OBC and the twisted boundary condition (TBC). To apply TBC, we artifi-571

cially glued the opposite edges of an octagonal polygon. Specifically, for an octagonal polygon572

with the edge width of Led ge, we label the edges as Ep (p = 1,2, · · ·8) anticlockwise. For the573

edge Ep, we define a translation operator, which is perpendicular to the edge and translates574

the octagon by a distance of 2Led ge. By applying the translation operator to the finite octag-575

onal quasicrystal so that edge Ep of the sample connects with the opposite edge E(p+4) mod 8576

of the translated image sample. Then we consider the hopping cross the edge between site i577

in the octagonal sample and site j̃ in the image sample. These extra hoppings also follow the578

Slater-Koster parameterization and have inverse-square decay with the distance (i.e., |ri j̃|
−2).579

Therefore, in addition to the intersite hoppings between sites inside the sample, we also con-580

sider extra hoppings between sites near opposite edges. Importantly, by applying TBC, we not581

only get rid of the effect of the open boundary but also restore the 8-fold symmetry of the582

quasicrystal.583

H.5 Construction of composite Wannier function584

Since the real-space Euler number obtained in Eq. (6) can only be calculated in Wannier basis,585

a crucial step in the numerical calculation is to construct the Wannier function in systems even586

without the spatial translational symmetry.587

One possible way to construct the real-space Wannier function is the functional optimiza-588

tion method. The eigenfunctions φm associated with the energy index m can be obtained by589

solving the eigenvalue problem of the Hamiltonian H. Then the required composite Wannier590

functions Wn are constructed from φm as591

Wn =
∑

m

Snmφm, (H.3)
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(a) (b) (c) (d)

Figure S1: The evolution of band structure around the phase transition in Fig. 1(b).
Orbital-resolved band structures near Γ point for the square lattice based on Eq. (8)
with different on-site energy difference ∆. (a) ∆ = 6.76 eV (region I, e = 1). (b)
∆=∆1 = 6.86 eV (the critical point between region I and II). (c) ∆=∆2 = 7.10 eV
(the critical point between region II and III). (d) ∆= 7.20 eV (region III, e = 0).

via the unitary transformation S that can be considered as the combination of a phase term592

and a band matrix [93], which can be numerically obtained by minimizing the Wannier spread593

functional594

Ω=
∑

n

[〈Wn|r2|Wn〉 − 〈Wn|r|Wn〉2]. (H.4)

Once the Wannier functions are constructed, the internal and coordinate spaces can be eas-595

ily separated and the real-space Euler number can be calculated straightforwardly using the596

formula given in Eq. (6).597

In the functional optimization process, a key factor is the selection of the initialization. In598

our case, this is the initial value of Wn. In principle, the initial Wannier function can be set599

arbitrarily. However, to obtain a more efficient and convergent result, the initial function can600

be chosen as the Wannier function obtained in a translational invariant system. To be more601

specific, for disordered lattices, the Wannier function constructed through the Fourier trans-602

formation of the Block functions obtained in perfect lattice is a great initial function. However,603

it might be hard to find such a k-space analog in quasicrystal and even totally amorphous sys-604

tems. In our work, the initial Wannier function of the quasicrystal is obtained from that of a605

16×73 rectangle lattice in Fig. 2.606

As for the fully non-periodic systems where the gauge optimization fails to work, other607

methods such as the Iterated projected position (IPP) algorithm are supposed to be considered608

without the initialization requirement [104].609

Another issue to be clarified is the ordering of occupied states within a certain cell r. It can610

be determined by the corresponding diagonal element of the Hamiltonian on the composite611

Wannier basis. We also noticed that the local Euler marker is attached to only an additional612

minus sign when this ordering is inverted. Therefore, more conveniently, the sign of local613

Euler markers can be set to satisfy the continuity of these markers.614

H.6 Numerical calculation of the k-space Euler number615

Generally speaking, non-accidental degenerate points (nodes) between the nontrivial occupied616

bands are common in k-space [47]. To numerically calculate the k-space Euler number in this617

context, we employ the following expression:618

|e|=
∫

D
e(F)−
∫

∂D
〈u1|∇|u2〉 ·

dk
2π

, (H.5)

where e(F) = (1/π)〈∂[kx
u1(k)|∂ky ]u2(k)〉dkx ∧ dky , and D represents the region in the Bril-619

louin zone (BZ) containing those nodes.620
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I More numerical results621

I.1 Band structures around the topological phase transition in Fig. 1(b)622

Here we discuss three regions presented in Fig. 1(b) in the main text in detail. These regions623

are divided by two critical points∆1 = 6.86 and∆2 = 7.10 eV. As illustrated in Fig. S1(a), there624

is initially a double band inversions occurring around Γ point with ∆ < ∆1, which accounts625

for the nontrivial band topology with |e| = 1. This is consistent with the calculations of the626

r -space Euler number in the main text, demonstrating that the phase in region I is indeed the627

Euler insulator.628

As the onsite difference ∆ increases, the gap decreases gradually and eventually closes at629

∆1, as shown in Fig. S1(b). The closing of the gap indicates a topological phase transition.630

However, unlike the usual situation of a single band inversion where the gap reopens immedi-631

ately after closure accompanied by a sharp change in the topological invariant, our model has632

an intermediate gapless region before the gap reopens at∆2 as shown in Fig. S1(c). From the633

perspective of the band topology, region II is a one-band-inverted phase without protection634

from the Euler topology, which accounts for the continuous decreasing of the r -space Euler635

number in region II [see Fig. 1(b) in the main text]. In addition, the distinction between the636

k-space and r -space Euler number in region II is also due to the closed gap that brings up637

the discrimination between P̂ projected and the well-defined occupied states. When ∆ > ∆2638

as shown in Fig. S1(d), the gap reopens and there is no band inversion at Γ point anymore.639

This phase can be adiabatically connected to the atomic limit without gap closure. Therefore,640

region III is a trivial insulator with e = 0 as expected.641

I.2 Convergence of the real-space Euler number with decreasing band gap642

There is a numerical deviation of both k-space and r -space Euler number from an exact inte-643

ger in regions I and III near the critical points in Fig. 1(b). Here we examine the numerical644

deviation in region I. As presented in the main text, the r -space Euler number equals the exact645

one within a correction of order O(1/(L∆E)) for systems with lattice size L and energy gap646

∆E. For a system with fixed lattice size L, the numerical correction is inversely proportional to647

the band gap: 1− |e| ∝ 1/∆E, where e is the r -space Euler number. To examine the conver-648

gence of our r -space formulation as a function of on-site energy difference∆, we calculate the649

band gap ∆E and the r -space Euler number in region I for a sample with fixed L. As shown650

in Fig. S2, we plot the ∆ dependence of both ∆E and aE/1− |e|, where aE = 3.125 meV is a651

fitting parameter. The inverse of the numerical correction fits well with ∆E as expected, in-652

dicating that the numerical correction becomes significant near the critical point of the phase653

transition. Nevertheless, such numerical correction can be diminished by increasing the lattice654

size.655

I.3 Convergence of the real-space Euler number with increasing lattice size656

To examine the convergence of real-space Euler number as a function of lattice size L, we657

further calculate larger systems with the size L up to 90. We consider the pristine lattice with658

PBC or OBC and a disordered lattice with W = 1.0 eV. For the disordered case, we perform659

an average of the r -space Euler number over 10 samples for each L. As shown in Fig. S3, the660

curve of the disordered case has not saturated yet but converges slowly towards the quantized661

value of 1. To further check the convergent behavior, we perform a fitting (see the fitting line662

in Fig. S3) to estimate the lattice size for the real-space Euler number to reach the quantized663

value with the error less than 1%. It is found that the required lattice sizes are L ≈ 355 for664

the pristine OBC case and L ≈ 570 for the disordered case respectively, which are beyond the665
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Figure S2: The on-site energy difference ∆ dependence of ∆E and q − |e| with
aE = 3.125 meV. Here q denotes the expected quantized value and is equal to 1
in this case.

memory limit of our computational resource. As a comparison, the same estimation for the666

pristine PBC case without disorder shows that a much smaller lattice size of L ≈ 63 is required667

to reach the same accuracy. This is because the energy gap is ∆E = 0.469 eV in the pristine668

PBC case, but for the disordered case with W = 1.0 eV, the corresponding averaged gap reduces669

significantly to∆E = 0.0583 eV, which is one order of magnitude smaller than the former. This670

dependence is illustrated in Fig. S4. As the numeric correction is on the order of O(1/(L∆E))671

for systems with lattice size L and energy gap ∆E, the much slower convergence rate of the672

disordered case is mainly due to the significant reduction of the energy gap reduction in the673

presence of disorder.674

I.4 Deviation of real-space Euler number with OBC675

In this section, we discuss the deviation of r -space Euler number with OBC. The OBC case676

shows a similar linear dependence between 1/L and the numerical deviation∆e = 1−|e| with677

slower convergent behavior. This means that the OBC includes an additional effect which is678

up to order O(1/L) as well. Notice that the Euler number is obtained by averaging the local679

Euler markers at all sites. Since the sites far from boundaries are supposed to preserve similar680

properties to those in periodic systems, such deviation originates from the sites close to the681

boundary, which contributes O(Led ge/A) = O((L2 − (L − 2)2)/L2) = O(4L/L2) = O(4/L) as682

expected. Here Led ge and A are the number of sites in the boundary and the whole sample,683

respectively. This additional factor accounts for the slope approximated to 1/4 in Fig. S5,684

confirming the effect on r -space Euler number from the edge.685

I.5 Local Euler markers in lattices with on-site disorder in Fig. 1(c)686

In Fig. 1(c) in the main text, we illustrate another intriguing type of topological phase transi-687

tion induced by on-site disorder. The averaged r -space Euler number e decreases from 1 to 0688

with increasing the disorder strength W . Here we present the spatial distribution of the local689

Euler marker of the sample with PBC at different disorder strengths W , as shown in Fig. S6. At690

a relatively weak disorder of W = 1.2 eV, the system maintains its nontrivial Euler characteris-691

tics. Predominantly, the grid points exhibit nontrivial local Euler markers e(r) ≈ 1 with a few692
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Figure S3: The lattice size L dependence of the r -space Euler number calculated
without and with on-site energy disorder (W = 1.0 eV) using PBC, and without
disorder using OBC. Fitting curves are added for each case.
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Figure S4: The energy gap ∆E versus on-site energy disorder strength W . For each
W , the configuration average is performed over 100 realizations of 51×51 disordered
lattices with PBC.
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Figure S5: The inverse of the deviation of the r -space Euler number∆e versus lattice
size L with OBC.
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Figure S6: The real-space distribution of local Euler markers e(r) in 31× 31 square
lattices with PBC at different disorder strength W . (a) W = 1.2 eV. (b) W = 1.4 eV.
(c) W = 1.6 eV. (d) W = 1.8 eV. (e) W = 2.0 eV. (f) W = 2.2 eV.
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(c)(a) (b)

(g)(e) (f)

Figure S7: The disordered square lattice model that exhibits band inversions be-
tween the (px , py) and (dx2−y2 , dx y) orbitals. The relevant parameters are as follows:
L = 31, εpx ,py

= 1.58, εdx2−y2,x y
= -0.42, Vppσ=-0.565, Vppπ=-0.044, Vpdσ=0.773,

Vpdπ=0.335, Vddσ=0.444, Vddπ=0.224, Vddδ=0.659 eV. (a) The energy eigenvalues
versus the state index in the vicinity of the Fermi level for the disordered square lat-
tice with PBC and OBC. (b) The spatial distribution of the corner states [red stars in
(a)]. (c) The real-space distribution of the local Euler marker e(r) for the disordered
system with OBC. (e-g) Corresponding results as (a-c) for a trivial state with e = 0
(The onsite energy difference is set to ∆= 6 eV).

isolated points having vanished e(r) ≈ 0, as shown in Fig. S6(a). However, by increasing the693

disorder strength W , a noteworthy transformation occurs: the number of trivial points with694

e(r) ≈ 0 increases, and the trivial area enlarges in size, eventually leaving the nontrivial area695

shrinks to an isolated region in the sample [see Fig. S6(c)]. This isolated nontrivial region696

with e(r)≈ 1 diminishes in size gradually as W continues to increase, ultimately fragmenting697

into small segments [see Fig. S6(d,e)]. Upon reaching W ≥ 2.2 eV, the situation undergoes a698

significant shift. As shown in Fig. S6(f), none of the grid points exhibits nontrivial local Euler699

markers, indicating that the system is driven into a trivial phase by strong on-site disorder.700

Notably, this type of topological phase transition differs from those in disordered Chern insu-701

lators and quantum spin Hall insulators, where a sudden jump of topological invariants occurs702

at the critical point [25]. Instead, the disorder-induced transition in this model manifests as703

a more continuous evolution. Physically, we conjecture this to be due to the disorder-induced704

renormalization of the parameter ∆ which dominates the transition from the Euler insulator705

to the trivial phase through the intermediate gapless phase, as depicted in Fig. 1(b).706

I.6 Euler insulator in lattice with moderate structural disorder707

In this section, we study the Euler topology of a square lattice with moderate structural dis-708

order. We specifically preserve the inversion symmetry at this stage, for comparison with709

the case breaking all spatial symmetries presented in Fig. 3 of the main text. To construct710

the structurally disordered square lattice [34,35,79,101–103], we add random displacement711

δ = d(cosθ , sinθ ) away from its equilibrium position for each site in one-half sample (τ1/2)712
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of the square lattice, and assign the displacements for the other half to preserve inversion713

symmetry. Here θ and d are determined by uniform distributions in the interval [0,π) and714

Gaussian distributions with standard deviation σ = 0.2, respectively. As shown in Fig. S7(a),715

the energy spectrum of the structurally disordered lattice with OBC exhibits 4 states at the716

Fermi level in the bulk gap obtained using PBC (grey area). We plot the spatial distribution of717

these states and find that they are well localized at 4 corners of the sample [see Fig. S7(b)],718

implying its higher-order topological feature. Because of the effect of the structural disorder,719

the corner states move upwards to the bottom of the unoccupied bulk states. Furthermore, we720

analyze the distribution of the local Euler marker in the finite sample with structural disorder,721

as shown in Fig. S7(c). The plot confirms that the local Euler markers e(r) are close to the722

expected value of 1 in the bulk of the sample, while they deviate in the boundary region. As723

expected, the sum of e(r) over the whole finite sample does not vanish but yields the desired724

Euler number which should converge to the quantized value with increasing lattice size. Con-725

sequently, we can obtain an accurate r -space Euler number by averaging e(r) over an internal726

region of the sample to get rid of the boundary deviation. As a comparison, we also perform727

a similar calculation for a trivial phase (see the bottom panels in Fig. S7). As illustrated in728

Fig. S7(g), the local Euler marker is almost 0 all over the sample, unambiguously indicating729

the trivial nature of the state.730

I.7 The upward shift of eigenenergies of corner states with decreasing bulk gap731

In this section, we discuss the upward shift of eigenenergies of corner states with increasing732

on-site energy. As illustrated in Fig. 3 and Fig. S7, introducing structural disorder leads to733

the upward shift of the eigenenergies of corner states. In fact, this effect originates from the734

decreasing energy gap. In structurally disordered samples, the decrease is attributed to the735

increasing disorder amplitude. Additionally, the adjustment of the on-site energy can also736

lead to a smaller bulk gap. As discussed in appendix I.1, in region I, we can lift the on-site737

energy of p-orbitals such that the bulk gap will decrease and finally vanish at critical point∆1.738

Therefore, for comparison purposes, we consider a square model with the same parameters as739

in Fig. 3 except for the on-site energy difference. As illustrated in Fig. S8(a), increasing the740

on-site energy difference shows a similar upward shift effect to that observed in structurally741

disordered lattices. These shifting states near the upper bound of the PBC gap are spatially742

localized at four corners, as shown in Fig. S8(b). These results show the similarity between743

the effect of on-site energy difference and structural disorder on the upward shifting, which744

can be explained as the effect of the decreasing bulk gap.745

I.8 Validation in other models with different Euler numbers746

In the main text, we present the results based on the tight-binding model with the Euler num-747

ber e = 1. Now we show that our proposed r -space formula of the Euler number also applies748

to other models with different Euler numbers as well. Different from the tight-binding Hamil-749

tonian in Eq. (8) based on the atomic orbital basis, we consider a generic PT -symmetric750

four-band Bloch Hamiltonian H(χ1,χ2)(k) with (χ1,χ2) representing the Euler number of the751

upper and lower two-band subspace respectively [99].752

Specifically, we take (χ1,χ2) = (2,2) as an example. The time-reversal T̂ and inversion P̂753

operators can be expressed as754

T̂ = −iΓ22K̂ ,

P̂ = iΓ22,
(I.1)

where Γi, j = σi ⊗σ j are 4× 4 Dirac matrices and K̂ is the complex conjugation. The minimal755
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(a) (b)

Figure S8: The square lattice model that exhibits band inversions between the
(px , py) and (dx2−y2 , dx y) orbitals. The relevant parameters are as follows: L = 31,
εpx ,py

= 2.73, εdx2−y2,x y
= −0.42, Vppσ = −0.565, Vppπ = −0.044, Vpdσ = 0.773,

Vpdπ = 0.335, Vddσ = 0.444, Vddπ = 0.224, and Vddδ = 0.659 eV. (a) Energy spec-
trum of the square lattice with PBC and OBC. Four corner states in the gap are high-
lighted by red stars. (b) Spatial distribution of the corner states [red stars in (a)].

four-band Hamiltonian H(2,2)(k) can be expressed as756

H(2,2)(k) = sink1Γ01 + sink2Γ03 − [
1
2
+

1
2
(cosk1 + cosk2) +

3
2

cos(k1 + k2)Γ22 +
1
2
Γ13]. (I.2)

To calculate the r -space Euler number in a finite L × L supercell of the square lattice, we757

construct the real-space Hamiltonian H(2,2) by performing the Fourier transformation to the758

Bloch Hamiltonian Hχ1,χ2(k), which yields759

H(χ1,χ2) =
∑

i j

∑

µν

∑

k∈BZ

eik·(ri−r j)[H(χ1,χ2)(k)]µνc†
iµc jν.

(I.3)

Here, ri is the lattice vector of the i-th site in the square lattice, and c†
iµ(ciµ) is electron creation760

(annihilation) operator on the µ orbital at the i-th site. For simplicity, we only consider nearest-761

neighbor pairs 〈i j〉 in the lattice. The hopping between site i and j is determined by the762

summation over k in the BZ, tµν(ri j) =
∑

k∈BZ eik·(ri−r j)[Hχ1,χ2(k)]µν. The on-site energies763

are given by εµ = tµµ(0).764

The calculated results are shown in Fig. S9. Similar to the Euler insulator with e = 1765

presented in the main text, the OBC energy spectrum exhibits some states in the bulk gap.766

However, these in-gap states are localized on edges instead of corners of the finite sample [see767

Fig. S9(c)]. This indicates distinct topological behaviors from the topological Euler insulator768

with e = 1. According to the relation between the second Stiefel-Whitney number and the769

Euler number w2 = e mod 2, the Euler insulator with e = 1 is also a Stiefel-Whitney insulator770

with w2 = 1 which exhibits higher-order topology with corner states in the presence of ad-771

ditional chiral symmetry [49, 105]. In contrast, the Euler phase with e = 2 leads to a trivial772

second Stiefel-Whitney number w2 = 0. Nevertheless, the system associated with the nonzero773

Euler number still has a fragile band topology [50]. As shown in Fig. S9 (d), we plot the real-774

space distribution of the local Euler marker, which exhibits similar bulk domination and edge775

diminution behavior as those studied in the main text. Remarkably, the local Euler markers776
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(a)

(c)

(b)

(d)

Figure S9: The topological Euler phase with (χ1,χ2) = (2,2) in a square lattice based
on the minimal four-band model in Eq. (I.3). (a) Band structures of the four-band
model in the square lattice. (b) Energy spectrum of a finite sample with OBC. The
lattice size is L = 31. The bulk gap obtained using PBC is marked in grey. (c) Real-
space distribution of the in-gap states [highlighted by green stars in (b)] which are
localized on two opposite edges of the finite sample. (d) The real-space distribution
of the local Euler marker e(r) in the sample with OBC.

(a)

(c)

(b)

(d)

Figure S10: The topological Euler phase with (χ1,χ2) = (3, 1) in a square lattice
based on the minimal four-band model. (a) Band structures of the four-band model
in the square lattice. (b) Energy spectrum of a finite sample with OBC. The lattice
size is L = 31. The bulk gap obtained using PBC is marked in grey. (c) Real-space
distribution of the in-gap states [highlighted by green stars in (b)]which are localized
on the edges of the finite sample. (d) The real-space distribution of the local Euler
marker e(r) in the sample with OBC.
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inside the bulk are close to the expected value of 2, which results in the averaged r -space777

Euler number being e = 2.778

We further validate our r -space Euler number in another four-band model with different779

Euler numbers for occupied and unoccupied bands. Specifically, we chose the minimal model780

with (χ1,χ2)=(3,1), which can be formulated as781

H(3,1)(k) =





ā
b̄
c̄





T

· Γ ·





ā
b̄
c̄′



 , (I.4)

with782

Γ =





−Γ33 −Γ13 Γ01
Γ31 Γ11 Γ03
Γ10 −Γ30 −Γ22



 (I.5)

and783

ā = sink1,

b̄ = sink2

c̄ =
1
2
(1+ (cosk1 + cosk2) + 3cos(k1 + k2)),

c̄′ =
1
2
(3− 2(cosk1 + cosk2)− cos(k1 + k2)).

(I.6)

The results of the minimal model with (χ1,χ2) = (3, 1) are illustrated in Fig. S10. In this784

case, the unbalanced |χ1| ≠ |χ2| leads to the lack of additional symmetry of the system [106].785

Consequently, although the system is a topological phase with nontrivial Stiefel-Whitney num-786

ber w2 = 1 because of the odd Euler number of the occupied bands, there is no additional787

symmetry to ensure the localization at the corner. Therefore, this phase does not exhibit the788

higher-order corner characteristics of conventional Stiefel-Whitney insulators [107–111].789
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