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Abstract

In the context of Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence, we
present a general scheme to reconstruct bulk geometric quantities in static AdS background
with the partial entanglement entropy (PEE), which is a measure of the entanglement structure
on the boundary CFT. The PEE between any two points I(x,y) is the fundamental building
block of the PEE structure. Following [1], we geometrize any two-point PEE I(x,y) into the
bulk geodesic connecting the two boundary points x and y, which we refer to as the PEE thread.
Thus, in the AdS bulk we get a continues “network” of the PEE threads, with the density of
the threads determined by the boundary PEE structure. In this paper, we demonstrate that
the strength of the PEE flux at any bulk point along any direction is 1/4G. This observation
give us a reformulation for the RT formula. More explicitly, for any static boundary region
A the homologous surface ΣA that has the minimal flux of the PEE threads passing through
it is exactly the Ryu-Takayanagi (RT) surface of A, and the minimal flux coincides with the
holographic entanglement entropy of A. Furthermore, we demonstrate that any geometric
quantities can be reconstructed by the PEE threads passing through it, which can further be
interpreted as an integration of the boundary two-point PEEs
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1 Introduction

The AdS/CFT correspondence [2–4] states that the quantum theory of gravity in asymptotic
AdSd+1 spacetime is equivalent to a certain CFTd on the asymptotic boundary. This provides a
window to understand both of the classical and quantum aspects of gravitational theories based
on the information in the boundary CFT, using the dictionary of the correspondence. Several
important developments have been made along this line [5–12], where the insights from a
holographic perspective of boundary quantum entanglement structure have played a central
role. These achievements began with the Ryu-Takayanagi (RT) formula [5] which relates the
entanglement entropy of any boundary region to the area of the bulk minimal surface homol-
ogous to that boundary region. This proposal was later refined to the covariant version [6,12]
and the version including quantum corrections [7,8,10,11]. For more recent developments on
the bulk reconstruction inspired by holographic study of quantum entanglement, one should
consult the following review papers [13,14].

The possibility to reconstruct the bulk geometry from the entanglement structure of the
boundary field theory was soon realized after the RT formula was proposed, see [15,16] for the
earliest discussion. In this paper, we focus on the reconstruction of bulk geometric quantities
in terms of boundary entanglement structure measures. So far, several approaches have been
explored for this goal. For example, the reconstruction of certain bulk curves via the differential
entropy [17–22] by studying the geodesics tangent to the curve, the reformulation of the RT
formula as the maximal flux of the bit threads in AdS space out of the region [23–25], and the
simulation of the AdS space based on the tensor networks [26–34] where the RT surface is
interpreted as the homologous path in the network with the minimal number of cut. See [35]
for a detailed review on the above approaches.

Nevertheless, the geometry reconstruction program is far from complete. The differential
entropy scheme works clearly in reconstructing certain type of curves in AdS3 and it turns out
to be messy in higher dimensions [36]. The bit threads scheme works fine for static configura-
tions in general dimensions, but it is not clear how to reconstruct geometric quantities beyond
the RT surfaces via the bit threads. Also, the bit thread configuration depends on the choice of
boundary regions we study, and is highly degenerate even with a given region. Hence it is not
clear what we can learn from an explicit configuration of bit threads beyond the holographic
entanglement entropy. The tensor networks are a toy models that can reproduce some of the
important features of AdS/CFT, including AdS background geometry (see [37] for an explo-
ration), the RT formula for holographic entanglement entropy [26, 32], the quantum error
correction of holography [31] and so on. Nevertheless, it is also subtle or hard to extend the
simulation of AdS/CFT via tensor networks to higher dimensions and time dependent config-
urations. Also, the interpretation for geometric quantities beyond the RT surface in terms of
the tensor network structure is rarely explored.

Inspired by these approaches, we propose a framework to reconstruct all the bulk geo-
metric quantities based on a new measure of entanglement, the partial entanglement entropy
(PEE) [38–42]. See [43–52] for discussions on the relation between PEE and the above three
approaches, and see also [53–58] for the reconstruction of the entanglement wedge cross-
section in various scenarios based on PEE. Our scheme works quite clearly in reconstructing
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a generic geometric quantity (or any co-dimension two surfaces) in static AdS bulk in general
dimensions.

In section 2, we will first introduce PEE in the vacuum state of a holographic CFT, its
geometrization as the PEE threads in the bulk, and the weight of the PEE threads. In section
3, we use the PEE threads to give a reformulation of the RT formula, in a way quite similar to
the calculation of the entanglement entropy using tensor networks. In section 4, we use the
PEE threads to reconstruct a generic bulk co-dimension two surface. In the last section, we
give a conclusion and discussion for the results.

2 The partial entanglement network

2.1 Partial entanglement entropy

The PEE I(A, B) is a special measure of two-body correlation between two non-overlapping
regions A and B [38,39,41,42]. Besides all the physical properties that are satisfied by mutual
information I(A, B), PEE possesses an exclusive property of additivity [39,59]. More explicitly,
assuming that A, B and C are three non-overlapping regions, the physical requirements for the
PEE are classified in the following

1. Additivity: I(A, B ∪ C) = I(A, B) + I(A, C);

2. Permutation symmetry: I(A, B) = I(B, A);

3. Normalization: I(A, B)|B→Ā = SA;

4. Positivity: I(A, B)> 0;

5. Upper bounded: I(A, B)≤min{SA, SB};

6. I(A, B) should be invariant under local unitary transformations inside A or B;

7. Symmetry: for any symmetry transformation T under which T A= A′ and T B = B′, we
have I(A, B) = I(A′, B′).

As was shown in [39,60], the above requirements has q unique solution for states with Poncaré
symmetry. Furthermore, for the vacuum state of a CFT on a plane, the formula of the solution
is totally determined by the above requirements.

According to the properties of additivity and permutation symmetry, the PEE structure are
fully described by the two-point PEEs I(x,y), and I(A, B) can be written as a double integral
over A and B

I(A, B) =

∫

A
dσx

∫

B
dσy I(x,y) . (1)

where σx,y are the infinitesimal area element at x and y, and the two-point PEE I(x,y) in
vacuum CFTd is given by

I(x,y) =
c
6

2d−1(d − 1)
Ωd−2|x− y|2(d−1)

, (2)

where Ωd−2 = 2π
d−1

2 /Γ
� d−1

2

�

is the area of (d − 2)-dimensional unit sphere. One can ei-
ther derive the above formula for two-point PEE via the solution to all the physical require-
ments [39, 60], or using the so-called additive-linear-combination (ALC) proposal in quasi-
one-dimensional system to construct PEE [41]. See [1] for the details about the derivation of
(2).
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The normalization property of the PEE I(A, B)|B→Ā = SA tells us how to approach the
entanglement entropy from PEE,

SA =

∫

A
dσx

∫

Ā−ε
dσy I(x,y), (3)

where A∪ Ā makes up a pure state and ε represents a regularization cutoff. Note that, the re-
quirement of normalization is quite subtle as it is an equality between two divergent quantities
which are normalized in different schemes, see [41] for more discussions on this requirement.
We should keep in mind that, we only impose the normalization requirement to spherical re-
gions, where the relation between the geometrical cutoff and the UV cutoff can be explored,
to get the solution (2). The solution may not exist if we impose the normalization requirement
to generic regions (especially disconnected regions)1. As was implied in [1], the modification
of this requirement for generic regions is the key for our scheme to reconstruct the geometric
quantities in AdS. Although the PEE structure (2) may not capture all the information of the
entanglement structure in a CFT, we will see that it is enough to reconstruct the geometric
quantities at order O(c) in the gravity side of AdS/CFT.

2.2 PEE threads and the partial entanglement network

In AdS/CFT, we introduced a scheme to geometrize the PEEs in [1], where the boundary
two-point PEEs I(x,y) are represented by the bulk geodesics connecting the two boundary
points {x,y}, which we call the PEE threads [1]. This geometrization looks quite like the
bit thread configurations. Nevertheless they are quite different objects, for example the PEE
thread configuration is totally determined by the boundary state and they intersect with each
other, while the bit thread configuration are highly degenerate and bit threads do not intersect
with each other. We only consider the vacuum state of the CFTd and a static time slice in
AdSd+1. The PEE threads emanating from any point x can be represented by a divergenceless
vector field Vµx = |Vx|τµ, where τµ is the unite vector tangent to the geodesics emanating
from x. The norm |Vx| characterizes the density of the threads, which is determined by the
requirement that,

• the flux of the PEE threads from x to any boundary region dσ should match the PEE
I(x, dσ).

In summary, given the PEE structure of the boundary CFT and the metric of the dual space-
time, we get a network of the PEE threads in the AdS bulk consisting of all the bulk geodesics
on a time slice anchored on the boundary (see Fig. 1 for examples). We call it the partial
entanglement network, or PEE network for short.

We briefly review the derivation of the PEE vector flow Vµx and its connection with the
configuration of bit threads [1]. Due to the translation symmetry, it is sufficient to derive the
PEE threads emanating from the origin, VµO ≡ Vµx=0. We work in poincaré AdSd+1 with unit
AdS radius,

ds2 =
−dt2 + dz2 + dr2 + r2dΩ2

d−2

z2
, (4)

1Nevertheless, in CFTd entanglement entropies for various shapes of connected regions have been carried out
based on (2) and (3) [61–64], which are in good (but not exact) agreement with the results derived from other
methods. In these papers, the authors studied the mutual information that satisfies additivity (EMI), which coin-
cides with the PEE [39] in these scenarios. See [39, 41] for discussion on the relationship between the PEE and
the EMI.
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Figure 1: Visualizations of PEE threads (gray) on a time slice of Poincaré AdS4 and
global AdS3, where the boundary sites (on the plane) are discretized. Left: the PEE
threads with larger radii are denoted with thinner curves, whose thickness reflects
the density of the PEE threads. Right: with appropriate discretizations, they form a
hyperbolic tiling.

where

dΩ2
d−2 = dφ2

1 + sin2φ1dφ2
2 + · · ·+ sin2φ1 · · · sin2φd−3dφ2

d−2. (5)

In higher dimensions, due to the rotational symmetry of VµO , we can restrict to a 2-dimensional
slice with φi = 0. Since the PEE threads are just the bulk geodesics emanating from O, the
vector field VµO (Q) is tangent to these geodesics, such that

VµO (Q) = |VO(Q)|τ
µ
O(Q), (6)

where

τ
µ
O(Q) =

2zr
r2 + z2

�

z,
z2 − r2

2r

�

, (7)

is the unit vector tangent to the geodesics emanating from O, and z, r are the coordinates of
the bulk point Q on theφi = 0 slice. The norm |VO(Q)| is then settled down by the requirement
that, the flux of the PEE threads from the origin to any boundary region dy should match the
PEE I(0,dy).

O

dy

dΣ

−ℓ ℓ y

Q

θ

Figure 2: Here dΣ is an infinitesimal area element at Q, and the blue circle is the
reference RT surface r2 + z2 = ℓ2. The PEE threads emanating from O and passing
through dΣ will anchor on a boundary region d y . There exists an one-to-one map-
ping between any point (l cosθ ,ℓ cosθ ) on dΣ and the point y = ℓ/ cosθ in the d y
region. This pair of points are connected by a PEE thread emanated from O.

More explicitly, let us consider the coordinate Q = (r̄, z̄) = (ℓ cosθ ,ℓ sinθ ) and a reference
RT surface Σ passing through Q with the radius ℓ=

p
r2 + z2 (see Fig. 2). The flux of the PEE
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threads VµO through an area element dΣ at Q on Σ is given by

Flux(VµO , dΣ) =dθdΩd−2

p

hVµO (θ )nΣ,µ(θ )

=dθdΩd−2
r̄d−2

z̄d−2

Æ

hθθ |VO(θ )| sinθ

=dθdΩd−2

Æ

hθθ |VO(θ )| cotd−2 θ sinθ ,

(8)

where θ = arctan z
r , hθθ = 1/ sin2 θ is the θθ -component of the induced metric on Σ and

nµΣ(Q) = ℓ sinθ (cosθ , sinθ ) is the unit normal vector on Σ. We have used
p

h = r̄d−2

z̄d−2

p

hθθ .
On the other hand the PEE I(O, d y) is given by yd−2I(0, y)Ωd−2dy . Then we solve the re-
quirement

Flux(VµO , dΣ) = dy yd−2I(0, y)Ωd−2, y = ℓ/ cosθ (9)

to get the norm of VO(Q),

|VO(Q)|=
1

4G
2d−1(d − 1)
Ωd−2

zd−1

(r2 + z2)d−1
. (10)

In the above derivation we used the mapping y = ℓ/ cosθ since dΣ determines the d y region
on the boundary following the PEE threads. Finally, we obtain the PEE threads flow on the
φi = 0 slice

VO(Q) =
2dzd

4G
(d − 1)
Ωd−2

r
(r2 + z2)d

�

z,
z2 − r2

2r
, 0, · · ·
�

. (11)

Due to the translation symmetry, the vector flow from any boundary point x is identical to (11)
up to a translation. For example, in AdS3, the PEE thread flow emanating from r = r0 can be
obtained by replacing r with r − r0 in (11) and

Vµr0
=

1
4G

2z2(r − r0)
((r − r0)2 + z2)2

�

z,
z2 − (r − r0)2

2(r − r0)

�

. (12)

Having determined the PEE flow from any boundary point, now we sum up the PEE threads
emanating from the points inside a sperical region A= {x||x|< R}, to get a new vector flow

VµA =

∫

A
dd−1xVµx =

1
4G

�

2Rz
Æ

(R2 + r2 + z2)2 − 4R2r2

�d �
rz
R

,
R2 − r2 + z2

2R

�

, (13)

which is exactly the bit thread [23] configuration for A constructed in [65]. In this configura-
tion, all the bit threads flow along geodesics normal to the RT surface. Hence this bit thread
flow is just a superposition of the PEE flow emanating from all the points in the region under
consideration. Which is consistent with the fact that the bit thread flow depend on the choice
of the region. One can check that the PEE (thread) flux at any point Q on the RT surface EA of
A is just

∫

A
Vµx (Q)d

d−1x=
1

4G
nµ(Q), (14)

whose strength is a constant 1/(4G), which is independent from the radius and position of A.
Here nµ(Q) is the outward normal unit vector on the RT surface of A.
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Ā1 A2A1Ā2 Ā2

ω(A1, A2) = 2

ω(Ā1, Ā2) = 0

ω(A, Ā) = 1

Figure 3: This figure is extracted from [1]. Here A = A1 ∪ A2, Ā = Ā1 ∪ Ā2 and AĀ
is in the vacuum state of the holographic CFT2. Representative PEE threads (dashed
curves) in Poincaré AdS3. Each PEE thread crosses the disconnected RT surface for
different number of times, which represents different weight.

2.3 The weight of the PEE threads

Now we try to calculate the entanglement entropy using the PEE threads. If we naively apply
the normalization property to any region A, then the entanglement entropy is calculated by
(3), which has a corresponding picture in the partial entanglement network. This equates to
calculating the flux of the PEE thread flow from A to Ā

SA =

∫

ΣA

dΣA

p

hVµA nµ, (15)

where ΣA is any co-dimensional two surface homologous to A, nµ is the outward normal unit
vector on ΣA and h is the induced metric. In this paper, we denote ΣA as any homologous
surface to A, and EA as the RT surface of A, that is Area[EA] =minArea[ΣA]. Naively, we expect
that (15) should reproduce the same entanglement entropy as the RT formula for an arbitrary
region A. From (14), we could deduce that this holds for any spherical region. Nevertheless,
this coincidence does not happen for other regions, see [1] for case of a strip region.

To fix this problem, we should modify (3) in some way. The discussion for the two-interval
case in [1] in CFT2 provides a clear clue. Let us consider a two interval region A = A1 ∪ A2
whose RT surface is given by the blue curves, see Fig. 3. If we naively apply (3), we should
only count the threads connecting Ai and Ā j , which gives SA = I(A1, Ā) + I(A2, Ā). However,
the RT formula implies

SA =SA1
+ SA2

= I(A1, A2Ā) + I(A2, A1Ā)

=I(A1, Ā) + I(A2, Ā) + 2I(A1, A2) , (16)

where we used (3) for A1 and A2 as it applies to single intervals. So, (16) indicates that the RT
formula not only counts the threads connecting A and Ā, but also doubly counts the threads
connecting A1 and A2. This absolutely goes beyond (3), but looks reasonable as the threads
connecting A1 and A2 intersect with the RT surface twice.

Then one may weight the threads with the number of times it intersects with the RT surface.
For any disjoint multi-interval A = ∪Ai and its complement Ā = ∪Ā j , given the RT surface
we can read out the weight for any PEE threads. Let us denote the weight for the threads
connecting any two sub-intervals α and β as ω(α,β). It has further been checked in [1] that
the holographic entanglement entropy is given by

SA =
∑

i, j

�

ω(Ai , A j)I(Ai , A j) +ω(Āi , Ā j)I(Āi , Ā j) +ω(Ai , Ā j)I(Ai , Ā j)
�

. (17)
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Figure 4: The RT surface EA for a strip region A in Poincaré AdS4. The PEE threads
(the gray curves) with both endpoints inside or outside A can possibly pass through
EA twice.

The above observation is consistent with (3) for single interval cases where only the threads
connecting the interval A and its complement Ā have non-zero weight ω(A, Ā) = 1. From bulk
PEE flux perspective, it is important to note that, (17) indeed computes the PEE flux that flows
from the entanglement wedge WA to WĀ, instead of the flux from A to Ā.

3 Reformulation of the RT formula

Now we extend to general dimensional Poincaré AdSd+1 and get rid of the precondition that
we know the RT surface. For any disconnected boundary region A= ∪Ai and its compliment
Ā = ∪Ā j , we consider an arbitrary co-dimension two surface ΣA homologous to A. If we
define the weight of a PEE thread as the number it intersects with the surface ΣA, then the
configuration of the weights depends on ΣA. In higher dimensions, PEE threads that anchored
on the same connected subregion Ai can pass through the RT surface hence has non-zero
weight (see Fig. 4 for the example of a strip region). So, when we talk about the weight of a
PEE thread, we should also specify the two boundary points it connects. For these reasons, we
denote the weight of the thread connecting the pair of the boundary points {x,y} asωΣA

(x,y).
Inspired by the above observation (17), here we give a proposal as a complete reformula-

tion of the RT formula. Given a homologous surface ΣA, it always divides the bulk space M
into two parts MA and MĀ whose boundaries satisfy

∂MA = A∪ΣA , ∂MĀ = Ā∪ΣA . (18)

We propose that, the ΣA that minimizes the PEE flux from MA to MĀ is exactly the RT surface,
and the corresponding minimal flux coincides with the holographic entanglement entropy, i.e.

SA =min
ΣA

1
2

∫

∂M
dd−1x

∫

∂M
dd−1y ωΣA

(x,y)I(x,y), (19)

where the integration domain of x and y is the whole AdS boundary ∂M= AĀ. Here we have
considered all the PEE threads and their weights instead of only those connecting A and Ā.
The factor 1/2 appears as we count both I(x,y) and I(y,x) in the integration. From the bulk
perspective, the above equation can also be written in terms of the PEE vector flows

SA =min
ΣA

1
2

∫

ΣA

dΣA

p

h

∫

∂M
dd−1x|Vµx (Q)nµ(Q)|, (20)

8



Arxiv Version

A

dEA

Figure 5: Representative PEE threads in Poincaré AdS3. The blue shaded region is the
entanglement wedge WA of A. PEE threads that pass through a surface segment dEA
of the RT surface are denoted by gray solid curves. PEE threads that do not intersect
dEA are denoted by gray dashed curves.

where Q is any point on ΣA, nµ is the unit normal vector at Q pointing from MA to MĀ
and dΣA

p
h is the area of an infinitesimal area element on ΣA located at Q. Similarly, the

coefficient 1/2 appears because we integrate x over the whole boundary such that the PEE
thread connecting any two boundary point is doubly counted. Here we take the absolute
value for Vµx nµ since locally we are always calculating the flow from one side of ΣA to the other
side, hence any PEE thread passing through ΣA gives positive contribution. The equivalence
between (20) and (19) is guaranteed by the divergenceless property of the vector fields Vµx .

The version of the above proposal (19) (or (20)) in AdS3/CFT2 was proposed and tested
in [1] without a proof. In the following we present simple and general proof for any static
boundary region A in AdSd+1/CFTd . This proposal gives a complete reformulation of the RT
formula, as the minimization reproduces the RT surface, and the minimized flux reproduces
the holographic entanglement entropy.

Proof

Although the analysis of the PEE flow for static spherical regions [1] looks quite special, it con-
tains the key ingredient to prove our proposal for generic regions. Let us consider a spherical
region A, whose RT surface EA is just a hemisphere, and all the PEE threads can be classified
into three classes,

1. ωEA
(x,y) = 0 for x,y ∈ A;

2. ωEA
(x,y) = 0 for x,y ∈ Ā;

3. ωEA
(x,y) = 1 for x ∈ A,y ∈ Ā or x ∈ Ā,y ∈ A.

Only the threads in the third class intersect with EA. More specifically, let us consider an
infinitesimal area element

p
hdEA on the RT surface. From any boundary point, there are PEE

threads passing through
p

hdEA. In order to get the right PEE flux through
p

hdEA, the key is
to avoid double counting. It is obvious that we only need to sum over the threads emanating
from A (see the gray solid curves Fig. 5) to get all the threads passing through

p
hdEA without

double counting. So we only need to integrate the PEE flow Vµx for x ∈ A to get the flux of PEE
threads passing through the area element, which is just (14)

p

hdEA

∫

A
dd−1x Vµx nµ =

p
hdEA

4G
. (21)
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Q1

Q2Σ

Figure 6: Here Σ represents an arbitrary codimension-2 bulk curve in AdS3. Any
infinitesimal line segment at Q i is reconstructed by the set of PEE threads passing
through it and emanating from the spherical region whose RT surface (gray dashed
line) is tangent to Σ at Q i .

We can conclude that, for any area element on the RT surface of any static spherical region,
the strength of the PEE flux passing through this area element is exactly 1/4G.

Then we consider an arbitrary infinitesimal area element at any bulk point Q with a random
unit normal vector nµ(Q). It is crucial to notice that, any area element can be embedded on
a unique RT surface EA of a spherical region A, where EA is the hemisphere passing through
Q and normal to nµ(Q) (see Fig. 6 for the cases of infinitesimal line segments in AdS3). Then
we can calculate the PEE flux of this area element by just collecting the threads emanating
from the corresponding spherical region A. Remarkably, according to our discussion for the
spherical regions, we conclude that

• the strength of the PEE flux through any area element in the bulk is always 1/4G.

In other words, given any bulk point Q and any direction nµ(Q), we can determine a spherical
region A and calculate the strength of the PEE flux in the following way

∫

A
dd−1x|Vµx (Q)nµ(Q)|=

1
2

∫

∂M
dd−1x|Vµx (Q)nµ(Q)|=

1
4G

. (22)

Here the factor 1/2 comes from the fact that, the PEE threads emanating from Ā and passing
through Q are exactly those emanating from the spherical region A.

It is true that, an infinitesimal area element in the bulk can also be embedded on the RT
surface EA of a non-spherical region A. In this case, the classification for ωEA

(x,y) should
change2, and the calculation for the PEE flux passing through this area element is no-longer
given by (21). The flux through an area element is independent from the way of embedding,
and choosing spherical regions is just a trick to simplify the calculation.

Now we consider an arbitrary homologous surface ΣA in the AdS bulk homologous to any
boundary region A, and divide ΣA into infinitesimal area elements. At this point, we are ready
to prove our proposal (20) by applying the above conclusion to all the area elements on ΣA.
Straightforwardly, we get

SA =
1

4G
min
ΣA

∫

ΣA

dΣA

p

h

=min
ΣA

Area[ΣA]
4G

=
Area[EA]

4G
, (23)

which is exactly the RT formula.

2For example, when A is not a spherical region, we will have PEE threads with ωEA
(x,y) > 1. See Fig.4 for the

case of a trip region.
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Figure 7: The area element dΣ and its direction is represented by the black arrow.
The gray curves represent all the PEE threads that involve in the reconstruction of
dΣ, and the green curve represents the PEE thread that saturates the lower bound.

4 Bulk geometry reconstruction

Our goal is to interpret all the geometric quantities in terms of the boundary PEEs. We just
interpreted the RT surfaces as the homologous surface that minimizes the flux of the PEE flow
from MA to MĀ, and the minimized flux gives the area of the RT surface. In other words, we
reconstructed all the RT surfaces via the class of PEE threads passing through it.

Similarly, we can reconstruct an arbitrary infinitesimal bulk co-dimension two surface dΣ
from certain class of boundary two-point PEEs I(x,y), whose PEE threads pass through dΣ.
According to our previous discussion, the class of PEE threads that passes dΣ are those ema-
nating from a spherical region whose RT surface is tangent to dΣ, and the flux of the PEE flow
passing through dΣ gives Area(dΣ),

Area[dΣ]
4G

=
1
2

∫

∂M
dd−1x

∫

∂M
dd−1y ωdΣ(x,y)I(x,y) , (24)

where ωdΣ(x,y) = 0 or 1 depending on whether the thread intersects with dΣ. The PEE
threads that do not intersect with dΣ will not participate its reconstruction.

Interestingly, given the position of a dΣ, the scale |x− y| of all the two-point PEEs I(x,y)
that participate the reconstruction of dΣ, is lower bounded. For example, in Poincaré AdSd+1,
the scale of those two-point PEEs satisfy

|x− y| ≥ 2z0, (25)

where z0 is the z coordinate of dΣ. In other words, the two-point PEEs with |x − y| < 2z0
will not contribute to the reconstruction of area elements deeper than z0. See Fig. 7 for two
examples in global AdS3, where we show the sets of PEE threads that reconstruct two different
area elements. In the left case, the dΣ is close to the boundary, hence the small scale PEEs
contribute. In the right case, the dΣ is in the center of the AdS space and only the largest scale
PEEs involve in its reconstruction.

We can also reconstruct any co-dimension two surface Σ in the bulk, which does not need
to be homologous to any boundary region. Because we can reconstruct all the infinitesimal
area elements on the surface, see Fig. 6. Then all the PEEs that locally pass through Σ will
contribute to the reconstruction. And the area of Σ will be reproduced by the flux locally
passing through it, which is just

Area[Σ]
4G

=
1
2

∫

∂M
dd−1x

∫

∂M
dd−1y ωΣ(x,y)I(x,y) . (26)
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We can also consider the reconstruction of a lower dimensional object, i.e. a geometric
object ζ of codimension-(2+ n). The area of ζ is given by

Area[ζ] =

∫

ζ

dσζ
q

hζ, (27)

where dσζ is the area element of ζ, and hζ is the metric on ζ. Using (22), we have

Area[ζ]
4G

=
1
2

∫

ζ

dσζ
q

hζ

∫

∂M
dd−1x|Vµx (Q)nµ(Q)|, (28)

where we let Q be the location of dσζ. There is an ambiguity on the direction of nµ(Q) if
n≥ 1, as there are (n+1) directions that are orthogonal to dσζ. Nevertheless, the integral in
(22) is independent of the direction of nµ. When we integrate over ζ, we take into account all
the PEE threads that intersect with ζ. Then (28) can be written on CFT side as

Area[ζ]
4G

=
1
2

∫

∂M
dd−1x

∫

∂M
dd−1y ωζ(x,y)I(x,y) , (29)

where ωζ counts the number of times the PEE thread connecting x and y intersects with ζ.
Thus all the bulk geometric objects can be encoded in the boundary weight function ωζ(x,y).

5 Discussion and conclusion

In summary, based on the PEE structure of a CFT and its geometrization scheme represented
by all the geodesics anchored on the boundary, we obtain a network of geodesics which could
be considered as the basic elements forming the AdS space in AdS/CFT. We show that the
strength of the PEE flow at any bulk point in any direction is always 1/4G. If we set 1/4G
as the upper bound of the flow strength, then we can claim that the AdS space is full of PEE
threads everywhere. Then any geometric quantity in AdS can be reconstructed by a set of
boundary PEEs whose PEE threads passing through it.

We also provide a complete reformulation of the RT formula, which aims to identify the
homologous surface ΣA with minimal PEE flux passing through it. The key of our scheme is
that, we need to abandon the naive normalization property (3) of the PEE, which tells you to
collect the PEE threads stretching between A and Ā. Instead, we should collect the PEE flux
stretching between the two sides of the homologous surface ΣA. This is partially inspired by
the evaluation of the entanglement entropy of CFT2 in the model of tensor networks, where
the homologous path has the minimal number of cuts with the network. Here the PEE network
is analogous to the tensor network, and the PEE flux through the homologous surface is akin
to the number of cuts the surface intersects with the PEE network.

It is intriguing to view the PEE network as the tensor network which precisely captures the
entanglement structure of the boundary CFT at large c limit. Compared with previous tensor
network toy models of gravity, the PEE network is a well-defined continuous network that
naturally extends to higher dimensions. It will be interesting to add bulk degrees of freedom
to the PEE network, to study the quantum correction and quantum error correction property of
the PEE network. Extending or testing our scheme to more generic asymptotic AdS spacetimes,
to the covariant configurations and to holographies beyond AdS/CFT are also worth exploring.

Our scheme gives a solution to an old puzzle of Casini and Huerta proposed in [60] (see
also [41]). In that paper the authors consider the so-called extensive mutual information
(EMI), which is the same as the PEE we studied, and use the normalization property of EMI to
evaluate the entanglement entropy for an annulus in the vacuum of holographic CFT3 that dual
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to Poincaré AdS4. The RT formula tells us that, the RT surface has a phase transition between
two phases where the RT surface is connected or disconnected respectively. Nevertheless, if
we naively apply (3) to compute the entanglement entropy, there is no such phase transition.
Hence the authors of [66] claimed that, the EMI does not exist in holographic CFTs. While
our scheme reproduces the results of the RT formula perfectly, by considering the weight of
the two-point PEEs. More specifically, in our scheme PEE threads across the annulus (i.e.
PEE threads stretching between the region closed by the annulus and the region outside the
annulus) could contribute to the entanglement entropy of the annulus in the disconnected
phase, which goes beyond the naive normalization property (3).

Our scheme can be used to reconstruct generic bulk geometric quantities in general di-
mensions, which we think is a big progress based on the previous schemes we reviewed. So
far our discussion is confined in a static time slice of Pure AdSd+1. In order to generalize our
scheme to generic spacetimes, we need to analysis the PEE structure of the boundary states
and geometrize the two-point PEEs into bulk geodesics anchored on the boundary. For space-
times with a black hole in the bulk, there will be PEE threads passing through the black hole
horizon. Also, it will be very important to generalize it to the covariant configurations. We
leave these for future investigations.
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