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Abstract

The absence of superconductivity (SC) in Cr-substituted BaFe2As2 (CrBFA) is
a well-established but poorly understood topic. It is also established that the
suppression of the spin density wave transition temperature (TSDW) in CrBFA
and Mn-substituted BaFe2As2 (MnBFA) almost coincides as a function of the
Cr/Mn concentrations, irrespective of the putative distinct electronic effects
of these substitutions. In this work, we employ angle-resolved photoemission
spectroscopy (ARPES) and combined density functional theory plus dynamical
mean field theory calculations (DFT+DMFT) to address the evolution of the
Fermi surface (FS) and electronic correlations in CrBFA. Our findings reveal
that incorporating Cr leads to an effective hole doping of the states near the FS
in a way that can be well described within the virtual crystal approximation
(VCA). Moreover, our results show orbital-specific correlation effects that
support the Hund localization scenario for the CrBFA phase diagram. We
found a fractional scaling of the imaginary part of self-energy as a function
of the binding energy, which is a signature property of Hund’s metals. We
conclude that CrBFA is a correlated electron system for which the changes in
the FS as a function of Cr are not related to the suppression of TSDW. Rather,
this suppression and the absence of SC are primarily due to the competition
between Cr local moments and the Fe-derived itinerant spin fluctuations.
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1 Introduction

The discovery of superconductivity (SC) in hole-doped LaO1−xFxFeAs [1] led to the new
field of the iron-based superconductors (FeSCs). A superconducting critical temperature
(TSC) as high as ≈ 55 K in hole-doped SmO1−xFxFeAs was soon after reported [2] and
remains to date among the highest so far observed in this diverse family of materials [3].

The BaFe2As2 (BFA) material is a particularly well-explored parent compound of the
FeSCs. It undergoes an antiferromagnetic (spin density wave, SDW) transition with a
critical temperature (TSDW) of ≈ 133.7 K that is preempted by an almost concomitant
tetragonal to orthorhombic phase transition [4, 5]. In BFA, partial chemical substitutions
on the Ba, Fe or As sites can stabilize high-temperature superconductivity (HTSC) [6, 7,
8, 9, 10, 11]. The highest TSC, ≈ 38 K, is observed when Ba is partially substituted by an
Alkaline metal, as in Ba1−x AxFe2As2 (A = K or Cs) [12, 13], corresponding to nominal
hole doping.

In all cases wherein HTSC emerges in BFA substituted phases, the composition (x)
vs. temperature (T ) phase diagram shows that the maximum TSC is observed in a x range
wherein the TSDW is fully suppressed. This phenomenology suggested a close link between
fluctuations of the magnetically ordered phase and the formation of HTSC, which is part
of the consensus in this research field [14]. The relevant energy scales to understand the
FeSCs, however, remain under debate.

Low energy effective models contain some essential ingredients to understand the phase
diagrams of many FeSCs [15, 16]. This scenario posits that the SDW phase is the result
of a nested Fermi surface (FS) and that charge doping detunes the nesting condition, thus
suppressing TSDW. The resulting fluctuations boost the SC pairing. Other descriptions
adopt the Fe2+ 3d6 local electronic structure as a starting point. The resulting large spins
are lowered by kinetic frustration and the main energy scales are provided by the on-
site electron-electron Hund’s exchange and by the Coulomb interactions [17, 18, 19, 20].
Within the latter framework, the FeSCs are classified as Hund’s metals, a new class of
strongly correlated materials, where the strength of correlations are sensitive to the Fe-3d
occupancy, Hund’s coupling JH , and to the pnictogen/chalcogen height. More importantly,
the Hund’s metals exhibit an orbital(charge) and spin separation for a broad intermediate
temperature region, where the orbital(charge) are itinerant and the spin degrees of freedom
are quasi-localized [21]. The resulting HTSC phase from this electronic correlated state
displays an universal heat capacity associated with 2∆max/TSC = 7.2 ± 1 (where ∆max
is the maximum SC gap) which can be explained by taking into account the incoherent
nature of local spin fluctuations [22].

To distinguish between possible scenarios, it is key to probe how chemical substitutions
change the electronic structure of the FeSCs. In this context, an intriguing asymmetry is
observed in the phase diagram of transition metal substituted BFA: SC is not observed
in the Cr [23], Mn [24] or V [25] substituted materials, which corresponds to the nominal
hole doping. Particular attention has been devoted to the Mn and, to a lesser degree, Cr
substituted materials (hereafter called, respectively, MnBFA and CrBFA).

In the case of MnBFA, the absence of SC was first ascribed to the lack of charge doping
by Mn [26, 27]. A complete scenario, however, encompasses the scattering of the Fe-derived
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2 MATERIALS AND METHODS

excitations promoted by the Mn-derived excitations [28, 29], a weak charge doping effect
caused by Mn, electronic disorder and correlations [30], which is in line with theoretical
calculations [31, 32, 33].

It was soon noted that the CrBFA and MnBFA x vs. T phase diagrams look very
similar, with the suppression of TSDW depending only on x [24]. Indeed, both Cr and
Mn induce a crossover from an itinerant to a more localized form of magnetism [34, 35]
and, as in MnBFA, it is suggested that the Fe-SDW and Cr-Néel fluctuations compete
for the ground state [23, 36, 37, 38]. Similar effects are caused by Cr-substitutions in
Ni-doped BFA [39, 40, 41] as well as in P-substituted BFA [42]. Disordered magnetism,
however, is only observed in MnBFA [43]. In addition, the role of Cr as a hole dopant
is observed in Ni-doped BFA [39] but recent angle-resolved photoemission spectroscopy
(ARPES) experiments of Cr-substituted CsFe2As2 do not support hole doping caused by
Cr [44]. All this phenomenology suggests that, as in the MnBFA phase diagram, the Cr
effects on the electronic structure and correlations in CrBFA require clarification.

This work is dedicated to understanding hole doping and electronic correlations in
CrBFA. We employed ARPES experiments and density function theory in combination
with dynamical mean-field theory (DFT+DMFT) calculations of the excitation spectra of
Ba(Fe1−xCrx)2As2 (x = 0.0, 0.03 and 0.085, hereafter called the BFA, Cr3% and Cr8.5%
materials, respectively). Our results show that Cr is an effective hole dopant, as in the case
of K substitution [45], with the DFT+DMFT calculations capturing the experimentally
observed changes in size and shape of the hole and electron pockets. Hence, the suppression
of TSDW in CrBFA is similar to that of MnBFA, irrespective of the action of Cr as a hole
dopant.

Moreover, based upon the experimental ARPES spectral function, we analyze electronic
correlations in CrBFA and show that the imaginary part of the self-energy, ImΣ(EB)
presents a Cr-dependent fractional scaling as a function of the binding energy (EB),
the hallmark of a Hund’s metal [46]. These features are also well reproduced by our
calculations, including the Cr dependency on the fractional exponent. Thus, it is suggested
that Cr tunes the BFA electronic structure into the non-Fermi liquid "spin-freezing" regime
[47].

2 Materials and methods

Single crystals of Ba(Fe1−xCrx)2As2 were synthesized by an In-flux method [48]. The
resulting crystals were crushed and sieved into a fine powder for X-ray diffraction (XRD)
experiments to check the crystallographic phase and determine lattice parameters. The
final Cr content was checked by energy-dispersive x-ray spectroscopy (EDS) measurements.
Physical properties (resistivity and specific heat) were characterized by a commercial
Physical Properties Measurement System (PPMS) from Quantum Design. Results from
EDS and physical properties were compared to composition vs. T phase diagrams in
literature [23, 35, 36] to benchmark the values of x.

The samples with x = 0.0, x = 0.03, and x = 0.085 were selected for ARPES
measurements at the Bloch beamline of the Max IV synchrotron in Lund, Sweden. The
ARPES spectra were obtained using the Scienta DA30 photoelectron analyzer for incident
photon energies between 60 and 81 eV. At this photon energy, an energy resolution of about
8 to 10 meV and angular resolution of 0.1◦ was achieved. The samples were glued on a
Mo sample holder using silver epoxy. An Al post was glued at the top of each sample for
subsequent cleaving. The post was removed inside the main preparation chamber (vacuum
of 3×10−10 mbar). The samples were then transferred to the analyzer chamber, at 2×10−11
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Figure 1: (a)-(c) Overview of the ARPES measured electronic band structure of
the BFA, Cr3% and Cr8.5% materials. As indicated, measurements were taken
along the ΓX and ΓM directions and for LH and LV polarizations. The dots
represent the band positions as obtained from the second derivative of the band
maps and MDC analysis. (d)-(f) DFT+DMFT obtained spectral functions for
the paramagnetic phases at T = 150 K for (d) BFA, (e) the Cr8.5% material
only with the structural change (no VCA), and (f) and Cr8.5% in the VCA
approximation.

mbar.
The Brillouin zone (BZ) high-symmetry directions are labeled according to the crystal

body-centered tetragonal structure. The results presented were measured at the samples’
tetragonal PM state (T = 150 K). During experiments, we probe the high-symmetry
directions ΓX and ΓM for both Γ and Z kz levels. We employed linear horizontal (LH)
and vertical (LV) polarization to probe different Fe-3d orbital contributions to the ARPES
intensity.

The DFT+DMFT calculations were performed using the fully charge self-consistent
DFT + embedded-DMFT approximation [49] at 150 K. The DFT calculations were performed
within the full potential linearized augmented plane wave method and Perdew-Burke-
Ernzehof generalized gradient approximation (PBE-GGA) [50], as implemented in WIEN2k
package [51]. The DMFT impurity problem was solved by using continuous-time quantum
Monte Carlo (CTQMC) calculations [52], and rotationally invariant interaction with U =
5.0 eV and Hund’s coupling J = 0.8 eV. Similar U and J values were successfully employed
in Ref. [18] within the same implementation.

To calculate the spectral functions and Fermi surfaces we performed the analytical
continuation of the calculated self-energies using the maximum entropy method [49]. For
the double-counting correction term, we used the standard fully localized-limit form [53]
with nominal occupancy n0

d = 6. We used the experimental crystal structures obtained by
XRD and the Cr doping was simulated within the virtual crystal approximation (VCA).

3 Results and discussion

An overview of the experimentally determined electronic band structures of CrBFA is
presented in Fig. 1(a)-(c). The experimental geometries, beam polarization (either LH
or LV polarizations), and the sample’s Cr content are indicated in each panel. For all
samples and measurement conditions, the band features are well observed allowing their
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3 RESULTS AND DISCUSSION

characterization as a function of Cr.
The band positions are marked by the colored dots determined from the second derivatives

of the band maps and from Momentum and Energy Distribution Curves (MDCs and EDCs,
respectively). Indeed, having the spectral function a Lorentzian lineshape, its central
position is the minimum of the second derivatives. This method, therefore, describes the
band shape and effective mass to a point but ignores information about the one-particle
excitation lifetime and scattering rate.

For this family of materials, the electronic bands derived from the Fe 3d-states are
subjected to the As ligand effects. This effect breaks the Fe 3d-states degeneracy and
imparts a strong orbital character to the electronic bands in the FeSCs [3, 14]. The distinct
orbital characters are labeled by dots of distinct colors and were determined by the selection
rules for the ARPES intensity polarization dependence and guided by previous works
[54, 55, 56, 57].

The Cr hole doping effect on the bands forming the hole pockets around Γ is visible
from direct inspection of the data. Indeed, the hole pocket Fermi vectors, kF , are increasing
with Cr introduction, in line with the expectation of hole-doping by Cr substitution. A
change in the polarization selection rules with Cr substitution is also observed in the case
of the 8.5%Cr, where the spectral weight of the outer hole pocket is seen in the region
expected for bands with dxz/yz main orbital character, for measurements along the ΓX
direction. This is evidence that the main orbital character of the dxy derived bands and
their hybridization is significantly affected by Cr, as observed for Co substitution [58].

The change in hybridization may result from the structural changes caused by Cr
substitutions. It may affect the bands even if charge doping is weak, as concluded from
experiments of MnBFA samples [30, 59]. To tell apart the structural and charge doping
effects, we calculate the spectral functions of pristine BFA (Fig. 1(d)) and of Cr8.5% doped
BFA (Figs. 1(e)-(f)) within our DFT+DMFT approximation. In particular, we adopted
two strategies to capture the effects caused by Cr, namely: i) first, the calculations were
performed using only the Cr8.5% crystal structure to take into account the effects of the
new electronic hybridization; and then ii) the calculations were performed freezing the
structure as that of BFA, but considering charge doping effects within the virtual crystal
approximation (VCA).

By direct inspection, the change in kF, and therefore in the sizes of the hole pockets, is
well reproduced by the VCA approximation alone, evidencing the role of Cr as a hole
dopant. Therefore, whereas changing hybridization is an integral part of the CrBFA
electronic structure, as discussed in the case of the dxy derived bands, charge doping
dominates the change in the size of the hole pockets closer to the Fermi level in CrBFA.
From now on, we will focus on DFT+DMFT results within the VCA approximation,
emphasizing that it does not account for all experimentally observed effects.

It is intriguing to observe that both in the experiment and theoretical calculations,
the corresponding change in the size of electron pockets due to doping is not readily
observed along the ΓX direction. We thus inspect in Figs. 2(a)-(c) the experimentally
obtained FSs, for the three samples. The data suggest that the electron pockets are
changing, evolving from an idealized elliptical shape in BFA to a more petal-like shape
in CrBFA. It also suggests that the pockets are shrinking in a direction other than the
ΓX(Y ) direction. To guide our analysis, we present in Figs. 2(e)-(f) the corresponding
DFT+DMFT calculations of the three-dimensional FSs of our materials, along with cuts
of the Γ-centered FSs. These FSs were obtained by considering vanishing scattering rates
at the chemical potential.

The calculations show all three hole pockets increasing upon Cr introduction, but the
decrease of the electron pockets area is not as clear. The calculated electron pockets for
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Figure 2: (a) − (c) Measured Fermi Surface of the BFA, Cr3% and Cr8.5%
materials with LV polarization, showing the BZ draw and its high-symmetry
points. The red dashed line indicates the XY cut based upon which the
electron pockets of 3(h) were reconstructed. (d)−(f) DFT+DMFT paramagnetic
(T = 150 K) Fermi Surface for BFA, Cr3% and Cr8.5%. The Cr substituted
results were calculated using VCA.

the doped samples show a protuberant shape along the ΓX direction and seem to decrease
along the XY direction. This motivates the exploration of different high-symmetry cuts
of the experimentally obtained electron pocket bands as a function of Cr content. From
the ARPES band map measurements, it is possible to extract the electronic band as a
function of ky(x) and EB for other high-symmetry directions by fixing the map kx(y) to a
high-symmetry point and reconstructing the energy bands.

The Y Z and XY cuts can be adopted to capture the changes in electron pockets
as a function of Cr. These cuts are represented as green and magenta dashed lines #1
and #2 in Figs. 3(a)-(b) for the Cr8.5% sample. The red dashed lines in Figs. 2(a)-(c)
represent the XY cut for all three samples. The full set of electronic band positions as a
function of Cr content is compiled in Figs. 3(c)-(h), of which (f) and (h) present band
positions extracted from the mentioned Y Z and XY cuts, respectively. The measurement
conditions and main orbital characters attributed to each band are labeled on each figure,
where the darker points represent the parent compound and lighter points represent a
larger Cr content. The electron pocket along the YZ direction has different selection rules
since it is related to the inner section of the electron pocket, also interpreted as the minor
axis of an idealized ellipse.

More specifically, in Figs. 3(c)-(e), the Cr-dependent evolution of the hole pockets
is presented. The tendency of increasing hole pockets is clear for all bands as is indeed
observable by direct inspection of the band measurements (Fig. 1). Figs. 3(f)-(h) present
the electron pockets evolution. The measurements along ΓX in Fig. 3(g) show a weak
Cr-dependency. In the case of Figs. 3(f) and (h), the reconstructed bands from the Fermi
maps have lower resolution, due to the electron analyzer collection mode, and even with
second derivative analysis the data are not as well-defined as those obtained from the band
maps. This is illustrated in the two panels of Fig. 3(i), wherein representative second
derivative data of this band reconstruction is presented.

To better visualize the band evolution, we can study the Fermi vectors kF as a function
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Figure 3: (a) and (b) experimentally determined FSs of the Cr8.5% sample.
Measurements were performed adopting LV polarization at two different
geometries. The BZ and high-symmetry points are indicated for reference and
the colored dashed lines (green and magenta) are guides to eyes indicating the
FS cuts #1 and #2 from which we extract the data to reconstruct the electron
pockets presented in (f) and (h). (c)− (f) Survey of the band state positions, in
the vicinity of EF , obtained from the fitting of the second derivatives of the MDCs
for different Cr content. In each panel, experimental conditions are indicated. (i)
YZ and XY second derivative energy maps reconstructed from cut #1 and #2
for the Cr3.5% and Cr8.5% samples respectively. (j) and (k) Evolution of Fermi
vectors (kF ) as a function of Cr content for hole pockets and electron pockets.
The dashed lines represent the kF values predicted by our calculations.
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3 RESULTS AND DISCUSSION

of Cr content and compare the results with the theoretically calculated values. The
Fermi vectors are the momentum points where a certain band crosses the Fermi level,
characterizing the pocket sizes and their respective increasing/decreasing associated with
effective charge doping. In Fig. 3(j), the filled circles show the experimental kF values
of the hole bands, and the dashed lines represent the theoretical results, extracted from
the Fermi surfaces of Figs. 2(d)-(f). The experimental data seems to follow the predicted
trend, with excellent agreement observed in the case of the outer hole pocket of dxy main
character. Due to the multiband nature of the electronic structure, it is hard to disentangle
the contributions of the inner and middle hole pockets of dxz/yz main orbital character, and
the agreement is not as good. Nevertheless, the trend stands and we can affirm that the
VCA calculation correctly describes the effective hole doping and hole pocket increasing.

As for the electron pockets, the predicted decrease in the electron pocket size is small,
and experimentally, the variation of kF could be considered constant within error bars, as
shown in 3(k). For the electron pocket extracted from the high-statistic electron bands
along the ΓX direction (dxy orbital character), one can observe that the experimental data
is in excellent agreement with the theoretical dashed lines. A small decrease in the size of
the electron pockets is observed. For the reconstructed bands, as explained, the statistics
are not as good, but we can still see a decreasing trend in the data, which closely follows
the dashed theoretical lines. The exception is the result obtained for a cut along the YZ
direction in the case of the Cr8.5% sample. Nonetheless, we can confirm that the electron
pockets are slightly decreasing, a tendency relatively well described by our theoretical
predictions.

In addition to our detailed analysis of the states close to the FS, we now turn attention
to electronic states with large EB, to evaluate the validity and limitations of our theoretical
approximations. In Fig. 4(a), we compare the bands with dz2 main orbital character
[60], at Eb ≈ −0.45 eV, for the BFA and Cr8.5% samples. The orange arrows show the
maximum spectral weight position at the kz = 0 cut. This band position is shifted up,
which was also observed for MnBFA as shown in Fig. 4(b), where we also compare with our
theoretical scenarios (dashed lines). The VCA approximation predicts a larger shift than
the observed one. Thus, the experimental trend is better described by considering only
the structural effects on atomic distances, suggesting that the shift in the d2z derived band
can be associated with the change in the orbital hybridizations caused by the chemical
substitution. Indeed, this effect is more prominent in MnBFA, where charge doping is
barely observed [30]. A more qualitative observation is that the bottom of the bands
forming the electron pockets is weakly dependent on Cr content, further illustrating that
states with larger EB are less affected by the charge doping and better described without
the VCA.

Based on the overall agreement between experiments and our VCA calculations, we can
assert that the role of Cr as a hole dopant in CrBFA is transparent for states in the vicinity
of the FS and is in sharp contrast to the case of Mn-substituted samples [26, 27, 30, 34].
Nevertheless, the structural changes affecting the orbital hybridization are important to
describe the entirety of the electronic structure, affecting mainly the states at larger EB.

We now turn to an analysis of the ARPES spectral function to extract the scattering
rate Γ(EB) and the one-particle self-energy imaginary part ImΣ(EB) to characterize electronic
correlations in the system. We fit momentum distribution curves (MDCs) to the expression
for the one-particle spectral function A(k, EB) for a system of weakly correlated electrons
[61]. The focus is to extract Γ(EB) and ImΣ(EB) from the MDCs analysis for the band
with dyz main orbital character in the measurements in direction ΓX with LV polarization,
represented as green hole pockets of Fig. 1(a− c).

In Fig. 4(c)-(d) we present these fittings for the BFA and Cr8.5% samples, obtained as
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Table 1: Self-energy imaginary part ImΣ(EB) fitting coefficients obtained from
the theoretical calculations and experimental data for the bands derived from the
dyz orbital. The fitted function is |ImΣ(EB)| = a0 + a1(−EB)

a2 .

Orbital Fitting BFA Cr8.5%
a0 a1 a2 a0 a1 a2

dz2 theory -0.19(4) 0.82(4) 0.42(3) -0.27(6) 0.97(6) 0.35(3)
dx2−y2 theory -0.15(3) 0.74(3) 0.44(2) -0.21(4) 0.85(4) 0.38(2)
dxz theory -0.29(4) 0.95(4) 0.32(2) -0.52(6) 1.26(6) 0.22(1)

dyz
theory -0.27(4) 0.93(4) 0.32(2) -0.47(7) 1.21(7) 0.23(2)
exp. 0.02(1) 0.26(6) 0.50(5) 0.05(2) 0.23(6) 0.27(15)

dxy theory -0.41(7) 1.08(7) 0.26(2) -1.34(31) 2.11(32) 0.12(2)

in Refs. [62, 63]. A clear necessary caution with this type of analysis is that substitutional
disorder contributes with extrinsic effects to the broadening of the spectroscopic features.
In turn, it poses a challenge to the determination of Γ(EB) and thus of ImΣ(EB). To evade
this problem, we focus on these quantities scaling, which already contain all qualitative
information about the correlated nature of the electronic states in our samples, and are
robust against the homogeneous broadening due to disorder. With this in mind, we can
analyze the extracted values of Γ(EB) and the calculated ImΣ(EB) as a function of EB,
shown in Figs. 4(e) and (f) for all samples. The shaded area represents the error bars.

It is clear that Γ(EB) and ImΣ(EB) are not proportional to each other and do not
follow a quadratic behavior, which would be expected for a normal Fermi liquid. This is
an indication of the correlated nature of the metallic state in BFA and CrBFA and was
also observed for other substitutions [30, 62, 63, 64]. In the case of the scattering rates,
this is qualitatively captured by the lines drawn in Fig. 4(e), which suggest that Γ(EB)
can be described as a linear function of EB close to EF .

It is tempting to assert that Cr causes the decrease of the quasiparticle lifetime at EF .
We caution, however, that this effect may not be an intrinsic electronic effect, but rather
the extrinsic effect introduced by chemical substitution. Focusing on the rate of change
of Γ(EB) close to EF (the line slops), it seems that the scattering rates are only weakly
dependent on Cr content. In the case of MnBFA, a stronger dependence was found [30].

Most interesting, the ImΣ(EB) for all samples present a fractional scaling close to√
−EB, the hallmark of a Hund’s metal [46, 65]. The data is presented in Fig. 4(f) and

the fractional behavior is shown as a fitting to the function |ImΣ(EB)| = a0 + a1(−EB)
a2 ,

represented by the black solid lines. Only points between the two green dashed lines were
considered for the fitting, excluding the points close to the EF within the binding energy
resolution and points too far from the FS.

A similar fitting was performed for the DFT+DMFT obtained self-energies on the
Matsubara axis (imaginary axis) for the BFA and Cr8.5% samples. Results of the analysis
for the theoretical data are presented in Table 1 for all bands, along with the experimental
result for the band with main dyz orbital character.

The a0 and a1 coefficients determined from experiments do not follow a particular trend,
which can be expected since they are closely related to the disorder and the self-energy
extraction method. The power-law scaling, however, which is related to the a2 coefficient,
has a robust trend. For comparison, theoretical and experimental results are compiled in
Fig. 4(g). The experiments and theory compare well, with a2 tending to decrease as a
function of Cr concentration. The dashed black line is drawn to pinpoint the value of 0.5
corresponding to a square root dependency of ImΣ(EB) with EB.

In Fig. 4(h) we show the phase diagrams for the CrBFA samples used in this work and
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compare them with other CrBFA and MnBFA samples. We emphasize that the present
phase diagram for In-flux grown samples is in agreement with those of self-flux grown
samples [23, 24, 35]. By inspecting the phase diagrams, one can either conclude that
the suppression of TSDW follows nearly the same pace as a function of x for Cr and Mn
samples. It is possible that this conclusion only holds for really small x, but that for larger
x (around x > 0.04), Mn is more efficient than Cr in suppressing TSDW. In any case, it
seems fair to conclude that the evolution of TSDW in the cases of MnBFA and CrBFA is
not strongly dependent on the nature of the substituent atom, despite the rather distinct
effects of Cr and Mn on the low energy degrees of freedom, with Cr acting as an efficient
hole dopant, while Mn does not. Thus, the electronic bands tuning near EF , by either
Cr or Mn, is not controlling TSDW. Rather, we suggest that the scattering between the
competing SDW and Néel phases derived, respectively, from the Fe and Cr/Mn spins is the
main control parameter. This mechanism only depends on the total amount of extrinsic
spins introduced in the Fe lattice, and therefore only depends on x. Some extra scattering
in the case of Mn may originate from the glassy magnetic behavior introduced by Mn [43]
and from the fact that Mn2+ introduces S = 5/2 spins whereas Cr2+ introduces S = 2
spins, and the latter is the same spin type of the Fe2+ lattice.

4 Conclusion

The most transparent result of our paper is that the partial substitution of Fe by Cr
causes an effective hole doping of the electronic states in the vicinity of the FS. This is
supported by the agreement between our experiments and calculations, with the doping
effects emulated by VCA being the relevant approximation closer to EF . We then proceed
to discuss results based on our analysis of the ARPES spectral functions. We found that
the imaginary part of the self-energy, ImΣ(EB), presents a Cr-dependent fractional scaling
as a function of the binding energy, a common feature of Hund’s metals. This scaling
behavior was also observed in our DFT+DMFT calculations.

By comparing x vs. T phase diagrams for CrBFA and MnBFA, we concluded that
the suppression of TSDW cannot depend on the effects caused by Cr and Mn on the
Fermi surfaces. It is thus suggested that low-energy effective models are not adequate
to understand the evolution of magnetism for these substitutions.

The characterization of CrBFA and MnBFA as a Hund’s metal naturally explains these
results. A recent analysis of Mn and Cr substituted 1144 FeSCs materials [66, 67], also
suggests that the amount of doped holes is not controlling the suppression of TC and TSDW
for Cr and Mn substitutions, making the breakdown of the low-energy effective models
possibly more ubiquitous.

Recently, it was suggested that the Cr doping of CsFe2As2 could push the orbital-
selective Hund’s metal system further into a strongly correlated electronic phase reminiscent
of Heavy Fermion quantum criticality [68]. This agrees with our findings in the low Cr-
doping region, where we could observe the increasing electronic correlations induced by
Cr.

Finally, based on the totality of our analysis, we conclude that SC is lacking in CrBFA
mainly because of the competition between the Cr local moments and the Fe magnetism.
Indeed, what distinguishes CrBFA and K-substituted samples are the distinct magnetic
fluctuations that compete for the magnetic ground state in CrBFA.
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