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Abstract

A bulge surface, on a time reflection-symmetric Cauchy slice of a holographic spacetime,
is a non-minimal extremal surface that occurs between two locally minimal surfaces homol-
ogous to a given boundary region. According to the python’s lunch conjecture of Brown
et al., the bulge’s area controls the complexity of bulk reconstruction, in the sense of the
amount of post-selection that needs to be overcome for the reconstruction of the entangle-
ment wedge beyond the outermost extremal surface. We study the geometry of bulges in a
variety of classical spacetimes, and discover a number of surprising features that distinguish
them from more familiar extremal surfaces such as Ryu-Takayanagi surfaces: they spon-
taneously break spatial isometries, both continuous and discrete; they are sensitive to the
choice of boundary infrared regulator; they can self-intersect; and they probe entanglement
shadows, orbifold singularities, and compact spaces such as the sphere in AdSpˆSq. These
features imply, according to the python’s lunch conjecture, novel qualitative differences be-
tween complexity and entanglement in the holographic context. We also find, surprisingly,
that extended black brane interiors have a non-extensive complexity; similarly, for multi-
boundary wormhole states, the complexity pleateaus after a certain number of boundaries
have been included.
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1 Introduction

A central theme of the past decade and a half of work in holography has been that the emergence
of the bulk space is reflected in quantum information-theoretic properties of the boundary sys-
tem. The foundational result is the Ryu-Takayanagi (RT) formula for the spatial entanglement
of the holographic state, which in its quantum-corrected form is [1, 2]:

SpρAq «
AreapXAq

4G
` Spρaq . (1.1)

Here the holographic state is assumed to admit a semiclassical bulk description and to be time
reflection-symmetric. The semiclassical state lives at the time reflection-symmetric bulk Cauchy
slice Σ, A is a subregion of the conformal boundary BΣ of this slice, ρA is the reduced density
matrix of the boundary quantum field theory to this subregion, and SpρAq is the corresponding
von Neumann entropy. On the right-hand side of this equation, XA is the minimal area surface
on Σ which is homologous to A, ρa is the reduced density matrix of the bulk quantum fields on
the region bounded by A and XA, and Spρaq is its von Neumann entropy. The right-hand side of
this equation defines the generalized entropy of XA in the corresponding bulk state, denoted by
SgenpXAq. This geometric dictionary has provided a great deal of insight into the emergence of
bulk space from the spatial entanglement structure of the boundary quantum field theory [1,3–5].

In this correspondence, the boundary state ρA is conjectured to contain all of the quantum
information about the state ρa; and the bulk physics in the entanglement wedge of A, the bulk
domain of dependence Da, is conjectured to be holographically represented in the physics of the
boundary domain of dependence DA [5–7]. This statement is known as “entanglement wedge
reconstruction” and has been given a more precise formulation within the past several years,
in the language of quantum information theory. In this formulation, one first considers the
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bulk-to-boundary map V : HΣ Ñ HCFT, where HΣ is the Hilbert space of bulk effective field
theory excitations on Σ, commonly dubbed the code subspace, and HCFT is the CFT Hilbert
space defined on BΣ. This map consequently defines the encoding channel onto the subregion A

of the conformal boundary:1

N pρaq “ TrĀpV ρa b σāV
:
q “ ρA . (1.2)

Here σā can be any reference full-rank density matrix on the bulk complement region ā. The
statement of entanglement wedge reconstruction is that N admits a recovery map R, i.e. an
inverse channel satisfying R ˝N pρaq « ρa. The existence of such a recovery channel R has been
identified as an inevitable consequence of (1.1) holding within states of the code subspace [8–12].

Moreover, the structure of entanglement wedges in hyperbolic space is very suggestive, given
that there are spatial regions b localized deep in AdS that are contained in the entanglement
wedge of the union of disjoint boundary subregions, A “ \iAi, while not being contained on any
of the individual entanglement wedges, b X ai “ H. In this sense, the way the bulk quantum
information is distributed on the boundary is reminiscent of (operator algebra) quantum error
correcting codes, where the quantum information of the logical system is distributed non-locally
on the physical system [3, 9, 10, 13]. Special “holographic codes” modelling these features of V
can be designed in qubit systems [14,15], using tensor networks that provide a discretization of
the emergent hyperbolic space (see [16] for more realistic constructions). Tensor network models
can also be used to qualitatively describe the map V for time-reflection symmetric but otherwise
general reference states, with associated bulk time reflection-symmetric Cauchy slices Σ.

More generally, entanglement wedge reconstruction is expected to work in situations that
include non-trivial dynamical evolution of the bulk geometry, in which case XA is replaced by
the HRT surface [17] in (1.1), as well as in situations where the gradients of the bulk entanglement
Spρaq and classical area term compete, in which case (1.1) is replaced by the full-fledged quantum
extremal surface (QES) prescription [18]. These extensions provide a new perspective on the way
in which the information escapes from an evaporating black hole [19,20]. Namely, the possibility
of recovering the information from the Hawking radiation is manifested semiclassically after the
Page time in terms of a non-trivial minimal QES delimiting an “island” in the entanglement
wedge of the radiation [19–21].

In these situations, the statement of entanglement wedge reconstruction becomes particu-
larly surprising, since the entanglement wedge Da generally contains regions that are causally

1 For ease of exposition, we are assuming that all of the Hilbert spaces factorize. Non-factorizability can be
treated in the language of von Neumann algebras.
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inaccessible from A. That is, the causal wedge of A, the set of bulk points that are both in
the future and in the past of DA, is strictly contained in the entanglement wedge. The causal
wedge is accessible through correlators of appropriately smeared local operators on the boundary
through the bulk-to-boundary operator map [22–25]. In fact, larger regions have been identified
to be accessible in a simple way, by being able to manipulate simple sources in the boundary
Hamiltonian [26]. These regions are delimited by the apparent horizon, or more precisely, by the
outermost QES. More complicated operators are expected to be needed to access the region of
the entanglement wedge that lies beyond this region. Characterizing these operators is a major
open problem in holography and lies at the core of the black hole information problem.

1.1 Python’s lunch conjectures

Figure 1: Structure of slice Σ containing a python: the globally minimal QES XA, the bulge Xb
A and the

constriction Xc
A. The python, shaded in blue, is delimited by XA and Xc

A. The entanglement wedge of A contains
the python. Throughout this paper, bulge surfaces will be consistently drawn in red.

A step toward understanding bulk reconstruction beyond the outermost QES was given
in [27], based on the analogy with tensor network toy models of the bulk-to-boundary map V .
In the simplest case, illustrated in Fig. 1, the bulk Cauchy slice Σ contains two locally minimal
QESs: the outermost QES, Xc

A, called the constriction, and the globally minimal QES XA, which
delimits the entanglement wedge a. The region between them is called a python’s lunch, or just
python for short. In the python, there exists a third QES homologous to A that is not locally
minimal, Xb

A, called the bulge. In such a situation, the python’s lunch conjecture (PLC) [27]
(see also [26,28]) assigns a unitary complexity to R given at leading order by

CpRq „ exp

ˆ

SgenpXb
Aq ´ SgenpXc

Aq

2

˙

, (1.3)

where we are omitting subexponential volume factors that become unimportant in most situa-
tions.
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The motivation behind this proposal comes from tensor-network toy models of V , where the
geometry of Σ gets discretized in the form of a graph with local tensors at the vertices. The task
of reconstructing the entanglement wedge is to undo the part of the network representing a, by
acting with local unitaries on A. Consequently, the complexity to perform this operation gets
“geometrized” by the structure of the network. Namely, the reconstruction requires one to undo
the network locally, and to do that one needs to go from the locally minimal cut representing
Xc

A to the locally maximal cut representing Xb
A. Each of these cuts defines an auxiliary Hilbert

space, and the part of the network between the cuts defines an isometric map between these
Hilbert spaces. By construction of the network, the log bond dimension of these cuts is SgenpXc

Aq

and SgenpXb
Aq respectively. Since SgenpXb

Aq ą SgenpXc
Aq, the inverse of this map post-selects (i.e.

orthogonally projects out) a Hilbert subspace of log dimension SgenpXb
Aq ´ SgenpXc

Aq of the Xb
A

cut. In quantum information, under genericity assumptions for the local gates, the optimal way
to overcome this post-selection unitarily is to introduce ancilla qubits and perform a brute force
Grover search, at the cost of an exponentially large number of few-body unitary operations,
parametrically given by exp 1

2
pSgenpXb

Aq ´ SgenpXc
Aqq. This motivates the particular form of the

exponent in (1.3), which is given in terms of generalized entropies and can be directly translated
to the semiclassical description of Σ in AdS/CFT.

The PLC (1.3) is able to describe why, in some specific situations, the global bulk-to-boundary
map V remains “simple”, with unitary complexity scaling polynomially with some extensive
parameter of the boundary, like its thermodynamic entropy S, while, at the same time, the
complexity to reconstruct the entanglement wedge a for any proper subsystem A of the boundary
is exponentially large in S. This dichotomy is what originally motivated the conjecture in [27].
Examples of these situations arise when V is constructed dynamically from the unitary time-
evolution operator of the system, V “ expp´iHtq, driven by a chaotic few-body Hamiltonian
H that couples A and Ā. Any initial information scrambles rapidly throughout the system,
which generically opens the possibility of recovering it from any subsystem A containing more
than half of the entropy of the full system. On the one hand, with access to the full system,
undoing the time-evolution V is by assumption “simple” for subexponential timescales. On the
other hand, the recovery from A typically requires exponentially many unitary operations, with
CpRq „ epS´SAq{2, from the fact that there is a python for A. For specific models of black hole
evaporation, these features of the bulk-to-boundary map were studied in [29,30].

A generalization of the PLC to situations with multiple “lunches” on the same Cauchy slice
was given in [28]. We represent the situation with two lunches in Fig. 2. In general, one
considers n lunches, defined by a set of non-intersecting locally minimal homologous QESs
S “ tX1, X2, ..., Xnu between the globally minimal QES X1 ” XA and the constriction Xn ” Xc

A.
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Figure 2: Schematic structure of a python with multiple lunches: between the globally minimal QES XA and
the constriction Xc

A, there are locally minimal QESs such as X2.

In between each pair of adjacent minimal QESs Xi and Xi`1, there will be a bulge, Xb,i
A , for

i “ 1, ..., n´ 1. According to the generalized PLC, the complexity to reconstruct the lunch from
A is

CpRq „ max
iăj

#

exp

˜

SgenpXb
j q ´ SgenpXiq

2

¸+

. (1.4)

where i ă j means that the maximization is restricted to minimal QESs, labelled by i, that
lie between the bulge, labelled by j, and A. Intuitively, this expression simply represents that
the total amount of post-selection is largely dominated by the maximum generalized entropy
difference between any bulge and any minimal cut that lies closer to A.

1.2 This paper

The precise meaning of the complexity in Eqs. (1.3) and (1.4) is to date incomplete. The goal of
this paper is to provide additional data for sharpening these conjecture by more fully exploring
the properties of the bulge surface Xb

A for the simplest species of python: geometric pythons
that arise already at the level of the classical bulk geometry dual to some reference holographic
state. For these pythons, all the different surfaces XA, X

b
A, Xc

A will be extremal area surfaces,
and their generalized entropies will all be given by the area term in (1.1), to leading order in the
semiclassical expansion.

Furthermore, in this paper, we will work on a fixed partial Cauchy slice Σ of the bulk
spacetime and consider extremal surfaces for variations restricted to Σ. For time reflection-
symmetric states of the holographic system, we expect that, generally, the natural choice of
partial Cauchy slice consists of the bulk moment of time symmetry Σ. For instance, partial
maximin surfaces, like the constriction or the RT surface, must lie on Σ. Therefore, our definition
holds for the states for which this is true. However, it is important to note that, even restricted
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to time-reflection symmetric states, this is not always true. Explicit states for which time
reflection symmetry is spontaneously broken by the bulge and other minimal surfaces have been
constructed recently, in near-extremal black hole interiors in [31].2 We do not believe that this
phenomenon occurs in any of the spacetimes we study in this paper, although we have not proven
that this is the case.

In this context, we will point out several properties that Xb
A fails to satisfy that are usually

taken for granted for the locally minimal surfaces Xc
A and XA. Assuming these properties for a

general extremal surface leads to the incorrect identification of the bulge in many situations. We
will show that this has important physical consequences for the outcome of the python’s lunch
conjectures (1.3), (1.4). Throughout the paper, we will identify the true bulge surface in different
situations, study its topological and geometric properties, and comment on the outcome of the
conjecture given these properties.

The paper is organized as follows. We begin in section 2 by studying the implications
of the minimax definition of the bulge surface given in [27], and relating it to a branch of
geometric measure theory called Almgren-Pitts min-max theory, developed by mathematicians
for the purpose of proving the existence and properties of extremal surfaces. We also review the
motivation of the bulge as a minimax surface from tensor network heuristic models. With these
results in hand we proceed to explore a number of different examples of holographic states with
classical pythons:

• In section 3, we demonstrate that, unlike minimal surfaces, bulges can break continuous
and discrete spatial isometries of the slice Σ and region A. This effect has an immediate
consequence for generic states of black branes with semiclassical interiors, namely, accord-
ing to (1.3), the interiors are simple to reconstruct; specifically, the log-complexity is not
extensive in the boundary volume. Furthermore, in the planar limit, the bulge, and hence
according to the conjecture the complexity, are highly sensitive to the choice of infrared
regulator.

• In section 4, we explore examples of bulges that arise in vacuum anti-de Sitter (AdS) space.
We start by exploring some simple examples arising when A is comprised of disconnected
boundary subregions in AdS3 and AdS4, including, for AdS3, where A covers the entire
boundary except a discrete set of points. This includes an example where a python is
present, yet the exponent in the complexity vanishes. We then show that, in the presence

2 Other states with time-reflection symmetric pythons in JT gravity and massless matter were constructed
in [32].
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of compact extra dimensions, even when the metric of Σ is of product form, Xb
A is gener-

ically not of product form. The generalized entropy of the bulge SgenpXb
Aq thus contains

dynamical information about the holographic system that goes beyond the spatial corre-
lations in the ground state of the holographic CFT. We find that this effect resolves the
singular bulges previously found in AdS3.

• In section 5, we describe bulges on excited states of the holographic CFT. We include
examples in which the dual geometry has no horizon, namely AdS3 orbifolds and Lin-
Lunin-Maldacena (LLM) geometries. Additionally, we describe bulges that form outside
of the horizon of an eternal black hole.

• In section 6, we explore microstates of multiple black holes with pythons occupying their
shared semiclassical interiors. For two-sided states, we show that the complexity to recon-
struct the interior with access to A is the same, whether A contains both boundaries or
just the boundary that can access the interior. We show that this is a general feature of
multi-boundary wormhole microstates, namely, the complexity to reconstruct the interior
plateaus after a number of boundaries has been included in A. This effect is essentially a
discrete analogue of the non-extensivity of the log-complexity for black branes mentioned
above. We also provide a slight generalization of the second python’s lunch conjecture
(1.4) in section 6, where we point out that different choices might exist for the set S of
non-intersecting minimal surfaces defining the lunch. Different choices of S cannot all be
included on the same foliation, and therefore we must minimize the complexity (1.4) over
these choices.

We regard these examples as providing data against which to check the PLC, in the hope that the
complexity can be directly evaluated, or its properties studied, in the corresponding situations.
We close with a summary and discussion in section 7. Some technical details concerning extremal
surfaces in R3 are presented in the appendices.

2 Mathematical background

In [27], a bulge surface in a holographic spacetime was defined mathematically via a certain
maximinimax formula. The “minimax” part of the formula referred to operations on a Cauchy
slice, and the “maxi” to a maximization over Cauchy slices, rendering the formula covariant. In
this paper, we are focusing on surfaces lying on a constant-time slice of a static spacetime, or
more generally lying on the t “ 0 slice of a time-reflection symmetric spacetime. Since we are

8



fixing a Cauchy slice, we will focus on the “minimax” part of the formula, and put aside the
“maxi” part.

In this section, we will review the minimax formula of [27], and argue that bulge surfaces
obeys certain properties that we will make use of in the rest of the paper. Our discussion will be
far from mathematically rigorous. However, we will also point out that the minimax formula fits
naturally within an existing body of mathematical work called “Almgren-Pitts min-max theory”.
This theory, a branch of geometric measure theory, has been developed since the 1960s as a
set of techniques for proving the existence and properties of extremal submanifolds in general
Riemannian manifolds. We will give a very brief sketch of some of the ideas in this theory, not
because we will make use of them in this paper, but for completeness and to reassure the reader
that this work can be put on a rigorous foundation if desired. (See [33,34] and references therein
for additional details.)

2.1 Extremal surfaces & Morse index

We begin by recalling some basic facts about extremal hypersurfaces in Riemannian manifolds.
Let N be a compact Riemannian manifold, possibly with boundary. We will denote coordinates
on N by xµ and its metric by gµν . By a surface X we mean a compact orientable hypersurface
in N such that BX Ă BN and intX Ă intN (where int denotes the interior). We will denote
coordinates on X by ya, the induced metric by hab, a continuous unit normal vector field by nµ,
the extrinsic curvature (defined with respect to nµ) by Kab, and its trace by K.

We now want to study variations in the area of X under small deformations. Let η be a
smooth function on X that vanishes on BX.3 The first variation of the area under deforming X
by applying the exponential map to each point of X by the vector ϵηnµ, is

δAreapXq “

ˆ
X

dy
?
hKη . (2.1)

The variation is therefore zero for any function η if and only if K “ 0 everywhere. Again
following physicists’ conventions, we will call such a surface extremal. (Mathematicians use the
term minimal.)

3 In subsection 3.2, we will also consider imposing a Neumann boundary condition on η, where the surface meets
an end-of-the-world brane. The formulas in this subsection remain correct, including the self-adjointness of the
Jacobi operator, with this boundary condition.
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Assume X is extremal. The second variation of its area is:

δ2AreapXq “
1

2

ˆ
X

dy
?
h

“

habBaηBbη ´ pRµνn
µnν ` KabK

ab
qη2

‰

“
1

2

ˆ
X

dy
?
h ηJη , (2.2)

where J is the following Schrödinger-type operator on X, called the Jacobi operator :

J :“ ´∇2
´ Rµνn

µnν ´ KabK
ab , (2.3)

with ∇2 the Laplacian with respect to hab. From its definition, the Jacobi operator’s spectrum is
discrete (since X is compact), bounded below, and unbounded above. The number of negative
eigenvalues is called the (Morse) index of X, for the following reason. If we consider the space of
all surfaces in N with boundary equal to BX, the area functional defines a Morse (or Morse-Bott)
function4, of which X is a critical point; by (2.2), the number of negative eigenvalues of J is
then equal to the Morse index. (More precisely, for a generic metric on N , the area functional
is a Morse function; and for a metric that is generic subject to some isometry group, the area
functional is a Morse-Bott function.)

The following facts about the index will be relevant to us in the rest of the paper. First,
if the surface is a local minimum of the area, then the index vanishes; for a generic metric (or
generic subject to some isometries), the converse holds. Second, suppose that X is a disjoint
union, X “ X1 \ X2 \ ¨ ¨ ¨ . Then a basis of eigenfunctions of J can be chosen such that each
eigenfunction vanishes on all but one Xi; therefore the index of X is simply the sum of the
indices of the Xi. Third, suppose that X is connected and has index 1. It is a standard fact
from quantum mechanics that the ground state wave function of a Schrödinger operator has no
nodes; therefore the eigenfunction η has constant sign, in other words the unstable mode moves
all of X in the same direction.

2.2 Min-max theory

Now suppose that a subset Ñ of N is bounded by two locally minimal surfaces X0, X1; keeping
track of orientations, we have

BÑ “ X0 ´ X1 . (2.4)

4 A Morse function on a manifold is a C2 real function whose Hessian, at each critical point, is non-degenerate.
The Morse index of a critical point x is the largest dimension of a subspace of the tangent space Tx on which the
Hessian is negative definite. A useful generalization is a Morse-Bott function, a function whose critical points
form submanifolds on which the normal Hessian is nondegenerate. Writing the Hessian as x¨, J ¨y, where x¨, ¨y is
a positive-definite inner product on Tx and J is a symmetric operator, the Morse index equals the number of
negative eigenvalues of J .
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Necessarily then X0 and X1 are homologous, and share the same boundary: BX0 “ BX1. (More
precisely, they are homologous relative to that boundary.5) In the holographic setting, Ñ is a
“python”. We will denote by H̃ the homology class of X0,1. (One or both of X0,1 may be empty,
in which case the elements of H̃ are null-homologous.) By Almgren-Pitts min-max theory, there
exists a third extremal surface with index 1 in H̃.

The argument rests on the mountain-pass lemma, which is a general statement concerning
Morse functions that guarantees the existence of an index-1 critical point, given two local minima
x0,1 connected by a path x̄ptq.6 This is proved by considering the following minimax problem:

min
xptq

max
t
fpxptqq , (2.5)

where f is a Morse function, the minimum is over paths xptq homotopic to x̄ptq, and the maximum
is over points on xptq. The solution to this problem is an index-1 critical point.

In the case at hand, we are working in the homology class H̃.7 The initial path X̄ptq is given
by the level sets of a Morse function ψ on Ñ that equals 0 on X0 and 1 on X1; we will call such
a path a level-set path. (This Morse function should not be confused with the Morse function f
appearing in the mountain-pass lemma, whose role is played here by the area functional.) A path
Xptq homotopic to X̄ptq is called a sweep-out. Any two Morse functions on Ñ define homotopic
paths, so the definition of a sweep-out is independent of the choice of Morse function.

2.3 Bulge surface: definition & properties

The construction defining the bulge surface in [27] is similar to, but not exactly the same as, the
above Almgren-Pitts construction. Specifically, the minimization is over level-set paths, rather
than sweep-outs. Assuming, as we will, that the minimax exists and is an extremal surface, it
must have index 1. We will call this surface Xb. For a generic metric, Xb is unique; for a metric

5 Here we work in homology relative to the codimension-2 boundary submanifold BX0. In subsection 3.2, we
will consider a slightly more general situation, in which we work in homology relative to a codimension-1 part of
the boundary of Ñ , representing an end-of-the-world brane, and we require surfaces to end orthogonally on this
boundary, leading to the Neumann boundary condition mentioned in footnote 3. As far as we know, this extra
boundary does not affect the considerations of this section.
6 Either the index-0 critical points must be distinct (or, in the Morse-Bott setting, lie on distinct connected
components of the critical submanifold), or the path x̄ptq must be non-contractible.
7 More accurately, in geometric measure theory one works with a generalization of the notion of submanifold
called a varifold. The space of varifolds admits a natural topology that allows splitting, joining, and other
degenerations as continuous processes. The burden is then to show that the varifold returned by the mountain-
pass lemma is, under certain conditions actually a submanifold. In fact, as found in [27], there are generic
situations where the minimax surface is not a submanifold; we will return to this example in subsection 4.1.
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that is generic up to isometries, Xb is unique up to the action of the isometries.

Any level-set path is a sweep-out, but the converse does not hold; specifically, whereas the
level sets of a function cover each point of Ñ exactly once, a sweep-out may “back up” and cover
some part of Ñ more than once. This leads to the question of whether the two prescriptions
are equivalent. We believe they probably are equivalent, but do not have a proof. It is hard to
see how the freedom to “back up” afforded by the sweep-outs could allow one to achieve a lower
maximal area than the level-set paths; for this happen, the sweep-out would somehow have to
slip through the bulge surface using only smaller surfaces, which intuitively seems impossible.
However, we readily admit that this claim may simply reveal a lack of imagination on our part. If
the two prescriptions are not equivalent, then one would have to show that the bulge prescription
is actually well-defined and yields an extremal surface.

The rest of the paper is concerned with finding bulge surfaces in various holographic space-
times. Of course, literally following the minimax definition of the bulge surface involves min-
imizing over an infinite-dimensional space of Morse functions, which is prohibitive, so instead
one simply looks for index-1 surfaces. If there are multiple index-1 surfaces, however, how does
one determine which one is the bulge? We will now prove a couple of lemmas that will help with
this task.

First, let X P H̃ be an index-1 surface, and recall that the index is additive under disjoint
union. Therefore, if X is disconnected, then each component must be extremal, and exactly one
of them must have index 1, with the rest having index 0. The index-0 components may coincide
with components of the surfaces X0,1 that bound Ñ . The index-1 component must lie in the
interior of Ñ .

For simplicity, from here on we will focus on connected surfaces; the disconnected case can
be handled using the above decomposition.

Lemma 1. If connected index-1 surfaces X2,3 P H̃ do not intersect, then there exists an index-0
surface X4 P H̃, not equal to X0 or X1.

Proof. X2 divides Ñ into two regions, one bounded by X0 and X2, the other bounded by X2

and X1. Since X3 is connected, it lies entirely in one of these regions. Define ˜̃N Ă Ñ as the
region lying between X2 and X3. Let ˜̃H be the set of surfaces in ˜̃N homologous to X2,3, and
define X4 as the least-area surface in ˜̃H. X4 cannot coincide with X2 or X3, since each of those
surfaces has a negative mode that moves the surface into ˜̃N . X4 also cannot partially coincide
with X2 or X3, since then its area could be reduced by rounding out the corner. Therefore X4

must lie entirely in the interior of ˜̃N , and must therefore be an index-0 surface.
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If H̃ does not contain any index-0 surfaces aside from X0,1, then we say that X0,1 are “adja-
cent”.

Lemma 2. If X0,1 are adjacent, and all index-1 surfaces in H̃ are connected, then Xb is the
least-area one.

Proof. Let X be an index-1 surface in H̃. Consider a restricted minimax problem where we
minimize over level-set paths containing X, and for each path maximize the area. The solution
is some index-1 surface that either equals X or does not intersect X. The latter case is ruled
out by lemma 1 and the assumption that X0,1 are adjacent. Therefore X maximizes the area on
some level-set path.

Xb is defined by minimizing, over level-set paths, the maximum on each path. We showed in
the previous paragraph that every index-1 surface is a candidate in this minimization. Therefore
Xb is the one with the least area.

We close this section with a explanation of the motivation for the minimax definition of the
bulge surface in the setting of the python’s lunch conjecture (1.3). The heuristic identification
of Ñ with a tensor network requires us to view this partial Cauchy slice as a linear map V :

H0 b HÑ Ñ H1, between the Hilbert spaces associated to the cuts through the tensor network
at the respective minimal surfaces X0 and X1, and additionally, the bulk Hilbert space on Ñ ,
where we assume that AreapX0q ă AreapX1q without loss of generality. The above definition
guarantees that the generalized entropy difference, SgenpXbq ´ SgenpX1q, controls the minimal
amount of post-selection necessary to undo this map from X1. To see this, one interprets the
level sets for a given Morse function ψ as providing a 1-parameter family of cuts of the putative
tensor network. Different choices of function ψ represent different cuts of the network, each of
which includes a constrained maximum of the generalized entropy — the area term in our case
— which we shall call Xψ. Assuming that the local tensors in the network are generic enough,8

each ψ likewise represents a particular way of undoing the map V layer-by-layer, by acting with
few-body unitaries on each surface in the level set of ψ. The number of unitary operations needed
to perform this contraction is parametrically controlled by the amount of post-selection present
on the level set of ψ, which is given by SgenpXψq ´ SgenpX1q. Thus, the optimal way to undo
the tensor network consists in minimizing over the choice of ψ, which leads to the motivation to
define the bulge Xb as the minimax surface between X0 and X1.

8 For the states considered in Ref. [27] this amounts to having to wait until all of the perturbations are scrambled
in the system.
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3 Bulges break spatial isometries

In this section we will explicitly show that the bulge can generally break the spatial isometries
in spatially homogeneous states of the holographic system. We will do so for the cases where the
bulges have spherical versus planar symmetry, and find that the latter indicates surprisingly low
values of the complexity to reconstruct the lunch. We will also show that the bulge geometry,
hence the complexity, is surprisingly sensitive to the choice of infrared regulator.

3.1 Spherical symmetry

Figure 3: Bulges, unlike minimal surfaces, can break the isometries of the Cauchy slice Σ. The naive bulge
candidate X0

A has additional negative modes, like the one represented by the arrows. There is an infinite family
of bulges Xb

A, which have Morse index 1 and, additionally, zero modes corresponding to the isometries of Σ
connecting them.

To be concrete, consider a holographic CFT placed on a spatial Sd´1 (d ą 1). Let |Ψy be a
homogeneous state on the sphere, with semiclassical description given by the initial data

ds2Σ “ dρ2 ` r2pρqdΩ2
d´1 , (3.1)

specified at a moment of time reflection-symmetry Σ. We take the slice to have the topology of
a D-dimensional ball, which implies r Ñ 0 as ρ Ñ 0; for smoothness, r{ρ Ñ 1. Asymptotically,
we demand that rpρq „ eρ{ℓAdS for ρ Ñ 8, so that the spacetime is asymptotically AdS. The RT
surface for the full conformal boundary A is the empty set, XA “ H. As illustrated in Fig. 3, in
order to have a python, we require rpρq to possess a local minimum at some ρc ą 0; this defines
the constriction Xc

A. Note that these surfaces both respect the spherical symmetry.

From the considerations in section 2, there must exist a bulge surface Xb
A between XA and

Xc
A, in other words in the region ρ ă ρc. Moreover, since rpρq has two local minima, at ρ “ 0
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and ρ “ ρc, there must also exist a local maximum between them, at 0 ă ρ0 ă ρc, with

r0 :“ rpρ0q , r1
pρ0q “ 0 , r2

0 :“ r2
pρ0q ă 0 . (3.2)

We shall refer to this sphere as the “naive bulge candidate”, denoted by X0
A.

The naive bulge candidate X0
A is a totally geodesic surface, given that r1pρ0q “ 0, and thus

it is extremal. The Jacobi operator (2.3), which determines its index, is easily computed:

J “ ´
1

r20
∇̄2

´ α , (3.3)

where ∇̄2 is the Laplacian on the unit pd ´ 1q-sphere and α is the following positive constant:

α “ ´pd ´ 1q
r2
0

r0
. (3.4)

The eigenfunctions of J are thus simply the spherical harmonics, and the eigenvalues are

λℓ “
ℓpℓ ` d ´ 2q

r20
´ α , (3.5)

where ℓ “ 0, 1, . . ., with multiplicity 1 for ℓ “ 0 and greater than 1 for ℓ ą 0.

The ℓ “ 0 eigenmode is always negative, λ0 “ ´α ă 0, which simply corresponds to the
uniform radial deformation, which decreases the surface’s proper radius and therefore area. This
means that X0

A has index at least 1.

However, X0
A may have index larger than 1. The condition for the existence of additional

negative modes is α ą pd ´ 1q{r20, or

´r2
0 ą

1

r0
. (3.6)

The left-hand side in (3.6) controls the intrinsic curvature of X0
A, while the right-hand side

determines the curvature of Σ along the orthogonal direction.9 In particular, if the lunch is very
prominent, then the latter will dominate and X0

A will have index larger than 1. Since the true
bulge must have index 1, in such a case, it must not be the naive one, Xb

A ‰ X0
A.10

9 The condition (3.6) is saturated if the metric on Σ is that of a round Sd in the neighborhood of X0
A, i.e. the

profile function near ρ0 is given by rpρq “ r0
a

1 ´ pρ ´ ρ0q2{ρ20. In this example X0
A is the equatorial Sd´1,

which has index 1. In this borderline case, X0
A has additional zero modes, the ℓ “ 1 spherical harmonics, which

represent the rotations of the Sd broken by the equator.
10 Note that, even when (3.6) is false, so that X0

A has index 1, it need not be the true bulge. Recall from subsection
2.3 that the bulge is the least-area index-1 surface in the relevant homology class. One can construct geometries
in which X0

A has index 1 but there is another index-1 surface with lower area, which is therefore the true bulge.
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What then is the true bulge, Xb
A? It must be a surface that spontaneously breaks the Opdq

symmetry of Σ, as illustrated in Fig. 3. Furthermore, there must exist a family of bulge surfaces
related by this symmetry, and the Jacobi operator on the bulge must have a zero-mode associated
to the broken symmetry.

In d “ 2, the metric reduces to ds2Σ “ dρ2`r2pρqdφ2, and the angular coordinate φ has period
2π. For a parametrization given by the parameter σ, the embedding function r “ rpσq, φ “ φpσq

of a bulge can be found by extremizing the area functional

Area “

ˆ
dσ

a

9ρ2 ` r2 9φ2 , (3.7)

where the dot represents d{dσ. Taking σ to be the proper length of the bulge, the equation of
motion for ρpσq reduces to the equation of motion of a non-relativistic particle moving in one
dimension with zero total energy

9ρ2 ` Veffpρq “ 0 , (3.8)

subject to the effective potential

Veffpρq “
r2m
r2pρq

´ 1 . (3.9)

The parameter rm “ r2 9φ is a constant of motion along the trajectory. The particle starts at
r “ r0, moves towards smaller values of the radial coordinate r, and then bounces back at
rpρq “ rm ď r0. The parameter rm is fixed from the condition that the bulge Xb

A must be a
closed trajectory, so that ρpφq must be periodic. To select the minimal among all the possible
bulge candidates, we impose that Xb

A wraps the circle once, so that ρpφq “ ρpφ ` 2πq. This
imposes the constraint

π “

ˆ ρRm

ρLm

rmdρ
r2

a

´Veffpρq
, (3.10)

where ρL,Rm are the roots of rpρq “ rm closest to ρ0 with ρLm ă ρ0 ă ρRm ă ρc. This constraint
determines the value of rm as a function of the profile rpρq of the geometry.

That a solution to (3.10) exists, subject to (3.6), can be shown as follows. The frequency of
small oscillations about ρ0 is

ω “

c

V 2
eff

2
“

d

´
r2
0

r0
ą

1

r0
; (3.11)

since 9ϕ “ 1{r0 in this limit, the distance in ϕ traversed over a half-period is less than π. On
the other hand, as ρRm approaches ρc, the potential near the turning point flattens out, so the
period goes to infinity. Between these two extremes, there therefore exists a value of rm obeying
(3.10). We can furthermore show that this solution has index 1. We first note that the Jacobi
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operator has a zero-mode, corresponding to the broken rotational symmetry; this mode has two
nodes, at ρL,Rm , where the rotation acts tangent to the surface. Therefore this mode is the “first
excited state” (in quantum mechanics parlance), so there is exactly one eigenmode with negative
eigenvalue (the “ground state”). By the same logic, a solution that oscillates n times, if it exists,
will have a zero-mode with 2n nodes and index 2n ´ 1. This guarantees that the solution we
found is the only one with index 1, hence it must be the bulge.

In higher dimensions, each bulge Xb
A will be a deformed sphere that spontanteously breaks

the Opdq symmetry of Σ into some subgroup H. The bulges thus will have a number of zero
modes given by dpd´ 1q{2 ´ dimpHq, according to Goldstone’s theorem. What H is ultimately
will depend on the radial profile rpρq of the python. However in the scenario with minimal but
nonzero symmetry breaking, the negative modes of X0

A will condense to preserve a H “ Opd´1q

subgroup, with d ´ 1 zero-modes. In this case the true bulge Xb
A is a squashed sphere along a

particular axis, where the d ´ 1 zero modes arise from the rotations of this axis.

Similarly, the bulge can break discrete isometries of the holographic state, such as Z2 reflec-
tion symmetry, or permutation symmetry in the case of multiple boundaries. In section 6 we
will show this latter case explicitly for microstates of three dimensional black holes.

Figure 4: Specific example of a bulge which breaks spherical symmetry on a dust shell microstate of a two-sided
black hole. On the left, the Penrose diagram of the geometry, where the trajectory of the dust shell is shown
in blue. The semiclassical state is defined on the time reflection-symmetric Cauchy slice Σ, consisting of two
exterior regions ΣoutL,R

delimited by the apparent horizons of the two black holes, and a python’s lunch geometry
Σin in the black hole interior. On the right, the geometry of the python Σin. The naive bulge is the maximum
sphere, which sits at the position of the dust shell on Σ. The true bulge, in red, spontaneously breaks spherical
and Z2 reflection symmetry of Σ.

We close with a specific example of a symmetry-breaking bulge, name that associated with
semiclassical states of asymptotically AdSd`1 black holes with interior dust shells, described
in [35, 36]. In these geometries, there is a “naive bulge” (incorrectly identified in [35] as the
true bulge) at the location of each spherical shell of dust, where the sphere carries the SOpdq

symmetry of the Cauchy slice. For the purposes of specificity and brevity, let us consider the
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example of a single shell in the interior of a two-sided black hole, as described in [35], in the
case that the black hole on each side has the same temperature and the whole geometry has a
Z2 reflection symmetry across the shell. The geometry is built by starting with two copies of
the two-sided black hole, with the copies glued along the shell’s trajectory as in Fig. 4, using
the Israel junction conditions. The resulting background has time-reflection symmetry, and the
metric along the time-symmetric slice Σ corresponds to two copies of the metric on the t “ 0

slice of the black hole, glued together at some proper radius r0 in an exterior region of each. Let
the radial coordinate in AdS-Schwarzschild coordinates be y so that y Ñ 8 is the boundary, the
radius of the Sd´1 factor scales as rpρq „ ey{RAdS , and the shell resides at y “ y0. If we choose a
local radial coordinate ρ which is zero at the shell, and for which the radial coordinate on each
side of the shell is y „ y0 ´ |ρ|, then we have

rpρq “ rshell ´ r1
0|ρ| ` Opρ2q , (3.12)

where r1
0 ą 0. As the metric of the python is of the form (3.1), r2pρq has a delta-function

singularity with negative coefficient at the shell location ρ “ 0, and the condition in (3.6) is
automatically satisfied. Using the formula 3.5, we can see that a surface coinciding with the
shell has infinite index. A natural candidate bulge arises from considering each side of the shell
to be the spatial slice of a cutoff AdS-Schwarschild geometry. One each side of the geometry,
consder the minimal “RT” surface ending on an equatorial Sd´2 of the dust shell; and glue
them together at the dust shell. There is a clear negative mode that arises from deforming the
intersection of this surface with the dust shell off of the equator. This solution will retain an
SOpd´ 1q symmetry, and leave d´ 1 zero modes behind, corresponding to the choice of equator
at which the bulge intersects the dust shell.

3.2 Planar symmetry & simple interiors

Planar-symmetric states can be obtained in the formal thermodynamic limit r0 Ñ 8 from the
spherical case. For the naive bulge candidate X0

A, whose topology is now Rd´1, the spectrum
of J becomes continuous, and (3.6) is never satisfied, provided that r2pρ0q is kept finite in the
scaling limit. In particular, this means that X0

A for planar-symmetric states has index 8, and is
never the bulge surface.

If we regulate the transverse directions, unlike for minimal surfaces homologous to the full
boundary, the character of the bulge will depend on the value of the IR cutoff. Consider for
simplicity the d “ 2 case presented above, and decompactify the spatial circle, so that the
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geometry is
ds2Σ “ dρ2 ` r2pρqdx2 , (3.13)

instead, for x P R. The function rpρq is assumed to have a positive global minimum at ρ “ 0, a
local maximum at ρb ą 0, and a local minimum at ρc ą ρb; this defines a python, as above. (This
is now a two-sided python, and the RT surface XA at ρ “ 0 is no longer empty. This will not
affect our calculation.) Assume that we regularize the geometry by adding a transverse IR cutoff
at x˘ “ ˘Λ´1

IR {2, and requiring the bulge surface to meet the IR cutoff surfaces orthogonally.
This puts a Neumann boundary condition on the deformation function η appearing in the second
variation (2.2), ensuring that the Jacobi operator remains self-adjoint.

For the naive bulge candidate X0
A, the Jacobi operator J will have a spectrum given by λsr20 “

p2πsΛIRq2 ` r0r
2
0, for s “ 0, 1, 2, .... The eigenmodes correspond to the normal deformations

ηs “ cosp2πsΛIRxq, which satisfy the boundary conditions set by the IR cutoff. Therefore the
index of X0

A will be greater than 1 if the IR cutoff is large enough,

Λ´1
IR ą

2π
a

´r0r2
0

, (3.14)

and the naive bulge will not be the correct one in these cases.

Figure 5: As the IR cutoff Λ´1
IR is increased, the bulge undergoes a transition from the naive symmetric bulge

to an extremal surface which spontaneously breaks Z2 reflection symmetry. In the thermodynamic limit, the
bulge aproaches the constriction at any finite distance, and they only differ asymptotically in the transverse space
direction. On the right figure, we include a minimax foliation of the lunch, in gray. For the sake of ilustration,
we have omitted the additional space beyond XA in case the python is two-sided.

The true bulge will locally satisfy the equation of motion (3.8) for the effective potential (3.9),
with the constant of motion rm “ r2 9x. Accordingly, its endpoints will lie at the turning points
of Veffpρq, which lie at the same value of the radial coordinate rpx˘q “ rm ă r0. As x goes from
x´ to x`, ρ will oscillate between the turning points, traversing that region n times. From the
properties of the minimax surface in section 2, assuming that there is no other minimal surface
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homologous to A, the true bulge will be the minimal index-1 surface in the lunch. The analysis
of the index is most easily done by doubling the solution to obtain a solution to the periodic
problem of the previous subsection, and retaining the negative modes of the latter solution that
are invariant under a φ Ñ 2π ´ φ reflection. This solution will have n oscillations, hence (as
argued there) 2n ´ 1 negative modes, of which n are reflection-invariant. So the only solution
with index 1, and therefore the bulge, is the n “ 1 one. In particular, this means that the
endpoints will lie on different sides of this surface, as shown in Fig. 5.

The endpoint radius rm is determined by the analog of (3.10) for the planar case, that is,

Λ´1
IR “

ˆ ρRm

ρLm

rmdρ
r2

a

´Veffpρq
, (3.15)

where ρL,Rm are the two solutions to rpρq “ rm closest to ρ0. From (3.15), it is easy to see that
the area of the bulge will satisfy

AreapXb
Aq ´ rmΛ

´1
IR “

ˆ ρRm

ρLm

dρ
a

´Veffpρq . (3.16)

In the thermodynamic limit ΛIR Ñ 0, the endpoint asymptotes to the value of the radius
at the constriction, rm Ñ rc. The right hand side of (3.16) remains finite, since the integrand
is everywhere finite in the corresponding domain of integration. The left-hand side precisely
controls the exponent in the python’s lunch conjecture (1.3). The complexity to reconstruct the
black brane interior, according to the PLC (1.3), is

CpRq „ expλc . (3.17)

where

λc “
1

8G

ˆ ρRm

ρLm

dρ
a

´Veffpρq „ OpN2Λ0
IRq (3.18)

provides a finite complexity density in the thermodynamic limit.

We arrive at the conclusion that the symmetry breaking of the bulge in the planar case makes
the complexity to reconstruct the lunch not scale exponentially with the coarse-grained entropy
of the CFT system.11 The latter is determined by the generalized entropy of the constriction,

11 Although the exponent does not scale with the entropy and system size, the subexponential volume factor in
the complexity does scale; it may be estimated as follows:

CV “
Λ´1

IR
GℓAdS

ˆ ρc

0

dρ rpρq „ N2Λ´1
IR . (3.19)
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SgenpXc
Aq „ OpN2Λ´1

IR q. In this naive sense, black brane interiors are “simple” to reconstruct. The
direct tensor-network interpretation is that there is an optimal way to undo the tensor network
from A, which uses unitary operators that break planar symmetry, following an optimal foliation
of the lunch which contains the bulge (see one such foliation in gray in Fig. 5). This way, the
amount of post-selection needed to undo the tensor network is drastically reduced compared to
the planar-symmetric foliation of the lunch.

We note, moreover, that the notion of bulge is somewhat ambiguous when we remove the IR
regulator of the transverse spatial directions. In the thermodynamic limit, the bulge sits on top of
the constriction except close to one of its endpoints, at x Ñ ´8 (for the Z2 reflection symmetric
bulge the separation occurs at x Ñ `8). Furthermore, different IR regulators, e.g. those defined
by moving the branes around by a spatial translation x Ñ x` a, will provide different bulges in
the thermodynamic limit. All of them will hug the constriction at finite distance, since in the
effective potential (3.9), the turning point is near a maximum of the potential, which is where
the particle is spending most of its time.12

4 Pythons in the vacuum

We now move into the study of classical bulges that arise from the spatial entanglement structure
of the ground state of the holographic CFT. Our main goal in this section is twofold. First, we
provide an extensive study of the bulge for the entanglement wedge of two disks in AdS4 in
the connected phase. Second, we show that the bulge is significantly modified once a compact
dimension AdSˆY with product metric is added. This effect leads to the resolution of singular
bulges in AdS3.

4.1 2 ` 1 dimensions

The simplest example [27] of a classical python occurs in vacuum AdS3. Consider the entan-
glement wedge a of two intervals A “ A1 Y A2 in the ground state of the CFT2 on a spatial

12 Had we decided to regularize the transverse space using periodic boundary conditions, we would have found
a continuous family of bulges related by translational zero modes. As explained in section 3.1, in the 2 ` 1
dimensional case, these bulges cross the r “ r0 surface twice. Still, when Λ´1

IR Ñ 0 all of the bulges practically
hug the constriction except at a finite region, leading to a log-complexity, according to the python’s lunch
conjecture (1.3), which does not scale with the volume of the transverse space. This suggests that the effect of
accumulation of the bulge on the constriction (and thus non-extensive log-complexity) is also present for large
spherical boundaries, in the regime where the radial curvature of the lunch is much more prominent than the
transverse curvature of the sphere.
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Figure 6: The entanglement wedge a of two disjoint intervals A “ A1 Y A2 in the connected phase contains a
python. The bulge Xb

A is the red curve in the python, consisting of two intersecting geodesics.

circle of radius ℓ. If |A| ě πℓ, the two intervals comprise more than half of the boundary space
and the RT surface XA is in the connected phase (see Fig. 6). The constriction consists of the
disconnected minimal surface, Xc

A “ XA1 YXA2 . The bulge consists of two geodesics which cross
each other, Xb

A “ XA1A3 Y XA3A2 , and is therefore singular. Since this surface is singular, the
theory of small deformations reviewed in section 2 does not directly hold; in particular, neither
the normal vector nµ nor the extrinsic curvature K is well defined at the crossing point, and
deformations cannot in general be described in terms of a smooth function η.

Nonetheless, there is a sharp sense in which this surface has index 1. Its deformations can
be divided into three classes: (1) those that leave a neighborhood of the intersection point
unchanged; (2) those that move the intersection point, but leave the four segments connecting it
to the boundary as geodesics; and (3) those that desingularize the intersection point. The first
two kinds of deformations increase the total area of the surface, thus do not contribute to the
index. The third kind includes two deformation directions, which make the surface homotopic
to XA and to Xc

A respectively. Both of these deformations decrease the area, and they should be
thought of as the two directions that a negative mode can be turned on. Furthermore, since in
both directions the area decreases already at first order in the deformation, the second derivative
(formally, the eigenvalue of the Jacobi operator) is ´8.

One way to think about this situation is as follows. The surfaces homologous to A fall into
two homotopy classes, corresponding to the connected and disconnected phases. (There are
other homotopy classes, but these are the only ones that are relevant for defining the bulge.)
Each class contains a single extremum of the area, the RT and constriction respectively, which
are local minima. These two homotopy classes meet along a codimension-one locus, consisting
of surfaces with the cross topology. In terms of the area functional, this locus is a ridge, with
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the area having a finite negative slope moving away from the ridge in either direction. The
minimal-area surface among the ones on the ridge is the cross consisting of two intersecting
geodesics. There are no other extremal surfaces in this homology class.

The area of the bulge has a clear expression in terms of boundary entropies

AreapXb
Aq

4G
“ SpA1A3q ` SpA2A3q “ SpA1A4q ` SpA2A4q , (4.1)

and thus the complexity according to (1.3), is

CpRq „ exp

ˆ

IpA3 : A4|A1q

2

˙

, (4.2)

where IpA3 : A4|A1q ” SpA1A3q `SpA1A4q ´SpA1q ´SpA1A3A4q is the the conditional mutual in-
formation. The conditional mutual information is non-negative by virtue of strong subadditivity
of the von Neumann entropy. In the holographic context, this was proven in [37].13

4.1.1 Excising boundary points

As an additional observation, we note that the appearance of a python in the vacuum can even
be sensitive to losing access to a measure-zero subset of the boundary Cauchy slice.

We first consider excising two points of the asymptotic boundary of AdS3 as illustrated in
the left of Fig. 7. We can think of removing such points as beginning with a cutoff entangling
surface and taking the cutoff to infinity. The situation is the same as describing AdS in Rindler
coordinates. The acceleration horizon leaves a measure-zero causal shadow on the constant
global time slice, granted that we can access to the rest of the boundary A1 Y A2. There is
no python in this case. As a check on this, we note that this is what we would get from the
two-interval case if we had shrunk A3,A4 to antipodal points.

If, instead, we shrink just A4 to a point, leaving A3 as a finite interval, we obtain the situation
shown on the right side of Fig. 7. The region A1YA2 can be thought of as an interval with a point
removed from its interior. Removing this point has the effect of creating a python. However, the
bulge coincides with the constriction, Xb

A “ Xc
A “ XA1 YXA2 , implying a vanishing exponent in

the complexity (leaving only the subexponential volume factor).

13 The geometric volume of the python N is independent of the sizes of Ai, by virtue of the the Gauss-Bonnet
theorem. Namely, the python N is bounded by four geodesics which meet perpendicularly to the asymptotic
boundary, and thus the internal angles between them vanish, giving

´
N
κ “ ´2π, where κ is the Gaussian

curvature.

23



Figure 7: On the left, we excise two points of the full boundary. One can get this configuration as a limit from
figure 6 where A3 and A4 have each been reduced to a point. This configuration can be recognized as vacuum
AdS3 in Rindler coordinates. On the right, removing a point from an interval generates a constriction and a
python for the proper subregion A “ A1 Y A2. One can get this configuration as a limit from figure 6 where
A4 has been reduced to a point. The bulge hugs the constriction and the difference in areas vanishes, giving no
exponential complexity to reconstruct the lunch.

We could also include A3 in the region, but still leave out its endpoints, so it now covers the
entire boundary save 3 points, as shown in the left part of Fig. 8. Again, there is a python,
and again the bulge coincides with the constriction, Xb

A “ Xc
A “ XA1 Y XA2 Y XA3 , leaving a

vanishing exponent in the complexity.

Finally, with four points excised, the situation is slightly more complicated, given that the
bulge for A will only partially coincide with the constriction, as shown in Fig. 8. Assuming that
A1 Y A2 is large enough to have a connected entanglement wedge, the bulge for A will be the
cross for A1YA2 plus the RT for A1YA2 (which is also the RT for A3YA4), while the constriction
is the union of the RTs of the individual intervals:

Xb
A “ XA1YA3 Y XA1YA4 Y XA3 Y XA4 , Xc

A “ XA1 Y XA2 Y XA3 Y XA4 . (4.3)

This points to a very interesting property of the PLC: the log complexity to reconstruct the
python with access to A is the same as the log complexity to reconstruct python with only
A1 Y A2. We will come back to this property when studying the black hole interior in section 6.

Thus, according to the PLC, in the vacuum of a 2d CFT, removing 4 or more points from
the boundary produces an exponential complexity, while removing fewer than 4 points does not.
This very specific prediction would seem to provide a useful target for testing the PLC, if the
complexity can somehow be independently estimated.
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Figure 8: Excising three or more points generates a python for the full boundary. On the left, the case of
three points, where the bulge is the union of the RT surfaces for A1, A2, and A3. The bulge coincides with the
constriction, giving no exponential complexity to reconstruct the python. On the right, excising four points, the
bulge is the bulge for A1 Y A2 plus the RT surface for A1 Y A2.

4.2 Higher dimensions

We will now move to the higher dimensional pythons in vacuum AdSd`1 for d ą 2, for a boundary
subregion consisting of two disks A “ A1 Y A2 Ă Sd´1. Consider that the sizes of the disks
and their positions are such that the entanglement wedge corresponding to this subregion is
connected, as in the previous case. The constriction consists again of the disconnected surface,
Xc

A “ XA1 Y XA2 . Our case study will be AdS4, where we will explicitly find the bulge Xb
A. As

we will show, unlike in AdS3, Xb
A is a smooth surface, a property that is expected to hold for

any dimension d ą 2.

4.2.1 Warmup: flat R3

The features of the bulge surface Xb
A are qualitatively captured by the simpler model of two

parallel and coaxial disks A “ A1 Y A2, both of radius ρ0, in R3. The disks are separated by a
distance z0 “ 1 which sets the scale of the system. It is convenient to use adapted cylindrical
coordinates,

ds2Σ “ dz2 ` dρ2 ` ρ2dφ2 , (4.4)

where the disks lie at z “ ˘1
2
, respectively. For sufficiently large radius, ρ0 ą ρc « 0.754, there

are three extremal surfaces homologous to A: the disks themselves, and two catenoids, which we
call X˘:

ρ “ a˘ cosh
z

a˘

, (4.5)
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Figure 9: On the left, the three extremal surfaces anchored to the two circles BA consist of the disks themselves,
A, and two catenoids X˘, where X´ is represented in red. On the right, the phase diagram of ∆AreapX˘q “

AreapX˘q ´ AreapAq for the two catenoids, as a function of the disk radius ρ0. For ρ0 " 1, this is a simplified
model of a python, where the RT is XA “ X`, the constriction is Xc

A “ A, and the bulge is Xb
A “ X´.

where the parameters a˘ are the larger and smaller solutions to the boundary condition

ρ0 “ a cosh
1

2a
. (4.6)

These obey a´ ă ac ă a`, where ac « 0.417 is the solution to tanhp1{p2aqq “ 2a. For ρ0 ă ρc,
there are no solutions to (4.6), and the disks are the only extremal surface, while for ρ0 “ ρc

there is one solution. These solutions are illustrated in Fig. 9. In the limit in which the disks
are very large ρ0 " 1, the catenoid X` becomes approximately cylindrical, a` « ρ0, while X´

pinches off, a´ „ plog ρ0q
´1.

The area of X˘ is given by

AreapX˘q “ πa˘

`

1 ` a˘ sinh
`

a´1
˘

˘˘

. (4.7)

The phase diagram is represented in Fig. 9. X´ always has larger area that the other two
surfaces, while X` and A switch, with X` larger for ρ0 less than about 0.948.

Now let us consider the indices of these surfaces. Intuitively, it is clear that the flat surface
A is stable; this also follows from the fact that its Jacobi operator (2.3) is simply minus the
Laplacian, which clearly has no negative modes on the disk with Dirichlet boundary conditions.
Consider starting with ρ0 ă ρc and continuously increasing ρ0. At ρ “ ρc, a new critical point
of the area functional appears and bifurcates. From a Morse theory perspective, we expect that
the smaller of the two, X`, should have index 0 (hence the analogue of the constriction) and
the larger one, X´, index 1 (the analogue of the bulge). This is supported by the fact that the
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larger-area one sits geometrically between the two smaller-area ones. We will now show that it
is indeed the case that X` has index 0 and X´ has index 1.

The Jacobi operator (2.3) takes the following form on the catenoid, with a being either a`

or a´:

J “ ´
sech2

pz{aq

a2
`

a2B2
z ` B

2
φ ` 2 sech2

pz{aq
˘

(4.8)

Defining ζ “ z{a (which ranges from ´1{p2aq to 1{p2aq) and fixing a mode in the φ direction,
ηpζ, φq “ einφfpζq, the eigenvalue equation becomes

Jnf :“ sech2 ζ
`

´f2
`

`

n2
´ 2 sech2 ζ

˘

f
˘

“ a2λf . (4.9)

The parameter a now enters only in setting the boundary condition and rescaling the eigenvalue.
The operator Jn is self-adjoint with respect to the inner product

xf, gya :“

ˆ 1{p2aq

´1{p2aq

dζ cosh2 ζ f˚g (4.10)

(dζ cosh2 ζ being the area element on the catenoid), so it admits a negative eigenvalue if and only
if there exists a function f such that xf, Jnfya ă 0. This implies that, if a negative eigenmode
f1 exists for some a “ a1, then a negative eigenmode must also exist for any a2 ď a1, since the
function f2 which is equal to f1 on the interval r´1{p2a1q, 1{p2a1qs and 0 outside of it, obeys
xf2, Jnf2ya2 “ xf1, Jnf1ya1 ă 0. (Note that f2 is continuous by virtue of the Dirichlet boundary
condition on f1 at ˘1{p2a1q. Note also that f2 is not itself an eigenmode, and this argument
does not tell us the value of the negative eigenvalue, only its existence.) This argument holds
separately for each ζ-parity sector.

The quantity xf, Jnfya is the same as the energy expectation value (with respect to the usual
L2 norm) for a particle on the interval r´1{p2aq, 1{p2aqs with wave function f , subject to the
potential

Vnpζq “ n2
´ 2 sech2 ζ . (4.11)

So Jn has a negative mode if and only if the particle has at least one negative-energy state.
This potential is solvable in the a Ñ 0 limit; the ground state wave function is sech ζ, with
energy n2 ´ 1. For n ě 1, this is non-negative, ruling out negative-energy states for any a. For
n “ 0, the ground state is the only bound state. By continuity, this suggests the existence of a
negative mode for small a, which we will confirm below. On the other hand, the lack of an odd
negative-energy state rules out an odd negative mode at any a, limiting the index to at most 1
(since the first excited state is odd).
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Next, we note that for a “ ac, J0 has a zero mode: fc “ 1´ ζ tanh ζ. This rules out negative
modes for a ą ac, showing that X` has index 0. For a ă ac, fc can be smoothed out near
ζ “ ˘1{p2acq, decreasing xfc, J0fcya, proving the existence of a negative mode, and confirming
that X´ has index 1.

If one is mainly interested in the limit a Ñ 0, it turns out that there is a mathematically
elegant way to prove that X´ has index 1. The trick is to conformally map X´ to the Riemann
sphere using the Gauss map n : X´ Ñ S2ztN,Su, where N,S denote the north and south pole,
respectively. We leave the details of this map for appendix A. The central property which makes
things simpler is that under this map, (2.2) acquires the following form on the sphere

δp2qAreapS2
ztN,Su, h̃q “ ´

1

2

ˆ
S2ztN,Su

dΩ
a

h̃ η
´

∇̃2
` 2

¯

η , (4.12)

where h̃µν “ psin2 θqhµν is the round metric on S2ztN,Su, for the polar angle θ. As noted
in appendix A, we can extend the metric h̃ij smoothly to the two poles N,S and hence, the
index(X´) = index(S2) with the metric h̃ij and the quadratic form (4.12). It is straightforward
to evaluate the index of the second order differential operator (4.12) in L2

h̃
pS2q. The eigenvectors

correspond to spherical harmonics p´∇̃2 ´2qYℓ,n “ λ̃ℓ,nYℓ,n , with eigenvalues λ̃ℓ,n “ ℓpℓ`1q ´2.
Therefore, there is a single negative mode tY0,0u, and three zero modes tY1,0, Y1,˘1u, making the
differential operator (4.12) of index 1 in L2

h̃
pS2q.

A numerical analysis reveals that the negative eigenvalue of J0 on the line is λ0 « ´0.564.
The eigenfunction falls off quickly at large ζ, so the eigenvalue is essentially unchanged at small
a. According to (4.9), the eigenvalue of J is then λ « λ0{a

2.

4.2.2 Two disks in AdS4

We can now extend the previous analysis to full-fledged AdS4, where the bulk Cauchy slice is
H3, for two boundary disks A “ A1 Y A2 Ă S2 with an entanglement wedge a in the connected
phase. Following [38] (see also [39]) we begin in adapted cylindrical coordinates in H3 (and set
ℓAdS “ 1)

ds2 “
1

1 ` P 2
dP 2

` p1 ` P 2
q dz2 ` P 2dφ2 , (4.13)

where constant-z slices now corresponds to hyperbolic disks H2, with P a radial coordinate
on each disk. In the conformal frame adapted to these coordinates, the spatial boundary is
just the flat cylinder R ˆ S1, and the subregion A corresponds to two semi-infinite cylinders,
A “ tz ď z1uYtz ě z2u. We shall consider the reflection-symmetric case z1 “ ´z2 “: z0 without
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loss of generality.

In this configuration, the constriction Xc
A will correspond to the disconnected surface, con-

sisting of the two hyperbolic disks, Xc
A “ tz “ z0uYtz “ ´z0u. The rest of the extremal surfaces

correspond to two connected “catenoids” X˘ with embedding functions pP, z˘pP q, φq P H3 given
by (cf. [38])

z˘pP q “ α˘F

ˆ

arccos
a˘

P
,
1 ` a2˘
1 ` 2a2˘

˙

´ β˘Π

ˆ

1

1 ` a2˘
, arccos

a˘

P
,
1 ` a2˘
1 ` 2a2˘

˙

(4.14)

where F pϕ,mq “
´ ϕ
0

p1´m sin2 θq´1{2dθ, and Πpn, ϕ,mq “
´ ϕ
0

p1´ n sin2 θq´1p1´m sin2 θq´1{2dθ

are elliptic integrals of the first and third kind, respectively, and α˘ “
a˘p1`a2˘q

?
p1`a2˘qp1`2a2˘q

and

β˘ “
a3˘?

p1`a2˘qp1`2a2˘q
are two constants. Imposing the boundary condition zp8q “ z0, we can

numerically solve for the two values of the throat size a˘ as a function of the separation of
the two disks. The connected solutions X˘ exist as long as z0 ď zc « 0.501. They satisfy
a´ ă ac ă a` for ac « 0.538.
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Figure 10: On the left, the three extremal surfaces anchored to the two circles BR consist of the disconnected
minimal surface Xc

A “ XA1
Y XA2

, the RT surface XA “ X` and the bulge Xb
A “ X´. On the right, the phase

diagram of ∆AreapX˘q “ AreapX˘q ´ AreapXc
Aq as a function of the boundary separation z0.

The area difference ∆AreapX˘q “ AreapX˘q ´ AreapXc
Aq is finite, and given by

∆AreapX˘q “ 4π

«

1 `
a2˘

a

1 ` 2a2˘
K

ˆ

1 ` a2˘
1 ` 2a2˘

˙

´

b

1 ` 2a2˘E

ˆ

1 ` a2˘
1 ` 2a2˘

˙

ff

, (4.15)

where K,E are complete elliptic integrals of the first and second kind, respectively. As we show
in Fig. 10, the RT surface XA for z0 less than about 0.438 corresponds to X`.

As in the flat space example of the previous subsubsection, X` has index 0 while X´ has
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index 1; since this is the only index-1 surface, it must be the bulge. To show this, we will employ
the same technique in AdS4 as we did for finding the negative mode of the catenoid in R3.

Evaluating the Jacobi operator in the coordinate system (4.13) for which the embedding
function of the catenoid is (4.14), leads to the eigenvalue equation

1

P 2

ˆ

pP 4
` P 2

´ a2 ´ a4q
B2

BP 2
` P p1 ` 2P 2

q
B

BP
`

B2

Bφ2
`

2a2p1 ` a2q

P 2
´ 2P 2

˙

η “ ´λη , (4.16)

where we have set a˘ in (4.14) to a for brevity. Note that in this coordinate system, P P ra,8q.
Using axial symmetry, we can assume the eigenfunctions to be of the form ηnpP, φq “ einφfnpP q.
We now perform the change of variables and rescaling

ρ “
1

2
log

ˆ

1 ` 2P 2 ` 2
?
P 4 ` P 2 ´ a2 ´ a4

1 ` 2a2

˙

, (4.17)

fnpP q “

ˆ

2a2

p1 ` 2a2q cosh 2ρ ´ 1

˙1{4

gnpρq , (4.18)

to get a one-dimensional Schrödinger problem,

„

´
d2

dρ2
` Veffpn, ρq

ȷ

gnpρq “ λgnpρq , (4.19)

in terms of the effective potential

Veffpn, ρq “
9

4
´

5pa2 ` a4q

pp1 ` 2a2q cosh 2ρ ´ 1q2
´

1 ´ 4n2

2pp1 ` 2a2q cosh 2ρ ´ 1q
. (4.20)

We can now solve for the smallest eigenvalue λ0 as a function of a numerically by a shooting
method. For n “ 0, there is a negative eigenvalue if a ă ac « 0.538, as illustrated in Fig. 11.
This precisely corresponds to X´, and shows that it has Morse index larger than 0. For n ą 0

there are no negative eigenvalues. Therefore, X´ has index 1 while X` has index 0.

4.3 Compact dimensions

Top-down string theory constructions of duals of CFTs take the form AdSdˆY , where Y typically
contains a factor whose size is of order the AdS scale. For example, the type IIB string dual to
the D1-D5 system takes this form with d “ 3 and Y “ S3 ˆT 4 (or S3ˆK3), where the radius of
the S3 is the AdS scale and the T 4 or K3 are of order the string scale.
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Figure 11: Smallest eigenvalue λ0 of the Jacobi operator J as a function of throat size a. The extremal surface
X´ with a ă ac « 0.538 always has one negative eigenvalue and therefore has index 1. The extremal surface X`

with a ą ac has no negative eigenvalues and therefore has index 0, i.e. it is locally minimal.

We would like to investigate how the extra dimensions affect the RT, constriction, and bulge
surfaces. For a product metric ds2 “ ds2M ` ds2Y on a product manifold M ˆ Y , an extremal
surfaceX inM lifts to an extremal surfaceXˆY , since the components of the extrinsic curvature
in the Y directions vanish. However, since the Jacobi operator will have KK modes on Y , the
index of X and X ˆ Y may be different. More precisely, the KK modes contribute positively to
the Jacobi operator; hence if the index of X is 0 then the index of X ˆ Y is also 0. Therefore,
the RT and constriction computed on M , and lifted to M ˆ Y , are candidates for the RT and
constriction on the full space. For the RT, we can prove that this is correct surface.

Lemma 3. Let XA be the minimal-area surface in M homologous to the boundary region A.
Then XA ˆ Y is the minimal-area surface in M ˆ Y homologous to A ˆ Y .

Proof. Let X̃ be a surface in M ˆ Y homologous to A ˆ Y . For each point y P Y , define
X̃pyq P M as the intersection of X̃ with M ˆ tyu, X̃pyq :“ tx P M : px, yq P X̃u. X̃pyq is
homologous to A (via the intersection of the homology region for X̃ with M ˆ tyu). Therefore
AreapX̃pyqq ě AreapXAq, so we have

AreapX̃q ě

ˆ
Y

dy
?
gY AreapX̃pyqq ě VolpY qAreapXAq “ AreapXR ˆ Y q . (4.21)
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Via maximin [6], this statement extends to the HRT formula. It therefore justifies the
standard practice in the holographic entanglement literature of ignoring the extra dimensions.
While we don’t have a proof, we suspect that the same holds for the constriction. In fact, we
conjecture that the only index-0 surfaces in M ˆY are those of the form XˆY for some index-0
surface X in M .

The situation is very different at index 1. If X is an index-1 surface in M , then X ˆ Y has
index at least 1; but the KK modes may lead to several negative modes, hence an index larger
than 1. One therefore has to search for the bulge among surfaces that are not products, but
that genuinely probe the extra dimensions. Whether this happens depends on the ratio between
the negative eigenvalue of X and the KK scale, which in turn is determined by the size of Y .
Usually, the negative eigenvalue of X is roughly determined by the AdS radius; so if Y is much
smaller than the AdS scale then X ˆ Y has index 1, but if it is AdS-sized (as in the case of
AdS3 ˆ S3 and AdS5 ˆ S5), its index may not be 1. However, our very first example, treated
in subsubsection 4.3.1 will be an exception, as the negative eigenvalue of X in that case is ´8,
leading to a non-trivial bulge for extra dimensions of any size.

4.3.1 Warmup: R2 ˆ S1

As we discussed in subsection 4.1, the bulge for two boundary intervals in AdS3 is a cross, and
its negative eigenvalue is ´8. Therefore, for AdS3ˆS1, the cross times S1 is an extremal surface
with infinite index, hence cannot be the bulge. To simplify this situation, we approximate it
with R2 ˆ S1 — appropriate for example if the S1 is much smaller than the AdS3.

Figure 12: The fundamental domain of the second Scherk surface S embedded in R3, for the case of orthogonal
planes. After the identification z „ z ` 2π of the top and bottom edges, the topology of S becomes that of a
sphere with four punctures. The cross gets resolved by a smooth transition in the internal space.

Since the origin of the cross’s infinite negative mode is its singularity, we might guess that
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the true bulge desingularizes the cross. In fact, there is a unique extremal surface in R2 ˆ S1

that desingularizes the cross [40], and it is called the second Scherk surface S [41]; see Fig. 12.14

It can be implicitly defined by

cos z “ cos2 ϕ cosh

ˆ

x

cosϕ

˙

´ sin2 ϕ cosh

ˆ

y

sinϕ

˙

(4.22)

where ϕ is the half angle between the asymptotic planes. We can also write a parametric form for
the Scherk surface using the Weierstrass–Enneper representation (see appendix B). The topology
of S is that of a sphere with four punctures, representing the four boundary points delimiting
the subregion A. The single scale in the problem is the radius of S1, and thus the size of the
domain of resolution of the cross is parametrically controlled by this scale.

We can again use the trick of the Gauss map n : S Ñ S2 to show that S has index 1.
The Gauss map conformally maps the induced metric hµν onto the round metric on the sphere,
h̃µν “ e2ωhµν . In this case the Scherk surface is mapped to the sphere with four punctures on
the equator, npSq “ S2ztθ “ π{2;φ “ ϕ, π ´ ϕ, π ` ϕ, 2π ´ ϕu, where pθ, φq are the polar and
azimuthal angles respectively and ϕ is the half-angle between the asymptotic planes. We can
apply the argument outlined in appendix A to the Scherk surface and find that it is also index
1.

Note that the radius R of the S1, as the only scale in the problem, determines the negative
eigenvalue, which is proportional to 1{R2. In the limit R Ñ 0, the Scherk surface becomes
simply the cross in R2, which as we’ve noted has index 1 and negative eigenvalue ´8.

4.3.2 AdSd`1 ˆ Y

The situation in AdS3 ˆ S1 is expected to be qualitatively similar to the one presented above,
with the AdS3 cross resolved into a surface with the same topology as the Scherk surface; see
Fig. 13.

Consider now the more “realistic” case of AdS3 ˆS3 ˆT4, with the S3 having the same radius
as the AdS3 and the T4 being much smaller. The cross is certainly not the true bulge, for the
reasons given above. On AdS3 ˆ S3, it must get resolved into some non-singular surface that
is not a product. It would be a very interesting exercise to try to find this surface. Since its

14 In the mathematics literature, the second Scherk surface is usually defined as a minimal surface in R3, periodic
in z, and hence the index is infinite. But in our case, we are compactifying the periodic direction and thus the
index is finite.
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Figure 13: The bulge Xb
A in red is a ‘Scherk surface’ S Ă H2 ˆ S1 which does not wrap the internal S1 and

resolves the singular cross. The internal S1 is deconstructed in the figure, where the top and bottom edges of
the strip need to be identified. The characteristic scale of resolution of the cross is set by the asymptotic size of
S1, which in top-down holographic constructions is of the order of the AdS3 scale.

characteristic scale and negative eigenvalue are set by the AdS radius, one could then safely
ignore the T4.

In higher-dimensional AdS spacetimes, the “naive bulge” computed ignoring the extra di-
mensions is not singular and has a finite negative eigenvalue. For example, the eigenvalue λ0 of
the catenoid bulge in AdS4 is plotted, in units where ℓAdS “ 1, in Fig. 11. If, in the presence
of extra dimensions, there is a KK mode such that the total eigenvalue of the Jacobi operator
is negative, then the naive bulge has index greater than 1 and is not the true bulge. No matter
the size of the compact space, this will happen for sufficiently large boundary regions, since in
the limit z0 Ñ 0, a´ goes to 0 and λ0 go to ´8. (Even if the naive bulge has index 1, it may
not be the true bulge, as there may exist an index-1 non-product surface with smaller area.) It
would be interesting to investigate this phenomenon quantitatively and attempt to find the true
bulge, for example in the paradigmatic case of the AdS5 ˆ S5 vacuum of the type IIB string,
dual to the ground state of four dimensional N “ 4 SYM on a spatial S3.

5 Pythons in excited states

In this section, we qualitatively describe the features of classical pythons in excited states of the
holographic system. We discuss three main examples: orbifolds of AdS3, Lin-Lunin-Maldacena
(LLM) geometries, and exterior regions of black holes.

34



5.1 AdS3 orbifolds

We start by considering orbifolds of the form AdS3{Γ, where Γ is a finite subgroup of isometries
generated by an elliptic element g of the diagonal PSLp2,Rq subgroup of isometries. The elliptic
element g has a fixed point in the bulk, which corresponds to a conical defect in the orbifold, of
defect angle 2π

n
, where n “ |Γ|.

Figure 14: On the left, covering space of the Z2 orbifold. On the right, AdS3{Z2 orbifold. The entanglement
wedge of A contains a python. The bulge Xb

A is the pair of red radial geodesics that intersect the conical defect.

Consider a boundary interval A comprising more than half of the asymptotic boundary of the
orbifolded space. In Fig. 14 we present the case n “ 2, together with the covering space. We see
that the entanglement wedge of A in the orbifold contains a python. The bulge Xb

A in this case
is somewhat peculiar since it consists of two radial geodesics that intersect the conical defect.
According to the python’s lunch conjecture, the conical defect can be reconstructed, albeit with
exponential complexity.

Figure 15: On the left, covering space of the Z6 orbifold. On the right, AdS3{Z6. The entanglement wedge of
A contains a python. For n ą 3, there are two geodesics with exactly one self-intersecting point, and thus index
1. The bulge Xb

A in red corresponds to the smallest among these two geodesics.
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For n ě 3 the bulge becomes less singular. In Fig. 15 we present the case n “ 6, together with
the covering space. Again, we see that the entanglement wedge of A in the orbifold contains a
python. The bulge Xb

A is however smooth, and consists of a self-intersecting geodesic that winds
around the conical defect.

In general, for n ě 3, there will be n locally extremal surfaces anchored to the endpoints
of a boundary interval A. These correspond to geodesics in the covering AdS3 space, whose
endpoints are related by the action of Γ. In the orbifolded space, the extremal surfaces with one
self-intersecting point will have index 1 and will therefore be candidates to be the bulge. Given
an interval A of opening angle π ă θ ă 2π, the constriction, RT, and bulge will correspond to
the geodesics in the AdS3 covering space with opening angles θ

n
, 2π´θ

n
, and 2π`θ

n
respectively.

The regularized lengths of these geodesics can be found in e.g. [42] and are given by15

LpXc
Aq “ 2ℓAdS log

ˆ

2ℓAdS

ε
sin

ˆ

θ

2n

˙˙

, (5.1)

LpXAq “ 2ℓAdS log
ˆ

2ℓAdS

ε
sin

ˆ

2π ´ θ

2n

˙˙

, (5.2)

LpXb
Aq “ 2ℓAdS log

ˆ

2ℓAdS

ε
sin

ˆ

2π ` θ

2n

˙˙

, (5.3)

where ε is a bulk IR regulator. As illustrated in Fig. 15, it is interesting to note that for n ą 3

there is another index-1 extremal surface Xindex-1 (which as a consequence of Lemma 1 of Sec 2.3
must intersect Xb

A), with opening angle 4π´θ
n

in the covering space, and length corresponding to

LpXindex-1q “ 2ℓAdS log
ˆ

2ℓAdS

ε
sin

ˆ

4π ´ θ

2n

˙˙

. (5.4)

From Lemma 2 of section 2.3, the bulge is the minimal among the index-1 extremal surfaces.
For n ą 3, and π ă θ ă 2π, sin

`

4π´θ
2n

˘

ą sin
`

2π`θ
2n

˘

, and therefore this surface is never the bulge,
given that LpXindex-1q ą LpXb

Aq. For n ą 4, there are additional self-intersecting geodesics with
index greater than 1 (due to multiple self-intersecting points) and are thus not candidates to be
the bulge.

According to the PLC (1.3), the complexity to reconstruct the lunch from A scales exponen-
tially with the exponent

log CpRq „
2c

3
log

sin
`

2π`θ
2n

˘

sin
`

θ
2n

˘ , (5.5)

where c “ 3ℓ{2G is the Virasoro central charge of the dual CFT2.

15 For n “ 2, the length of the bulge is constant, LpXb
Aq “ 2ℓAdS logp2ℓAdS{εq.
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It is interesting to note that if the region A is taken to be full boundary, there is no python,
given that there is no horizon in the bulk. However, by excising a single point from the boundary
(θ Ñ 2π in the previous expressions), the entanglement wedge of A will now contain a python,
and the complexity to reconstruct the lunch will grow exponentially, with exponent

log CpRq „
2c

3
log

´

2 cos
π

n

¯

. (5.6)

Note that for n “ 3 the complexity is not exponential in c, since the exponent vanishes. This
can be related to the situation in which we excised three points in section 4.1 from the full AdS3

boundary circle, where we found the same result (in fact, in the covering space the configuration
is precisely that of the right Fig. 7).16 For n ą 3, the complexity scales exponentially. A possible
interpretation is that, with access to the full boundary, information about the conical defect,
such as its deficit angle, can be reconstructed simple operators: these can involve measuring the
holonomy of a spatial Wilson loop operator along the boundary S1. Removing a single point
loses access to the loop operator, and thus to simple observables that have access to the conical
defect.

5.2 LLM geometries

The next class of states we consider are a subset of the the LLM geometries of [43]. LLM states
are of particular interest because there is a precise and one-to-one map between the boundary
states and the bulk geometries, and there is some hope of understanding the bulk-to-boundary
map quite explicitly.

The LLM spacetimes are a class of static, 1/2 BPS, asymptotically AdS5 ˆ S5 solutions of
type IIB supergravity. The metric of a constant-time slice can be described as a fibration of
S3
α ˆS3

σ over the upper half space of R3, where α and σ are simply labels for the two S3 factors.
Let z be one of the coordinates of R3, with the fibration defined on the z ě 0 half. A bounded
region of the z “ 0 plane is painted “black”, with the rest painted “white”; different choices of
black region yield different LLM solutions. As we approach a point on that plane, one of the
three-spheres shrinks to zero size; at a black point, the S3

α shrinks, while at a white point, the
S3
σ shrinks. The upper half space is bounded asymptotically by a hemisphere, representing the

conformal boundary of the spacetime. The metric, and a description of the dual state, can be
found in [43].

16 For n “ 2, the complexity is also zero in this limit, but there is no causal shadow. This is easy to see from the
configuration in the covering space, where we excise two points (see the left case in Fig. 7).
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The simplest example is AdS5 ˆS5 itself, described by a black disc on the z “ 0 plane. Here
the S5 is described as S3

σ fibered over a disk, and the spatial slice of AdS5 as S3
α fibered over a

half-line, with the disk and half-line together make up the upper half space.

Figure 16: Structure of the python on the LLM geometry.

The next simplest solution is described by a black annulus. A complete description is given
in [43,44]. If the annulus is sufficiently large, the geometry can be shown to interpolate between
two versions of AdS5ˆS5 with black and white regions (and thus the roles of the S3s) exchanged,
as shown in Fig. 16. We denote the “ultraviolet” (UV) and “infrared” (IR) geometries, based
on the relationship between the radial direction of AdS spaces and the energy scale of the dual
theory. In the IR, S3

σ is part of the AdS5 and S3
α is part of the S5, the opposite of their roles in

the UV part of the geometry.

Ref. [44] argued that such geometries have an entanglement shadow. In particular they
considered the RT surface for half the boundary. Due to the symmetry, there are two minimal
surfaces with equal area, passing on either side of the IR region; neither one enters it. In
this symmetric situation, it is ambiguous which surface is the RT surface and which one the
constriction. There is also an extremal surface that does penetrate this region, namely the
symmetric surface that bisects the S3

α and wraps the other dimensions. It seems likely that these
are the only extremal surfaces; if this is true, then Morse theory implies that the symmetric one
has index 1.

If we break the symmetry by taking the entangling surface slightly off the equator of the
boundary, so that the region A is slightly smaller than half the boundary, then the closer minimal
surface is the smaller one and is the RT surface. In this configuration, there is no python, and
the entanglement wedge does not include the IR region.
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If we now expand A from slightly less than half the boundary to slightly more than half, the
farther minimal surface becomes the RT surface XA and the closer one becomes the constriction
Xc

A. The region between them, which includes the entire IR region, is a python. Thus the
entanglement wedge jumps from not including the IR region to including all of it, reflecting the
ability to begin to recover information about a complex state when one has access to more than
half of the degrees of freedom of the theory [45,46]. The symmetric surface presumably persists
but is now slightly deformed; assuming again that there are no other extremal surfaces lurking
in this geometry, this surface is the bulge Xb

A.

A cartoon of the background and relevant surfaces is shown in Fig. 16. The exterior region
represents the UV AdS5 ˆ S5. The shaded region is the IR region encoding the excitation of
the vacuum. The extremal surfaces are shown. This situation appears highly reminiscent of
the situation for the AdS-Schwarzschild geometry, for which the true RT surfaces sit outside
the horizon and an additional surface enters the horizon. Indeed, the LLM geometries can be
considered as a model of black holes; in particular simple local operators give no information as
to the detailed structure of the state [47,48].

5.3 Eternal black holes

Another relevant situation arises in this context if we replace the dilute matter by an equilibrium
black hole in AdS. Microscopically, we can consider a high-temperature thermofield-double state
of two holographic CFTs, or a grand-canonical version of this state. Such a state is semiclassically
dual to an eternal black hole in AdS, connecting two different asymptotic boundaries.

Figure 17: Structure of the python on a thermal (or grand-canonical) state of the CFT. On the left, the
structure of the python in 2 ` 1 dimension, in which the bulge is a self-intersecting geodesic. On the right, the
cross section of the higher dimensional python, in which the bulge is smooth and contains a catenoid-like neck.

As illustrated in Fig. 17, we consider a disk subregion A of a single boundary component in
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this setup. For such an A, there are two competing index-0 surfaces in the homology class of A:
the connected minimal surface X1 and the disconnected minimal surface X2 YXh. The compact
surface Xh corresponds to the horizon of the black hole. For large enough A, there is a python:
the RT surface is the disconnected surface, XA “ X2 YXh, and the constriction is Xc

A “ X1. As
a consequence, there is a bulge surface Xb

A of index 1 in between them. In 2 ` 1 dimensions the
bulge corresponds to a self-intersecting geodesic [27], while in higher dimensions, or when the
compact dimensions are considered, the bulge Xb

A is a smooth surface; in higher dimensions it
has a catenoid-like neck [49]. As A is taken to be the entire boundary, the python dissapears.
In this limit, the entanglement wedge a becomes the exterior of the black hole, which can be
reconstructed in a simple way via appropriately smeared HKLL operators of the boundary.

6 Pythons in the black hole interior

In this section, we will study states of multiple black holes with shared geometric interiors. In
the holographic system, these correspond to entangled states of independent CFTs. For the
purpose of this section, we will restrict to subregions A made up of entire compact boundary
components.

6.1 Two-boundary wormhole

Figure 18: A two-sided black hole microstate with a python.

We start by considering a bipartite state |Ψy P H1 b H2 whose bulk description contains
the conformal boundary A1 \ A2 and a two-sided python geometry on the time-symmetric slice,
shown in Fig. 18.17 Let us select the boundary component A2 as our subregion. We can assume
without loss of generality that A2 contains the black hole interior in its entanglement wedge, as

17 Explicit examples of such states include the so-called partially entangled thermal states (PETS) in holographic
CFTs [35,36,50–52].
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indicated in Fig. 18. The constriction Xc
A2

is simply the apparent horizon of the right black hole,
while the RT surface XA2 “ XA1 is the apparent horizon of the left black hole. In the interior of
the python region Ñ in between these two surfaces, there exists an index-1 bulge surface Xb

A2
.

According to the python’s lunch conjecture, the amount of post-selection required to access
the interior from A2 scales with the exponent

log CpR2q „
1

2

`

SgenpXb
A2

q ´ SgenpXc
A2

q
˘

. (6.1)

Next we consider applying the conjecture to the full boundary A “ A1A2. The RT surface of
the full boundary is clearly empty, XA “ H, which represents the fact that the two-sided state is
pure. The constriction for A is simply the union of the two apparent horizons, Xc

A “ XA2 YXc
A2

.
At first we might guess that the bulge is just twice the A2 bulge, 2Xb

A2
; however, given that the

index is additive under disjoint union, this surface has index 2, and is therefore not a candidate
for the bulge. According to Lemma 2 of section 2.3, assuming that there is no other minimal
surface in the interior, the true bulge is the minimal index-1 surface homologous to the entire
boundary (or, equivalently, null-homologous). This must include Xb

A2
, the only index-1 extremal

surface; in order to obey the homology constraint, we must add another index-0 surface, the
smallest of which is the apparent horizon of the left black hole; in all, we find Xb

A “ Xb
A2

YXA2 .
This implies

SgenpXb
Aq ´ SgenpXc

Aq “ SgenpXb
A2

q ´ SgenpXc
A2

q . (6.2)

Therefore, according to the PLC (1.3), the complexities of reconstructing the interior region
using just A2 or all of A are the same:

CpR12q “ CpR2q , (6.3)

where R12 is the recovery channel of the global bulk-to-boundary map N pρaq “ V ρaV
:, while R2

is the recovery channel of the restricted map N 1pρa1q “ TrA1pV ρa1 b σā1V :q, which only involves
acting on A2. Both recovery channels in (6.3) need to be understood as restricted to states that
differ in the interior region Ñ Ă aX a1, given that the entanglement wedge a strictly contains a1.

As remarked in the introduction, we find that this behavior of the complexity is in contrast
to the one expected for the class of two-sided states motivating the PLC in [27]. The states
in [27] were by assumption obtained dynamically from the unitary time evolution coupling the
two subsystems, starting from a simple entangled state without a bulge and evolving it for a
relatively short time. For those states, with access to the full boundary, the reconstruction
was by assumption simple; one just needed to undo the unitary time-evolution. In that case,
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the individual tensors of the tensor network modelling the semiclassical state are correlated to
produce the effect that, when A is taken to be the full boundary, the python effectively dissapears.

In contrast, in this case of two-sided geometric states, using the PLC for the full boundary,
we find that the reconstruction using both sides is just as complex as the one restricted to
subsystem A2. Applying the conjecture to A1A2 amounts to the implicit assumption that the
tensor network structure modelling the geometry is generic, so different tensors at different points
appear uncorrelated, at least at leading order. This makes the bulge for two-sided geometric
microstates not go away even when the full system A1A2 is considered. The assumption of
uncorrelated tensors is reasonable since, after all, these states are not prepared unitarily by
the collapse of matter, and generic tensor networks with large bond dimension are successful in
capturing the RT formula [15].

What is really peculiar is that, according to the PLC (1.3), there is no computational ad-
vantage at all in adding the second boundary A1 in order to reconstruct the black hole interior.
This is certainly a non-trivial feature of the conjecture applied to these states, given that, with
access to both boundaries, there are known simple bi-local holographic probes that contain some
information about the interior. An example is the EPR correlation function xΨ| OA1OA2 |Ψy of
heavy scalar primary O, which presumably contains information about the length of the worm-
hole. However, according to the tensor network/geometry intuition, these probes will not help
to decode the local physics of the lunch, at least deep in the black hole interior. The optimal way
to reconstruct the lunch is to follow a minimax level set path, which involves leaving subsystem
A1 intact, and overcoming the postselection solely acting on A2.

6.2 Multi-boundary wormhole

We will now show that this feature of the PLC extends to multi-boundary states with connected
wormholes. To be concrete, we consider time reflection-symmetric microstates of a family of
three dimensional black holes. Microscopically, the states in question live in the Hilbert space
of n copies of a putative holographic two-dimensional CFT, |Ψy P H1 b . . . b Hn. The states
possess a semiclassical description, with initial data specified at the moment of time-symmetry
of the spacetime, Σn

g , which consists of a Riemann surface of genus g and n boundaries. We now
give a brief summary of how these states are constructed (see e.g. [53–56] for details).18

The constraint equations of AdS3 gravity require the metric on Σn
g to be the unique constant

18 Some of these states are prepared via suitable Euclidean CFT path integrals. However, we will not worry on
how they are prepared, simply we view them as valid state vectors in Hilbert space.
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negative curvature metric on this Riemann surface. Mathematically, the standard way to con-
struct this metric is to uniformize the Riemann surface on the hyperbolic disk Σn

g “ H2{Γ via
a discrete subgroup Γ of PSLp2,Rq isometries, generated freely by hyperbolic elements, which
leads to a smooth bulk metric. The group Γ is known as a Fuchsian group of the second kind
(for n “ 0 this reduces to the standard Fuchsian uniformization of compact Riemann surfaces
of genus g ą 1).

The Lorentzian evolution of this initial data can be constructed as follows. Observe that
PSLp2,Rq can be extended as the diagonal subgroup of SOp2, 2q » SLp2,RqL ˆ SLp2,RqR{Z2

of simply connected isometries of AdS3. This is essentially the subgroup which commutes with
time-reflection symmetry and thus preserves the time reflection-symmetric hyperbolic slice which
uniformizes Σn

g . Therefore, a complete vacuum spacetime solution can be constructed simply
from the quotient zAdS3{Γ, which respects the metric of Σn

g at the time-reflection symmetric
slice. Here zAdS3 represents the causal wedge in AdS3 of the time reflection-symmetric boundary
circle, where the fixed points of Γ have been removed. Specifically, the spacetime metric can be
written locally in FRLW coordinates, as

ds2 “ ´dt2 ` cos2 pt{ℓAdSq pdΣn
g q

2 , (6.4)

where pdΣn
g q2 is the constant negative curvature metric on Σn

g . For more details, we refer to the
reader to [42,53–58] and references therein.

The simplest family of states constructed this way is |Σ2
0y, which are specified by a hyperbolic

Riemann surface Σ2
0 with annulus topology. This surface is uniformized as Σ2

0 “ H2{Γ by a
Fuchsian group Γ generated by a single hyperbolic element Γ “ xgy. The annulus Σ2

0 arises
naturally as the fundamental domain of Γ. The metric in this case can be written explicitly,

ds2|Σ2
0

“ dρ2 `
L2

p2πq2
cosh2

pρ{ℓAdSqdϕ2 , (6.5)

for ρ P R and ϕ P r0, 2πq. This is simply the initial data of the BTZ black hole, obtained in a
different way. These states contain a single modulus, the length L of the horizon, which is the
minimal closed geodesic on Σ2

0.19 The length of the horizon L naturally determines the ADM
energies of the corresponding state. In this case, these states do not contain pythons — the
Einstein-Rosen bridge has vanishing volume on Σ2

0.

For n ą 2 or g ą 0, the rest of the states include pythons in the black hole interior. For given

19 Additionally, there is an infinite set of closed geodesics, of lengths Lk “ |k|L, labelled by the winding number
around the horizon, which is in one-to-one correspondence with the conjugacy classes of Γ, that is, rgks for k P Z.
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values of pn, gq the states are parametrized by moduli in (discrete quotients of) the Teichmüller
space Tg,n of Riemann surfaces of genus g and n boundaries. The natural way to parametrize the
moduli space of Σn

g is to cut the python region bounded by closed geodesics into pairs of pants,
and use the so-called Fenchel-Nielsen coordinates to glue these pairs of pants together. In this
way, it is easy to see that total number of moduli is 6g ´ 6 ` 3n. In our case of concern, we will
fix the length of each apparent horizon Li for i “ 1, ..., n, and in this way fix the coarse-grained
entropy of each boundary. Moreover, for the purpose of this discussion, we will restrict to g “ 0

and n ą 2, where the number of additional moduli is 2n ´ 6.

6.3 Three-boundary wormhole

Figure 19: On the left, fundamental domain of the Fuchsian group Γ generated by two elements uniformizing
the three-boundary wormhole Σ3

0 with equal horizon moduli, L1 “ L2 “ L3. On the right, illustration of the
three-boundary wormhole.

We now consider three-boundary wormhole states |Σ3
0y. In order to motivate the general

claim, let us set L1 “ L2 “ L3 for the time being. The corresponding states have discrete
Symp3q permutation symmetry. Fixing the lengths of the horizons determines the moduli of Σ3

0

completely. A representation of the fundamental domain of Γ is shown in Fig. 19.

Index-1 extremal surfaces on Σ3
0 consist of self-intersecting geodesics with exactly one crossing

point, where crossing is only permitted between neighbouring geodesic segments. As for the case
of vacuum AdS3 of section 4, it is only in this case that there are just two deformations that
resolve the cross and reduce the area of the surface, so the surface has index 1. For multiple
geodesic segments meeting at the same point, or for multiple crossing points, there are more
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than two area-reducing deformations, so the index is always greater than 1. This leaves little
topological freedom to determine what the index-1 surfaces are in Σ3

0. Namely, bulge candidates
will necessarily wrap around two of the constrictions. In Fig. 19 we have represented Xb

A1A2
, the

extremal index-1 surface homologous to A1A2.

Given this, we consider different boundary subregions A, consisting of different numbers of
connected boundary components. We list all of the relevant extremal surfaces for the PLC in
table 1, which up to permutations, determine all the boundary-homologous pythons for these
states.

A RT constriction bulge 8G log CpRq

A1 XA1 - - -
A1A2 XA3 XA1 Y XA2 Xb

A1A2
L12 ´ L3

A1A2A3 H XA1 Y XA2 Y XA3 Xb
A1A2

Y XA3 L12 ´ L3

Table 1: Relevant extremal surfaces in the python for each boundary region. For A “ A1A2 there are two
additional bulge candidates: Xb

A1A3
YXA1

and Xb
A2A3

YXA2
. Both of these surfaces have larger area than Xb

A1A2
,

and are therefore not the bulge of the python according to Lemma 2 of section 2.3. For A “ A1A2A3, there are
five additional candidate bulge surfaces: Xb

A1A3
Y XA2 and Xb

A2A3
Y XA1 , with the same area as Xb

A1A2
Y XA3 ,

so any of these three surfaces can be considered equally. Moreover, the index-1 surfaces Xb
A1A2

Y XA1
Y XA2

,
Xb

A1A3
Y XA1

Y XA3
and Xb

A2A3
Y XA2

Y XA3
have larger area, and thence they do not correspond to the bulge.

We observe that, in accordance with the discussion of section 3, the bulge for the full boundary
breaks the Symp3q permutation symmetry of the state |Σ3

0y into a Symp2q subgroup. We also
evaluated the complexity to reconstruct the lunch for each subregion in table 1. We observe
that the bulge for the three boundaries is the union of the bulge for the two boundaries and the
constriction of A3. This implies that the complexity of reconstructing the lunch is independent
of whether A3 is used or not,

CpR123q “ CpR12q , (6.6)

where R123 is the global, unrestricted recovery map, while R12 is the map restricted to A1A2.
The minimax foliation indicates that the optimal way to reconstruct the lunch is to leave A3

intact, and to only act on A1A2.

We now want to study how this feature generalizes to the case in which L1, L2, L3 are three
general moduli. To do this we will use a one-to-one correspondence between closed geodesics in
Σn
g and conjugacy classes in Γ. The length of the geodesic associated to the conjugacy class of

the group element g is determined by

L “ 2 cosh´1

ˇ

ˇ

ˇ

ˇ

Trg
2

ˇ

ˇ

ˇ

ˇ

, (6.7)

45



in the representation g “ p a bc d q of the PSLp2,Rq isometry, acting by fractional linear transfor-
mations z Ñ az`b

cz`d
, of the Poincaré upper half plane model of H2. Namely, this is the geodesic

that connects the two fixed points of g at the Impzq “ 0 boundary, which becomes closed,
and stays smooth up to crossing points, by virtue of the fact that g acts freely and properly
discontinuously in H2, for any g P Γ.

The group Γ for the three-boundary wormhole is freely generated by the elements

g1 “

˜

cosh L1

2
sinh L1

2

sinh L1

2
cosh L1

2

¸

, g2 “

˜

cosh L2

2
eα sinh L2

2

e´α sinh L2

2
cosh L2

2

¸

. (6.8)

The parameter α controls the separation between the g1 and g2 semicircles delimiting the funda-
mental domain of Γ. For these circles not to intersect each other, we must impose the constraint

eα ą coth
L1

4
coth

L2

4
. (6.9)

Given this choice of generators, the third horizon is associated to the conjugacy class of the
group element g “ g1g

´1
2 P Γ. From (6.7) the length of the third horizon is determined in terms

of the previous three moduli,

L3 “ 2 cosh´1

ˆ

coshα sinh
L1

2
sinh

L2

2
´ cosh

L1

2
cosh

L2

2

˙

. (6.10)

It is possible to check that (6.9) is equivalent to the condition L3 ą 0.

The index-1 surface Xb
A1A2

will correspond to the closed (self-intersecting) geodesic associated
to the conjugacy class of the group element g “ g1g2 P Γ. Using (6.7) again, we arrive at the
length of the index-1 surface

L12 “ 2 cosh´1

ˆ

coshα sinh
L1

2
sinh

L2

2
` cosh

L1

2
cosh

L2

2

˙

. (6.11)

Substituting coshα in terms of the length of the horizons from (6.10), we obtain the simple
relation for the length of Xb

A1A2
in terms of the three horizon lengths

cosh
L12

2
“ 2 cosh

L1

2
cosh

L2

2
` cosh

L3

2
. (6.12)

The expressions for L13 and L23 follow from simple permutation of the indices in this formula.
It is easy to check that the length of the index-1 surfaces in the lunch is always larger than the
horizon lengths, Lij ą Lk @ i, j, k P t1, 2, 3u with i ă j.
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Consider L1 ď L2 ď L3 without loss of generality. In this case, the three index-1 surfaces
satisfy

L12 ď L13 ď L23 . (6.13)

Moreover, assume that L3 ą L1 ` L2, so that A3 can itself access the interior.20 In this case
it is straightforward to verify the following relations

L13 ě L12 ` L1 ô L3 ě L`
12 , (6.14)

L23 ě L12 ` L2 ô L3 ě L`
21 , (6.15)

where

L`
ij “

2 cosh´1

«

cosh
Li
2
cosh

Lj
2

˜

2 coshLi ´ 1 `

c

coth2 Li
2
coth2 Lj

2
` 4 coshLipcoshLi ´ 1q

¸ff

.

(6.16)

It is also easy to show that L1 ` L2 ď L`
12 ď L`

21.

A RT constriction bulge 8G log CpRq

A3 XA1 Y XA2 XA3 Xb
A1A2

L12 ´ L3

A1A3 XA2 XA1 Y XA3 Xb
A1A2

Y XA1 L12 ´ L3

A2A3 XA1 XA2 Y XA3 Xb
A1A2

Y XA2 L12 ´ L3

A1A2A3 H XA1 Y XA2 Y XA3 Xb
A1A2

Y XA1 Y XA2 L12 ´ L3

Table 2: Relevant extremal surfaces in the python for each boundary region for the general case of different
moduli with L3 ą L`

21. The complexity to reconstruct the lunch is constant for any choice of A.

Assume that L3 ě L`
21. Given (6.14) and (6.15), we can directly evaluate the bulge for all of

the boundary subregions. In table 2, we list all possible pythons, with their relevant extremal
surfaces and the complexity to reconstruct the lunch, for any choice of A. Again, we find that
when L3 ě L`

21, the complexity to reconstruct the interior is independent of whether A1 or A2 is
included in the reconstruction,

CpR123q “ CpR13q “ CpR23q “ CpR3q , (6.17)

since the minimax foliation of the lunch leaves the horizons XA1 and XA2 intact. In the limit

20 In the opposite case where L3 ă L1 ` L2, the interior can only be accessed with two boundaries and the
complexity to reconstruct the lunch with the complete holographic system A1A2A3, CpR123q, is simply the minimal
amongst the complexities of reconstructing it with two boundaries, i.e. CpR123q “ mintCpR12q, CpR13q, CpR23qu.
Any of the three quantities can be minimal, depending on the moduli.
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L1, L2, L3 Ñ 8, formulated in terms of generalized entropies, the condition L3 ě L`
21 becomes

SgenpXA3q Á SgenpXA1q ` 3SgenpXA2q (6.18)

Note that this means that the fraction of the coarse-grained entropy carried by A3 must be at
least 2

3
of the total entropy in order for this effect to take place. In that particular case A1 and

A2 each carry 1
6

of the total coarse grained entropy of the state.21

In general, for L3 ď L`
21, the complexity will not completely plateau as a function of the

number of boundaries in A. This means that the reconstruction of the interior with three
boundaries will be strictly simpler than with A3, i.e. CpR123q ă CpR3q. However, due to the
topological constraints of the index-1 surfaces, it will always be true that the simplest way to
reconstruct the lunch with two boundaries will be the optimal way to reconstruct the lunch with
three,

CpR123q “ mintCpR12q, CpR13q, CpR23qu . (6.19)

These results suggest the following generalization: for geometric black hole microstates, the
complexity to reconstruct the interior plateaus after a certain amount of entropy is included, in
the form of a single black hole. After this point, adding more black holes into the boundary
system in order to reconstruct their shared interior does not help — the optimal reconstruction
leaves these additional black holes intact. It is tempting to conjecture that, for an n-boundary
wormhole, the single black hole has an entropy at least a fraction n´1

n
of the total entropy in

order for the complexity to plateau. This includes the case of the PETS for n “ 2. We shall not
attempt to provide a proof of this in this paper.

The complexity plateau phenomenon discussed in this section is closely analogous to the non-
extensivity of the log-complexity for black branes discussed in subsection 3.2 above. In both
cases, the effect occurs because, for sufficiently large subsystems, the bulge coincides (exactly or
approximately) with the constriction. We expect this to be a general phenomenon, and points
to a surprising aspect of the complexity of reconstruction.

6.4 Generalization for n-boundary wormhole

For n ą 3, the multi-boundary wormhole states |Σn
0y include a landscape of closed minimal

surfaces in the black hole interior. There are also additional index-1 surfaces that wrap more

21 In the pinching limit L1 Ñ 0 one does not recover the result for the two-boundary lunch since all of the bulges
in table 2 wrap the horizon XA1

.
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than two horizons at the same time. This makes the situation vastly more complicated given
that the python includes multiple lunches. Moreover, in these cases, the minimal surfaces in the
interior generally intersect each other.

Therefore, we must generalize the procedure specified in (1.4) to determine the complexity to
reconstruct the lunch, to include situations where multiple choices of the set S of non-intersecting
adjacent minimal surfaces are possible. The proposed generalization is to find the foliation with
the least amount of postselection from the following steps:

1. Select a set S of non-interesecting homologous adjacent minimal surfaces in N such that
XA, X

c
A P S.

2. Find the bulges Xb,i
A as the maximin surfaces in between each pair of adjacent minimal

surfaces in S.

3. Compute the complexity of reconstructing the lunch given the discrete set of bulges and
minimal surfaces associated to this choice of S, namely using (1.4).

4. Minimize the complexity over the choice of S:

CpRq „ min
S

max
iăj

"

exp

ˆ

SgenpXb
i q ´ SgenpXjq

2

˙*

. (6.20)

This last step can be viewed as a slight generalization of the conjecture (1.4), for cases in which
multiple choices of S exist on N .

Consider the case n “ 4 for concreteness, where the fundamental domain of Γ is presented
in Fig. 20. In this case, there are 2 additional moduli that determine the state, aside from
the horizon lengts Li, for i “ 1, 2, 3, 4. Using Fenchel-Nielsen coordinates, these moduli can be
chosen to be the length and twist parameters of an additional closed minimal surface in the black
hole interior, such as e.g. Xin or X 1

in in Fig. 20. Note that these two locally minimal surfaces
intersect each other.

Following the steps of the general procedure, in Fig. 20 we represent two choices of S for
region A “ A1A2, namely the two corresponding to Xin or X 1

in. Evaluating the reconstruction
complexity (6.20) requires minimizing over the choices of this minimal surface in the black hole
interior. The optimal choice of S and the complexity will depend on the moduli on a complicated
way, and we will not attempt to quantify the different regimes here.
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Figure 20: The fundamental domain of the Fuchsian group Γ uniformizing the four-boundary wormhole
∣∣Σ4

0

D

.
The additional two moduli can be taken as the length and twist parameter of e.g. Xin or X 1

in. On the left, given
this choice of interior minimal surface, the python for A1A2, which includes two lunches. The assumption is that
SgenpXinq ą SgenpXA1

q ` SgenpXA2
q, so that the entanglement wedge of A1A2 contains the whole lunch. On the

right, a different choice of closed geodesic X 1
in (which intersects Xin) corresponds to a different python. The

complexity will be given by the minimal complexity amongst all the choices of minimal surfaces in the interior.

7 Discussion & outlook

In this paper we have provided an extensive study of bulges, extremal surfaces of Morse index
1, found in time reflection-symmetric python geometries. We have related the definition of the
bulge to Almgren-Pitts min-max theory, and studied its topological and geometric properties
for a variety of time reflection-symmetric states of the holographic system. Our results are
potentially useful for testing the python’s lunch conjecture, if properties of the complexity of
reconstruction can be independently studied. These results also generate some open questions
that we list here, in order to structure some possible avenues of future research:

Are black brane interiors really simple? We have found that the bulge generally breaks the
spatial isometries of the python, and that among other examples, this is particularly relevant
for the reconstruction of extended boundary systems. In particular, for black brane interiors
the bulge approximately coincides with the constriction exept on a finite region, and the log-
complexity of reconstruction predicted by (1.3) is not extensive in the size of the system. At face
value, this seems to suggest that there exists a “simple” way to reconstruct these lunches with all
the accessible entropy of the boundary system. Following the tensor network/geometry intuition,
one such way would be to apply suitable unitaries which break planar symmetry, following a
minimax foliation of the python that contains the bulge.
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Another situation where naively simple interiors were present was originally faced in [28]
when considering an equilibrated AdS black hole formed by the collapse of matter.22 In that
case, the reconstruction of the black hole interior seems simple a priori since the spacetime
lacks a non-minimal QES. The lesson of [28] is that there is an implicit choice of code subspace,
namely the bulk Hilbert space of the quantum fields, in the definition of the bulk-to-boundary
map V . Given a code subspace, to say that V is simple, one needs to make sure that there are
no pythons for any state of the code subspace. If one picks a late time slice Σt of the black hole
interior, the full “bulk effective field theory” code subspace on Σt is large, since the volume of Σt

scales with the black hole entropy S. Given a general excited state of this code subspace on Σt,
the state will backreact substantially a scrambling time towards the past, and generate a past
singularity. Moreover, the entanglement entropy of the bulk state might need to be considered
in the full-fledged QES prescription. In general, these effects create a non-minimal QES in the
backreacted spacetime. Therefore, reconstructing large code subspaces in Σt is exponentially
hard. Roughly speaking, the original reconstruction seemed simple because one was implicitly
restricting to a small code subspace of states in Σt, namely those that escape the interior under
time evolution towards the past.

With this in mind, we come back to our black brane system. The difference with the case
in [28] is that for the black brane there is already a classical python, but the complexity density
of reconstructing the lunch does not scale extensively with the entropy of the boundary system.
One might wonder whether there is an impicit choice of a small code subspace in our case as well,
that renders the interior reconstruction simple by the same reason as for the black hole. However,
it is possible to see that this is not the case. In our 2 ` 1 dimensional example, we can consider
modest but large code subspaces with extensive entropy, consisting of a single degree of freedom
per position x “ nx0, for n P Z, at some fixed radial distance in the black brane interior, where
x0 „ OpℓAdSq. Consider a generic state of this code subspace. The dilute backreaction of this
state, together with its dilute entropy density, will modify the bulge locally. Since the original
bulge is a classically extremal surface, its total change in generalized entropy is controlled by
the entropy of the bulk state at leading order, δSgenpXb

Aq „ Sbulkpρoutq „ OpΛ´1
IR q. This provides

a log-complexity that scales with the log dimension of the code subspace, which by assumption
is extensive in the size of the transverse dimension. Nevertheless, the dimension of the code
subspace does not scale with N2, unlike the black brane entropy, which is SgenpXc

Aq „ OpN2Λ´1
IR q.

Thus, naively, the problem still remains to understand why, for extensive code subspaces, the
log-complexity to reconstruct them seems not to scale with the entropy of the system. Moreover,
it is not obvious that there are simple states at all, given that the states we consider are not
formed by collapse. It would be interesting to understand these issues better.

22 We thank Netta Engelhardt for pointing out this similarity to us.
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Bulges and compact dimensions Given that the bulge is sensitive to the internal manifold
Y , its generalized entropy will contain information of the specific holographic system (via e.g. its
internal global symmetries), which goes beyond purely spatial correlations of the ground state.
From the analogy between geometry and tensor networks, the optimal way to decode the local
physics of the entanglement wedge from A will involve the higher-dimensional bulge Xb

A, and will
thus necessarily include a non-trivial foliation of the internal manifold. This effect is relevant
in all known microscopic constructions of AdS/CFT due the lack of scale separation between
the scale of Y and the AdS scale. At the same time, such an observation poses a challenge
to the tensor network models of python geometries in the ground state, which are constructed
solely from the RT formula, with no specific dynamical input, which makes them insensitive to
the internal manifold. It would be interesting to see whether tensor network toy models can
incorporate this effect.

Relation to entwinement and matrix space entanglement In [59–62] the area of the
bulge Xb

A in the orbiforld AdS3{Zn was interpreted as measuring “entwinement”, a quantity
that emerges from the orbifold description of the theory, with boundary interpretations offered
in [48,62–65]. In section 5, we have pointed out that this same surface is associated with the bulge
of the python, which measures some notion of the complexity of reconstructing the entanglement
shadow with access only to A. It is possible that these two interpretations are connected in some
way.

On the other hand, in the context of LLM geometries, one motivation for [44] was to better
understand surfaces that bisected the S5 (or related interior geometries) in the AdS duals of
N “ 4 UpNq super-Yang Mills theory on the Coulomb branch. These were studied in [66, 67]
who argued compellingly that such surfaces meaured entanglement between matrix degrees of
freedom in the field theory. However, [44] showed that at the origin of the Coulomb branch, the
surface bisecting the S5 was not minimal; rather, if we cut off AdS5 at large radius, dual to a
UV cutoff in the field theory, the minimal surface hugs the cutoff. This points to the surfaces
studied in [66,67] as having an intepretation as some kind of complexity, perhaps related to the
matrix degrees of freedom of the theory.

Multi-boundary wormhole states For multi-boundary wormhole states of the black hole
which include pythons, we have found that, considering regions A comprised of multiple bound-
aries, the complexity of reconstructing the lunch plateaus after some number of connected com-
ponents have been included in A. This feature is closely related to the non-extensivity of the
log-complexity for extended systems such as black branes. In this case, certain connected com-
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ponents of the bulge and constriction coincide exactly.

Given a multi-boundary wormhole state, this effect implies that all the quantum information
of the code subspace in the shared interior of the multiple black holes is encoded via V in a
subset of them; applying non-trivial unitaries to the rest results in a reconstruction which is
not optimal. We note that this feature, and the possibility of applying the geometric PLC to
multi-boundary regions A, should be captured by generic tensor network models of the multi-
boundary python, under the assumption that the individual tensors that constitute the geometry
appear uncorrelated, at least approximately. In fact, for the multi-boundary wormhole states
|Σn

0y that we have analyzed, a Haar random state model was originally proposed in [42], which
captured the mutual information of these states. A finer model of the states |Σn

0y is to consider
a random tensor network model of the geometry, with tensors of large bond dimension. Such
a model directly captures the physics of the RT formula [15], and therefore the multipartite
entanglement structure. Moreover, in random tensor network models with uncorrelated local
tensors, it seems reasonable to expect that the way to implement post-selection unitarily is
generically via brute-force Grover search locally, so they will satisfy the assumptions of the PLC
and will reproduce the geometric features that we have studied.

Without knowledge of how the multi-boundary states with shared interiors are prepared
unitarily, the genericity assumption seems reasonable. However, this feature is in contrast with
“simple” tensor network states such as the ones motivating the conjecture [27], where the bulge
arises for proper subregions A as an artifact of the coupling of A to Ā in the unitary time evolution
that drives the full system together (in the case of [27] A is the early Hawking radiation and Ā is
the black hole). For such states, the tensors in the tensor network are correlated and the bulge
dissapears once A is taken to be the full system. It would be interesting to test this prediction
of the conjecture and understand if and why geometric bulges cannot form dynamically in a
simple way, when allowing operators which couple the different boundaries.

Time dependence In our analysis, we have restricted ourselves to time reflection-symmetric
states, where all of the extremal surfaces lie on the time reflection-symmetric Cauchy slice Σ.
Situations in which the time-reflection symmetry is spontaneously broken by the bulge and other
locally minimal surfaces have been reported in [31] for specific spherically symmetric initial
data in near-extremal black hole interiors. The specific data has been constructed using the
two-dimensional description of these systems given by JT gravity with additional matter fields
coupled to the metric. In all of the examples that we have analyzed in this paper, however,
we do not expect such an effect. An interesting open problem that we leave for future work is
to investigate the nature of more general extremal surfaces, such as the surfaces called bounces
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(cf. [31]), that are expected to arise in these situations.
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A Gauss map trick

It was noted in [68] that the index of a complete orientable extremal surface Σ in R3 is only
dependent on the Gauss map, n : Σ Ñ S2 which is defined such that for each p P Σ, nppq is
the unit normal vector to Σ at p. We are interested in extremal surfaces of finite index which
is equivalent to the condition of finite total curvature,

´
Σ

|κ1κ2| ă 8 where κ1,2 are principal
curvatures of the extremal surface [68]. Further, every extremal surface of this type is conformally
equivalent to a compact Riemann surface with punctures, Σ̄ztp1, . . . , pku [69] and thus we can
extend the Gauss map n to n̄ : Σ̄ztp1, . . . , pku Ñ S2.

The second order variation of area of Σ̄ is (we are going to omit writing the punctured points
explicitly)

δp2qAreapΣ̄, hq “
1

2

ˆ
Σ̄

?
h

`

hijBiηBjη ´ KijK
ijη2

˘

. (A.1)

The quadratic form A.1 is invariant under conformal variations of the type h̃ij “ e2ωhij. We get
the following transformations under Weyl scaling:

a

h̃ “ e2ω
?
h (A.2)

h̃ij “ e´2ωhij (A.3)

K̃ij “ eωKij (A.4)
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Hence,
δp2qAreapΣ̄, h̃q “ δp2qAreapΣ̄, hq . (A.5)

To illuminate the connection between the (extended) Gauss map and the index, we note that

KijK
ij

“ Kijh
ilhjmKlm

“ Tr
`

P 2
˘

“ ´2κ

where P is the shape operator and κ is the Gaussian curvature. We also have a linear map dn̄ :

TpΣ̄ Ñ Tn̄ppqS
2 with the property that its determinant is the Gaussian curvature, κ. Therefore,

we get
KijK

ij
“ ´2κ “ ´2 detpdn̄q . (A.6)

Since the quadratic form A.1 is conformally invariant as demonstrated by A.5, we can choose
the rescaled metric h̃ij “ ´κhij. Then A.1 simplifies to

δp2qAreapΣ̄, h̃q “ ´
1

2

ˆ
Σ̄

a

h̃ η
`

∇2
` 2

˘

η . (A.7)

In fact, the metric h̃ij is the pullback under the Gauss map23 n̄ and hence, h̃ij “ ´ detpdn̄qhij.

We are interested in finding the number of negative modes of the quadratic form A.1. The
most natural vector space on which the quadratic form A can act is L2

hpΣq with inner product
xϕ, ψy “

´
Σ

?
hϕ˚ψ. The index of A is defined as the dimensionality of the largest subspace of

L2
hpΣq on which A is negative definite. Note that the inner product is not preserved under the

action of Gauss map but it is true that L2
hpΣq Ă L2

h̃
pΣ̄q since the Gaussian curvature is bounded

from above. A rigorous proof of indexpΣq = indexpΣ̄q involves constructing a basis of L2
hpΣq

using a basis of L2
h̃
pΣ̄q and showing that the span of either set of basis vectors is the same. This

was shown in [68] with the assumption that h̃ is a smooth metric on Σ̄ (including the punctures).

We will give a variant of the proof in [68] in case of a catenoid. We have Σ “ catenoid,
Σ̄ “ S2ztN,Su where N,S are the two poles, n̄ : S2ztN,Su Ñ S2. The induced metric h̃ij is
smooth at punctures and hence the quadractic form A.7 can be analyzed on S2 with the round
metric. The eigenvalues are given by λl,n “ lpl ` 1q ´ 2 and therefore the index(Σ̄)“ 1. Since
L2
hpΣq Ă L2

h̃
pΣ̄q, indexpΣq ď 1. To show that it is equal to 1, we need to find ψ P L2

hpΣq such that

23 The linear map dn̄ : TpΣ̄ Ñ Tn̄ppqS
2 can be extended to a Weingarten map W : TpΣ̄ Ñ TpΣ̄ and technically,

the metric h̃ij is a pullback under the Weingarten map.
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δp2qAreapΣ̄, h̃q ă 0. To ensure that ψ is in L2
hpΣq, we need to put regularity condition that ψ Ñ 0

as we approach the puncture. Let us consider the standard round metric, ds̃2 “ dθ2 ` sin2 θdϕ2

and a function ψ given by

ψ “

$

&

%

θ´θp
θ0

θ ´ θp ă θ0

1 θ ´ θp ě θ0
(A.8)

near each puncture θp and θ0 ! 1. Then A.7 becomes

δp2qArea “
π

2
p ´ 4π (A.9)

where p is the total number of punctures. In case of a catenoid, p “ 2 and hence δp2qArea ă 0.

B Weierstrass–Enneper representation

The Weierstrass–Enneper representation is a convenient way of parametrizing extremal surfaces
in R3. Let f be an analytic function and g a meromorphic function on some domain in C, such
that fg2 is analytic. This will furnish an extremal surface in R3 with embedding coordinates
given by

x “ Re

ˆˆ z

0

dz1
p1 ´ gpz1

q
2
qfpz1

q

˙

(B.1)

y “ Re

ˆ

i

ˆ z

0

dz1
p1 ` gpz1

q
2
qfpz1

q

˙

(B.2)

z “ Re

ˆ

2

ˆ z

0

dz1fpz1
qgpz1

q

˙

. (B.3)

In fact, any nonplanar extremal surface in R3 can be represented by the above parametrization.

For a singly periodic Scherk surface, the domain is the unit disk, and

fpzq “
4

pz2 ´ z20qpz2 ´ z̄20q
, gpzq “ iz , (B.4)

where z0 “ eiϕ with ϕ being the half angle between the planes. Therefore, the parametric form
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for the Scherk surface is:

xpr, θq “
1

2 sinϕ

"

ln

ˆ

1 ` r2 ` 2r cospθ ` ϕq

1 ` r2 ´ 2r cospθ ` ϕq

˙

´ ln

ˆ

1 ` r2 ` 2r cospθ ´ ϕq

1 ` r2 ´ 2r cospθ ´ ϕq

˙*

(B.5)

ypr, θq “
1

2 cosϕ

"

ln

ˆ

1 ` r2 ` 2r cospθ ` ϕq

1 ` r2 ´ 2r cospθ ` ϕq

˙

` ln

ˆ

1 ` r2 ` 2r cospθ ´ ϕq

1 ` r2 ´ 2r cospθ ´ ϕq

˙*

(B.6)

zpr, θq “
1

cosϕ sinϕ

"

arctan

ˆ

sin 4ϕ ´ 2r2 cos 2θ sin 2ϕ

cos 4ϕ ` r4 ´ 2r2 cos 2θ cos 2ϕ

˙

´ 4ϕ

*

(B.7)

where r P p0, 1q and θ P r0, 2πq.
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