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Realistic modeling of ecological population dynamics requires spatially explicit descriptions that
can take into account spatial heterogeneity as well as long-distance dispersal. Here, we present
Monte Carlo simulations and numerical renormalization group results for the paradigmatic model,
the contact process, in the combined presence of these factors in both one and two-dimensional
systems. Our results confirm our analytic arguments stating that the density vanishes smoothly
at the extinction threshold, in a way characteristic of infinite-order transitions. This extremely
smooth vanishing of the global density entails an enhanced exposure of the population to extinction
events. At the same time, a reverse order parameter, the local persistence displays a discontinuity
characteristic of mixed-order transitions, as it approaches a non-universal critical value algebraically
with an exponent β′

p < 1.

I. INTRODUCTION

Modeling the dynamics of populations is a key chal-
lenge in ecology [1]. Beyond traditional mean-field mod-
els which consider a single variable (the global density)
for each species, a more realistic, although theoretically
less tractable class of models is the family of spatially
explicit models, which describe the state of the system
in terms of local densities in the two-dimensional space.
A frequently applied simplification to such spatially ex-
plicit models is that local densities are attached to sites
of a regular (most frequently square) lattice. A further
ingredient of a more realistic modeling beyond mean field
is the stochasticity of reproduction and extinction events
[2].

The paradigmatic starting point of this kind of model-
ing is the contact process (CP) [3, 4], where the state is
given by a set of binary variables at each site, encoding
empty (0) or colonized (1) habitat patches. Colonization
of neighboring lattice sites (0 → 1) and spontaneous ex-
tinction (1 → 0) occur independently with given rates.
Depending on the ratio of these rates, the steady state
can be either a completely empty (extinct) state or a
fluctuating state with a non-zero global density of col-
onized sites. In between, a continuous phase transition
occurs, which belongs to the directed percolation (DP)
universality class [5–7]. As it is common for critical phe-
nomena, the order parameter of the transition, the global
density ρ, vanishes algebraically with the reduced control
parameter ∆ as the transition point is approached from
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the fluctuating phase:

ρ(∆) ∼ ∆β , (1)

β denoting the dimension-dependent order-parameter ex-
ponent characteristic of the DP universality class.

This simple CP has been extended in at least two di-
rections with the purpose of a more realistic modeling
of ecological systems. First, according to observations,
colonization events occur also to distant places, and the
dispersal is heavy-tailed, i.e., the colonization probability
decreases with the distance slower-than-exponentially [8–
14]. This issue has been studied in the CP for the case of a
dispersal probability decaying algebraically with the dis-
tance as p(l) ∼ l−α [15–17]. According to these studies,
the critical behavior remains in the DP class if α > αc(d),
where αc(d) is a dimension-dependent threshold value,
while, for α < αc(d), the critical exponents are altered
and depend on α. Thus, even in this case, the algebraic
vanishing of the order parameter in Eq. (1) holds to be
valid, although with a modified β. Second, real systems
may have a fine-scale heterogeneity in the conditions of
surviving or reproduction. This can be taken into ac-
count in the CP by quenched random colonization and
extinction rates. The well known, perturbative Harris
criterion [18] predicts weak disorder to be relevant in low
dimensions (d < 4), leading to a new type of critical be-
havior. According to the strong-disorder renormalization
group (SDRG) method [19, 20], at least for sufficiently
strong disorder [21], the critical behavior is described by
an infinitely disordered fixed point (IDFP) in agreement
with results of Monte Carlo simulations [24–26]. At the
IDFP, the dynamics is highly uncommon, as time itself is
replaced by its logarithm in scaling relations, but other-
wise power-laws like Eq. (1) hold to be valid with critical
exponents different from those of DP.
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Thus, we can see that the most relevant observable of
the system, the stationary density ρ, follows a power-
law scaling with the reduced control parameter given by
Eq. (1), even if the model has long-distance dispersal or if
it has quenched disorder in it, these circumstances merely
affecting the value of β. Informed by these results, it is
natural to expect that the power-law decay of the density
holds even in the simultaneous presence of long-distance
dispersal and quenched disorder. This is, however, not
the case. According to SDRG studies of this model, the
critical behavior is described by a finite-disorder fixed
point (FDFP) at which the dynamical relationship be-
tween length and time scales is of power-law type with a
logarithmic correction [27–29]. This scenario is expected
to be valid in the non-mean-field regime α > 3

2d, where
the Harris criterion predicts weak disorder to be relevant.
The predictions of this theory for the dynamical scaling
at the critical point have been confirmed by Monte Carlo
simulations in one and two dimensions [28, 30]. Fur-
thermore, according to a recent SDRG study of the one-
dimensional model by one of us [31], the density vanishes
near the critical point according to

ρ(∆) ∼ e−C/
√
∆, (2)

with C being a nonuniversal positive constant. This type
of infinite-order vanishing of the density, corresponding
formally to β = ∞, is qualitatively different from the
conventional power-law singularity in Eq. (1).

In this paper, we first aim at comparing this result of
the SDRG treatment in one dimension with Monte Carlo
simulations. More importantly, we extend the investiga-
tions of the order parameter to two dimensions, which
is more relevant to ecological modeling, by a numerical
application of the SDRG method and by Monte Carlo
simulations.

Besides the density order parameter, we also consider
the local persistence, which is the probability that a given
site is never activated [32–38]. The persistence can be
regarded as a reverse order parameter, which is zero in
the active phase and non-zero in the inactive one. In
the homogeneous model, it vanishes algebraically as the
critical point is approached from the inactive phase,

π(∆) ∼ (−∆)βp (3)

with a dimension-dependent exponent βp. In the simul-
taneous presence of quenched disorder and long-range in-
teractions, the SDRG method predicts again an anoma-
lous behavior in one dimension: the persistence remains
non-zero at the transition point [30] but approaches its
critical value π0 algebraically [31] as

π(∆)− π0 ∼ (−∆)β
′
p , (4)

with β′
p = 1/2, which is characteristic for mixed-order

transitions. In this work, we confirm this law by off-
critical Monte Carlo simulations and show that similar
behavior appears also in two dimensions by the numerical
SDRG method and Monte Carlo simulations.

The paper is organized as follows. The model is in-
troduced in Sec. IIA, followed by a review of the SDRG
method in Sec. II B and the details of the Monte Carlo
simulation in Sec. II C. The numerical results are pre-
sented in Sec. III and discussed in Sec. IV.

II. THE MODEL AND METHODS

A. The contact process

We consider the contact process on a d-dimensional
lattice (with d = 1 or d = 2), the sites of which are
either active or inactive. The dynamics of the CP is a
continuous-time Markov process with two types of inde-
pendent transitions. First, active sites become inactive
with a site-dependent, quenched random rate µn. Sec-
ond, active sites attempt to activate other sites with rates

λnm = Λnmr−α
nm, (5)

where Λnm = Λmn are quenched random rates and rnm
denotes the Euclidean distance between the source (n)
and the target site (m). The parameter α, which we
restrict to the range α > d, characterizes the extent of
long-distance dispersal.
We study two observables of this model, the density

of active sites ρ and the persistence probability π at late
times. To measure the latter, the system is initiated from
a state in which sites are active with a probability ρ0 < 1,
and the persistence π(t) at time t is defined as the fraction
of sites which remained inactive all the way up to time t.

B. The SDRG method

In the SDRG procedure, the maximum Ω of rates
present in the system and the number of effective sites
is reduced recursively, step-by-step [19]. In each elimina-
tion step, a block of sites containing the largest rate is
replaced by simpler blocks. As the model has two sets
of rates, there are two kinds of elimination steps. If the
largest rate is an activation rate, Ω = λnm, and neighbor-
ing deactivation rates are much smaller than Ω, the sites
n and m are replaced by a single effective site (cluster)
which has an effective deactivation rate

µ̃nm = κ
µnµm

Ω
(6)

with κ = 2 in leading order of perturbation calculation.
If the largest rate is a deactivation rate Ω = µn, and
the neighboring activation rates are much smaller than
this, the site is eliminated, leaving behind effective tran-
sitions between all original neighbors of site n, with rates
obtained perturbatively in the form

λ̃mk =
λmnλnk

Ω
. (7)
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When these operations are attempted in d > 1 dimen-
sions, one encounters a difficulty of arising double acti-
vation rates between clusters. We treated this problem
by following the standard ‘maximum rule’, which means
that only the larger one of the rates is kept. A further
modification in the rule in Eq. (6) we have done is that
κ = 1 has been used instead of κ = 2. The reason for this,
is that this modified rule, together with the maximum
rule allows us to use an efficient numerical algorithm of
the SDRG procedure developed by one of us [39]. For the
CP with nearest-neighbor dispersal on low-dimensional
lattices, where the critical fixed point of the SDRG trans-
formation is an IDFP, both the maximum rule and the
irrelevance of the value of κ are justified [40]. For the CP
with long-distance (algebraic) dispersal, where the criti-
cal fixed point is an FDFP [27], Monte Carlo results on
the dynamical scaling at the critical point in d = 1 and
d = 2 confirmed the validity of these approximations for
α > 3

2d, and also at α = 3
2d for a low enough dilution

[28, 30].
The density ρ(t) of active sites and the persistence

probability π(t) can be calculated within the SDRG ap-
proach in the following way. The density ρ(t) at time t,
if initially each site was active, is given by the ratio of
those sites which are part of an active (not yet decimated)
cluster at rate scale Ω = t−1. The density in the quasista-
tionary state of a finite system in the active phase is thus
given by the ratio of sites contained in the last surviving
cluster formed in the SDRG procedure. The persistence
of a given site (n) can be obtained as follows [32]. The
deactivation rate at this site is set to zero, µn = 0, then
this site remains persistent as long as it is not merged
with another cluster during the SDRG transformation.
Performing this procedure for all sites and counting the
fraction of persistent sites at Ω = t−1 provides π(t).
In the numerical calculations, the rates Λnm and µn

were drawn from uniform distributions in the interval
(0, 1) and (0, µ), respectively. As a control parameter, we
used Θ = lnµ. For the d = 2 model, we set the dispersal
exponent to α = 3, which tests the range of validity (α ≥
3
2d) of the SDRG method. In this case, the critical point
was found to be in an earlier work at Θc = 2.42(5) [28] by
analysing the distribution of sample-dependent critical
points [27]. We considered different system sizes up to
L = 64 and used typically 40 000 random samples (and at
least 4000 for the largest size of the density calculation).

C. Monte Carlo simulation

In the simulations, a different type of disorder, which is
more frequently used in Monte Carlo studies [25, 26, 28],
was considered. This is a random dilution of the lattice,
by which a fraction c of sites is randomly deleted. Note
that, due to long-distance dispersal, c does not need to
be below the percolation threshold of the underlying reg-
ular lattice. We applied a sequential update, in which an
active site is picked randomly and either made inactive

with a probability 1/(1 + λ) or an activation event is at-
tempted from this site with a probability λ/(1 + λ). In
the latter case, a target site is selected randomly with a
probability proportional to l−α, where l is the Euclidean
distance measured from the source site. As control pa-
rameter of the transition we used λ. Technical details of
the simulation are the same as in Ref. [28].
Measurements of the global density ρ(t) were per-

formed in a single large sample for each value of the con-
trol parameter. The size of the sample was L = 109 in
one dimension and the linear size was L = 30 000 in two
dimensions. Measurements of the persistence in the inac-
tive phase were performed by starting the process from a
random state with a global density ρ0 = 1/2, simulating
until the system reached the fully inactive (absorbing)
state. The fraction of persistent sites was then calcu-
lated and averaged typically over results obtained in 100
random samples. The maximal linear system size was
L = 108 for d = 1 and L = 40 000 for d = 2.

III. NUMERICAL RESULTS

A. The one-dimensional model

For the one-dimensional model, a simplified, analyti-
cally tractable SDRG scheme predicts a smooth vanish-
ing of the global density in the active phase as given by
Eq. (2) [31]. To check the validity of this asymptotic
form, we performed Monte Carlo simulations for α = 2
and α = 3, with a dilution parameter c = 0.5. Data
obtained for different values of the control parameter λ
and at different times are plotted in Fig. 1. Plotting
the logarithmic densities ln ρ(λ, t) against ∆−1/2, with
∆ = λ − λc, leads to an agreement with Eq. (2), as the
late-time densities (which approached their steady-state
values) fit well to a straight line. Here, estimates of the
critical control parameter λc were taken from Ref. [28].
We find the constant C appearing in Eq. (2) to vary with
α.
Next, we measured the persistence probability, which

has been found by the SDRG method to exhibit a mixed-
order type of transition given by Eq. (4) [31]. Numerical
results obtained by Monte Carlo simulations in the in-
active phase for α = 2, c = 0.5, are plotted in Fig. 2.
Using the critical persistence π(λc) = 0.015 estimated in
Ref. [30], we find that data are compatible with the form
given by Eq. (4) and the estimate 0.499 of the exponent
β′
p obtained by a linear fit to the data on a double log-

arithmic scale close to the critical point provides a good
agreement with the theoretical value β′

p = 1/2.

B. The two-dimensional model

Unlike in one dimension, the SDRG method is not an-
alytically tractable in higher dimensions, thus we have no
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FIG. 1. Dependence of the global density on the control
parameter λ at different times in the one-dimensional model
with α = 2 (a) and α = 3 (b). Data have been obtained
by Monte Carlo simulations. The critical control parameters
are λc = 2.90(1) for α = 2 and λc = 5.00(5) for α = 3 [28].
The straight lines are linear fits to the stationary data having
slopes −C = −1.0 (a) and −C = −2.6 (b).
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FIG. 2. Dependence of the persistence probability on
the control parameter for different system sizes in the one-
dimensional model. Data have been obtained by Monte Carlo
simulations with α = 2 and c = 0.5. The straight line has a
slope 0.499.

analytical prediction about the scaling of order parame-
ters at our disposal in two dimensions. Nevertheless, by
a relatively simple argument, a relationship between the
models in different dimensions was established in Ref.
[28]. This relies on a recursive rearrangement of the sites
of the d-dimensional model to a one-dimensional chain,
after which distances l between sites of the d-dimensional
model are typically scaled to ld. As a consequence, the
critical behavior of the d-dimensional model having a dis-
persal parameter α is expected to be the same as that
of the one-dimensional model with a reduced dispersal
parameter α/d. Thereby, formulae known for the one-
dimensional model can be extended to d > 1 by replac-
ing α by α/d, as well as all distances by their dth power.
The precision of this statement is presumably restricted
to the equality of critical exponents and may not hold
for any additional multiplicative logarithmic corrections
[28]. Numerical SDRG and Monte Carlo analyses of the
dynamical scaling of the order parameter at criticality
in two and three dimensions have supported this general
connection [28, 29].
Applying this conjecture to the off-critical scaling of

the density in Eq. (2), as it contains neither distances
nor the parameter α, leads to the expectation that it
holds in the same form also for d > 1. Therefore, our
numerical analysis in two dimensions was guided by this
form. First, we performed a numerical SDRG analysis
and measured the fraction of active (non-decimated) sites
m contained in the last cluster, a quantity which is ex-
pected to display the same scaling behavior as the global
density. Numerical results for α = 3 are shown in Fig. 3.
As shown in the inset of Fig. 3, the order parameter van-
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FIG. 3. The order parameter m obtained by the numerical
SDRG method in the two-dimensional model with α = 3,
plotted against the reduced control parameter −∆ = Θc −Θ
(inset). The critical control parameter is θc = 2.42(5). In the
main panel, the same data are linearized according to Eq. (2).
The straight line has a slope −C = −7.7.

ishes smoothly as the critical point is approached, and,
indeed, the main panel of Fig. 3 shows that the data fit
well to the form given by Eq. (2).
Results on the global density obtained by Monte Carlo

simulations of the two-dimensional model with a dilution
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parameter c = 0.8 and dispersal exponents α = 3 and
3.5 are shown in Fig. 4. Here, we used again estimates
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FIG. 4. Dependence of the global density on the control
parameter λ at different times in the two-dimensional model
with α = 3 (a) and α = 3.5 (b). Data have been obtained
by Monte Carlo simulations. The critical control parameters
are λc = 6.00(2) for α = 3 and λc = 5.95(5) for α = 3.5 [28].
The straight lines are linear fits to the stationary data having
slopes −C = −1.26 (a) and −C = −2.60 (b).

of the location of critical point (λc = 6.00(2) for α = 3
and λc = 6.95(5) for α = 3.5) from an earlier work [28].
As shown in the figure, the stationary data fit well to the
form in Eq. (2) for both values of α, and the constant C
is different for different α.

Next, we turned to the dependence of persistence prob-
ability on the control parameter in the inactive phase.
The conjectured connection between the models in dif-
ferent dimensions described above would näıvely predict
that a relationship given by Eq. (4) holds to be valid also
for d > 1. The question is, however, which one of its
parameters, if any, remains unchanged when switching
to higher dimensions. The leading (constant) term π0 is
non-universal, i.e., it depends on the type of disorder and
α, therefore it is not expected to remain unchanged. The
invariance of the exponent β′

p is also questionable, as it
appears in the subleading term. Therefore, in the nu-
merical analysis, we assumed a mixed-order type of form

for the vanishing of the persistence where π0 and β′
p are

treated as fitting parameters.
Numerical results in the inactive phase obtained by

the SDRG method for α = 3 are shown in Fig. 5. As
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FIG. 5. The persistence π obtained by the numerical SDRG
method in the two-dimensional model with α = 3, plotted
against the reduced control parameter −∆ = Θc −Θ (inset).
The main panel shows the same data linearized according to
Eq. (4). The straight line has a slope β′

p = 0.47.

illustrated, the data are compatible with a mixed-order
vanishing and the estimates of the parameters obtained
by a fitting to the data for the largest system size (L =
64) are π0 = 0.72(1) and β′

p = 0.47(4). Nevertheless,
care has to be taken with these estimates since, as we
can see in the figure, the persistences close to the critical
point are still considerably affected by the finite size of
the system. Thus, the asymptotic (L → ∞) value of π0

may be significantly lower, while β′
p may be significantly

higher than the estimates obtained for L = 64.
Results of Monte Carlo simulations obtained for α =

3 and α = 3.5 (and a dilution parameter c = 0.8) are
shown in Fig. 6. These confirm what has been found by
the SDRG method: the vanishing is of mixed-order type.
The estimated critical persistences are π0 = 0.043(2) for
α = 3 and π0 = 0.070(2) for α = 3.5. Since the value
of β′

p obtained by fitting is very sensitive to the errors
of λc and π0, we have rather uncertain estimates on it:
β′
p = 0.7(2) both for α = 3 and α = 3.5. Note that,

just like the two-dimensional SDRG results, these do not
exclude a possible agreement with the value 1/2 obtained
by the SDRG method for d = 1.

IV. DISCUSSION

In this work, we considered a stochastic lattice model
of population dynamics, the contact process in the simul-
taneous presence of quenched disorder and long-distance
dispersal. We focused on the off-critical scaling of order
parameters, for which an earlier SDRG work predicted
anomalous scaling behavior in one dimension, for large
enough dispersal exponents. Specifically, the global den-
sity vanishes smoothly, whereas the persistence proba-
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FIG. 6. Dependence of the persistence probability on the
control parameter for different system sizes. Data have been
obtained by Monte Carlo simulations of the two-dimensional
model with α = 3 (a) and α = 3.5 (b). The straight lines
have slopes β′

p = 0.69 (a) and β′
p = 0.68 (b).

bility vanishes discontinuously when the critical point is
approached from the active phase and the inactive phase,
respectively [31]. We provided a numerical confirmation
of these forms by Monte Carlo simulations in one dimen-
sion and, making a step toward a more realistic mod-
elling, we addressed this issue in the two-dimensional
model. In two dimensions, our numerical SDRG and
Monte Carlo results agree in that the global density fol-
lows the same type of smooth vanishing given in Eq. (2)
as found in one dimension. Furthermore, the discontin-
uous, mixed-order type of vanishing of the persistence
found in one dimension holds to be valid also in two di-
mensions, as it is demonstrated by our numerical SDRG
and Monte Carlo results. Concerning the exponent β′

p in
the subleading term of persistence, our numerical results
clearly signal a singularity with β′

p < 1, but the accessible
numerical data are not conclusive on whether this expo-
nent is different from that of the one-dimensional model
(1/2) or not.

We note that the compatibility of SDRG and Monte
Carlo results suggests that the SDRG method is a valid
approach also for the random transverse-field Ising model

with long-range interactions [28, 29]. For that model,
the SDRG scheme is formally similar to that of the CP
(with κ = 1), and, as a consequence, the magnetization
(corresponding to the global density of CP) is expected
to vanish according to Eq. (2) as the quantum critical
point is approached from the ferromagnetic phase at zero
temperature.

The type of extremely smooth vanishing of the den-
sity at the extinction threshold characterized formally
by β = ∞ is in stark contrast with the linear vanishing
of the density in the mean-field theory (βMF = 1) and,
especially, with the singular vanishing of the density in
the d = 2 DP universality class, where β = 0.583(4)
[5]. Remarkably, in the latter case, the density tends
to zero at the critical point with an infinite slope, while
in the model studied in this work, with a zero slope.
We note, that the two-dimensional disordered CP with a
short-range dispersal, for which β = 1.23(4) [39], also dis-
plays a zero-slope vanishing similar to the present model.
Nevertheless, unlike in our model, the order-parameter
exponent is finite there, and is just barely greater than
1. The extremely smooth vanishing of the global density
may have a profound impact on the expected lifetime and
extinction of finite populations. In case of a finite expo-
nent β, in particular for β ≥ 1, the population may have
a low risk of extinction even fairly close to the extinction
threshold due to the relatively high global density there.
This is, however, not the case for β = ∞, where the mean
density is rather low even well above the threshold, and,
as a consequence, the population is more easily extermi-
nated by demographic or environmental fluctuations.

There are several directions in which the investigations
performed in this work could be extended. From a the-
oretical perspective, one may pose the question whether
the anomalous behavior of order parameters found for
d = 1 and d = 2 holds to be valid in higher dimensions,
as well. Based on the conjectured connection between
different dimensional variants of the model, we expect
qualitatively similar results in three dimensions (with a
possibly different value of β′

p) in the non-mean-field do-

main α > 9
2 , where the Harris criterion predicts weak

disorder to be relevant. However, in four dimensions and
above, where weak disorder is irrelevant for any value of
the dispersal exponent α, we expect the model to exhibit
mean-field critical behavior. With the scope of ecologi-
cal modeling, it would be interesting to analyse the model
under an environmental gradient [41]. This is naively ex-
pected to transform the control-parameter dependence of
global density examined in this paper to a spatial depen-
dence of the local density along the direction of the gra-
dient. Moreover, this would allow us to confront the pre-
dictions of the model with observational data obtained
by satellite images in the presence of an environmental
gradient.
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