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We study the quench dynamics of a two dimensional superconductor in a square lat-

tice of size up to 200 × 200 employing the self-consistent time dependent Bogoliubov-de

Gennes (BdG) formalism. In the clean limit, the dynamics of the order parameter for short

times, characterized by a fast exponential growth and an oscillatory pattern, agrees with the

Bardeen-Cooper-Schrieffer (BCS) prediction. However, unlike BCS, we observe for longer

times an universal exponential decay of these time oscillations that we show explicitly to

be induced by the full emergence of spatial inhomogeneities of the order parameter, even in

the clean limit, characterized by the exponential growth of its variance. The addition of a

weak disorder does not alter these results qualitatively. In this region, the spatial inhomo-

geneities rapidly develops into an intricate spatial structure consisting of ordered fragmented

stripes in perpendicular directions where the order parameter is heavily suppressed. As the

disorder strength increases, the fragmented stripes gradually turn into a square lattice of ap-

proximately circular spatial regions where the condensate is heavily suppressed. A further

increase of disorder leads to the deformation and ultimate destruction of this lattice. We

show these emergent spatial patterns are sensitive to the underlying lattice structure. We

explore suitable settings for the experimental confirmation of these findings.

I. INTRODUCTION

The spontaneous formation of patterns, defects and other spatial structures is a fascinating phe-

nomenon rather ubiquitous in nature. It can be observed in various contexts, from the vortex pattern in su-

perconducting thin films induced by a magnetic field [1] to the formation of spatial structures in a driven
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Bose-Hubbard model [2]. A particularly interesting phenomenon of defect formation, termed Kibble-

Zurek mechanism [3, 4], is the spontaneous generation of vortices as a result of the quench through a

second-order phase transition. It has been observed both experimentally [5–7] and numerically [8–10] in

a wide variety of physical systems.

In many of these situations, far from equilibrium dynamics triggers spatial instabilities that eventually

lead to pattern formation. In the context of superconductivity and superfluidity, although the study of

nonequilibrium dynamics has received a lot of attention, the spontaneous generation of spatial structures,

either due to the Kibble-Zurek mechanism or of different origin, have been modeled by employing phe-

nomenological approaches such as the time dependent Ginzburg-Landau [1, 11–13], the Gross-Pitaevskii

equation [2, 8] or applied holography [9, 14] where the dynamics of the superconductor is mapped onto

that of a gravitational system.

It is expected that these phenomenological approaches will be qualitatively correct close to a sec-

ond order phase transition. However, the full non-linear structure of the time dependent BdG equations

[15, 16], due to the self-consistent condition verified by the order parameter, is fully necessary for the

quantitative description of the out of equilibrium dynamics of a superconductor. A simpler problem,

the quench dynamics of a Bardeen-Cooper-Schrieffer (BCS) superconductor [17], first investigated in

Ref. [18], has received a lot of recent attention [19–25]. The conclusion of these studies is that details of

the dynamics of the order parameter amplitude depend on both the initial state and the quench protocol,

though a generic feature is the existence of oscillations in time. For an initial state above the critical

temperature, it has been argued [19, 21, 26] that these oscillations do not decay with time, unless col-

lision effects beyond BCS are taken into account, while quenches in the coupling constant within the

superconducting state [21–23] lead to oscillations whose amplitude typically decays either exponentially

or as a power-law.

A perturbative analytic treatment of the dynamics using the full time dependent BdG formalism,

that accounts for spatial inhomogeneities, showed that eventually the order parameter develops a simple

oscillating spatial structure with a typical length directly related to the superconducting coherence length

[27]. This perturbative treatment cannot take into account the full non-linear nature of the time evolution

so the validity of these results is only assured for relatively short time scales where these non-linear

effects are small. A very similar pattern of spatial oscillations has been reported in the quench dynamics

of the order parameter of a holographic superconductor [14]. The recently published paper [28] also

highlights the intricate spatial pattern formation observed in the postquench dynamics of charge density

wave states.
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Despite this considerable progress, the dynamics of a superconductor after a quench, especially the

nature of the emergent spatial structures, is still an open problem. We note that this is mostly due to

technical challenges resulting from the combination of the non-linearity induced by the self-consistent

condition and the requirement of sufficiently large system sizes in order to account for the emergent spa-

tial structure from the quench dynamics. Moreover, it is necessary to consider at least a two dimensional

superconductor because fluctuations in one dimension, even at low temperature, are too large to employ

a mean field formalism.

In this paper, we address this problem by studying the quench dynamics of a two dimensional su-

perconductor by the full self-consistent time-dependent BdG formalism [29–31] in a 200 × 200 square

lattice that enables us to investigate in detail complex spatial patterns. We have found that for no dis-

order and short times, in agreement with the BCS results, the order parameter first grows exponentially

and then has an oscillatory behavior. However, for longer times, time oscillations in the order parameter

are suppressed exponentially independently of the quench protocol. The precursor of this behavior is the

emergence of spatial inhomogeneities, beyond the reach of the BCS formalism, characterized by an expo-

nential growth of the variance in space of the order parameter which ultimately results in the appearance

of short stripes in the horizontal and vertical directions where the order parameter is heavily suppressed.

We believe our results are largely universal as these spatial patterns occur well after the quench ends.

The addition of a weak disordered potential, modeling impurities which are ubiquitous in experiments,

does not change the above results qualitatively. As disorder increases, the mentioned fragmented stripes

gradually morphs into a square lattice of fake vortices, namely, approximately circular regions where the

amplitude of the order parameter is very small but with a trivial phase. Finally, as the insulating transition

is approached, the lattice symmetry is eventually lost though the repulsion between fake vortices persists.

In the next section, we introduce the model and the computation scheme.

II. THE MODEL

In order to study the time evolution of a two dimensional superconductor after a temperature quench,

we employ the mean field time dependent BdG equations [29, 30, 32–35], which are given by

 K̂ ∆̂(ri, t)

∆̂∗(ri, t) −K̂∗

un(ri, t)

vn(ri, t)

 = iℏ
∂

∂t

un(ri, t)

vn(ri, t)

 (1)
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where

K̂un(ri) = −ti,i+δ

∑
δ

un(ri+δ) + (Vi − µ)un(ri), (2)

δ stands for the nearest neighbors sites, and ti,i+δ is the hopping energy between the nearest neighbors

sites and we set ti,i+δ = 1 for simplicity. The onsite random potential Vi is uniformly distributed between

[−V, V ], where V is the strength of the disordered potential. µ is the chemical potential. This two

parameters are in units of the hopping energy ti,i+δ.

To simulate the dynamical evolution, we solve the above equations by using the fourth order Runge

Kutta algorithm [30, 36] with a sufficiently small time step dt that ensure the convergence of the dy-

namics. To be more specific, we use dt = 0.1/∆0 for system size N = 200 × 200 which is the main

results, and dt = 0.01/∆0 for other smaller sizes. ∆0 is the value of the order parameter in the clean

limit at zero temperature. The occupation number is assumed to satisfy the Fermi-Dirac distribution

f(En) = [1 + exp(En/kBT )]
−1 at each time-step during the dynamical process, where T is temperature

and kB = 1 is the Boltzmann constant. The time dependent order parameter is then defined as,

∆(ri, t) = |U |
∑
n

un(ri, t)v
∗
n(ri, t)[1− 2f(En)], (3)

where U is the strength of the on-site, phonon induced, attractive electron-electron interaction, leading to

the superconducting state. The time dependent local density is given by

n(ri, t) = 2
∑
n

[|un(ri, t)|2f(En) + |vn(ri, t)|2(1− f(En))]. (4)

For numerical convenience, we start from the equilibrium state at temperature Ti > Tc, namely, a

vanishing order parameter which can be obtained from the exact solution of the BdG equations [37–39].

We note that due to the maximum numerical accuracy that our calculation can reach, even in the clean

limit, the numerical error is of order 10−16. This numerical error induces a very weak spatial dependence

in the initial state even without disorder. This numerical error is therefore the seed for the later emergence

of spatial patterns if no disorder is present. We stress that by no means these spatial patterns are a

numerical artifact. Physically, this seed has its origin in small thermal and quantum fluctuations that we

are neglecting in mean field formalism that we employ but are always present in experiments. The details

of the emergent spatial inhomogeneities induced by the quenched dynamics are largely independent on

the origin of the seed.

Indeed, we also checked the quenched dynamics starting with a random but normalized initial state,
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in a smaller system size, leads to qualitatively similar results. We employ periodic boundary conditions

to minimize finite size effects. Time evolution is induced by lowering the temperature T (t) from Ti > Tc

to Tf = 0.1Tc using the following linear quench protocol [9, 40],

T (t) =

 Ti − τQt, ti ≤ t ≤ tf

Tf , t > tf
(5)

where τQ, the slope of the quench, which characterizes the quench duration, has units t2i,i+δ/(ℏkB), ti = 0

is the starting time of the quench, and tf = (Ti − Tf )/τQ is the quench ending time corresponding to the

final temperature Tf . In our study, we let Ti = 1.2Tc. We mostly focus on fast quenches leading to a non-

adiabatic time evolution, so we set τQ = 50. Since we are mostly interested in the generation of stable

spatial patterns by the dynamics which occurs for relatively long time scales after the quench stops, we

expect our results to be largely independent on the quench protocol. We quenched both the temperature

and coupling constant with different quench speeds, and obtained qualitatively similar patterns, indicating

that this is rather universal. Indeed, for zero disorder, we have checked, see Appendix B and C, that a

quench in the coupling constant leads to qualitatively similar results for sufficiently long times. Moreover,

since we aim to compare with the BCS dynamics for short times, our quench results in a superconducting

state which for no disorder is still spatially homogeneous in the T ≲ Tc region.

III. QUENCH DYNAMICS OF THE ORDER PARAMETER: INITIAL EXPONENTIAL GROWTH,

TIME OSCILLATIONS AND ITS EVENTUAL SUPPRESSION

We now proceed to study the dynamics of the condensate amplitude triggered by lowering the tem-

perature of the system from Ti > Tc to Tf < Tc using the quench protocol Eq. (5). Since one of our main

goals is the modeling of stable spatial patterns of the order parameter in the long time limit [27], we use

the self-consistent time dependent BdG equations introduced earlier which results in an initial spatially

homogeneous evolution of the order parameter. We shall see that a weak disordered potential does not

change this picture substantially. This is indeed a welcome feature as another aim of the paper is to

compare for short times our results with previous theoretical predictions using the simpler BCS approach

that cannot account for spatial inhomogeneities.

We first study the initial growth of the condensate as the system enters the superconducting phase. We

observe that the amplitude of the order parameter increases rapidly from zero as the system enters the

superconducting phase by lowering the temperature T < Tc. A careful fitting of the numerical results,
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Figure 1. The dynamics of the spatially averaged order parameter ⟨∆(r)⟩ (black dot), normalized by ∆0 ∼ 0.83,
together with an exponential fitting f(t) = af exp(bf t) (red line) at short times corresponding to temperatures
slightly below the critical one that marks the transition into the superconducting state. The other parameters are
system size N = 200 × 200, the coupling constant U = −3 and the chemical potential is fixed at µ = −0.34

corresponding to a mean charge density ⟨n⟩ ≃ 0.875.

see Appendix A, indicates that the growth of the order parameter is exponential in this region. This

confirms that the quench is fast enough to induce a highly non-adiabatic time evolution. An exponential

growth is also observed, see Figure 1, in a relatively broad range of disorder strengths with a growth rate,

0.86 ∼ 0.89, that is not very sensitive to disorder and it is also similar (0.86) to that found in the clean

limit.

The initial exponential growth of the spatial averaged order parameter amplitude, obtained from the

solution of the BdG equations Eq. (1), is followed, see Figure 2, by relatively simple oscillations in time.

At this early stage, we did not yet observe spatial inhomogeneity in the clean limit, or even in the presence
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Figure 2. The real time evolution, after spatial average, of the order parameter ⟨∆(r)⟩ in the presence of a random
potential for different values of the disorder strength V . The other parameters are the same with Figure 1.

of a weak disordered potential V ≤ 0.1. The time evolution of the order parameter within the simple

BCS formalism [19, 21–23, 26], that by design neglects spatial inhomogeneities, also shows oscillations

in time whose details depend on both the initial state and the quench protocol. More specifically, for

an initial state of the order parameter characterized by uncorrelated phases in momentum space [26] or

with a very small initial value [21], which simulates the system above the critical temperature Tc, the

lowering of the temperature below Tc induces undamped periodic oscillations in the amplitude of the

order parameter. By contrast, for a quench in the coupling constant at zero temperature, and therefore

inside the superconducting phase [21–23], the amplitude of the order parameter oscillations can decay

either as a power-law or exponential way, or not decay at all, depending on the values of the initial and

final coupling constants. As expected, we have found excellent agreement with the BCS prediction for

the protocols that we have tested explicitly, see Appendix C. This is not surprising as BCS theory and

BdG theory should agree in the limit in which the order parameter is spatially homogeneous.

The dynamics becomes more interesting for longer times. Results depicted in Figure 2 indicate that

this simple dynamical regime ends rather abruptly due to the sharp exponential suppression of the am-

plitude of these oscillations, which does not occur in the BCS dynamics [19, 21–23, 26], see also Ap-

pendix C. The time scale of this suppression is sensitive to the addition of a weak random potential. For

a stronger disorder still deep in the metallic phase, the oscillations are almost fully suppressed after a few

periods. We show next, by employing the mentioned time dependent BdG formalism, that the origin of

that exponential suppression lies in the development, even for no disorder, of spatial inhomogeneities in

the order parameter.

In order to carry out a more quantitative analysis of the decay of the amplitude of the order parameter,



8

we define δ∆ = (⟨∆(r)⟩peak−⟨∆(r)⟩valley)/∆0, see Figure 3, where peak and valley refer to consecutive

local maxima and minima of the oscillations in time of the order parameter. For sufficiently short times,

where the order parameter is spatially homogeneous, the reduction of the amplitude δ∆ is consistent

with a power-law decay. A fit with a power-law decaying function ∼ t−γp yields γp ∼ 1.4 for weak or no

disorder which illustrates that this slow decay is not related to the presence of a random potential.

The power-law decay is followed by a much faster exponential decay ∼ exp(−γet) even in the clean

limit. As is expected, γe becomes larger as disorder increases. Even for a relatively weak disorder,

V = 0.1, it is already about two times larger that in the clean limit. Qualitatively, the dependence of the

crossover time between power-law and exponential decay on the disorder strength V ≪ 1 seems to be

rather weak which reinforces the idea that disorder does not play a leading role in this phenomenon. We

investigate in more detail this region of exponential suppression in the next section.
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Figure 3. Left y axis: the amplitude of the time oscillation δ∆ (black dots) of the order parameter in the presence
of different disorder strengths V and the corresponding power-law y ∝ t−γp (red line) and exponential fittings
y ∝ exp(−γet) (blue line). Right y axis: the variance of the order parameter Var[∆(r)]. We combine both results
using a double y axis plot in order to show explicitly that the exponential suppression of time oscillations is induced
by the exponential growth of spatial inhomogeneities. Only when the spatial inhomogeneities become sufficiently
large, because of the exponential growth of the variance, the exponential suppression of the time oscillations occurs.



9

IV. EXPONENTIAL GROWTH OF EMERGENT SPATIAL INHOMOGENEITIES AND

EXPONENTIAL SUPPRESSION OF TIME OSCILLATIONS

We now carry out a comprehensive study of the full form of the exponential decay of the order pa-

rameter oscillations in time aiming to relate this exponential suppression with the emergence of spatial

inhomogeneities in the order parameter even in the absence of disorder.

(a)

(b)

Figure 4. The time dependence of the spatially averaged order parameter ⟨∆(r)⟩ (blue line) in the clean V = 0

and weak disorder regions V = 0.1. The red dash-dot line is the best fitting, by Eq. (6), in the region of exponential
decay of the amplitude of the time oscillations of the order parameter that follows the region of slower power-law
decay. As is observed in the inset plots of the spatial distribution of the order parameter at times t1, t2, t3, this
time scale is related to the formation of spatial inhomogeneities. As was expected, the fitting parameter γ which
characterizes the exponential decay increases with increasing disorder. The system size is N = 200 × 200, the
coupling constant U = −3, and the chemical potential µ = −0.34.

As a first step, we employ a simple oscillatory function with an exponential decay of the amplitude
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[19, 27] to fit the time dependent spatial averaged order parameter obtained from the BdG formalism,

∆(t) = ∆f − A(∆f + C + cos(ω(t− t0)∆0))/ exp(γ(t− t0)∆0), (6)

where ∆0 ∼ 0.83 is the value of the order parameter in the clean limit at zero temperature, and ∆f is

the order parameter in the final equilibrium state after the quench. The four fitting parameters are γ, the

decay ratio of the amplitude, A, C and ω. As is shown in Figure 4, for times right after the crossover to

an exponential decay in δ∆ (see Figure 3) , we find a very good agreement with the BdG results in the

clean and weak disorder limit. We note that in the BCS approach, the value of ω is sensitive to the initial

state and the quench protocol [19, 21, 41]. In our case, the fitting yields ω ∼ 0.3∆0 which is in the same

ballpark as the BCS prediction [41] for a initial state characterized by a very small order parameter with

respect to ∆0. In any case, we do not expect quantitative agreement because this frequency may also be

affected by the emergence of spatial inhomogeneities.

For earlier times, as expected, the decay of time oscillations is much slower so the fitting is much

worse. Moreover, we find that this exponential decay, even for no disorder, seems to be closely related

with the emergence of spatial inhomogeneities in the order parameter. This can be seen from the similarity

between the time scale t2 in which the exponential suppression of oscillations occurs and the time scale t3

in which spatial inhomogeneities, already existent for t2, become substantial, see the insets of Figure 4. In

other words, the emergence of spatial inhomogeneities eventually, namely, when they are large enough,

triggers the exponential decay of oscillations in time that terminates approximately when the spatial

inhomogeneities are fully formed.

In order to establish a more quantitative relation between spatial inhomogeneities and the exponential

decay of time oscillations, we compute the variance of the order parameter Var|∆(r)| = ⟨∆2(r)⟩ −

⟨∆(r)⟩2 as a function of time in the clean limit and in the presence of weak disorder V ≤ 0.1. Results

depicted in Figure 5 show a region of intermediate times where the variance grows exponentially. We

define te as time in which this exponential growth terminates because the spatial patterns are completely

developed, see Figure 5(a).

Another interesting feature of the time dependence of the spatial variance is the observation of a

period of no growth, only for no disorder V = 0, right after the initial growth of the condensate. This

feature strongly suggests that the later exponential growth is independent of the quench protocol. For

V ̸= 0, the situation is different. The early exponential growth in time of the amplitude of the order

parameter is followed by the exponential growth of the variance which indicates that the seeds of spatial

inhomogeneities due to disorder are amplified exponentially by the dynamics of the BdG superconductor.
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Figure 5. Variance of the spatial inhomogeneities of the amplitude of the order parameter ∆(r, t) for different
disorder strengths V . The starting of the exponential growth observed for intermediate times shows much earlier
than the beginning of the exponential suppression of the oscillations of the averaged order parameter.

The flat behavior of the variance for later times, after the exponential growth, confirms the earlier claim

that the end of the time oscillations is related to the approach to a quasi equilibrium state where the

change with time of the order parameter is heavily suppressed.

We have now all ingredients to compare explicitly to what extent the exponential growth of the spatial

inhomogeneities and the crossover between power-law and exponential decay of oscillations in time are

closely related. For that purpose, we depict in Figure 3, back to back, the plots of δ∆(t), that characterizes

the amplitude of time oscillations, and Var[∆(r)], representing the exponential growth of the variance of

the spatial inhomogeneities. For both, the clean and the weak disordered case, V ≤ 0.1, the crossover

to an exponential decay of the oscillations precisely occurs when the exponential growth of the variance

of spatial fluctuations is close to its termination, namely, when it has reached a value sufficiently large to

have an impact on the quench dynamics. Therefore, td and te has a very similar dependence on disorder

and td is a bit larger than te in all cases as the exponential suppression does not require a full development

of spatial inhomogeneities described by te. These results fully confirm that the oscillations in time of the

order parameter are eventually suppressed exponentially by the emergence of spatial inhomogeneities

characterized by a variance that grows exponentially. This is therefore a quite robust feature of the non-

adiabatic dynamics of BdG superconductors.

We turn to a quantitative investigation of the dependence on disorder of these results. For that purpose,

we show in Figure 6, the dependence on the strength of disorder V of td, the typical crossover time



12

between power-law and exponential decay of δ∆(t), and te the time at which the exponential growth of

the variance terminates. We observe that in the weak disorder limit V ≤ 0.1 that is of interest, both

typical times have not only similar values but also a simple logarithmic dependence with the disorder

strength, with a finite value for V = 0, confirming, at least for weak disorder, that the exponential

decay of the order parameter time oscillations has its origin in spatial inhomogeneities induced by the

quench dynamics with the disorder potential playing the secondary role, at least in this region, of shifting

the development of these spatial pattern to earlier times. We note that the slightly larger value of te

is expected because the effect of the spatial inhomogeneities must be felt earlier, but not much earlier

because the growth is exponential, than the time at which the spatial inhomogeneities are fully formed.
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Figure 6. Typical crossover time td (blue rhombs), see Figure 3(a), between the power-law and exponential decay
of the amplitude of the time oscillations of the order parameter as a function of the disorder strength V . Typical
time te (red rhombs) signaling the end of the exponential increase of the variance of the order parameter spatial
inhomogeneities depicted in Figure 5(a). The solid lines are fits using the function time = ad log(bd × V + cd).
We not only observe a similar logarithmic dependence in both cases, with a finite value at V = 0, but td and te
have similar values. Therefore, the exponential growth of the spatial inhomogeneities induces the late exponential
decay of the amplitude of the time oscillations.

We now move to the quantitative description of the spatial patterns for sufficiently long times when

the system reaches the final quasi equilibrium state.
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V. LONG TIMES: SPONTANEOUS FORMATION OF SPATIAL PATTERNS RESULTING FROM

THE QUENCH DYNAMICS

The conclusion of the previous section is that, within the time dependent BdG formalism, time oscil-

lations of the order parameter are exponentially suppressed for sufficiently long times. This is markedly

different from the BCS result in which this specific exponential suppression does not occur, because the

order parameter is spatially homogeneous.

In this section, we present a detailed description of those stable, spontaneously formed, spatial pat-

terns, see Figure 7, together with its formation process, see Figure 8, as a function of the disorder strength.

Videos of the full time evolution are available here [42]. We recall that for no disorder, spatial inhomo-

geneities start to appear when the time oscillations are significantly suppressed. Initially, see left column

of Figure 8, they resemble soft periodic or quasi-periodic domains where the order parameter amplitude

is substantially smaller than in the surroundings. For longer times, these domains become more pro-

nounced and adopt the shape of relatively thin finite-size stripes, most times organized in a perpendicular

fashion. These broken stripes have well defined centers where the suppression of the order parameter is

even stronger. This seems to be an equilibrium or quasi-equilibrium state because we do not appreciate

further changes even for much larger time scales. A small but finite disorder does not change much the

emergence of these spatial patterns.

In order to have a more quantitative description of this spatial structure, we have computed the aver-

aged gap correlation function ⟨∆(r)∆(0)⟩. Results depicted in Figure 9 show oscillations with a typical

length ℓp ∼ 12.5 in the clean limit, which is much larger than the superconducting coherence length

ξ0 ∼ 1 at thermal equilibrium. This is a strong indication that the pattern of spatial inhomogeneities,

especially its periodicity, is due to the quench dynamics.

As a further probe of the periodic nature of the spatial structure, we compute the structure factor,

S(q) =
∑
ij

∆(ri)∆(rj) exp(iq(ri − rj))/
∑
i

∆2(ri), (7)

of the distribution of the order parameter for long times where the system seems to have reached a quasi

equilibrium state. We termed quasi-equilibrium state for two reasons, there is still some residual time

dependence and also the resulting state is very different from that corresponding to the solution of the

static BdG equations. As is shown in Figure 7, the spatial patterns resulting from the out of equilibrium

dynamics have a square crystal-like structure. We have checked that the structure of this spatial pattern

depends on the underlying lattice structure. In the Appendix B, we obtain a Hexagonal pattern in the
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Figure 7. Left column: the time dependence of the spatial averaged order parameter ⟨∆(r)⟩ for different disorder
strengths V . Central column: spatial distribution of the order parameter at time t4, see left column, corresponding
with a quasi-equilibrium state with intricate spatial patterns and a very weak time dependence. Right column:
structure factor Eq. (7) that reveals patterns in spatial distribution of the order parameter at time t4. The parameters
are: system size N = 200× 200, coupling constant U = −3 and the chemical potential µ = −0.34.
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Figure 8. The spatial distribution of the order parameter ∆(r) at times t1, t2 and t3, defined in Figure 7, cor-
responding to different stages of the time evolution before the full quasi-equilibrium state (t4), and for different
values of the disorder strength V .
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Figure 9. The static order parameter correlation function ⟨∆(r)∆(0)⟩ at time t4, defined in Figure 7, normalized
by ⟨∆(r = 0)∆(0)⟩, the spatial average of the square of the order parameter.

structure factor for a triangular lattice system. Moreover, according to the Bragg pattern depicted in

the right column of Figure 7, the distance from the center to the peaks is around 0.25 in momentum

space which in real space corresponds to a typical length of the strips, or the fake vortex lattice, of about

ℓp ∼ π/0.25 = 12.56. This is consistent with the previous findings for the order parameter spatial
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correlation function in Figure 9. The addition of a weak disorder potential does not modify substantially

these results.
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Figure 10. The variation of the charge density δn(r) = n(r, t) − n(r, t = 0) at time t4, defined in Figure 7. The
spatial pattern of suppressed charge density matches that of the superconducting order parameter, especially when
disorder is not very strong.

Results depicted in Figure 10 for the charge density variation δn(r) further confirm the existence of

spatial patterns consistent with the one found for the spatial structure of the order parameter. Therefore,

the observed stripe-like domains where the order parameter is suppressed cannot be attributed to quantum

coherence effects [38, 43, 44], but are rather related to modulations of the charge density caused by the

strong suppression of time oscillations.

A. From fragmented stripes to fake vortices

As disorder strength increases, but still deep in the metallic region, we observe a similar periodic

pattern that does not yet seem much affected by disorder. Although the periodicity is robust, see Fig-

ure 7, the shape of the domains where the order parameter is suppressed undergoes a gradual change.

The stripes becomes more fragmented until they become completely disconnected. However, a rather

strict periodicity of these patterns is still observed even for substantially larger disorder V ≤ 0.5. The

regions where the order parameter is suppressed are now circular and with a typical length that is much

larger than the superconducting coherence length. As we said earlier, the phase of the order parameter

is fixed in this region, so the periodic suppression of the order parameter is not related to non-trivial

topological properties. For that reason, we have termed this spatial pattern fake vortex lattice. Both, the

correlation function ⟨∆(r)∆(0)⟩, see Figure 9, and the structure factor of the spatial distribution of the

superconducting order parameter, see Figure 7, confirm this lattice structure of the spatial patterns.

For 0.5 < V < 2, disorder effects become gradually more pronounced. The periodic pattern of the

fake vortex is gradually deformed though clear vortex repulsion is still observed even when V = 1.0. The
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latter is confirmed by an explicit calculation of the structure form factor, see Figure 7, that still shows

a clear circular pattern. This is also confirmed in the order parameter correlation function ⟨∆(r)∆(0)⟩,

see Figure 9, where the vestiges of a lattice structure resulting in vortex repulsion show up as a valley at

|r| = 8 and a peak at |r| = 16 for a relatively large strength V = 1.0 of the random potential.

In the strong disorder limit, close or around the transition V ∼ 2, the spatial distribution of the order

parameter is mostly controlled by disorder. It becomes highly inhomogeneous, has no specific periodic

pattern but it seems that some vortex-like structures remain. For instance, the gap correlation function

⟨∆(r)∆(0)⟩, see Figure 9, only has short correlations in space and the Fourier transform has no Bragg

peaks signaling no periodic pattern in space.

VI. DISCUSSION

A natural question to ask is the origin of the crossover from stripes to fake vortices that we observe

as the strength of disorder is increased. Since disorder suppresses finite size effects, we cannot rule

out that the so called fake vortices, that arise for stronger disorder, should still be observed for weak

or no disorder, instead of the fragmented stripes, if it were possible to reach much larger lattice sizes.

Unfortunately, substantially larger sizes are currently beyond the reach of our computing capabilities.

Another important issue is the dependence of the results to the strength of the electron-phonon cou-

pling. We have set the coupling constant in the strong coupling region U = −3, and set the Debye

energy to the full band of the energy spectrum, in order to be able to explore quantitatively the rich spa-

tial structure of the order parameter resulting from the out of equilibrium dynamics whose typical length

is around ℓp ∼ 12.56, which is much larger than the superconducting coherence length. As is expected,

this is not fully consistent with the weak-coupling analytic prediction [27] that this typical length should

be the superconducting coherence length. Results for an even stronger coupling constant U = −5, pre-

sented in the Appendix E, show similar spatial patterns but, as expected, the typical length of the patterns

is shorter. A more quantitative understanding on the precise nature of this length scale would require a

more systematic, and therefore numerically costly, analysis of its dependence on the quenched dynamics,

for instance by varying the coupling constant, which is beyond the scope of the paper.

More specifically, it may be interesting to explore the weak coupling region |U | ≤ 1 where quantum

coherence effects induce multifractal-like features for intermediate to strong disorder. However, we

anticipate that typically strong quantum coherence effects such as multifractality will suppress the spatial

patterns induced by the quench dynamics even for a relatively weak disorder strength V ≤ 0.5. This

bring us to the issue of the experimental confirmation of these results. The strong coupling region we
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have explored in this paper is more amenable for experiments with Bose-Einstein condensate at very low

temperature where the dynamics is triggered by a change in the coupling constant which is feasible to

carry out in this setting. Disorder-like effects in this problem can be modeled by quasi-periodic optical

lattice configurations.

We note that in superconducting materials, a quench protocol based on the change of coupling con-

stant is not in principle possible but even a controlled quench in temperature is challenging. This is why

some experiments opted to induce out of equilibrium dynamics by bombarding the sample with photons

leading to heating and subsequent cooling [45]. However, the theoretical modeling of such systems is

well beyond the mean-field approach, and relatively simple quench protocols, that we are considering

here. Having said that, we believe that a mean field approach is enough for a description of the physics

behind the emergence of large spatial inhomogeneities of the condensate even in two dimensions. We

note that quantum and thermal fluctuations beyond the mean field formalism, if sufficiently small, which

is the case for low temperatures, large sizes and not very strong electron-electron interactions, induce

very small spatial inhomogeneities in the order parameter that act as seed for the later emergence of

spatial patterns. In our formalism, as mentioned earlier, this seed is induced by the finite accuracy of

our numerical calculation so indirectly, we are taking it into account. Larger effects such as the Berezin-

skii–Kosterlitz–Thouless transition [46, 47] can be avoided with quenches ending at sufficiently low

temperatures.

Finally, we address the dependence of the results on the quench speed. Results depicted in Appendix D

for a much slower quench, points to a more nuanced picture. For sufficiently long times, spatial inhomo-

geneities are clearly observed but they do not have a periodic pattern. Large domains with similar values

of the order parameter are separated by filamentary domain walls where the order parameter is highly

suppressed. The domains walls becomes thinner for longer times but they persist in the range of times we

can explore numerically. We therefore expect that a sufficiently slow quench will in principle lead to an

essentially adiabatic dynamics where early time oscillations are suppressed and spatial patterns may not

develop at all. We also note that sufficiently fast temperature quenches inducing far out of equilibrium

effects are beyond the finite temperature mean-field formalism that we employ in the paper.

VII. CONCLUSIONS

We have investigated the quenched dynamics of a BdG superconductor. In order to compare with

previous results, which use the simpler, spatially homogeneous, BCS formalism, we have employed two

quench protocols: an abrupt change in the coupling constant, see Appendix C and B, and a smooth linear
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drop in temperature starting above the critical temperature. For zero disorder and sufficiently long times,

where the BCS approach ceases to be applicable, we have obtained similar results so the study of the role

of disorder was carried out only for the second quench protocol.

For short times, we observe similar results as in the simpler BCS approach, the order parameter re-

mains homogeneous, it first grows exponentially and then oscillates in time with a pattern that depends

on the quench protocol and the initial state. However, in contrast with previous BCS findings, the am-

plitude of these time oscillations eventually decreases exponentially in time because of the emergence

of spatial inhomogeneities of the order parameter. We have characterized the emergence of these spatial

inhomogeneities by the exponential growth of the variance in space of the order parameter and showed

that this exponential growth in space causes the exponential suppression of the oscillations in time. This

feature cannot be accounted for in the BCS formalism and it is observed even in the limit of no disorder.

A weak disordered potential does not change qualitatively these results.

For longer times, these spatial instabilities turn into rich spatial patterns. In the clean limit, or for

sufficiently weak disorder, we observe ordered filamentary structures resembling finite size stripes in

closed perpendicular directions, where the order parameter is heavily suppressed. The suppression of the

order parameter in the central region of these broken stripes is much more pronounced. Those stripes

are insensitive to the quench protocols, like quenching the temperature or coupling constant, and quench

speed. It only depends on the lattice structure. For stronger disorder, but still deep in the metallic

region, the stripe-like structures morph into a square lattice of fake vortices, namely, the amplitude of

the order parameter is heavily suppressed in circular regions whose typical length is much larger than

the superconducting coherence length, but the phase has no topological properties so no real vortex

is formed. Larger sizes, beyond our current numerical capabilities, are needed to clarify whether the

observed broken stripes for weak or no disorder become also a vortex lattice in the thermodynamic

limit. A further increase of disorder leads to a gradual deformation of the lattice, though isolated fake

vortices that repel each other are still clearly observed. Finally, close to the insulating transition, spatial

inhomogeneities induced by disorder become also relevant leading to a quite intricate spatial structure

that is characterized by a lack of vortex lattice symmetry but persistence of vortex repulsion. Although

the time scale we can simulate numerically is limited, our results suggest that, neglecting the effect of

collisions beyond the time dependent BdG formalism, these spatial structures correspond with a quasi-

equilibrium state of the superconductor which is still very different from that corresponding with the

solution of the static BdG equations. The observed spatial patterns are confirmed by a careful analysis in

Fourier space based on the calculation of the structure factor. We have shown, by an explicit calculation
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with an underlying triangular lattice, that the emergent spatial patterns are sensitive to the underlying

lattice structure which points to a rather rich spectrum of possible patterns of spatial inhomogeneities

induced by the quenched dynamics.

It would be interesting to gain a more comprehensive understanding of the precise nature of the spatial

patterns, especially in the so called stripe region, either by numerical or analytic techniques, in order to

determine whether, for sufficiently large sizes, the spatial structures that emerge for intermediate times

lead to a full checkerboard-like shape instead of the observed broken stripes. It would also be worthwhile

to extend these results to p-wave and d-wave superconductors in order to explore its potential relevance

in topological superconductivity and the physics of cuprates superconductors.
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Appendix A: The initial growth of the condensate

In this appendix, we study the initial growth of the superconducting order parameter when the tem-

perature is just lowered below the critical temperature. For that purpose, we fit numerical results from

the solution of the BdG equation with Gaussian, exponential and power-law test functions. The out-

come of the fitting, see Figure 11, is that the order parameter increases exponentially during the early

stages of the time evolution in the superconducting phase. This is consistent with previous results in

phenomenological models for sufficiently fast quenches [9].
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Figure 11. The dynamics of the spatially averaged order parameter ⟨∆(r)⟩ (black dot) for times right after the
system has entered in the superconducting phase. The results of the different fittings using Gaussian, power-law
and exponential functions clearly indicate that the latter is the one closer to the numerical results.

Appendix B: The dynamic pattern formation in the triangular lattice

In the main text, we have presented a comprehensive analysis of the square lattice, which lead to

the observed square pattern of spatial inhomogeneities for sufficiently long times. In this appendix, we

extend our investigation to a BdG superconductor with an underlying triangular, instead of square, lattice.

A summary of the quenched dynamics is depicted in Figure 12. Although the pattern in real space may not

be that evident, the corresponding structure factor analysis reveals a clear hexagonal pattern. By studying

different lattice configurations, we gain valuable insights into the influence of the lattice geometry on

the formation of spatial patterns induced by the out of equilibrium dynamics. Those results indicate

that the underlying lattice symmetry plays a crucial role in the form of the emergent spatial patterns for
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sufficiently long times after the quench.

Figure 12. The time evolution of the order parameter ∆(t)/∆0 of a BdG superconductor living in a two dimensional
triangular lattice. The coupling constant U = −4 and the chemical potential µ = 0.108 leading to ∆0 = 1.098.
The insets show the spatial distribution of the order parameter at three representative times marked by red points
and the corresponding structure factor at time t3. The other parameters are system size N = 200 × 200, disorder
V = 10−5, initial temperature Ti = 1.2Tc, and final temperature Tf = 0.1Tc and τQ = 50.

Appendix C: Comparison between the dynamic BCS and BdG results in the sudden coupling quench case

In this appendix, we compare the quench dynamics using the BCS and BdG formalism. We cannot use

the quench in temperature of the main manuscript because it is difficult to model it in the BCS formalism

which cannot, at least in a fully self-consistent way, account for spatial inhomogeneities. Therefore, we

compare the quench dynamics in BCS and BdG by using a quench protocol with an abrupt change in the

coupling constant at zero temperature where the initial state is spatially homogeneous and therefore it is

possible to model it with both approaches. Results depicted in Figure 13 show that in the beginning, when

the spatial dependence is not yet observable, the BCS and BdG quench dynamics is quantitatively very

similar. However, at time t∆f around 400, we start observing the spatial structures in the BdG results

which triggers a sharp departure from the BCS prediction. Those results, together with those presented in

the main text corresponding the dynamics after lowering the temperature into the superconducting phase,

show that the emergent spatial structure as a consequence of the quench dynamics is rather universal and

independent on the quench protocol.
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Figure 13. The time evolution of the order parameter ∆(t)/∆0 in the clean limit obtained with the BCS (blue) and
BdG (red) formalisms. The insets show (left) the time range when the BdG result start deviating from the BCS
one and (right) the spatial distribution of the order parameter at the time marked by the black arrow. The system
is prepared in a initial state with coupling constant |U | = 1. The quench protocol consists in an abrupt change of
the coupling constant from |U | = 1 to |U | = 3. The other parameters are system size N = 40× 40 and chemical
potential µ = 0.

Appendix D: Dynamics resulting from slow quenches

The main text provides a detailed analysis of the time evolution of the system under a fast quench

protocol. It is expected that the results for a sufficiently slow quench would be somehow less interesting

as the dynamics would be essentially adiabatic corresponding to a slow, and largely homogeneous, at least

initially, growth of the order parameter as temperature is gradually lowered below the critical temperature.

For the sake of completeness, in this appendix, we present results for the dynamics, and spatial pattern

formation, for a slow quench characterized by τQ = 500. We find striking similarities with the fast

quench case but also important differences. Results depicted in Figure 14 in the very weak disorder

limit V = 0.001 show that the observation of time oscillations is greatly delayed with respect to the

fast quench limit but, once they occur, they are qualitatively similar with a fast suppression once the

filamentary spatial patterns are fully developed. Interestingly, the crossover from the broken stripe to the

fake vortex phase is not clearly observed though it may be due to the limited time scale we have explored

numerically or simply to the weak strength of the random potential. In the presence of a stronger disorder

V = 0.5, see Figure 15, there is no visible time oscillations. The shape of spatial domains become

irregular, and domain walls become thinner over time, but persist within the range of times that we can

explore numerically. This rather different, with respect to the fast quench case, spatial structure deserves

further exploration.
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Figure 14. Top: The quenched dynamics of the spatially averaged order parameter ⟨∆(r)⟩ in the presence of a
random potential with disorder strength V = 0.001. Bottom: the spatial distribution of the order parameter at
times t1, t2, t3 and t4 defined in the top plot.

Appendix E: Dynamics in the fast quench, strong coupling limit U = −5

In this appendix, we present results for the quench dynamics in the clean limit (V = 0) of the order

parameter, using the protocol of the main text (fast quench), in the region of stronger coupling constant

U = −5. We observe, see Figure 16, qualitatively similar features as for the U = −3 case studied in the

main text. The spatial averaged order parameter increases exponentially when temperature is below Tc,

and then exhibits damped oscillations in time. The development of spatial patterns in the order parameter

also followed a similar path: the sharp growth of the spatial inhomogeneities occurs around the time

in which time oscillations are fully suppressed and a broken stripe phase is followed by the fake vortex

phase though the size of these structures is substantially smaller than for U = −3. For a more quantitative

understanding of this size difference, we study the order parameter correlation ⟨∆(r)∆(0)⟩ function and

the structure factor at time t4 in Figure 16(e), when the order parameter is almost at equilibrium, namely,

it only experiences very small, non harmonic, oscillations due to the residual collective behavior of

Cooper pairs. The results, depicted in Figure 17, show that ⟨∆(r)∆(0)⟩ undergoes oscillations in space.

Likewise, the structure factor reveals the existence of a square lattice of fake vortices with typical length
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Figure 15. Top: The slow quench dynamics of the spatially averaged order parameter ⟨∆(r)⟩ in the presence of a
weak disorder of strength V = 0.5. Bottom: the spatial distribution of the order parameter at times t1, t2, t3 and t4
defined in the top plot.

ℓp ∼ 5.6 in real space. This typical length is much shorter than that for U = −3, but still much larger

than the superconducting coherence length which, for this value of the coupling, is of the order of the

lattice spacing.
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Figure 16. Top: The time evolution of the spatial averaged order parameter ⟨∆(r)⟩ in the clean limit, V = 0.
Bottom; The spatial distribution of the order parameter at the corresponding times t1, t2, t3 and t4 shown in the top
figure. The system size is N = 200× 200, the coupling constant U = −5 and chemical potential µ = −0.45.
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Figure 17. Left: The order parameter correlation function ⟨∆(r)∆(0)⟩ at the equilibrium time, t4 in Figure 16(e)
which is normalized by ⟨∆(r = 0)∆(0)⟩. Right: The structure factor at quasi equilibrium time t4, in Figure 16(e).
The Bragg’s pattern shows a distance to the peaks of around π/5.6 in momentum space, which corresponds to a
typical length of the lattice of about ℓp ∼ 5.6 while the superconducting coherence length is much smaller, about
the lattice spacing.
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