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Abstract

In order to assess the relevance of higher order terms in the Standard Model
Effective Field Theory (SMEFT) expansion we consider four new physics mod-
els and their impact on the Drell Yan cross section. Of these four, one scalar
model has no effect on Drell Yan, a model of fermions while appearing to
generate a momentum expansion actually belongs to the vacuum expectation
value expansion and so has a nominal effect on the process. The remaining two,
a leptoquark and a Z ′ model exhibit a momentum expansion. After matching
these models to dimension-ten we study the how the inclusion of dimension-
eight and dimension-ten operators in hypothetical effective field theory fits
to the full ultraviolet models impacts fits. We do this both in the top-down
approach, and in a very limited approximation to the bottom up approach
of the SMEFT to infer the impact of a fully general fit to the SMEFT. We
find that for the more weakly coupled models a strictly dimension-six fit is
sufficient. In contrast when stronger interactions or lighter masses are consid-
ered the inclusion of dimension-eight operators becomes necessary. However,
their Wilson coefficients perform the role of nuisance parameters with best
fit values which can differ statistically from the theory prediction. In the
most strongly coupled theories considered (which are already ruled out by
data) the inclusion of dimension-ten operators allows for the measurement of
dimension-eight operator coefficients consistent with theory predictions and
the dimension-ten operator coefficients then behave as nuisance parameters.
We also study the impact of the inclusion of partial next order results, such as
dimension-six squared contributions, and find that in some cases they improve
the convergence of the series while in others they hinder it.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) has become one of the most impor-
tant methodologies for studying physics beyond the Standard Model (SM) at the LHC.
The SMEFT is formed on the fundamental principle that, so long as new resonances are
sufficiently heavy, effective field theories yield the most general possible S-matrix consis-
tent with the tenets of quantum field theory [1]. This powerful statement comes with
some caveats, for example: there exists a region of validity based on the power counting
and there is no reason (beyond aesthetics and limited experience) that the heavy physics
imprints on the leading operators of the expansion.

In the field of the SMEFT, most studies are performed at dimension six or order 1/Λ2

where Λ is the heavy scale of new physics. However, there has been substantial interest in
understand beyond leading order effects in the SMEFT (or 1/Λ2) expansion. In some cases
this can be because of unique signals first generated beyond leading order, for example
triple neutral gauge couplings [2–7]. It has also been pointed out that many models
generate similar dimension-six EFTs, but this degeneracy is broken beyond leading order
in the SMEFT expansion [8]. This has motivated a shift toward including dimension-eight
effects in the SMEFT which has resulted in many tools for calculation [9–13] as well as
many phenomenological studies [14–35].

A natural question is: how relevant are terms of order 1/Λ4? Much of the community
neglects them arguing the new physics scale is sufficiently high their effects are negligible.
This approach is also pragmatic, in that it allows for dealing with far fewer parameters
in a fit as there are already a seemingly intractable number of parameters at dimension-
six [36]. This can be made tractable with assumptions such as minimal flavor violation [37]
or flavor universality [38], which presents some opportunity to begin consistent studies of
the SMEFT to order 1/Λ4, e.g. a fit including dimension-eight operators in [25]. If or when
valid, truncation at order 1/Λ2 offers further appeal – one can embrace the “Energy helps
accuracy” paradigm [39] where perceived growth of matrix elements due to the presence
of dimension-six operator effects allows for more stringent constraints from data. This
naturally brings us back to the question posed at the beginning of this paragraph. Is it
consistent to use high energy events to further constrain the parameters of the SMEFT at
order 1/Λ2? An expansion in a large scale, while using high energy data, may naturally
break down. An example of a more limited study of the breakdown of a top-down SMEFT
analysis at dimension-six can be found in [40]. However, this study did not discuss how
including higher order operators impacts a fit or the inclusion of additional operators in
the IR which are not generated by the UV which we will perform below. Other studies
related to the convergence of vev expansion in the scalar singlet extension of the SM can
be found in for example [41] (SMEFT vs nonlinear EFTs) or [42] (D6 vs D8 SMEFT).

This article seeks to explore some concrete ultraviolet (UV) extensions of the SM,
their imprint on the SMEFT, and the possible breakdown of the expansion specifically
for the Drell Yan process at the LHC. As a study to dimension-eight naturally includes
dimension-six-squared contributions, we also explore the reliability of fits that include the
squares of dimension-six operators.

This article is organized as follows, in Section 2 we outline four new physics models
of a single new field (possibly a multiplet of the SM gauge group), in Section 3 we derive
the EFT for these models up to dimension ten (1/Λ6), in Section 4 we consider how
well the IR model at a given mass dimension compares to the UV model prediction, and
in Section 5 we give our conclusions. The appendices include discussions of the U(1)
mixing model considered in this article, a parameterization of the SMEFT Drell Yan
cross section, and additional tables. The ancillary files include Mathematica notebooks
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employing Matchete [43] to derive the effective Lagrangians used in this work.
In addition to the topics discussed in this article, we note that the foundation of any

analysis at a hadronic collider are the pdfs. The pdf determination can hide the UV
dynamics as state of the art pdf determinations include LHC data [44–48].

2 The Models in the UV

We consider four different ultraviolet models that impact the Drell-Yan process. These
include two scalar models, ϕ and Φ, a fermion χ, and a vector V . These models are
elaborated after we establish our notation through reviewing the SM fields and Lagrangian.

For each model the Feynman Rules are generated using FeynRules [49], and the Drell
Yan process is calculated using FeynArts and Formcalc [50,51], then integrated in invari-
ant mass bins for the final state leptons using the Vegas algorithm against the NNPDF3.0
NLO parton distribution functions (pdfs) with αs = 0.118. The factorization and renor-
malization scales are taken to be the central value of a given invariant mass bin. We
assume a 13 TeV LHC, invariant mass bins are chosen according to the CMS Drell-Yan
search with 140/fb integrated luminosity [52]. Care is taken to conform to the {α,GF ,mZ}
input parameter scheme, however this has a negligible effect on our results as the large
mass of new particles required by the EFT approach requires mixing with the SM to be
small.

2.1 The Standard Model

For clarity we briefly introduce the field content and the Lagrangian of the SM. The SM
scalar and fermion fields and charges used in this article are:

H ∼ (1, 2) 1
2

L ∼ (1, 2)− 1
2

Q ∼ (3, 2) 1
6

e ∼ (1, 1)−1 d ∼ (3, 1)− 1
3

u ∼ (3, 1) 2
3

(1)

Implicit in the above notation is that the fermionic SU(2)L doublets are left handed, and
the fermionic singlets are right handed. For simplicity we will neglect fermion masses, and
therefore set the SM Yukawa couplings to zero. The SM Lagrangian is then given by:

LSM = −1

4
GAµνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν

+iL̄ /DL+ iQ̄ /DQ+ iē /De+ id̄ /Dd+ iū /Du (2)

+(DµH)†(DµH) + µ2(H†H)− λ(H†H)2 .

Where the B, W , and G fields are the familiar gauge fields of U(1)Y , SU(2)L, and SU(3)C
with gauge coupling constants g1, g2, and g3.

For the SM process calculation we use the input parameters used in previous studies
of dimension-eight effects in the SMEFT [24,29]:

α =
1

137.035999084(1−∆α)
(3)

∆α = 0.0590 (4)

GF = 1.1663787 · 10−5/GeV2 (5)

mZ = 91.1876 GeV (6)
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Figure 1: Cross section as a function of invariant mass bin for the SM. The ratio of the
UV models with Φ, χ, or X to the SM. Assumed mass and coupling for the UV model is
given in the legend. Note the dependent axis is different for the various ratios. In the SM
plot, small jumps in the cross section are due to a change in the bin widths used in [52].

The cross section for the tree-level SM Drell Yan process as a function of invariant mass
bin is shown in Figure 1.

2.2 Scalar ϕ

Next we consider the scalar ϕ with quantum numbers (1, 3)0 (referred to as Ξ in [53]).
This model was chosen as at dimension-six it only generates operators which result in finite
renormalizations of the SM vertices contributing to Drell Yan and the Z boson mass.

In this model we have, in addition to LSM the terms:

∆Lϕ =
1

2
(Dµϕ

a)†(Dµϕ
a)− 1

2
M2(ϕa)2 + κH†σaHϕa − λϕH(ϕa)2(H†H)− λϕ(ϕa)4 . (7)

As the heavy scalar ϕ does not couple directly to fermions, this model is a trivial example,
i.e. it will not have any affect on Drell Yan. This is still a meaningful example of when
NP will not affect a given process, albeit less interesting than those which follow. As the
Drell Yan process is unaffected no plot for this model is included in Figure 1.
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2.3 Scalar Φ

We consider a scalar Φ with quantum numbers (3, 2) 1
6
, this is the Π1 of [53]. This model

was chosen as at leading order in the SMEFT it generates just one four-fermion operator.
We write the terms additional to the SM Lagrangian as,

∆LΦ = (DµΦ)
†(DµΦ)−M2Φ†Φ+ YΦ

[
d̄ (Φ iσ2L) + h.c.

]
. (8)

For convenience we take YΦ to be real, but this need not be the case. As the Φ particle
doesn’t mix with the SM particle content the input parameters are the same as in the
SM, plus the new parameter YΦ. In Figure 1 we show the ratio of the cross section in
the presence of a 3 TeV Φ with Yukawa coupling YΦ = 0.5 to the SM cross section. The
scalar Φ contributes to the process in the t–channel, and we can see from the plot that the
disparity from the SM prediction is most pronounced in the highest invariant mass bins.
That is, it contributes to the momentum expansion of the SMEFT.

2.4 Fermion χ

We consider a vector-like fermion χ with quantum numbers (1, 1)−1 (E of [53]). This
model is chosen as it generates only “Class 7” operators (ψ2H2D) at dimension-six.

In addition to the SM Lagrangian we have:

∆Lχ = iχ̄ /Dχ−Mχ̄χ− Yχ
[
H†χ̄L+ h.c.

]
. (9)

Here we have the complication that the χ and L fields mix, causing a shift in the definition
of GF . This shift is suppressed by 1/M2 and is numerically negligible. We include this
shift, nonetheless, and Fig. 1 shows a plot for a 3 TeV χ with Yukawa coupling Yχ = 0.4.
Notice the distinct difference from the case of Φ. The largest difference here occurs in
the low invariant mass range, for higher mℓℓ the shift is approximately constant. This
is because we have simply shifted the coupling to the leptons by a constant value. In
the discussion of the theory in the infrared we will see this is directly attributable to the

dimension six operator (H†←→D µH)(iL̄γµL), and all other operators do not contribute (in
the mℓ = 0 limit).

2.5 Vector X

Finally, we consider an additional gauge boson X. We begin with a vector V transforming
under a new U(1) gauge symmetry, which will, upon diagonalizing the mass matrix, result
in the vector X with which we will work. We do not assign any charge to the SM fermions
under this new U(1) and therefore the vector’s only interaction with the SM is through
kinetic mixing with the SM B field. This model is of interest as at each order in the heavy
mass expansion it only generates operators of the form (∂µBµν)∂

2n(∂ρB
ρµ). These are the

(2n+ 4) dimensional analogues of the Ŷ operator of [39]. The Lagrangian for this model
is:

∆LV = −1

4
VµνV

µν +
1

2
M2VµV

µ − k

2
BµνV

µν . (10)

Making appropriate field redefinitions (See App. A) results in the alternate UV Lagrangian:

∆LX = −1

4
XµνX

µν +
1

2
M2
XXµX

µ − g1YHβ(H†i
←→
D µH)Xµ + g21Y

2
Hβ

2(H†H)XµX
µ

−g1
∑
ψ

Yψβ(ψ̄γµψ)X
µ . (11)
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Where YH = 1/2 is the Higgs hypercharge, Yψ is the hypercharge for a given SM fermion
field ψ, and:

β =
−k√
1− k2

, (12)

MX =
MV√
1− k2

. (13)

Note that part of this Lagrangian comes from transforming the B field in LSM+∆LV and
the B field is not the “same” B field as in LSM + ∆LX when used. It is much easier to
work with the EFT resulting from Eq. 11 as this greatly reduces the number of operators
which induce unphysical poles in scattering amplitudes1. This is discussed more in the IR
section below.

In this case, there is significant mixing with the SM and the input parameters are diffi-
cult to determine. We numerically solved for the corrections to input parameter relations
and found they were again negligible. Nonetheless we include them in the calculation
of the cross section in the UV. An example of the ratio of UV to SM cross sections for
MX = 3 TeV with the value of the parameter controlling the mixing k ∼ −0.5 (β = 0.6) is
shown in Fig. 1. We note that this model results in by far the largest deviation from the
SM prediction, with this example resulting in over 15% corrections in the highest invariant
mass bins.

3 The Models in the IR

In this section we discuss the matching of the models of Sec. 2 to order 1/Λ6. The
state of the art for matching onto the SMEFT is generally dimension-eight. Examples
include [22,24,30,55,56]. The process of matching at tree level to an effective Lagrangian
beyond leading order in the EFT expansion is in general not particularly difficult. How-
ever, the theory community has focused on rewriting these effective Lagrangians in terms
of non-redundant bases by utilizing Integration By Parts (IBP) relations and field redefini-
tions. This step is fundamental to the bottom up approach embraced in phenomenological
searches for beyond the SM physics as it removes redundancies in the operator basis and
allows for a unified comparison between various groups’ analyses. These steps are tedious
and time consuming, rendering the process of matching even to dimension eight largely
impractical.

However, for the purpose of this article we are particularly interested in understanding
the implications of missing orders in the SMEFT power counting. As such we instead only
make use of IBP identities to simplify our calculation of the Drell Yan cross section as
much as possible.

Below we present the results of matching these models to the SMEFT up to order
1/Λ4. The matching has been performed to order 1/Λ6, however the resulting effec-
tive Lagrangians are generally not well suited for publication and so are relegated to the
ancillary Mathematica notebooks. The matching was performed by hand following the
procedure in [57], but checked using the Matchete package [43]2. Integration by parts
identities, when used, are applied using Matchete, these were not checked by hand due to
the sheer scope of the number of identities required for some models.

1For a discussion of how non-derivative field redefinitions in the UV relate to derivative dependent field
redefinitions in the IR see [54].

2While Matchete is largely known for its utility in matching at one-loop, it is also an extremely powerful
tool for tree-level matching to higher orders in the EFT expansion as well as for IBP relations.
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Figure 2: Example diagrams of the how the UV imprints on the IR for each model. These
diagrams should be understood as an implicitly incomplete set, i.e. most diagrams are
missing, and only used as qualitative guide. External vectors are sourced, in these cases,
by covariant derivatives. The external Higgses in the diagram should be understood as
⟨v⟩ when contributing to the Drell-Yan process.

In what follows we only write operators which affect the Drell Yan process. IBP
identities are used in an effort to distribute derivatives across fields. For example,

−(DµH)†H(DµD
2H)†H + h.c. =[

H†(D2H)H†(D2H) + (DµH)†(D2H)H†(DµD2H) +H†(D2H)(DµH)†(DµH) + h.c.
]
.

(14)
Notice that after applying the IBP identity above we can neglect operators involving 3 or
more cases of derivatives of the Higgs field (or in other cases also field strength tensors), as
they require three or more bosons in an effective vertex and therefore will not contribute
to the Drell Yan process at tree level. So for the example above, only the first term needs
to be retained. This is also the method which allows the geoSMEFT to elaborate all
operators which contribute to two- and three-point functions and derive certain results to
all orders in the SMEFT power counting [10].

Predictions were made following the same routine outlined at the beginning of Sec. 2.
In the case of the X field, calculations involving four-fermion operators were performed
by hand as Feynarts/Feyncalc remains unable to implement the Feynman rules for four-
fermion operators with vector currents. In this section we give some interesting benchmark
examples, primarily focusing on when dimension-six terms fail to correctly reproduce the
mℓℓ distribution. We leave a more general exploration of the model parameter spaces for
the next section.

To clarify our nomenclature, we write a general squared amplitude in the IR as:

|M|2 = |MSM |2 + 2
c6
Λ2
|MSMM6|+

(
c26|M6|2 + 2c8|MSMM8|

)
+ · · · (15)

We will generally refer to the leading term as the dimension-six term and occasionally as
the order 1/Λ2 term. The order 1/Λ4 term includes the dimension-six squared term (c26) as
well as the dimension eight term arising from the interference of the 1/Λ4 amplitude with
the SM. We will also refer to results to order 1/Λ4 as “(up) to dimension eight.” Similarly,
but not written above, the 1/Λ4 terms include dimension-six amplitudes interfering with
dimension-eight as well as dimension-ten amplitudes interfering with the SM amplitude.
In general there are other contributions, such as three insertions of dimension-six operators
in an amplitude interfering with the SM. We make simplifying assumptions below which
remove these additional terms from consideration. We refer to calculations to order 1/Λ6

in analogously to those to order 1/Λ4.

Scalar ϕ

This theory only affects the Drell-Yan process through shifts in the Z-mass. However, we
use the Z-mass as an input parameter so these effects are absorbed into the definition of
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the Z-mass and result in shifts in other vertices which do not contribute to Drell Yan.
Because of its relative simplicity we can show the full result through dimension ten. The
resulting Lagrangian is:

LϕIR = LSM −
κ2

M4

[
1

2
QHD −

1

4
QHD2

]
− κ2

8M4

[
|H|2(H†D2H) + h.c.

]
+
2λϕHκ

2

M6
|H|2QHD −

λϕHκ
2

M6
|H|2QHD2 +

λϕHκ
2

2M6

[
|H|4(H†D2H) + h.c.

]
+
κ2

M8

[
λϕκ

2

M2
− 6λ2ϕH

]
|H|4QHD +

κ2

6M8

[
16λ2ϕH − 3

λϕκ
2

M2

]
|H|4QHD2

+
κ2

M8

[
λϕκ

2

4M2
−

5λ2ϕH
3

] [
|H|6(H†D2H) + h.c.

]
(16)

Where we have defined:

QHD = (H†DµH)(DµH)†H (17)

QHD2 = (H†H)(DµH)†(DµH) (18)

Note that QHD2 is generally removed from the Warsaw basis in favor of (H†H)□(H†H).
This serves as an example where there is no effect on the Drell Yan process. If nature
realizes the ϕ model, then from a bottom up perspective we would be able to consistently
use energy dependent distributions in the Drell Yan channel to constrain dimension-six
operators in the SMEFT.

Scalar Φ

This model exhibits the derivative expansion of the SMEFT very nicely as there are no
Higgs boson dependent operators. It is important to note that (d̄L) is not gauge invariant,
only the full product (d̄L)(L̄d) is, otherwise one might attempt to simplify the derivatives
into a form like (d̄L)□(L̄d) instead of (d̄L)D2(L̄d).

LΦIR = LSM +
Y 2
Φ

M2

(
d̄L

) (
L̄d

)
(19)

+
Y 2
Φ

M4

[ (
d̄DµL

) (
L̄Dµd

)
+
(
Dµd̄

)
L
(
L̄Dµd

)
+
(
d̄DµL

) (
DµL̄

)
d+

(
Dµd̄

)
L
(
DµL̄

)
d
]

The matching to dimension 10 can be found in the ancillary files. The result amounts
to distributing four covariant derivatives among the four fermions of the dimension-six
operator. Use of the Fierz identity,(

ψ̄1PLψ2

) (
ψ̄3PRψ4

)
= −1

2

(
ψ̄1γµPRψ4

) (
ψ̄3γ

µPLψ2

)
, (20)

recovers the dimension-six matching result of [53] which makes use of the Warsaw basis.
Performing the calculation in the UV, and for simplicity of writing the expressions,

taking the limit mZ → 0, and denoting the partonic center of mass energy ŝ, we find:

σ(d̄d→ e+e−) = σSM(d̄d→ e+e−)− αY 2 ŝ
(
ŝ− 2M2

)
+ 2M4 log

(
1 + S

M2

)
48Ncc2W ŝ

3

+Y 4 ŝ(ŝ+ 2M2)− 2M2
(
ŝ+M2

)
log

(
1 + S

M2

)
64πNcŝ(ŝ+M2)

(21)
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Figure 3: Ratios of the IR theory cross section prediction at a given order in the EFT
expansion to the full UV model predictions. The data is binned in invariant mass of the
leptons mℓℓ following the CMS analysis found in [52]. The titles, Φ(M,YΦ), indicate the
mass M in TeV and the Yukawa coupling of Φ to the SM fields, YΦ.

In contrast, in the EFT we obtain:

σ(d̄d→ e+e−) = σSM(d̄d→ e+e−)− Y 2

M2

α

72πNcc2W
∆6 +

Y 2

M4

ŝ
(
2απ∆8 + Y 2c2W∆2

6

)
192πNcc2W

− Y
2

M6

ŝ2
(
16απ∆10 + 15Y 2c2W∆6∆8

)
1920πNcc2W

, (22)

where we have denoted the contribution from the insertion of any dimension-d operator by
∆d. Notice that each subsequent order in the series essentially corrects the growth in ŝn by
a term with the opposite sign with growth in ŝn+1. That the order-by-order contributions
contribute with opposite signs can be understood from the number of derivatives present
at each order and that they source a factor of ipµ in a given Feynman rule, i.e. a factor
of 1 for dimension six, −p2 at order 1/Λ4, and p4 at O(1/Λ6). Therefore, we expect
that a fit to only dimension six operators will misestimate the UV model as ŝ increases.
The degree to which this occurs is controlled by the size of M and Y . We also note the
inclusion of the square of dimension-six amplitudes in calculations, for this specific model,
while neglecting the dimension-eight contribution results in an opposite sign term which
corrects the dimension-six term and results in better agreement as ŝ grows. This will again
fail at some ŝ where the order 1/Λ6 terms are needed to again correct the growth.

Figure 3 shows three example plots of the convergence of the EFT expansion for
MΦ = 3 TeV and YΦ = 0.5 and 1.0, as well as the higher mass MΦ = 7 TeV with
YΦ = 1.0. These plots are chosen deliberately to show examples where the dimension-six
prediction fails by more than 5% in the highest invariant mass bins. The plots nicely show
how the opposite sign contribution at a given order 1/Λ2n+2 corrects for the growth at
order 1/Λ2n, but eventually overcorrects requiring the order 1/Λ2n+4.

It is interesting to notice that the dimension-six squared contribution, which is of
the same order as, but neglects the dimension-eight operators’ contributions, outperforms
the complete order 1/Λ4 contributions. We note that in the cases where MΦ = 3 TeV,
the expansion fails to reproduce the full model result to better than 5% even when the
dimension-ten contributions are considered. Unsurprisingly, we find as MΦ tends to infin-
ity, or YΦ to zero, the agreement between the dimension-six prediction and the UV model
converge.
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Fermion χ

Integrating out the heavy fermion using the covariant derivative expansion, to dimension-
eight, we find:

LχIR = LSM + i
Y 2
χ

2M2

[
(HL̄)γµ(DµH)†L+ (HL̄)γµ(H

†DµL)− h.c.
]

(23)

−i
Y 2
χ

2M4

[
(HL̄)γµγνγρ(DµDνDρH)†L+ (HL̄)γµγνγρ(DµDνH)†(DρL)

+ (HL̄)γµγνγρ(DµH)†(DνDρL) + (HL̄)γµγνγρH
†(DµDνDρL)

+ (HL̄)γµγνγρ(DµDρH)†(DνL) + (HL̄)γµγνγρ(DνH)†(DµDρL)

+ (HL̄)γµγνγρ(DρH)†(DµDνL) + (HL̄)γµγνγρ(DνDρH)†(DµL)− h.c.
]

This derivative expansion appears to imply that we could expect growth of the process
with center of mass energy. However, by inspection we can see that most of the terms in
Eq. 23 will result in a Feynman rule containing /pV which will vanish for on-shell (massless)
leptons. This is not obvious for some of the operators, however a more careful manipulation
of the operators using IBP relations, removing terms generating rules with too many
bosons, and deriving the Feynman rules reveals all operators of dimension-eight and higher
do not contribute to the process. The only terms which remain after such an analysis are
the dimension-six terms which simply renormalize the SM-like Aℓ̄ℓ and Zℓ̄ℓ vertices. This
is consistent with the plot in Fig. 1, where the dominant correction comes from the lower
invariant mass bins.

To phrase this from a geometric perspective, the only operators affecting three-point
functions are those classified in the geoSMEFT. The only operator appearing above which
appears in the geoSMEFT is,

i(HL̄)γµ(D
µH)†L− h.c. = 1

8
(H†i

←→
D µH)(L̄γµL) +

1

2
(H†i

←→
D I

µH)(L̄γµτ IL) , (24)

where the τ I are the generators of SU(2)L, and

H†i
←→
D µH = H†iDµH − (iDµH)†H , (25)

H†i
←→
D I

µH = H†iτ IDµH − (iDµτ
IH)†H . (26)

Therefore all other operators can be exchanged by equation of motion and IBP identities
for four and higher point functions.

Unfortunately this means this effective Lagrangian is not particularly interesting for
our purposes. That it has a dimension-six contribution to the Drell Yan process is a
slight contrast to the first example, ϕ, where for our input parameter choice there is no
effect on the dynamics. In this case we again conclude a pure dimension-six analysis is
sufficient. Although, looking at EWPD [24, 25, 58–60] demonstrates that this model is
severely constrained by Z-pole physics and we should not expect to obtain more stringent
bounds from the Drell Yan process. We do not include a figure for this example as the
dimension-six contribution fully reconciles the UV and IR predictions.

Vector X

In the infrared the Lagrangian for X is by far the most complicated. As mentioned above,
if we had simply integrated out the V particle we would have obtained one operator at

11
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each order, (∂µBµν)∂
2n(∂ρB

ρµ). In order to avoid complications in this model from higher
poles in the propagator resulting from the extra derivatives we made a field redefinition
in the UV to arrive at a Lagrangian depending on X field. This, and some IBP identities,
allows us to arrive at an effective Lagrangian free of this complication:

LXIR = LSM −
g21β

2

2M2
HµHµ −

g21β
2

2M2
ΨµΨ

µ − g21β
2

M2
HµΨµ (27)

+
g41Y

2
Hβ

4

M4
(H†H)HµHµ

+
g21β

2

M4
Hµ (□ηµν − ∂µ∂ν)Ψν + 2

g41Y
2
Hβ

4

M4
(H†H)HµΨµ

+
g21β

2

2M4
Ψµ (□η

µν − ∂µ∂ν)Ψν +
g41Y

2
Hβ

4

M4
(H†H)ΨµΨ

µ

+
g41Y

4
Hβ

4

M4

[
4(H†H)QHD + (H†H)QHD,2

]
+
g41Y

4
Hβ

4

2M4

[
(H†H)2(H†D2H) + h.c.

]
−g

2
1Y

2
Hβ

2

M4

[
g21
4
Q

(8)
HB + g1g2Q

(8)
HWB + g22Q

(8)
HW,2

]
We have made use of the following definitions to simplify the presentation:

Hµ = YH(H
†i
←→
D µH) = iYH(H

†DµH)− iYH(DµH)†H (28)

Ψµ =
∑
ψ

Yψψ̄γµψ (29)

Q
(8)
HB = (H†H)2BµνB

µν (30)

Q
(8)
HWB = (H†H)(H†σIH)W I

µνB
µν (31)

Q
(8)
HW,2 = (H†σIH)(H†σJH)W I,µνW J

µν (32)

Where YF is the hypercharge of a given field F , and the sum over ψ is a sum over the SM
(chiral) fermionic fields.

This Lagrangian neatly exhibits the momentum expansion which is illustrated by terms
with the transverse projection operator □ηµν − ∂µ∂ν . We can also see the vev expansion
where dimension-six terms are accompanied by corresponding dimension eight operators

rescaled by (H†H). The operators, Q
(8)
HB, Q

(8)
HWB, and Q

(8)
HW,2 encode the corrections to

the mixing between the X and B particles in the UV. We note these corrections start
at dimension-eight and so they would be missed by a leading order SMEFT study, which

would therefore miss potentially stringent EWPD constraints derived from the Q
(8)
HWB

operator’s contribution. The operator HµHµ is related to the operators QHD and QHD,2
occurring in the ϕ model, and generates a shift in the Z-boson mass. Ultimately, as was
found while determining the input parameters in the UV model, these operators have a
negligible effect, when compared with the effects of the momentum expansion. That is,
the cross section is dominated by the four-fermion operators. As such, only the four-
fermion operators are included in our calculations of the cross sections. This is simply
because these contributions dramatically slow the calculations due to the complexity of
the expression for the partonic cross section, not because they are too cumbersome to
implement.

Writing only the four-fermion operators, we can express the Lagrangian up to dimen-

12
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Figure 4: Plots comparing the accuracy of the EFT expansion as a ratio of the EFT to
full UV theory cross section predictions. Benchmarks of M = 3 with β = 0.6 and β = 1.2,
and M = 10 TeV with β = 3.0 are shown. The left-most plot nicely demonstrates the
convergence of the expansion for a light mass and small mixing parameter. The middle
plot shows that for a larger mixing parameter the convergence deteriorates. This plot
shows a dramatic failure of the dimension-six squared contribution, while showing that
due to accidental cancellations between the parameters of the EFT the pure dimension-six
term does remarkably well to high invariant masses. The rightmost plot again shows the
convergence for large mass and large mixing parameter, but also shows an example of
when the dimension-six squared term accidentally makes a substantially better prediction
than higher orders in the expansion.

sion ten:

LXIR = −g
2
1β

2

2M2
ΨµΨ

µ +
g21β

2

2M4
ΨµΠ

µνΨν −
g21β

2

2M6
ΨµΠ

µνΠνρΨ
ρ (33)

Where we have introduce Πµν = □ηµν − ∂µ∂ν . The operators present in Eq. 27 and
neglected in Eq. 33 are generated by the following terms in the full UV model:

−g1YHβ(H†i
←→
D µH)Xµ + g21Y

2
Hβ

2(H†H)(XµXµ) (34)

As mentioned, the contributions from the vev expansion are negligible in our analysis. For
example, for a 3 TeV Xµ and β = 3 these operators contribute with an approximately
O(10−2) effect in all invariant mass bins. This is contrasted with the momentum expansion
where the effect is O(10−1.6) in the lowest invariant mass bins to O(100) in the highest
invariant mass bins. As this example has the lowest mass and strongest mixing we expect
all other potential parameter combinations to lead to similar or even more disparate con-
tributions (the Wilson coefficients scale similarly, while the momentum dependence of the
operators remains the same). To simplify our analysis and isolate the momentum expan-
sion relevant to this study we will therefore only employ the IR Lagrangian of Eq. 33. We
have tested that this has a negligible effect on the studies below.

Comparing Eq. 19 and Eq. 33 we see that the expansion in p2/M2
X in the case of X

additively corrects the IR prediction in contrast with Φ where we found that at each order
the sign of the contribution was flipped. This has dramatic effects for the dimension-six-
squared contribution as, depending on the combination of parameters, it may improve
the convergence or make it much worse. Figure 4 shows three benchmark examples for
{M,β} = {3, 0.6}, {3, 1.2}, and {10, 3.0}. The chosen benchmarks are chosen to demon-
strate the convergence of the series, but also that the dimension-six squared contributions
sometimes fail and sometimes do much better which is simply accidental and due to the
choice of the free parameters.
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4 Comparing the IR with UV

With the models in the infrared derived to order 1/Λ6 we can compare the full UV model
prediction and that of the EFT. In this section, our primary goal is to explore how well
the EFT describes the Drell Yan processes order by order in its expansion. A complete
SMEFT analysis is not possible as we consider only Drell Yan, but in the later part of this
section we do estimate the impact of including additional operators not generated in the
UV.

4.1 Validity of the truncation

In figures 3 and 4 we implied that the truncation breaks down at a given order in 1/M2

by showing that the cross sections differ at the order of a few percent. While this is
interesting theoretically, a more phenomenological approach requires us to consider if
this breakdown is experimentally measurable. Our first measure of this breakdown is to
multiply the differential cross sections by a given luminosity and comparing the number
of events in the full UV model to the number of predicted events for a given order in the
EFT expansion. We perform this analysis by:

1. Considering the integrated luminosity 140/fb for the 13 TeV LHC. This value is
taken from the CMS paper cited above [52] from which we have taken the invariant
mass binning. We then consider the HL-LHC scenario of 3/ab, maintaining 13 TeV
center of mass energy.

2. We assume the simulated “experimental search” measures the UV model (i.e. the
UV model is the signal), and that the error in a given bin is Poisson.

3. We compare with the theoretical prediction in the IR, for which we assume there
is no theory error. This is consistent with how most global fits in the SMEFT are
performed.

4. We already know the IR model as derived in Sec. 3. Admittedly, this is a rather weak
assumption given state of the art studies of the SMEFT are done from a bottom
up perspective. We estimate the impact of broadening this assumption in the next
section.

5. We assume that the Wilson coefficients derived in the previous section are rescaled
by a constant cd with d the dimension of the operator. A given cd is a rescaling
of all operators generated at a given dimension. For example in the Φ model the
dimension-six Wilson coefficient is rescaled as:

Y 2
Φ

M2
→ c6

Y 2
Φ

M2
, (35)

so a good fit should predict c6 = 1. When more than one operator is obtained at a
given dimension, they are all rescaled by a common cd.

6. Best fit values of the Wilson coefficient(s) are obtained by performing a χ2 fit of the
IR model to the simulated data (UV). The χ2 is given by:

χ2(c6, c8, c10) =
∑
mℓℓ

NUV
mℓℓ
−N IR

mℓℓ√
NUV
mℓℓ

2

, (36)
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with N the number of events in a given invariant mass bin in the IR or UV. Mini-
mizing the χ2 with respect to the cd yields the best fit values. We determine their
1σ errors by holding all but one cd constant at their best fit values and solving for
the values of the remaining cd where χ

2 = χ2
min+1. The fit is performed for full and

partial contributions at each order in 1/M2 up to 1/M6. The highest invariant mass
bin included is mℓℓ ∈ {1820, 1970} GeV. We note that such a cutoff is not always (or
even usually) employed in SMEFT studies, but we choose this to ensure the energy
does not exceed the cutoff of the IR theory.

7. If the UV model result is more than one standard deviation away from the IR
prediction we consider this a failure of the EFT truncation. That is, we need more
terms in the EFT to correctly predict the UV physics.

We do not perform showering or detector simulations, nor do we consider e.g. accep-
tance cuts, this will serve to reduce the number of events and therefore hurt the statistics.
However, in [52] they find for example the acceptance×efficiency is worst in low invariant
mass bins, and best and approximately constant in high invariant mass bins (approxi-
mately 60%) for Z ′s. Ultimately this does not affect our discussion of the convergence of
the EFT expansion, but inclusion of these effects would serve to slightly alter our limited
discussion of significance of measurements.

For the entirety of this article we only consider the processes at tree level. In [27] the
authors use MCFM to obtain the SM cross section [61]. In [62, 63] the authors consider
one-loop contributions to the Drell Yan process at leading order in the SMEFT. However,
as we will later compare the number of events in the UV to the number of events in the
effective field theory, the missing contributions of the higher order corrections to the SM
interfering with the tree-level effects of the new physics are still unknown and beyond
the scope of this article. In absence of this, simply including the higher order corrections
to the SM will not affect our results as these corrections do not contribute to the new
physics signal captured by the EFTs. Inclusion of the SMEFT results beyond leading
order without calculating the loop corrections in the UV would not be consistent, and the
one-loop corrections to processes in the SMEFT have not been performed beyond order
1/Λ2. A comparison beyond leading order is beyond the scope of this work, however it
would provide useful insights into the effects of theory errors on SMEFT analyses which
are neglected in this work. Progress matching to higher orders in 1/Λ2 at one loop has
been published in [64–66].

We do not focus on whether a given benchmark is already ruled out by LHC data as
our goal is to understand the convergence of the series. In the case of the Φ model direct
constraints are fairly loose, of order 1-2 TeV, as they must be pair produced [67]. For
Z ′ models more stringent constraints exist, requiring M ′

Z be larger than 3 or 4 TeV [67].
The case of our X which has SM-like couplings to the fermions the constraints are more
stringent. For the more weakly interacting models considered, a next generation collider
may be able to draw the same conclusions as for the models with stronger interactions at
the LHC.

4.1.1 Φ model:

First we consider the theory of the extra Φ field for M ∈ {3, 10} TeV in bins of 1 TeV
and with YΦ ∈ {0.1, 1.0} in steps of 0.1. Due to the simplicity of our study the difference
between 140/fb and 3/ab only results in different inferred 1σ error ranges. Table 1 illus-
trates the results of our study for 3 and 7 TeV with YΦ ∈ {0.1, 0.5, 1.0}, App. C contains
the full set of benchmarks in multiple tables.
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In Tab. 1 we denote the (partial) order in the EFT expansion in the third column.
The entries “D6,” “D8,” and “D10” refer to the full result to order 1/M2

Φ, 1/M
4
Φ, 1/M

6
Φ

respectively. While “D62,” and “D6D8” refer to the full result to order 1/M2
Φ or 1/M4

Φ

supplemented by the partial results at order 1/M4
Φ, 1/M

6
Φ. In this case we find that the

dimension-six squared contribution always outperforms the consistent dimension-six con-
tribution. As discussed below Eq. 22, this is because each subsequent order contributes
with the opposite sign, so dimension-six squared neatly approximates the full 1/Λ4 con-
tribution. The table also nicely demonstrates the convergence of the EFT expansion.
Unsurprisingly for smallerMΦ and larger YΦ more terms of the series are generally needed.

In the case of 140/fb the one-sigma error at dimension-six (δc6) is sufficiently large in
nearly all cases that the results are consistent with c6 = 0 or 1 and no significant result is
obtained. The exception is MΦ = 3 TeV with YΦ = 1, in this case the dimension-six fit is
consistent with c6 = 0 and approximately 3σ away from the true value 1. It is important
here to acknowledge that for this benchmark we would already have large deviations in
the measured Drell Yan differential cross section.

For 3/ab the error shrinks by a factor of approximately 5. In this case the benchmark
MΦ = 3 TeV with YΦ = 0.5 could result in significant deviations. Considering this
benchmark we can follow the expansion order by order to see the effects of fitting to
higher orders:

• At dimension-six the fit gives a value c6 = 0.74 ± 0.22 This is just over 1σ away from
the correct value. Fitting to only dimension-six is insufficient and can result in incorrect
inferences about the nature of the new physics. If this occurred for a global fit in the
bottom up approach one could envision that all measured Wilson coefficients are skewed
in the same manner and perhaps this results in just misjudging the relationship between
the mass and couplings of the new physics. However, in a more realistic example with
multiple dimension-six operators with arbitrary coefficients, if the results were skewed
in random directions and magnitudes away from the true values this could have more
dire consequences. In this case we could fail to infer the UV model due to the pattern
of matching from UV models being broken by our failure to expand to a sufficient
order in the expansion. Largely related to this concern is that we would fail to identify
symmetries of the UV which are naturally imprinted on the IR in the EFT approach.

• Partial results at dimension-six squared greatly improve the quality of the fit. The best
fit point 0.96 ± 0.30 is fully consistent with the predicted value. While this is true for
all benchmarks in the Φ model we will see below that it is not the case for the X model
and therefore we cannot assume that D62 terms will always help with the convergence.

• The full result at order 1/M4
Φ yields c6 = 0.96±0.30 and is consistent with the predicted

value. The Wilson coefficient of the dimension-eight operators is −0.28 ± 2.3 and is
consistent with both 0 and 1. We conclude that the dimension-eight operators’ Wilson
coefficients are absorbing the failure of the series to fully replicate the higher invariant
mass bins. That is, they are playing a role of nuisance parameters instead of being
measured as terms in the EFT expansion3. This is an inference from the behavior of
the fits considered in this article, it is not a proof and should not be understood to refer
to any formal definition of a nuisance parameter.

• The full dimension-eight contribution supplemented by the interference of the dimension-
six and eight amplitudes continues to improve the convergence of the series. We also

3This claim should be tested in the context of multiple observables. It is possible that including multiple
observables will change this picture. This is, however, beyond the scope of this project.
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note that in this case the dimension-eight Wilson coefficient is also moving toward the
true value.

• The full dimension-ten result yields excellent agreement at dimension-six while the Wil-
son coefficient of the dimension-eight result continues to move toward its true value.
Adding the dimension-ten operators results in the fit to their Wilson coefficients being
far from the true value (c10 = −0.43 ± 10), but again gives the impression that these
free parameters in the fit are absorbing our ignorance of the higher order terms in the
series.

For a 7 TeV Φ the picture is largely the same, except that the relatively weaker influence
of the Φ results in larger error bands. In the case of a top-like Yukawa coupling, YΦ = 1,
the measurement of c6 has a significance of just over 2σ. Again, a fit only at dimension
six results in a best fit value of c6 which is 20% below the true value.

In our simplified approach where we do not consider how the binning or possible cuts
may change with increased luminosity, the only effect of increasing the luminosity is that
the error in our measuredWilson coefficients shrink by

√
Lold/Lnew. For a result more than

one-sigma away from the SM (ci = 0) in theMΦ = 3, YΦ = 0.1 benchmark, we would need
approximately 100/ab at the 13 TeV LHC. To notice the difference between truncating at
dimension six versus order 1/Λ4, we would need nearly 20/zb. Such integrated luminosities
are not possible even at future hadronic colliders.

4.1.2 X model:

The first thing to notice about the X model is that it is far more complicated than the
Φ model. Considering Fig. 4 we can see that depending on the parameters of the model
the dimension-six squared terms may hurt or improve the convergence of the series. The
Φ particle only couples to left handed leptons and right handed down quarks, while the
X particle couples to all SM currents with coupling proportional to g1Yψβ. For certain
choices of β and MX accidental cancellations can cause the convergence of the series to
behave poorly.

Another important aspect of the X model is that in the UV it corresponds to an s-
channel exchange. As such the number of events in the tails of the mℓℓ distribution is
higher. This results in better statistics overall in this model. This also means that some
of the benchmarks discussed here may be ruled out by current data. We focus on the
phenomenological implications and the behavior of the series and not on viability of the
models given current LHC measurements.

We checked the benchmark values of MX ∈ {3, 8} TeV in bins of 1 TeV with β ∈
{0.3, 3}. Recalling the definition of beta in terms of the mixing parameter k,

β ≡ −k√
1− k2

, (37)

the coupling of the X particle to a given chiral fermion ψ is g1Yψβ. For β = 3 this is
roughly 2Yψ, meaning the coupling of the X is less than one for all fermions except the
right handed leptons for which it is 2. A selection of benchmarks from the results are
included in Tab. 2, while the full set can be found in App. C.

We can see similarities between the overall convergence between this example and
that of the Φ. However, we notice that in the case of the low mass with small coupling
(β = 0.3 → k ∼ −0.3) the fit to dimension-six results in a best fit point off by 10%,
though we note this is within the 1σ errors. This is resolved already at dimension-eight.
Interestingly, for the more strongly mixed case of β = 1.2 with MX = 3 TeV, the best fit
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MΦ YΦ dim c6 δc6 c8 δc8 c10 δc10 χ2
min

3 0.1 D6 0.93 26 (5.6) - - - - 10−4

- - D62 0.94 28 (5.7) - - - - 10−4

- - D8 0.99 28 (5.8) 0.74 270 (57) - - 10−6

- - D6D8 1.0 28 (5.7) 0.81 280 (61) - - 10−6

- - D10 1.0 28 (5.7) 0.97 280 (61) 0.58 1.2k (250) 10−8

3 0.5 D6 0.74 1.0 (0.22) - - - - 100

- - D62 0.96 1.2 (0.30) - - - - 10−1

- - D8 0.96 1.2 (0.30) -0.28 11 (2.3) - - 10−2

- - D6D8 0.99 1.2 (0.31) 0.60 13 (2.8) - - 10−2

- - D10 1.0 1.2 (0.31) 0.72 13 (2.8) -0.43 47 (10) 10−4

3 1.0 D6 0.16 0.26 (0.057) - - - - 102

- - D62 0.84 0.14 (0.030) - - - - 101

- - D8 0.87 0.13 (0.029) -0.62 2.8 (0.62) - - 101

- - D6D8 0.97 0.14 (0.029) 0.61 0.52(0.11) - - 101

- - D10 0.98 0.13 (0.027) 0.38 0.52 (0.11) 6.6 15 (2.8) 10−1

7 0.1 D6 0.99 141 (31) - - - - 10−7

- - D62 0.99 152 (31) - - - - 10−7

- - D8 1.0 152 (31) 0.96 7.9k (1.7k) - - 10−7

- - D6D8 1.0 152 (31) 0.98 8.0k (1.7k) - - 10−7

- - D10 1.0 152 (31) 1.1 8.0k (1.7k) 2.6 190k (40k) 10−7

7 0.5 D6 0.94 5.6 (1.2) - - - - 10−3

- - D62 0.99 6.3 (1.3) - - - - 10−4

- - D8 1.0 6.3 (1.3) 0.64 320 (68) - - 10−6

- - D6D8 1.0 6.3 (1.3) 0.97 440 (94) - - 10−6

- - D10 1.0 6.3 (1.3) 0.99 440 (94) 0.34 7.5k (1.6k) 10−8

7 1.0 D6 0.80 1.4 (0.30) - - - - 100

- - D62 0.99 1.6 (0.41) - - - - 10−3

- - D8 0.99 1.6 (0.41) -0.16 79 (17) - - 10−3

- - D6D8 1.0 1.6 (0.41) 0.90 160 (36) - - 10−3

- - D10 1.0 1.6 (0.41) 0.94 160 (36) -0.66 1.9k (400) 10−7

Table 1: Abridged table of benchmark Φ models. The full tables can be found in Ap-
pendix C. δci is the one-sigma error in the measured value of ci. The error in parenthesis
is for 3/ab, while the other is for 140/fb. The value of χ2

min indicates the minimum value
of χ2 obtained from the fit indicating that the goodness of fit improves order by order in
the series. All numbers are rounded to two significant digits.
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value to dimension-six only performs better than the dimension six-squared fit. This is in
contrast, for example with MX = 5 TeV with β = 3.0 where the dimension-six squared fit
performs better than the dimension-six only and even the full dimension-ten fit. We also
note that the dimension-eight operator coefficient again plays a role similar to nuisance
parameters, however since there are more events for the s-channel process c8 is usually
closer to one since there are better statistics even in the weaker coupling limit.

Interestingly, a 5 TeV X which strongly mixes (β = 3.0) with the SM B field results in
a sufficient number of events to precisely measure the dimension-six operator coefficient
and for 3/ab integrated luminosity the dimension-eight operator coefficient can be mea-
sured with some degree of precision as well. In this case we see, in direct analogue with
dimension-six vs dimension-eight fits, that the inclusion of the dimension-ten operators
improves the agreement between the best fit point for c8 and the theory prediction. This
is interesting academically, however this model is likely ruled out already by the relatively
fewer events observed in Run III of the LHC. An X which strongly mixes into the SM
with mass 8 TeV may still evade constraints from current measurements, however in this
case the error on the dimension-eight Wilson coefficients is too large for a measurement
with any meaningful significance to be achieved.

4.2 Fitting the SMEFT

As mentioned in the last section, our analysis so far is strictly top down. In order to at-
tempt to understand how a bottom up EFT analysis such as the state of the art SMEFT
global fits would perform, we now perform a similar analysis but include additional oper-
ators from the SMEFT. As we will see, this proves difficult for the limited amount of data
coming from considering a single process so we will focus primarily on including only one
additional operator at dimension six.

The following four-fermion operators contribute to the Drell-Yan process at tree level
and order 1/Λ2 in the SMEFT:

L4−ferm
SMEFT = c

(1)
LQ(L̄γµL)(Q̄γ

µQ) + c
(3)
LQ(L̄γµτ

IL)(Q̄γµτ IQ)

+ceu(ēγµe)(ūγ
µu) + ced(ēγµe)(d̄γ

µd)

+cLu(L̄γµL)(ūγ
µu) + cLd(L̄γµL)(d̄γ

µd) + cQe(Q̄γµQ)(ēγµe)

+cLedQ(L̄e)(d̄Q) + cLeQu(L̄e)iσ2(Q̄u) (38)

The operators appearing in the first line have chiral currents of the form LL, followed by
RR, and LR, the final lines are scalar currents which will mix chiralities. The flipped
chirality requires mass insertions and so we neglect the terms in the final line4.

Neglecting operators such as those in Eq. 24 we find for the contribution to the spin-
and color-averaged partonic cross section in the mZ → 0 limit from interference between
the SM amplitude and the 1/Λ2 amplitude:

σ(ŝ)|D6 =
2

48πNc

[ (
gqLg

e
L + e2QqQe

)(
c
(1)
LQ ∓

1

4
c
(3)
LQ

)
+
(
gqLg

e
R + e2QqQe

)
cQe

+
(
gqRg

e
L + e2QqQe

)
cLq +

(
gqRg

e
R + e2QqQe

)
ceq

]
(39)

4Notice that Fierz identities such as the one appearing in Eq. 20 do not rectify this situation. The
on-shell fermions will have opposite chiralities and therefore the interaction will select out mass terms
from spin sums over on-shell spinors. This does not happen in the case of the IR theory of Eq. 19 as
the fermion bilinears occurring in the operators are products of quark-lepton instead of quark-quark and
lepton-lepton.
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MX β dim c6 δc6 c8 δc8 c10 δc10 χ2
min

3 0.3 D6 1.1 1.6 (0.35) - - - - 10−1

- - D62 1.1 1.7 (0.36) - - - - 10−1

- - D8 0.98 1.7 (0.36) 1.5 11 (2.4) - - 10−2

- - D6D8 0.98 1.7 (0.36) 1.5 11 (2.4) - - 10−2

- - D10 1.0 1.7 (0.36) 0.85 11 (2.4) 1.9 38 (8.1) 10−4

3 1.2 D6 1.0 0.096 (0.021) - - - - 100

- - D62 1.1 0.11 (0.024) - - - - 101

- - D8 1.0 0.11 (0.024) 0.62 0.58 (0.13) - - 100

- - D6D8 1.0 0.11 (0.025) 1.1 0.94 (0.20) - - 100

- - D10 0.99 0.11 (0.025) 1.3 0.94 (0.20) -0.22 1.9 (0.41) 10−1

5 0.3 D6 1.0 4.6 (0.98) - - - - 10−3

- - D62 1.0 4.6 (0.99) - - - - 10−3

- - D8 1.0 4.6 (0.99) 1.1 86 (19) - - 10−5

- - D6D8 1.0 4.6 (0.99) 1.1 87 (19) - - 10−5

- - D10 1.0 4.6 (0.99) 0.83 87 (19) 2.2 820 (180) 10−5

5 1.2 D6 1.0 0.28 (0.060) - - - - 10−2

- - D62 1.0 0.29 (0.064) - - - - 100

- - D8 1.0 0.29 (0.064) 0.93 5.1 (1.1) - - 10−4

- - D6D8 1.0 0.30 (0.064) 1.1 5.9 (1.3) - - 10−4

- - D10 1.0 0.30 (0.064) 1.0 5.9 (1.3) 0.77 47 (10) 10−5

5 3.0 D6 0.81 0.041 (0.0089) - - - - 103

- - D62 0.99 0.057 (0.012) - - - - 101

- - D8 1.0 0.057 (0.012) -0.13 0.70 (0.15) - - 100

- - D6D8 0.98 0.058 (0.012) 0.84 2.1 (0.46) - - 100

- - D10 0.98 0.057 (0.012) 0.98 2.1 (0.46) -2.0 6.6 (1.4) 10−2

8 1.5 D6 1.0 0.46 (0.010) - - - - 10−3

- - D62 1.0 0.48 (0.10) - - - - 10−2

- - D8 1.0 0.48 (0.10) 0.92 22 (4.7) - - 10−5

- - D6D8 1.0 0.48 (0.10) 1.0 24 (5.2) - - 10−5

- - D10 1.0 0.48 (0.10) 0.96 24 (5.2) 1.3 530 (110) 10−5

8 3.0 D6 0.92 0.11 (0.024) - - - - 101

- - D62 0.99 0.13 (0.027) - - - - 10−1

- - D8 0.98 0.13 (0.027) 0.47 5.0 (1.1) - - 10−2

- - D6D8 0.98 0.13 (0.027) 0.78 7.4 (1.6) - - 10−2

- - D10 0.98 0.13 (0.028) 0.85 7.4 (1.6) -1.0 120 (25) 10−5

Table 2: Abridged table of benchmark X models. The full tables can be found in Ap-
pendix C. δci is the one-sigma error in the measured value of ci. The error in parenthesis
is for 3/ab, while the other is for 140/fb. The value of χ2

min indices the minimum value of
χ2 obtained from the fit indicating that the goodness of fit improves order by order in the
series. All numbers are rounded to two digits.
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where the minus (plus) sign is for up (down) quarks, and lower-case q should be taken to
correspond to the right-handed u or d chiral quarks. This contribution, occuring at order
1/Λ2, is a constant with respect to the square of the partonic center of mass energy, ŝ.
The couplings of the Z-boson to the fermions are given by,

gψL =
gZ
2
(2Qψs

2
W − σ3) , (40)

gψR = gZQψs
2
W , (41)

and receive no corrections from the SMEFT under our simplifying assumption that only
four-fermion operators contribute. We have also used gZ ≡ g2/cW 5 and σ3 corresponds to
twice the weak isospin projection of a given left-handed fermion. For the dimension-six
squared contribution we find that the partonic cross section grows proportional to ŝ:

σ(ŝ)|D62 =
ŝ

48πNc

[(
c
(1)
LQ ∓

1

4
c
(3)
LQ

)2

+ (cQe)
2 + (cLq)

2 + (ceq)
2

]
(42)

This result neatly shows that in the massless fermion limit the different fermion chiralities
do not interfere. Comparing Eqs. 39 and 42 we see that the inclusion of the squares of
dimension-six contributions allows for some degree of distinguishing the Wilson coefficients
when binning in the invariant mass of the leptons. We stress that such an approach is
inconsistent with the bottom-up EFT approach as it is not the complete 1/Λ4 contribution,
but as discussed elsewhere in this article it is common in the field and we include it for the
sake of discussion and as we will include some dimension-eight operators in the following.

To make a comparison with the pseudo-data resulting from our UV scenarios, we
integrate the full partonic cross sections folded with the pdfs. In doing so we do not take
the limit mZ → 0 as in Eqs. 39 and 42. We use a parameterization of the full result as
described in App. B.

A fit to all Wilson coefficients for the operators of Eq. 38 is technically possible with the
(pseudo)data we have generated. For this we employ the same χ2 methodology outlined
in Sec. 4.1. However, combinations of the Wilson coefficients can be used to approximate
the SM to a great degree.

To start, we consider the SM Drell Yan process. That is, our signal is now simply the
SM, and the constraints on the SMEFT should be consistent with all Wilson coefficients
0. We take the normalization of each Wilson coefficient to be,

ci →
ci

(3TeV)2
, (43)

and naively applying a Mathematica minimization routine, we obtain the following limits
on the ci of the SMEFT to order 1/Λ2 for 3/ab integrated luminosity:

c
(1)
LQ = 0.20(1) c

(3)
LQ = −0.10(1)

ceu = −0.023(2) ced = 0.04(1)
cLu = 0.57(3) cLd = 0.57(3) cQe = −0.38(1) ,

(44)

where we have retained the number of digits out to the 1σ error which is indicted by
parenthesis. Considering this is for 3/ab, the results appear to indicate a significant
deviation from the SM. The value of χ2 at the minimum is O(10−26). Since we have
not added random noise into our data, the value of χ2 for all Wilson coefficients set to
zero is identically zero. While the parameter space does indeed close, the limits on the

5In the general SMEFT this relationship is modified by operators such as cHD.
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Wilson coefficients are highly correlated and there exist narrow regions in the parameter
space which are allowed within the 1σ bounds. Our method of obtaining the error in a
given Wilson coefficient does not take this into accounting making the values above appear
significant when they are not. This will prove a problem when we consider UV models
below.

If we instead use a search specifying the SM point as the starting point the numerical
search does not miss the true minimum and we obtain:

c
(1)
LQ = 0± 7 · 10−3 c

(3)
LQ = 0± 8 · 10−3

ceu = 0± 2 · 10−3 ced = 0± 1 · 10−2

cLu = 0± 9 · 10−3 cLd = 0± 3 · 10−2 cQe = 0± 1 · 10−2 .

(45)

Including the contributions of the squares of the dimension-six operators the absolute
minimum is approximated well with best fit points of order 10−6 and we reproduce the
errors of Eq. 45. This is a direct consequence of the quadratic terms in Eq. 42 which largely
remove the narrow regions in parameters space where the Wilson coefficients’ contributions
add to approximately zero.

At dimension-six issues with these narrow regions may be assuaged through a global
fit where these operators are further constrained by other data, such as Z-pole data.
However, four-fermion operators are generally neglected on the Z-pole as their contribution
is subdominant to others. We should note, in a more realistic fit to the SMEFT one
would need to include bosonic operators which contribution through renormalization of
the kinetic and mass terms of the SMEFT which would prevent the fit from being closed.

In what follows we consider a few interesting benchmarks from the Φ and X models.

4.2.1 Φ model

Instead of using the SM Drell Yan results for our data, we next consider the Φ model.
We further want to see the impact of including dimension-eight operator contributions on
the fit. To achieve this we will consider more than one operator at dimension-six and the
dimension-eight operators, with a single Wilson coefficient, derived in Sec. 3 for the Φ
model. All dimension-six Wilson coefficients are normalized according to:

ci →
ci Y

2
Φ

(3TeV)2
, (46)

with the exception of the dimension-eight Wilson coefficient which is normalized such that
the theory value is 1. Table 3 shows the result for considering the combination of cLd,
the single dimension-six operator generated by the UV, with any of the other Wilson
coefficients of Eq. 39. We consider the cases of M = 3 TeV and YΦ = {0.1, 0.5} in order
to exaggerate the effects of the fit. In the table we split results based on including or
excluding dimension-six squared effects and including or excluding the dimension-eight
operators. We only consider the dimension-eight operators generated by the UV. This
is again a very over-simplified assumption, but our single-process analysis is too limiting
to consider further dimension-eight operator contributions. When the dimension-eight
operators are included we always include the dimension-six squared contribution for cLd.

In the case of YΦ = 0.1 we find the errors are so large that the model is always consistent
with the SM prediction of ci = 0. Nonetheless, we see that the inclusion of the dimension
eight operator combination appearing in Eq. 19, c8 ̸= 0, improves the central values of
the model: the operator coefficient cLd always moves toward 1, while the other operator
coefficient moves toward 0. The most dramatic case is the fit to both cLd and ced where the
best fit point for cLd is close to zero, while ced is closer to one-half. With the inclusion of
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M = 3 TeV, YΦ = 0.1
excluding d62 including d62

c8 = 0 cLd = 1.2± 5.6 c
(1)
LQ = 0.08± 1.3 cLd = 1.2± 5.8 c

(1)
LQ = 0.06± 1.3

c8 ̸= 0 cLd = 1.1± 5.8 c
(1)
LQ = 0.02± 1.3 cLd = 1.1± 5.8 c

(1)
LQ = 0.02± 1.3

c8 = 0 cLd = 2.1± 5.6 c
(3)
LQ = −0.3± 1.7 cLd = 1.7± 5.8 c

(3)
LQ = −0.2± 1.7

c8 ̸= 0 cLd = 0.9± 5.7 c
(3)
LQ = 0.01± 1.7 cLd = 1.0± 5.7 c

(3)
LQ = 0.01± 1.7

c8 = 0 cLd = 1.6± 5.6 ceu = −0.05± 0.40 cLd = 1.5± 5.6 ceu = −0.03± 0.4
c8 ̸= 0 cLd = 1.0± 5.7 ceu = 0.003± 0.40 cLd = 1.0± 5.7 ceu = 0.003± 0.4
c8 = 0 cLd = 0.09± 5.6 ced = 0.41± 2.7 cLd = 0.02± 5.6 ced = 0.44± 2.7
c8 ̸= 0 cLd = 0.91± 5.7 ced = 0.04± 2.7 cLd = 0.91± 5.7 ced = 0.04± 2.7
c8 = 0 cLd = 1.5± 5.6 cLu = 0.19± 1.8 cLd = 1.5± 5.8 cLu = 0.13± 1.8
c8 ̸= 0 cLd = 1.1± 5.8 cLu = 0.04± 1.8 cLd = 1.1± 5.8 cLu = 0.04± 1.8
c8 = 0 cLd = 2.2± 5.6 cQe = 0.5± 2.2 cLd = 1.6± 5.8 cQe = 0.4± 2.1
c8 ̸= 0 cLd = 1.3± 5.8 cQe = 0.1± 2.2 cLd = 1.2± 5.8 cQe = 0.1± 2.2

M = 3 TeV, YΦ = 0.5
excluding d62 including d62

c8 = 0 cLd = 1.9± 0.2 c
(1)
LQ = 0.29± 0.05 cLd = 0.9± 0.3 c

(1)
LQ = −0.01± 0.05

c8 ̸= 0 cLd = 1.3± 0.3∗ c
(1)
LQ = 0.11± 0.05 cLd = 1.3± 0.3∗ c

(1)
LQ = 0.11± 0.05

c8 = 0 cLd = 4.9± 0.2 c
(3)
LQ = −1.2± 0.1 cLd = 0.9± 0.3 c

(3)
LQ = 0.01± 0.07

c8 ̸= 0 cLd = 0.7± 0.3∗ c
(3)
LQ = 0.1± 0.1∗ cLd = 0.7± 0.3∗ c

(3)
LQ = 0.08± 0.07

c8 = 0 cLd = 3.3± 0.2 ceu = −0.18± 0.02 cLd = 0.93± 0.2 ceu = 0.00± 0.02
c8 ̸= 0 cLd = 0.8± 0.3 ceu = 0.01± 0.02 cLd = 0.8± 0.3 ceu = 0.01± 0.02
c8 = 0 cLd = −2.5± 0.2 ced = 1.6± 0.1 cLd = 0.9± 0.3 ced = 0.02± 0.11
c8 ̸= 0 cLd = 0.5± 0.3 ced = 0.2± 0.1 cLd = 0.5± 0.3 ced = 0.23± 0.11
c8 = 0 cLd = 2.9± 0.2 cLu = 0.7± 0.1 cLd = 0.9± 0.3 cLu = −0.01± 0.07
c8 ̸= 0 cLd = 1.6± 0.2 cLu = 0.2± 0.1 cLd = 1.6± 0.2 cLu = 0.2± 0.1
c8 = 0 cLd = 5.5± 0.2 cQe = 1.9± 0.1 cLd = 0.9± 0.3 cQe = −0.01± 0.09
c8 ̸= 0 cLd = 2.3± 0.2 cQe = 0.6± 0.1 cLd = 1.5± 0.3 cQe = 0.2± 0.1

Table 3: Example fits to two dimension-six operators for the Φ model. We considerM = 3
TeV and YΦ = {0.1, 0.5}. We also consider the impact of the inclusion of dimension-six
squared (Left vs Right) as well as the inclusion of the dimension-eight operators generated
in integrating out the Φ (top vs bottom within a given row delineated by horizontal rules).
When the dimension-eight operators are included, the dimension-six squared contribution
from cLd is always included. Results are rounded to one or two significant figures depending
on how many decimal places are required to be nonzero. The use of ∗ indicates that the
differences from the model prediction of 1 or 0 for a given Wilson coefficient is greater
than one sigma when not rounded.

dimension-eight operators the central values neatly move to be closer to their theory values
{cLd = 1, ced = 0}. The inclusion of dimension-six squared contributions does nominally
improve all fits, although in some cases the effect is smaller than the rounding employed.

It is more interesting to consider the case of YΦ = 0.5 as there are far more signal
events, and the errors in the best fit values for the Wilson coefficients are substantially
smaller. In this case we see that the inclusion of dimension-six squared contributions has
a much larger effect. When neglecting dimension-six squared contributions from the extra
operator, we still find improvement in the fits. However, In contrast to the case YΦ = 0.1,
we find that the fits including the squared contributions of the extra dimension-six operator
as well as the dimension-eight operators actually performs worse than when retaining the
partial 1/Λ4 contributions and neglecting the dimension-eight operator coefficients. The

23



SciPost Physics Submission

reason for this is that the dimension-eight operator and extra dimension-six operator are
both absorbing part of the signal that is missed by truncating at O(1/Λ4), i.e. the extra
dimension-six operator coefficient and the dimension-eight operators’ coefficient are both
playing the role of a nuisance parameter. This was not a problem for the more weakly
interacting model with YΦ = 0.1 as the truncation is more stable here.

Figure 5 shows a plot of the correlation between the dimension-eight operator coeffi-
cient, c8, cLd, and cQe for YΦ = 0.5 and including the dimension-six squared contributions
from cQe. The theory prediction, {cLd = 1, cQe = 0, c8 = 1} (red dot), is well outside the
one-sigma contours. However, cLd = 1 (red dashed line) appears to be nearly consistent
with the 1σ contours for values of cQe and c8 differing from the best fit point. Indeed,
taking c8 = 1 and cQe = 0 we have cLd = 0.95 ± 0.29 with ∆χ2 = 0.35, well within the
one-sigma bound.
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Figure 5: Plots of one-, two-, and three-sigma allowed regions of the Wilson coefficients
cLd, cQe, and c8 using the Φ model with M = 3 TeV and YΦ = 0.5. The best fit point is
labeled with ∗ and the theory prediction with • (red). The dashed line (red) indicates the
theory prediction cLd = 1.

In this oversimplification of a full SMEFT fit, the extra dimension-six operator also
plays the role of a nuisance parameter. This could be a potential hazard in a strictly
dimension-six fit to a single channel. However, the majority of SMEFT bottom-up studies
are global fits which use as much data as possible. If we imagine that our Drell-Yan mea-
surement was complemented by another measurement constraining the extra dimension-six
operator one would expect this would help to drive the Wilson coefficient to its theory
value. If we reperform the same fit, but add an extra term to the χ2 with a best fit value
zero and error twice that coming from the dimension-six squared fit (neglecting the D8

operator) we find the results in Tab. 4. To clarify, the fit containing {cLd, c(1)LQ} results in
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a best fit value for c
(1)
LQ of −0.01± 0.05 so we modify our χ2 as:

χ2 → χ2 +
(c

(1)
LQ − 0)2

(2 · 0.05)2 . (47)

With this added “data” we find in all cases the extra dimension-six operator is driven to
be consistent with the theory prediction, despite the relatively loose error assumed. We
also find the best fit point cLd coincides with the theory prediction.

M = 3 TeV, YΦ = 0.5
including d62

c8 = 0 cLd = 0.9± 0.3 c
(1)
LQ = −0.01± 0.05

c8 ̸= 0 cLd = 1.0± 0.3 c
(1)
LQ = 0.00± 0.05

c8 = 0 cLd = 0.9± 0.3 c
(3)
LQ = 0.01± 0.07

c8 ̸= 0 cLd = 1.0± 0.3 c
(3)
LQ = 0.00± 0.07

c8 = 0 cLd = 0.93± 0.2 ceu = 0.00± 0.02
c8 ̸= 0 cLd = 1.0± 0.3 ceu = 0.00± 0.02
c8 = 0 cLd = 0.9± 0.3 ced = 0.02± 0.11
c8 ̸= 0 cLd = 1.0± 0.3 ced = 0.00± 0.11
c8 = 0 cLd = 0.9± 0.3 cLu = −0.01± 0.07
c8 ̸= 0 cLd = 1.0± 0.2 cLu = 0.00± 0.07
c8 = 0 cLd = 0.9± 0.3 cQe = −0.01± 0.09
c8 ̸= 0 cLd = 1.0± 0.3 cQe = 0.00± 0.09

Table 4: Example fits to two dimension-six operators for the Φ model as described in Tab. 3
but now including a fictitious constraint on the extra Wilson coefficient as described in
the text.

We also perform a fit to all seven dimension-six Wilson coefficients simultaneously.
As there are too many parameters the correct minimum cannot be found using Math-
ematica’s limited minimization routines without the inclusion of dimension-six squared
contributions, so we only consider this case. Including the squares of all dimension-six
operators and neglecting dimension-eight operators we find:

c
(1)
LQ = 0.1± 0.1 c

(3)
LQ = 0.4± 0.1

ceu = −0.10± 0.02 ced = −0.4± 0.1
cLu = −0.2± 0.1 cLd = 0.5± 0.3 cQe = −0.02± 0.1 .

(48)

And adding the dimension-eight operators to this:

c
(1)
LQ = 0.1± 0.1 c

(3)
LQ = 0.3± 0.1

ceu = −0.09± 0.02 ced = −0.4± 0.1
cLu = 0.0± 0.1 cLd = 0.65± 0.29 cQe = −0.01± 0.08 .

(49)

Finally adding fictitious constraints as described above for all extra dimension-six opera-
tors we obtain:

c
(1)
LQ = 0.0± 0.1 c

(3)
LQ = 0.0± 0.1

ceu = 0.0± 0.02 ced = 0.0± 0.1
cLu = 0.0± 0.1 cLd = 1.0± 0.3 cQe = 0.0± 0.1 .

(50)

So we observe that for the inclusion of all seven operators we see the same behavior as in
considering only one additional dimension-six operator. The inclusion of squares results
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in a fit that is not consistent with the UV theory. This result would seem to indicate
an entirely different theory in the UV. Inclusion of the dimension-eight operators yields
a largely similar fit as the extra parameters are all behaving as nuisance parameters, and
finally the fictitious data meant to mimic a global fit results in excellent agreement with
the theoretical prediction.

An important question to address is if the inclusion of the fictitious data without the
dimension-eight operators performs just as well. Removing the dimension-eight operators
yields the results:

c
(1)
LQ = 0.0± 0.1 c

(3)
LQ = 0.0± 0.1

ceu = 0.0± 0.02 ced = 0.0± 0.1
cLu = 0.0± 0.1 cLd = 0.9± 0.3 cQe = 0.0± 0.1 .

(51)

So the dimension-six operators which are not generated by the UV theory are still driven
to their theory values, while the best fit value for cLd is slightly pulled away from the
theory value. This is consistent with the interpretation of the inclusion of dimension-eight
operators as performing the role of nuisance parameters. The same analysis for YΦ = 10
yields similar results.

Overall the results of our simplified analysis indicate:

1. Analyses of a single channel at dimension-six may result in results inconsistent with
the actual UV realization as dimension-six operators not generated in the UV may
misleadingly be playing the role of nuisance parameters. This appears be mitigated
through global fits. This is already the practice in state of the art SMEFT bottom-up
studies.

2. The dimension-six squared results may break approximate degeneracies in the pa-
rameter space allowing the fit to converge to the true values of the Wilson coefficients.
This comes with a major caveat: recall that in the U(1) mixing model dimension-six
squared terms could actually hurt the convergence of the series (see Fig. 4).

3. Dimension-eight operators play the role of nuisance parameters which absorb our
ignorance of higher order terms in the EFT expansion. As dimension-six squared
terms improve the convergence for the Φ model this has a small impact relative to
the size of the error in the measured Wilson coefficients.

4.2.2 X model

Unfortunately, it is very difficult to perform a similar analysis for the X model as it
generates all of the operators of Eq. 38 except that corresponding to the Wilson coefficient

Q
(3)
LQ (and the chiral flip operators). As such the most obvious approach would be to

start with a six parameter fit which suffers from the same issue as the multiparameter fits
for the SM and Φ. That is, our minimization technique fails to converge to a minimum
resembling the UV physics. Instead it picks a configuration in which various cancellations
between the Wilson coefficients drives the best fit values away from the theory prediction
and again falsely appears to predict a very different new physics scenario.

Instead we perform a two parameter fit where the dimension-six four-fermion operators

appearing in Eq. 33 have a common Wilson coefficient and we also include c
(3)
LQ. Again

we normalize the predicted operators so their Wilson coefficient c6 should be 1, while we
take:

c
(3)
LQ → −

g21β
2c

(3)
LQ

2M2
(52)
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We start withMX = 3 TeV and β = 0.3 (Fig 6). Performing a fit excluding dimension-
six squared contributions we find:

c6 = 3.4± 0.4 c
(3)
LQ = −9.2± 1.4 . (53)

Again both Wilson coefficients appear to be statistically significant, but are also statisti-
cally far from their theory values. If we include the dimension-eight operators of Eq. 33
with a single coefficient we find:

c6 = 0.54± 0.36 c
(3)
LQ = 1.7± 1.4 . (54)

The inclusion of the dimension-eight operator (and implicitly the dimension-six squared
contributions for c6) has ameliorated the situation slightly, but c6 is still over one-sigma

away from the theory value and c
(3)
LQ also appears statistically nonzero. As was the case

for Φ we infer that c
(3)
LQ and c8 are working in tandem as nuisance parameters.

Including the dimension-six squared contributions for c
(3)
LQ while neglecting the dimension-

eight operator gives:

c6 = 2.3± 0.4 c
(3)
LQ = −4.7± 1.4 . (55)

We see a slight improvement of the fit from Eq. 53 where no quadratic terms were included.
This is in contrast with Tab. 2 and Fig. 6 where the dimension-six squared contribution
slightly hurt the fit. This supports the idea that the extra dimension-six operator is
behaving as a nuisance parameter absorbing some of the physics neglected by truncation.
However, it should be noted this two-parameter fit is overall much worse than the one-

parameter fit in the table. This can be understood as c
(3)
LQ does not have the correct

kinematics to absorb these effects. Adding the dimension-eight operator then gives:

c6 = 0.54± 0.36 c
(3)
LQ = 1.7± 1.4 , (56)

The fit has vastly improved, although c6 and c
(3)
LQ are still just over one-sigma away from

their theory values. This improvement can be attributed to the fact the dimension-eight
operator has some of the missing kinematics allowing its Wilson coefficient to absorb the

physics neglected by truncating the EFT expansion. However, c
(3)
LQ and c8 are competing

to absorb that physics resulting in the skewing of c6 and c
(3)
LQ away from their theory

values. Notice that this fit gives the same results (with our rounding, slightly better when
including further digits) as Eq. 54 indicating for this model inclusion of the dimension-eight
operator is in fact driving the improvement.

Supposing some other experiment provides the constraint c
(3)
LQ = 0 ± 2.8. This vastly

improves our result to,

c6 = 1.0± 0.4 c
(3)
LQ = 0± 1.4 , (57)

indicating any interpretation of the SMEFT should be made from a global fit, and not
based on individual channels.

We can contrast the above with the case MX = 3 TeV with β = 1.2. In this case,
shown in Fig. 4, the dimension-six squared contribution actually hurts the fit. Fitting first
only linearly in the dimension-six operators:

c6 = 0.99± 0.02 c
(3)
LQ = 0.09± 0.08 . (58)

This agrees excellently with the theory prediction, we will see it actually is the best fit

we obtain without including some (fictitious) extra measurement of c
(3)
LQ. The inclusion of

the dimension-eight operators yields:

c6 = 1.5± 0.03 c
(3)
LQ = −1.8± 0.1 . (59)
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Figure 6: Ratio of X model prediction to the SM for MX = 3 TeV with β = 0.3. See
caption of Fig. 4 for further details.

The best fit point for both Wilson coefficients have moved significantly away from the

theory values. Adding the square of c
(3)
LQ while neglecting dimension-eight contributions

does not improve the fit:

c6 = 0.59± 0.02 c
(3)
LQ = 1.8± 0.1 (60)

Nor does the inclusion of both order 1/Λ4 contributions:

c6 = 1.5± 0.02 c
(3)
LQ = −1.8± 0.1 (61)

However, if an experiment were to measure c
(3)
LQ = 0± 0.2 we would obtain:

c6 = 1.021± 0.024 c
(3)
LQ = 0± 0.1 c8 = 0.6± 0.1 , (62)

This is in good agreement with the theory results for the dimension-six operators. We
have included the dimension-eight operator coefficient constraints in the case to show that
the result appears significant. However, we must bear in mind that the dimension-eight
operator is behaving as a nuisance parameter and therefore this seemingly significant result
should be neglected. The caseMX = 3 TeV with β = 1.2 stands in stark contrast with the
other benchmark as well as the case of Φ. By some accident the dimension-six operator
fit actually outperforms all other considered fits. This can be understood immediately
from Fig. 4 where we see that the dimension-six contribution more closely reproduces the
full result than any of the other orders in 1/M2

X considered. This example also further
demonstrates the need to take care when including partial orders in 1/M2 in fits to the
SMEFT.

5 Conclusions

We considered four separate ultraviolet extensions of the SM and matched them to dimension-
ten. This was facilitated by remaining agnostic to the operator basis. We found that the
case of the (1, 3)0 scalar, ϕ, does not affect the Drell Yan process and is an example of
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a UV Model where the truncation at dimension-six or inclusion of dimension-six squared
contributions to the cross section has no impact on the fit procedure. The fermion, χ,
with charges (1, 1)−1 appeared to generate a momentum expansion. However, use of the
EOM or field redefinitions allows all of these operators to be traded for operators in the
vev expansion. As such, this model only affects low invariant mass bins for the Drell
Yan process and therefore we concluded it is best constrained by EWPD. The cases of
Φ = (3, 2)1/6 and the U(1) mixing model (X) nicely exhibited a momentum expansion.

Next we studied the convergence of the Φ and X models from a strictly top down
perspective. We calculated the cross section as a function of invariant-mass bin for both
the full UV model and the IR model truncated at a given order, including partial orders.
We then compared the results of the two by performing a simple χ2 fit at a given order
in the EFT expansion. We found that in the more strongly interacting cases and for
lower masses the truncation at dimension-six fails. The inclusion of dimension-six squared
contributions always helped the convergence in the case of Φ as it has the same sign
contribution as the dimension-ten operator contribution which is opposite that of the
purely 1/Λ2 contribution. In contrast, in the X model the parameters can conspire such
that the dimension-six squared term helps or hurts the fit. The parameters in a given
benchmark model can actually cause the dimension-six term to better reproduce the full
UV result than even the inclusion of terms up to dimension-ten. We also found that when
a given order was insufficient to correctly determine the Wilson coefficients, the next order
in the expansion performed the role of nuisance parameters absorbing our ignorance of
the higher order terms contributing. This was most clearly demonstrated in the strongest
interacting models where the determination of the dimension-eight operator coefficient
was statistically significant, but the best fit point did not agree with the theory value.

Next we found that, even after limiting ourselves to strictly four-fermion operators, a
bottom up SMEFT analysis of our UV models was difficult. This is because when fitting
the SMEFT to our UV models the dimension-six operators exist in a strongly correlated
parameter space and the minimization methods tested (those standard in Mathematica)
appear to fail to find the true minimum. As a result, we largely limited ourselves to two-
parameter fits which included the operator(s) generated in the UV with a single common
Wilson coefficient and an additional SMEFT operator. When comparing the inclusion or
exclusion of dimension-six squared as well as dimension-eight operators, we found that
these additional operators filled the role of nuisance parameters. This had the effect that,
in order to fit the new physics not accounted for at a given order in the expansion, our
best fit values were skewed from the theory values (including the dimension-six operator
generated in the UV). Dimension-six squared contributions again helped in the case of Φ
but were not as dependable in the two benchmark X models considered. Our method of
determining the one-sigma error in the operator coefficients gave the impression that the
theory values of the Wilson coefficients were not within one-sigma of the best fit point.
However, in the case of the Φ model with MΦ = 3 with YΦ = 0.5 a more careful analysis
demonstrated that this was a reflection of the strongly correlated parameter space, and the
theory values were indeed consistent. The simple addition of a fictitious measurement of
the operator not generated by the UV model with central value 0 and error twice the size
of that resulting from the dimension-six squared fit immediately moved the best fit values
to the theory values. This is promising as this issue with the central values appearing to
differ significantly from the theory values may not be present for global fits.

Based on the discussion above and throughout the article we highlight some consider-
ations that should be kept in mind for future work in the SMEFT.

1. For more weakly interacting and/or more strongly decoupled theories a strictly
dimension-six fit appears to converge well to the theory values, given the large un-
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certainties.

2. Analyses which choose to include partial 1/Λ4 results, i.e. dimension-six squared
contributions, should be accompanied by analyses properly truncated at a given
order. The “consistency” of these contributions with UV physics is model dependent.

3. From a top down perspective, the highest order in the EFT considered appears to
behave as nuisance parameters. In this context, a strictly dimension-six analysis be-
haves as a SM fit with errors defined consistent with the SMEFT approach. Notice
that with a higher integrated luminosity, while not possible at the LHC, the error
in our fits would shrink and the skewed dimension-six results would fail. Similarly,
a dimension-eight analysis behaves as a dimension-six fit with the dimension-eight
operator coefficients behaving as nuisance parameters which absorb our ignorance
of higher order terms in the expansion. From a bottom up perspective, lower di-
mensional operators not generated by the ultraviolet physics also behave as nuisance
parameters and this may skew the leading order results. For the more viable mod-
els considered which have weaker interactions/higher masses, issues with truncation
could become a problem for a next generation precision experiment.

4. Single channel analyses may suffer as a result of the previous point. The results may
be skewed from their theory values and the results may appear significant. Global fits
are an industry standard for phenomenological studies and our simplified attempt to
see the effects of including additional data (fictitious in our examples) appears to in-
dicate that this problem will not persist in the context of global fits. It is important
to note that as experimental analyses begin to perform detailed SMEFT analyses
this issue could be present. Analyses of individual experimental channels should not
be interpreted alone, but in the context of a global fit. Further, it is absolutely cru-
cial that correlation matrices be included in experimental results (or any single/few
channel determination) as the theory value which is not consistent with individual
Wilson coefficient limits may be perfectly consistent when correlations are included.

While beyond the scope of this article, some future considerations that would further
improve our understanding of the convergence of the SMEFT expansion include adding
additional channels (for example foward-backward asymmetries in Drell Yan, EWPD, or
other channels unrelated to Drell Yan), optimizing binning in the kinematic variables, and
the inclusion of pdf fits as proposed in [44]. Further, including loops in the UV and IR
would not only result in more events and better statistics, it could also elucidate the role
of the loop expansion in SMEFT analyses for realistic UV models. Such an analysis would
have to include far more free parameters making such a study very difficult.
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A Field redefinitions of the U(1) mixing model

The B and V dependent Lagrangian (neglecting covariant derivative dependence on B)
is:

LBV = −1

4
BµνB

µν − 1

4
VµνV

µν − k

2
BµνX

µν +
1

2
M2VµV

µ (A.1)

= −1

4

(
Bµν
Vµν

)T (
1 k
k 1

)(
Bµν

V µν

)
+

1

2
M2VµV

µ (A.2)

The transformation, (
Bµ
Vµ

)
→

(
α 0
β 1

)(
B′
µ

V ′
µ

)
, (A.3)

diagonalizes the kinetic mixing given,

α =
1√

1− k2
(A.4)

β =
−k√
1− k2

(A.5)

This transformation results, however, in mass mixing of the form:

V µVµ → V ′µV ′
µ + 2βV ′µB′

µ + β2B′
µB

′µ . (A.6)

Another field redefinition of the form,(
B′
µ

V ′
µ

)
→

(
c s
−s c

)(
B′′
µ

V ′′
µ

)
, (A.7)

then diagonalizes the mass mixing for s = −k and c =
√
1− k2. Note this rotation

commutes with that of Eq. A.3 and therefore does not affect the diagonalization of the
kinetic terms. This results in a mass for V ′′,

M2
V ′′ =

M2
V

1− k2 , (A.8)

while leaving the B′′ field massless (above EWSB). In the main text we refer to V ′′ as X.
Taking a + sign convention for the covariant derivative and V ′′ → X, this transforma-

tion gives:

(DµH) → (DµH) + ig1YHβXµH (A.9)

(DµH)†(DµH) → (DµH)†(DµH)− g1YHβ(H†i
←→
D µH)Xµ + g21Y

2
Hβ

2(H†H)XµX
µ

(A.10)

(Dµψ) → (Dµψ) + ig1YψβXµψ (A.11)

iψ̄ /Dψ → iψ̄ /Dψ − g1YψβXµψ̄γµψ (A.12)
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B Parameterization of SMEFT four-fermion operator con-
tributions

We parameterize the full cross section bin-by-bin in mℓℓ as follows:

σ = σ0

+
[
geL

(
adZg

d
LσdZ + auZg

u
LσuZ

)
+ e2Qe (adAQdσdA + auAQuσuA)

]
c
(1)
LQ

+
[
geL

(
adZg

d
LσdZ − auZguLσuZ

)
+ e2Qe (adAQdσdA − auAQuσuA)

] c(3)LQ
4

+
[
auZg

e
Rg

u
RσuZ + auAe

2QeQuσuA
]
ceu +

[
adZg

e
Rg

d
RσdZ + adAe

2QeQdσdA

]
ced

+
[
auZg

e
Lg

u
RσuZ + auAe

2QeQuσuA
]
cLu +

[
adZg

e
Lg

d
RσdZ + adAe

2QeQdσdA

]
cLd

+
[
geR

(
adZg

d
LσdZ + auZg

u
LσuZ

)
+ e2Qe (adAQdσdA + auAQuσuA)

]
cQe

+

[
(bdσdŝ + buσuŝ)

(
c
(1)
LQ +

1

16
c
(3)
LQ

)
+ (bdσdŝ − buσuŝ)

1

2
c
(1)
LQc

(3)
LQ + buσuŝc

2
eu + bdσdŝc

2
ed

]
+
[
buσuŝc

2
Lu + bdσdŝc

2
Ld + (buσuŝ + bdσdŝ) c

2
Qe

]
(B.1)

Where σ0 is the SM cross section for a given invariant mass bin. The σqZ for q = {u, d}
correspond to the pdf integration for the lowest invariant mass bin of,

σ̂qZ =
2

48πNc

ŝ
(
ŝ−m2

Z

)(
ŝ−m2

Z

)2
+ Γ2

Zm
2
Z

, (B.2)

the σqA correspond to the integration of the partonic cross section,

σ̂qA =
2

48πNc
, (B.3)

and the σqŝ correspond to the integration of,

σ̂qŝ =
ŝ

48πNc
. (B.4)

These correspond to, up to their normalization, the kinematic part of the 1/Λ2 and 1/Λ4

squared amplitudes. This choice of normalization, along with the explicit SM coupling
dependence of Eq. B.1 requires that the ai and b are identically one for the lowest invariant
mass. The ai and b are then determined for each subsequent bin. Due to the normalization
to the σi this demonstrates how each bin compares with the bin with lowest mℓℓ. The ai
and b for each bin can be found in Tab. 5. Please note: the table does not contain
nearly enough significant digits for the applications described in the main text.
The full tables used including error in the integration can be requested from
the author.
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mℓℓ σ0 adZ adA auZ auA bd bu mℓℓ σ0 adZ adA auZ auA bd bu
200− 220 0.69 1 1 1 1 1 1 810− 840 2.0 · 10−3 0.036 0.044 0.045 0.054 0.68 0.84
220− 240 0.46 0.78 0.81 0.79 0.82 0.98 0.99 840− 870 1.6 · 10−3 0.032 0.040 0.040 0.049 0.66 0.81
240− 260 0.31 0.63 0.67 0.64 0.69 0.95 0.97 870− 900 1.4 · 10−3 0.029 0.036 0.036 0.044 0.63 0.80
260− 280 0.22 0.51 0.56 0.53 0.58 0.93 0.96 900− 950 1.8 · 10−3 0.042 0.052 0.053 0.065 1.0 1.3
280− 300 0.16 0.43 0.47 0.44 0.49 0.90 0.94 950− 1000 1.4 · 10−3 0.036 0.044 0.045 0.056 0.94 1.2
300− 320 0.12 0.36 0.40 0.38 0.42 0.88 0.93 1000− 1050 1.1 · 10−3 0.030 0.037 0.039 0.048 0.89 1.1
320− 340 0.091 0.30 0.35 0.32 0.37 0.86 0.91 1050− 1100 8.6 · 10−4 0.026 0.032 0.034 0.041 0.83 1.1
340− 360 0.070 0.26 0.30 0.28 0.32 0.84 0.89 1100− 1150 6.8 · 10−4 0.022 0.027 0.029 0.036 0.78 1.0
360− 380 0.054 0.23 0.26 0.24 0.28 0.81 0.88 1150− 1200 5.4 · 10−4 0.019 0.023 0.025 0.031 0.74 0.97
380− 400 0.043 0.20 0.23 0.21 0.25 0.79 0.86 1200− 1250 4.3 · 10−4 0.017 0.020 0.022 0.027 0.69 0.92
400− 420 0.034 0.17 0.20 0.19 0.22 0.77 0.85 1250− 1310 4.1 · 10−4 0.017 0.021 0.023 0.028 0.77 1.0
420− 440 0.028 0.15 0.18 0.17 0.20 0.75 0.83 1310− 1370 3.2 · 10−4 0.014 0.018 0.019 0.024 0.72 0.97
440− 460 0.022 0.13 0.16 0.15 0.18 0.73 0.81 1370− 1430 2.5 · 10−4 0.012 0.015 0.017 0.021 0.66 0.91
460− 480 0.018 0.12 0.14 0.13 0.16 0.71 0.80 1430− 1490 2.0 · 10−4 0.010 0.013 0.014 0.018 0.62 0.85
480− 500 0.015 0.11 0.13 0.12 0.14 0.70 0.78 1490− 1550 1.6 · 10−4 8.8 · 10−3 0.011 0.012 0.015 0.57 0.80
500− 520 0.013 0.096 0.11 0.11 0.13 0.68 0.77 1550− 1680 2.4 · 10−4 0.015 0.019 0.021 0.026 1.1 1.6
520− 540 0.011 0.086 0.10 0.099 0.12 0.66 0.75 1680− 1820 1.6 · 10−4 0.012 0.014 0.017 0.021 0.99 1.4
540− 560 8.9 · 10−3 0.078 0.094 0.090 0.11 0.64 0.74 1820− 1970 1.0 · 10−4 8.7 · 10−3 0.011 0.013 0.016 0.87 1.3
560− 580 7.6 · 10−3 0.071 0.085 0.082 0.099 0.63 0.72 1970− 2210 9.1 · 10−5 8.8 · 10−3 0.011 0.014 0.017 1.1 1.7
580− 600 6.5 · 10−3 0.064 0.077 0.075 0.090 0.61 0.71 2210− 6070 8.5 · 10−5 0.011 0.014 0.021 0.037 2.2 4.7
600− 630 7.9 · 10−3 0.086 0.10 0.10 0.12 0.89 1.0
630− 660 6.4 · 10−3 0.075 0.090 0.088 0.11 0.85 1.0
660− 690 5.1 · 10−3 0.066 0.080 0.078 0.095 0.82 0.98
690− 720 4.2 · 10−3 0.058 0.070 0.069 0.084 0.79 0.95
720− 750 3.4 · 10−3 0.051 0.062 0.062 0.075 0.76 0.92
750− 780 2.8 · 10−3 0.045 0.055 0.055 0.067 0.74 0.89
780− 810 2.3 · 10−3 0.040 0.049 0.050 0.060 0.71 0.87

Table 5: Values of the ai and the bi for a given invariant mass bin mℓℓ
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C Full tables

MΦ YΦ dim c6 δc6 c8 δc8 c10 δc10 χ2
min

3 1 D6 0.93424 5.60594 - - - - 10−4

- - D62 0.9448 5.74959 - - - - 10−4

- - D8 0.993788 5.75154 0.743965 57.4362 - - 10−6

- - D6D8 0.995559 5.73829 0.806826 61.2331 - - 10−6

- - D10 0.999841 5.73613 0.967029 61.2505 0.579804 252.998 10−8

3 2 D6 0.909417 1.40087 - - - - 10−2

- - D62 0.951751 1.52662 - - - - 10−3

- - D8 0.989425 1.52705 0.587535 14.3434 - - 10−4

- - D6D8 0.996651 1.51446 0.840976 18.9536 - - 10−4

- - D10 0.9988 1.5134 0.924136 18.9663 0.24698 63.169 10−6

3 3 D6 0.86835 0.622225 - - - - 10−1

- - D62 0.963071 0.744628 - - - - 10−3

- - D8 0.982763 0.742972 0.347476 6.36636 - - 10−3

- - D6D8 0.999257 0.733219 0.929252 12.9978 - - 10−3

- - D10 0.998047 0.733737 0.871944 12.9849 -0.137005 28.0337 10−5

3 4 D6 0.810801 0.349784 - - - - 10−1

- - D62 0.971767 0.457819 - - - - 10−2

- - D8 0.973297 0.45712 0.045924 3.57801 - - 10−2

- - D6D8 0.991193 0.458877 0.649279 9.14815 - - 10−2

- - D10 0.996819 0.457252 0.801076 9.09787 -0.429437 15.7581 10−4

3 5 D6 0.737046 0.223775 - - - - 100

- - D62 0.957963 0.295181 - - - - 10−1

- - D8 0.961134 0.300567 -0.28196 2.29139 - - 10−2

- - D6D8 0.992251 0.311135 0.601045 2.78106 - - 10−2

- - D10 0.995231 0.312243 0.717649 2.76599 -0.427874 10.1 10−4

3 6 D6 0.647671 0.155423 - - - - 101

- - D62 0.916583 0.185084 - - - - 10−1

- - D8 0.946374 0.189307 -0.592875 1.59667 - - 10−1

- - D6D8 0.993485 0.205298 0.636112 1.0534 - - 10−1

- - D10 0.993361 0.205093 0.628639 1.0536 0.0488359 7.0515 10−3

3 7 D6 0.543721 0.114306 - - - - 101

- - D62 0.875785 0.114358 - - - - 100

- - D8 0.929116 0.112274 -0.836343 1.18199 - - 10−1

- - D6D8 0.991343 0.124374 0.647188 0.503273 - - 10−1

- - D10 0.991152 0.121127 0.540727 0.503405 1.11525 5.23869 10−3

3 8 D6 0.426885 0.0877142 - - - - 102

- - D62 0.851512 0.0708649 - - - - 100

- - D8 0.909601 0.0672631 -0.957877 0.916951 - - 100

- - D6D8 0.985744 0.0733825 0.639042 0.278839 - - 100

- - D10 0.988637 0.0695142 0.462873 0.277806 2.75038 4.08696 10−2

3 9 D6 0.299459 0.0695681 - - - - 102

- - D62 0.841054 0.0448985 - - - - 100

- - D8 0.888191 0.0425246 -0.903184 0.73905 - - 100

- - D6D8 0.979356 0.0450526 0.623438 0.170961 - - 100

- - D10 0.985899 0.0419425 0.404659 0.169595 4.7407 3.3208 10−2

3 10 D6 0.164122 0.056661 - - - - 102

- - D62 0.838137 0.0295516 - - - - 101

- - D8 0.865272 0.0285521 -0.621193 0.615176 - - 101

- - D6D8 0.97485 0.0292257 0.611437 0.11285 - - 101

- - D10 0.982939 0.0270792 0.376095 0.11177 6.61241 2.79402 10−1

4 1 D6 0.960669 9.96675 - - - - 10−5

- - D62 0.966612 10.1325 - - - - 10−5

- - D8 0.997753 10.1338 0.839327 181.555 - - 10−7

- - D6D8 0.99835 10.1256 0.877693 188.152 - - 10−7

- - D10 1.00011 10.1247 0.994565 188.164 0.773141 1421.77 10−8

4 2 D6 0.945321 2.49102 - - - - 10−3

- - D62 0.969123 2.62174 - - - - 10−4

- - D8 0.996166 2.62254 0.7365 45.3568 - - 10−6

- - D6D8 0.99857 2.6146 0.8894 52.6731 - - 10−6

- - D10 0.999855 2.61396 0.975652 52.6839 0.51242 355.143 10−7

4 3 D6 0.919782 1.10667 - - - - 10−2

- - D62 0.973352 1.23226 - - - - 10−3

- - D8 0.993603 1.23218 0.572117 20.1385 - - 10−5

- - D6D8 0.999081 1.22494 0.915512 28.996 - - 10−5

- - D10 0.999549 1.22472 0.948031 29.0017 0.160245 157.659 10−7

4 4 D6 0.883971 0.6222 - - - - 10−1

- - D62 0.978711 0.744754 - - - - 10−3

- - D8 0.989971 0.743771 0.355433 11.3164 - - 10−4

- - D6D8 0.999731 0.738418 0.960993 23.114 - - 10−4

- - D10 0.999171 0.738616 0.916416 23.1034 -0.187235 88.5858 10−6

Table 6: Table of fit χ2 fit values for the Φ model as described in Sec. 4 and Tab. 1. Table
is continued below.
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MΦ YΦ dim c6 δc6 c8 δc8 c10 δc10 χ2
min

4 5 D6 0.838033 0.39802 - - - - 10−1

- - D62 0.983155 0.51164 - - - - 10−3

- - D8 0.985459 0.510922 0.100735 7.23776 - - 10−3

- - D6D8 0.997768 0.510438 0.847198 19.7422 - - 10−3

- - D10 0.998921 0.509894 0.88296 19.7399 -0.461172 56.6657 10−5

4 6 D6 0.781973 0.276306 - - - - 100

- - D62 0.981025 0.36903 - - - - 10−2

- - D8 0.97989 0.370955 -0.17615 5.02723 - - 10−2

- - D6D8 0.996654 0.37538 0.724048 8.93017 - - 10−2

- - D10 0.998524 0.375524 0.841921 8.89957 -0.566179 39.3804 10−5

4 7 D6 0.716039 0.202982 - - - - 100

- - D62 0.966841 0.264586 - - - - 10−2

- - D8 0.973301 0.26889 -0.453938 3.69954 - - 10−2

- - D6D8 0.997358 0.277802 0.744921 3.74595 - - 10−2

- - D10 0.998017 0.278291 0.796493 3.74167 -0.392955 29.0139 10−4

4 8 D6 0.640663 0.155459 - - - - 101

- - D62 0.944611 0.184996 - - - - 10−1

- - D8 0.965726 0.187392 -0.708307 2.84308 - - 10−1

- - D6D8 0.997508 0.198147 0.761652 1.86648 - - 10−1

- - D10 0.9974 0.197947 0.74912 1.86679 0.146217 22.3425 10−4

4 9 D6 0.556532 0.122942 - - - - 101

- - D62 0.924373 0.126767 - - - - 10−1

- - D8 0.957261 0.125719 -0.912706 2.26109 - - 10−1

- - D6D8 0.996908 0.134364 0.768091 1.05707 - - 10−1

- - D10 0.996738 0.13326 0.702948 1.05732 1.09674 17.8252 10−3

4 10 D6 0.46456 0.0997459 - - - - 101

- - D62 0.911049 0.0864334 - - - - 10−1

- - D8 0.947969 0.084098 -1.03874 1.84983 - - 10−1

- - D6D8 0.995492 0.0894328 0.765825 0.655434 - - 10−1

- - D10 0.996018 0.0879801 0.660509 0.654981 2.45085 14.649 10−3

5 1 D6 0.973751 15.5735 - - - - 10−6

- - D62 0.977546 15.767 - - - - 10−6

- - D8 0.998565 15.7679 0.884563 443.287 - - 10−8

- - D6D8 0.998816 15.7625 0.90997 453.477 - - 10−8

- - D10 0.999705 15.762 1.00184 453.486 0.961592 5424.16 10−8

5 2 D6 0.96382 3.89269 - - - - 10−4

- - D62 0.979031 4.0301 - - - - 10−4

- - D8 0.998482 4.0308 0.823035 110.768 - - 10−7

- - D6D8 0.999501 4.0254 0.925387 121.646 - - 10−7

- - D10 1.00025 4.02503 1.00314 121.655 0.760778 1355.25 10−7

5 3 D6 0.946589 1.7296 - - - - 10−3

- - D62 0.980829 1.85773 - - - - 10−4

- - D8 0.997221 1.85805 0.704869 49.1945 - - 10−6

- - D6D8 0.999515 1.85292 0.932768 61.4015 - - 10−6

- - D10 0.999978 1.8527 0.981674 61.4084 0.42552 601.812 10−7

5 4 D6 0.922452 0.97255 - - - - 10−2

- - D62 0.983284 1.09788 - - - - 10−4

- - D8 0.995507 1.09768 0.547838 27.6484 - - 10−5

- - D6D8 0.999605 1.09313 0.948863 42.214 - - 10−5

- - D10 0.99971 1.09308 0.9603 42.2161 0.0842902 338.19 10−7

5 5 D6 0.891531 0.622187 - - - - 10−2

- - D62 0.98626 0.744806 - - - - 10−3

- - D8 0.993505 0.744163 0.358444 17.6807 - - 10−4

- - D6D8 0.999927 0.74078 0.977124 36.1198 - - 10−4

- - D10 0.999659 0.740866 0.944658 36.1119 -0.212014 216.257 10−7

5 6 D6 0.853728 0.43191 - - - - 10−1

- - D62 0.988748 0.548177 - - - - 10−3

- - D8 0.991025 0.547612 0.142171 12.2717 - - 10−3

- - D6D8 0.999441 0.546618 0.936311 33.0775 - - 10−3

- - D10 0.999565 0.546457 0.925456 33.079 -0.462527 150.115 10−6

5 7 D6 0.809113 0.317224 - - - - 100

- - D62 0.988894 0.42023 - - - - 10−3

- - D8 0.988098 0.420805 -0.0911835 9.01592 - - 10−3

- - D6D8 0.998488 0.422669 0.815106 20.2035 - - 10−3

- - D10 0.999452 0.422572 0.903282 20.174 -0.608631 110.33 10−6

5 8 D6 0.757763 0.242835 - - - - 100

- - D62 0.984161 0.324698 - - - - 10−2

- - D8 0.984653 0.327061 -0.330407 6.90866 - - 10−3

- - D6D8 0.998631 0.331679 0.812342 9.62964 - - 10−3

- - D10 0.999216 0.331896 0.876372 9.61919 -0.572289 84.6071 10−5

5 9 D6 0.699942 0.191881 - - - - 100

- - D62 0.974035 0.247576 - - - - 10−2

- - D8 0.980815 0.250563 -0.562432 5.46985 - - 10−2

- - D6D8 0.998842 0.257434 0.825855 5.02087 - - 10−2

- - D10 0.999024 0.257616 0.850135 5.01933 -0.316331 67.0724 10−5

5 10 D6 0.63592 0.155481 - - - - 101

- - D62 0.961377 0.184817 - - - - 10−1

- - D8 0.976548 0.186309 -0.773073 4.44659 - - 10−2

- - D6D8 0.998865 0.193824 0.834855 2.91539 - - 10−2

- - D10 0.998805 0.193707 0.823539 2.91565 0.206568 54.6306 10−5

6 1 D6 0.982203 22.4263 - - - - 10−6

- - D62 0.984844 22.6536 - - - - 10−6

- - D8 1.00049 22.6543 0.947624 919.245 - - 10−7

- - D6D8 1.00062 22.6503 0.966506 933.852 - - 10−7

- - D10 1.00155 22.6498 1.10589 933.866 2.11512 16197.4 10−7

Table 7: As described in Tab. 6.
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6 2 D6 0.974148 5.60586 - - - - 10−5

- - D62 0.984688 5.75152 - - - - 10−5

- - D8 0.998934 5.75208 0.865913 229.731 - - 10−7

- - D6D8 0.999426 5.74824 0.937829 244.981 - - 10−7

- - D10 0.999703 5.7481 0.979229 244.985 0.599885 4047.63 10−7

6 3 D6 0.961997 2.49098 - - - - 10−4

- - D62 0.985733 2.62242 - - - - 10−4

- - D8 0.998539 2.62279 0.785238 102.047 - - 10−7

- - D6D8 0.999657 2.61905 0.947009 118.529 - - 10−7

- - D10 0.999929 2.61892 0.988007 118.534 0.548514 1797.77 10−8

6 4 D6 0.944843 1.4008 - - - - 10−3

- - D62 0.987058 1.52791 - - - - 10−4

- - D8 0.997768 1.52802 0.670093 57.3627 - - 10−6

- - D6D8 0.999766 1.5245 0.955444 75.8753 - - 10−6

- - D10 0.99993 1.52442 0.98067 75.8792 0.300588 1010.44 10−7

6 5 D6 0.922785 0.896236 - - - - 10−2

- - D62 0.988726 1.02133 - - - - 10−4

- - D8 0.996812 1.02112 0.528235 36.6856 - - 10−5

- - D6D8 0.999972 1.01802 0.97194 58.439 - - 10−5

- - D10 1.00003 1.018 0.980591 58.4407 0.0891306 646.156 10−7

6 6 D6 0.895717 0.62218 - - - - 10−2

- - D62 0.990433 0.744833 - - - - 10−4

- - D8 0.995475 0.74438 0.359762 25.4593 - - 10−4

- - D6D8 1. 0.742051 0.985516 52.0144 - - 10−4

- - D10 0.999858 0.742094 0.960871 52.0083 -0.231166 448.412 10−7

6 7 D6 0.863775 0.456966 - - - - 10−1

- - D62 0.991938 0.574728 - - - - 10−4

- - D8 0.993968 0.574295 0.173361 18.6962 - - 10−4

- - D6D8 0.999859 0.573295 0.971486 49.0246 - - 10−4

- - D10 0.999807 0.573248 0.949791 49.0231 -0.450538 329.325 10−7

6 8 D6 0.826949 0.349769 - - - - 10−1

- - D62 0.992431 0.45827 - - - - 10−3

- - D8 0.992223 0.458373 -0.0262067 14.3129 - - 10−3

- - D6D8 0.999277 0.459095 0.881243 36.3069 - - 10−3

- - D10 0.999715 0.458989 0.934032 36.2908 -0.603806 252.184 10−6

6 9 D6 0.785327 0.27631 - - - - 100

- - D62 0.990882 0.370067 - - - - 10−3

- - D8 0.990278 0.371204 -0.232293 11.314 - - 10−3

- - D6D8 0.999255 0.373643 0.859793 20.0073 - - 10−3

- - D10 0.999664 0.373705 0.92004 19.9924 -0.648599 199.452 10−6

6 10 D6 0.738976 0.2238 - - - - 100

- - D62 0.98643 0.297869 - - - - 10−2

- - D8 0.98807 0.299946 -0.437665 9.17532 - - 10−3

- - D6D8 0.999332 0.304039 0.866607 11.0054 - - 10−3

- - D10 0.999543 0.304166 0.902511 11.0012 -0.524536 161.888 10−6

7 1 D6 0.986938 30.525 - - - - 10−7

- - D62 0.988875 30.7921 - - - - 10−7

- - D8 1.00054 30.7926 0.96156 1703.07 - - 10−7

- - D6D8 1.00061 30.7896 0.97554 1722.87 - - 10−7

- - D10 1.00122 30.7893 1.09923 1722.88 2.56513 40845.3 10−7

7 2 D6 0.98076 7.63053 - - - - 10−5

- - D62 0.988493 7.78603 - - - - 10−6

- - D8 0.999242 7.78648 0.888092 425.655 - - 10−7

- - D6D8 0.999505 7.78363 0.940939 446.086 - - 10−7

- - D10 0.999506 7.78363 0.941212 446.086 0.00547358 10208. 10−7

7 3 D6 0.971765 3.39083 - - - - 10−4

- - D62 0.98919 3.52639 - - - - 10−5

- - D8 0.999345 3.52674 0.843669 189.101 - - 10−7

- - D6D8 0.999962 3.52389 0.965659 210.715 - - 10−7

- - D10 1.00022 3.52376 1.01836 210.721 0.997397 4534.62 10−7

7 4 D6 0.958937 1.90695 - - - - 10−3

- - D62 0.989928 2.03613 - - - - 10−5

- - D8 0.998905 2.03633 0.754454 106.312 - - 10−6

- - D6D8 1. 2.03359 0.96967 129.779 - - 10−6

- - D10 1.00021 2.03349 1.01176 129.784 0.732708 2549.09 10−7

7 5 D6 0.942347 1.22015 - - - - 10−3

- - D62 0.990765 1.34668 - - - - 10−4

- - D8 0.998204 1.34669 0.639728 67.9983 - - 10−6

- - D6D8 0.999915 1.34415 0.970715 94.2612 - - 10−6

- - D10 1.00002 1.34411 0.992323 94.2648 0.336998 1630.26 10−8

7 6 D6 0.922167 0.847092 - - - - 10−2

- - D62 0.991865 0.971958 - - - - 10−4

- - D8 0.997547 0.971774 0.510155 47.1918 - - 10−5

- - D6D8 1.00003 0.969544 0.983115 77.6058 - - 10−5

- - D10 1.00005 0.969535 0.988123 77.6068 0.0687991 1131.34 10−7

7 7 D6 0.898246 0.622176 - - - - 10−2

- - D62 0.992948 0.744845 - - - - 10−4

- - D8 0.996654 0.744511 0.360327 34.6522 - - 10−5

- - D6D8 1.00001 0.742807 0.991074 70.7971 - - 10−5

- - D10 0.999938 0.742829 0.973345 70.7927 -0.226011 830.718 10−7

7 8 D6 0.870661 0.476223 - - - - 10−1

- - D62 0.993897 0.594926 - - - - 10−4

- - D8 0.995647 0.594592 0.196872 26.52 - - 10−4

- - D6D8 0.999904 0.593708 0.981212 67.6682 - - 10−4

- - D10 0.99984 0.593695 0.959344 67.6651 -0.444864 635.812 10−7

Table 8: As described in Tab. 6.
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7 9 D6 0.839479 0.376183 - - - - 10−1

- - D62 0.994443 0.487958 - - - - 10−4

- - D8 0.994606 0.487896 0.0242301 20.9511 - - 10−4

- - D6D8 0.9997 0.488088 0.929098 56.1551 - - 10−4

- - D10 0.999885 0.488016 0.95529 56.1499 -0.595993 502.404 10−7

7 10 D6 0.804648 0.304652 - - - - 100

- - D62 0.993948 0.405634 - - - - 10−3

- - D8 0.993373 0.406158 -0.155669 16.9743 - - 10−3

- - D6D8 0.999574 0.40747 0.895448 35.6145 - - 10−3

- - D10 0.999831 0.407469 0.944221 35.5994 -0.661499 407.199 10−7

8 1 D6 0.989651 39.8697 - - - - 10−7

- - D62 0.99113 40.1825 - - - - 10−7

- - D8 0.999735 40.1829 0.926302 2905.42 - - 10−7

- - D6D8 0.999774 40.1807 0.936565 2931.2 - - 10−7

- - D10 1.0002 40.1805 1.04937 2931.21 3.06346 91013.2 10−7

8 2 D6 0.985085 9.9667 - - - - 10−6

- - D62 0.991 10.1336 - - - - 10−6

- - D8 0.999355 10.1339 0.900847 726.205 - - 10−7

- - D6D8 0.999509 10.1317 0.941463 752.621 - - 10−7

- - D10 0.999564 10.1317 0.956 752.623 0.384795 22747.6 10−7

8 3 D6 0.97811 4.42911 - - - - 10−5

- - D62 0.991433 4.56954 - - - - 10−5

- - D8 0.999465 4.56984 0.86929 322.652 - - 10−8

- - D6D8 0.999823 4.56764 0.962466 350.213 - - 10−8

- - D10 0.999962 4.56757 0.99942 350.217 0.936345 10106. 10−8

8 4 D6 0.968243 2.49097 - - - - 10−4

- - D62 0.991944 2.62267 - - - - 10−5

- - D8 0.999337 2.62288 0.805992 181.413 - - 10−7

- - D6D8 0.99998 2.62072 0.97182 210.724 - - 10−7

- - D10 1.0001 2.62066 1.00395 210.728 0.764383 5681.68 10−7

8 5 D6 0.955466 1.59391 - - - - 10−3

- - D62 0.992516 1.72194 - - - - 10−5

- - D8 0.999046 1.72204 0.721846 116.046 - - 10−6

- - D6D8 1.00007 1.71997 0.981244 147.899 - - 10−6

- - D10 1.00023 1.71989 1.0256 147.906 0.970839 3634.1 10−7

8 6 D6 0.939784 1.10663 - - - - 10−2

- - D62 0.993134 1.23278 - - - - 10−4

- - D8 0.998564 1.23275 0.615123 80.5432 - - 10−6

- - D6D8 1.00002 1.23084 0.982674 116.017 - - 10−6

- - D10 1.00008 1.23082 0.99788 116.019 0.300343 2522.09 10−7

8 7 D6 0.921244 0.812837 - - - - 10−2

- - D62 0.993822 0.937502 - - - - 10−4

- - D8 0.997995 0.937343 0.493329 59.1427 - - 10−5

- - D6D8 0.999975 0.93568 0.985574 99.6911 - - 10−5

- - D10 0.999973 0.935681 0.984953 99.691 -0.0109677 1851.87 10−8

8 8 D6 0.899895 0.622173 - - - - 10−2

- - D62 0.994585 0.744852 - - - - 10−4

- - D8 0.997419 0.744595 0.360089 45.2594 - - 10−5

- - D6D8 1.00001 0.743297 0.993138 92.4681 - - 10−5

- - D10 0.999963 0.743309 0.980253 92.4648 -0.214335 1417.14 10−7

8 9 D6 0.875709 0.491475 - - - - 10−1

- - D62 0.995279 0.610833 - - - - 10−4

- - D8 0.996787 0.610569 0.216587 35.7478 - - 10−4

- - D6D8 1.00002 0.609804 0.993614 89.0923 - - 10−4

- - D10 0.999969 0.609801 0.974937 89.0889 -0.42456 1119.39 10−8

8 10 D6 0.84869 0.398008 - - - - 10−1

- - D62 0.995711 0.511905 - - - - 10−4

- - D8 0.996071 0.511789 0.0641191 28.9509 - - 10−4

- - D6D8 0.999906 0.51173 0.961513 78.9495 - - 10−4

- - D10 0.999976 0.511688 0.970967 78.9489 -0.58538 906.709 10−7

9 1 D6 0.992295 50.4604 - - - - 10−7

- - D62 0.993465 50.8251 - - - - 10−7

- - D8 1.0008 50.8254 0.999832 4653.98 - - 10−7

- - D6D8 1.00083 50.8236 1.00863 4686.59 - - 10−7

- - D10 1.00137 50.8233 1.18949 4686.61 6.22714 184513. 10−7

9 2 D6 0.988606 12.6144 - - - - 10−6

- - D62 0.993286 12.7943 - - - - 10−6

- - D8 1.00037 12.7946 0.965824 1163.3 - - 10−7

- - D6D8 1.00048 12.7927 1.00082 1196.54 - - 10−7

- - D10 1.00113 12.7924 1.21951 1196.56 7.37889 46119. 10−7

9 3 D6 0.982512 5.60584 - - - - 10−5

- - D62 0.993028 5.75187 - - - - 10−6

- - D8 0.999467 5.75213 0.880738 516.887 - - 10−7

- - D6D8 0.999684 5.75039 0.953195 551.208 - - 10−7

- - D10 0.999602 5.75043 0.925523 551.205 -0.902349 20490.7 10−7

9 4 D6 0.974543 3.15288 - - - - 10−4

- - D62 0.993243 3.28751 - - - - 10−5

- - D8 0.999272 3.28771 0.828786 290.646 - - 10−7

- - D6D8 0.999663 3.286 0.957701 326.642 - - 10−7

- - D10 0.999643 3.28601 0.951186 326.641 -0.202258 11521.1 10−7

9 5 D6 0.964463 2.01751 - - - - 10−3

- - D62 0.993704 2.14727 - - - - 10−5

- - D8 0.999251 2.1474 0.769484 185.935 - - 10−7

- - D6D8 0.999876 2.14572 0.973086 224.313 - - 10−7

- - D10 0.999922 2.1457 0.988786 224.315 0.456807 7369.8 10−7

Table 9: As described in Tab. 6.
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9 6 D6 0.952123 1.40079 - - - - 10−3

- - D62 0.99426 1.52813 - - - - 10−5

- - D8 0.999187 1.52818 0.694104 129.061 - - 10−6

- - D6D8 1.00011 1.52657 0.989926 170.732 - - 10−6

- - D10 1.00019 1.52653 1.01798 170.736 0.752688 5115.09 10−8

9 7 D6 0.93734 1.02894 - - - - 10−2

- - D62 0.994685 1.15479 - - - - 10−5

- - D8 0.998782 1.15474 0.592083 94.7737 - - 10−6

- - D6D8 1.00003 1.15327 0.988138 140.922 - - 10−6

- - D10 1.00007 1.15325 1.00163 140.924 0.329028 3755.93 10−8

9 8 D6 0.920304 0.78761 - - - - 10−2

- - D62 0.995174 0.912112 - - - - 10−4

- - D8 0.998365 0.911974 0.48056 72.5267 - - 10−5

- - D6D8 0.999986 0.910686 0.989533 124.691 - - 10−5

- - D10 0.999983 0.910687 0.988484 124.691 -0.0231992 2874.14 10−8

9 9 D6 0.901044 0.622172 - - - - 10−2

- - D62 0.995732 0.74486 - - - - 10−4

- - D8 0.997972 0.744657 0.360517 57.2809 - - 10−5

- - D6D8 1.00003 0.743632 0.996549 117.031 - - 10−5

- - D10 1. 0.743639 0.987559 117.029 -0.189147 2269.97 10−7

9 10 D6 0.879495 0.503851 - - - - 10−1

- - D62 0.996208 0.623678 - - - - 10−4

- - D8 0.997503 0.623466 0.231618 46.3826 - - 10−5

- - D6D8 1.00002 0.622811 0.996653 113.328 - - 10−5

- - D10 0.999982 0.622811 0.98118 113.325 -0.407428 1838.18 10−8

10 1 D6 0.993549 62.297 - - - - 10−7

- - D62 0.994497 62.7196 - - - - 10−8

- - D8 1.0008 62.7199 1.06003 7093.48 - - 10−8

- - D6D8 1.00082 62.7183 1.06755 7133.69 - - 10−8

- - D10 1.0012 62.7181 1.22298 7133.7 6.61533 347198. 10−8

10 2 D6 0.990706 15.5735 - - - - 10−6

- - D62 0.994495 15.7679 - - - - 10−7

- - D8 1.00035 15.7681 0.985429 1773.13 - - 10−8

- - D6D8 1.00042 15.7666 1.01394 1813.96 - - 10−8

- - D10 1.00079 15.7664 1.1659 1813.97 6.36299 86785.3 10−8

10 3 D6 0.985607 6.92102 - - - - 10−5

- - D62 0.994117 7.07335 - - - - 10−6

- - D8 0.999337 7.07357 0.880505 787.887 - - 10−8

- - D6D8 0.999477 7.07218 0.938416 829.77 - - 10−8

- - D10 0.999427 7.0722 0.917419 829.768 -0.855342 38561. 10−8

10 4 D6 0.979654 3.89265 - - - - 10−4

- - D62 0.994815 4.03078 - - - - 10−6

- - D8 1.0001 4.03097 0.893974 443.056 - - 10−7

- - D6D8 1.00037 4.0295 1.00552 486.609 - - 10−7

- - D10 1.00062 4.02938 1.10805 486.621 4.01508 21682.9 10−8

10 5 D6 0.971129 2.49097 - - - - 10−4

- - D62 0.994808 2.62277 - - - - 10−5

- - D8 0.999612 2.62291 0.818614 283.455 - - 10−7

- - D6D8 1.00003 2.62151 0.98696 329.256 - - 10−7

- - D10 1.0001 2.62147 1.01644 329.26 1.09605 13871.1 10−8

10 6 D6 0.961023 1.72957 - - - - 10−3

- - D62 0.995134 1.85822 - - - - 10−5

- - D8 0.999501 1.8583 0.751808 196.764 - - 10−7

- - D6D8 1.00011 1.85694 0.994318 245.626 - - 10−7

- - D10 1.0002 1.8569 1.03128 245.631 1.28776 9628.09 10−7

10 7 D6 0.948945 1.27048 - - - - 10−3

- - D62 0.995368 1.39733 - - - - 10−5

- - D8 0.999135 1.39735 0.659486 144.499 - - 10−6

- - D6D8 0.999944 1.39608 0.980288 197.418 - - 10−6

- - D10 0.999964 1.39607 0.98884 197.419 0.275652 7070.13 10−8

10 8 D6 0.935095 0.972527 - - - - 10−2

- - D62 0.995734 1.09813 - - - - 10−5

- - D8 0.99891 1.09808 0.570479 110.583 - - 10−6

- - D6D8 0.999973 1.09691 0.987468 168.874 - - 10−6

- - D10 0.999988 1.0969 0.993603 168.875 0.181087 5410.37 10−8

10 9 D6 0.919405 0.768265 - - - - 10−2

- - D62 0.996141 0.892628 - - - - 10−5

- - D8 0.998658 0.892509 0.470451 87.3373 - - 10−6

- - D6D8 1.00001 0.891482 0.993735 152.599 - - 10−6

- - D10 1.00001 0.891482 0.993769 152.599 0.000898094 4272.91 10−7

10 10 D6 0.901816 0.62217 - - - - 10−2

- - D62 0.996482 0.744854 - - - - 10−5

- - D8 0.998283 0.744691 0.357783 70.7167 - - 10−5

- - D6D8 0.999924 0.743874 0.985524 144.47 - - 10−5

- - D10 0.999892 0.743882 0.970747 144.466 -0.383684 3459.76 10−7

Table 10: As described in Tab. 6.
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3 3 D6 1.12788 0.353318 - - - - 10−1

- - D62 1.13203 0.356668 - - - - 10−1

- - D8 0.980971 0.356442 1.45476 2.38857 - - 10−2

- - D6D8 0.979411 0.357435 1.49589 2.44542 - - 10−2

- - D10 1.00498 0.357087 0.850995 2.44694 1.8517 8.11232 10−4

3 6 D6 1.10815 0.0870852 - - - - 100

- - D62 1.12538 0.0905217 - - - - 100

- - D8 0.987427 0.0903332 1.29106 0.572319 - - 10−2

- - D6D8 0.981081 0.0913225 1.45242 0.631675 - - 10−2

- - D10 1.00166 0.0910396 0.943074 0.633042 1.34751 1.92171 10−4

3 9 D6 1.07091 0.0378047 - - - - 101

- - D62 1.11237 0.0413785 - - - - 101

- - D8 1.00085 0.0412695 1.00748 0.238168 - - 10−2

- - D6D8 0.986527 0.0422007 1.35066 0.303184 - - 10−2

- - D10 0.997849 0.0420497 1.07877 0.304116 0.622311 0.787609 10−3

3 12 D6 1.00923 0.0206546 - - - - 100

- - D62 1.08999 0.0243725 - - - - 101

- - D8 1.02154 0.0243805 0.616649 0.12527 - - 100

- - D6D8 0.997353 0.0251004 1.14917 0.202589 - - 100

- - D10 0.992205 0.0251541 1.26864 0.201985 -0.222281 0.411097 10−1

3 15 D6 0.926368 0.0129133 - - - - 102

- - D62 1.06471 0.0167086 - - - - 101

- - D8 1.04683 0.0167598 0.180373 0.0785712 - - 101

- - D6D8 1.01233 0.0171405 0.866336 0.179652 - - 101

- - D10 0.984882 0.0171841 1.49054 0.174775 -0.983607 0.26331 100

3 18 D6 0.842816 0.00888742 - - - - 103

- - D62 1.05498 0.0126621 - - - - 102

- - D8 1.06967 0.0125303 -0.20599 0.0574116 - - 102

- - D6D8 1.01002 0.0127117 1.18099 0.169176 - - 102

- - D10 0.977171 0.0122382 1.69327 0.166058 -1.47187 0.203686 101

3 21 D6 0.771161 0.00654558 - - - - 103

- - D62 1.06933 0.0101629 - - - - 103

- - D8 1.08616 0.00970972 -0.508954 0.0464134 - - 102

- - D6D8 0.993852 0.00885815 2.06728 0.119261 - - 102

- - D10 0.96982 0.00879942 1.84537 0.122417 -1.65923 0.177694 101

3 24 D6 0.710911 0.00505784 - - - - 104

- - D62 1.10199 0.0082592 - - - - 103

- - D8 1.09643 0.0076162 -0.744376 0.0398252 - - 103

- - D6D8 0.972171 0.00620991 2.37603 0.0755521 - - 103

- - D10 0.962486 0.00644627 1.94384 0.0768416 -1.62891 0.165102 101

3 27 D6 0.658785 0.00405035 - - - - 104

- - D62 1.13855 0.00654542 - - - - 103

- - D8 1.10128 0.00600319 -0.934216 0.0354559 - - 103

- - D6D8 0.957567 0.00465887 2.35815 0.0502491 - - 103

- - D10 0.954571 0.00486197 1.98925 0.050523 -1.51136 0.158513 102

3 30 D6 0.612118 0.00333483 - - - - 104

- - D62 1.16495 0.00506135 - - - - 103

- - D8 1.10119 0.00476017 -1.09737 0.0323498 - - 103

- - D6D8 0.946954 0.00364767 2.27092 0.0356695 - - 103

- - D10 0.945524 0.00379038 1.97817 0.0357588 -1.49372 0.154855 102

4 3 D6 1.06432 0.629608 - - - - 10−2

- - D62 1.06679 0.632873 - - - - 10−2

- - D8 0.997294 0.632768 1.19634 7.6072 - - 10−4

- - D6D8 0.996878 0.633219 1.21572 7.7096 - - 10−4

- - D10 1.00371 0.633126 0.908069 7.71031 1.5892 46.0403 10−5

4 6 D6 1.05434 0.15631 - - - - 10−1

- - D62 1.06434 0.159615 - - - - 10−1

- - D8 0.997126 0.159518 1.14089 1.86438 - - 10−3

- - D6D8 0.995423 0.159976 1.21881 1.96918 - - 10−3

- - D10 1.00099 0.159899 0.969922 1.96979 1.23001 11.2285 10−5

4 9 D6 1.03827 0.0686636 - - - - 100

- - D62 1.06135 0.072045 - - - - 100

- - D8 0.999435 0.0719638 1.02919 0.802011 - - 10−4

- - D6D8 0.995538 0.0724228 1.20253 0.911658 - - 10−4

- - D10 1.00004 0.0723604 1.00338 0.912217 0.911276 4.7932 10−5

4 12 D6 1.01404 0.0379978 - - - - 10−1

- - D62 1.05654 0.0414815 - - - - 100

- - D8 1.00303 0.0414276 0.870016 0.431865 - - 10−2

- - D6D8 0.996004 0.0418767 1.17039 0.549872 - - 10−2

- - D10 0.998972 0.0418359 1.04102 0.55031 0.528222 2.55695 10−4

4 15 D6 0.979859 0.023833 - - - - 100

- - D62 1.04913 0.0274298 - - - - 101

- - D8 1.00774 0.0274152 0.666482 0.26301 - - 10−1

- - D6D8 0.996731 0.0278271 1.11312 0.395232 - - 10−1

- - D10 0.997378 0.0278188 1.08536 0.395355 0.0971082 1.544 10−3

Table 11: Table of fit χ2 fit values for the X model as described in Sec. 4 and Tab. 2.
Table is continued below.
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4 18 D6 0.934817 0.016197 - - - - 101

- - D62 1.03896 0.0198842 - - - - 101

- - D8 1.01327 0.0199112 0.426714 0.174712 - - 100

- - D6D8 0.997761 0.0202352 1.01528 0.330998 - - 100

- - D10 0.994955 0.0202625 1.1344 0.330258 -0.347859 1.02276 10−2

4 21 D6 0.881011 0.0116809 - - - - 102

- - D62 1.0278 0.0153866 - - - - 101

- - D8 1.01883 0.0154218 0.167914 0.125567 - - 101

- - D6D8 0.99813 0.0156184 0.898149 0.316049 - - 101

- - D10 0.991452 0.0156319 1.18145 0.313794 -0.771298 0.742141 10−1

4 24 D6 0.824176 0.0088429 - - - - 103

- - D62 1.01956 0.0124572 - - - - 101

- - D8 1.02311 0.0124232 -0.0876536 0.0974413 - - 101

- - D6D8 0.991305 0.0125123 1.05743 0.29586 - - 101

- - D10 0.986642 0.0124081 1.21565 0.295296 -1.16688 0.591249 10−1

4 27 D6 0.769791 0.00696577 - - - - 103

- - D62 1.01711 0.0103706 - - - - 102

- - D8 1.02478 0.0102001 -0.326512 0.080718 - - 101

- - D6D8 0.977765 0.0100053 1.52128 0.221022 - - 101

- - D10 0.980274 0.00996182 1.22494 0.220395 -1.59332 0.510147 10−1

4 30 D6 0.719886 0.00566208 - - - - 103

- - D62 1.01993 0.00874775 - - - - 102

- - D8 1.02303 0.00844388 -0.550255 0.0701249 - - 102

- - D6D8 0.965893 0.0079549 1.7356 0.147362 - - 102

- - D10 0.972029 0.00807064 1.1986 0.145733 -2.19289 0.465412 100

5 3 D6 1.04054 0.984653 - - - - 10−3

- - D62 1.04214 0.987883 - - - - 10−3

- - D8 1.00196 0.987822 1.08267 18.6226 - - 10−5

- - D6D8 1.00181 0.988081 1.09388 18.7829 - - 10−5

- - D10 1.00562 0.98803 0.825618 18.7835 2.17667 176.233 10−5

5 6 D6 1.03348 0.245126 - - - - 10−2

- - D62 1.03991 0.248375 - - - - 10−2

- - D8 0.999576 0.248316 1.07771 4.60098 - - 10−4

- - D6D8 0.998928 0.248584 1.12409 4.76346 - - 10−4

- - D10 1.00132 0.248551 0.956224 4.76386 1.32458 43.4194 10−5

5 9 D6 1.02388 0.108177 - - - - 10−1

- - D62 1.03854 0.111473 - - - - 10−1

- - D8 0.999888 0.111418 1.01896 2.00528 - - 10−5

- - D6D8 0.998403 0.111689 1.12332 2.17231 - - 10−5

- - D10 1.00038 0.111662 0.985568 2.17267 1.03623 18.8382 10−5

5 12 D6 1.00998 0.0602473 - - - - 10−2

- - D62 1.03656 0.0636086 - - - - 100

- - D8 1.0007 0.063563 0.930206 1.09799 - - 10−4

- - D6D8 0.998018 0.0638348 1.11413 1.2723 - - 10−4

- - D10 0.999613 0.0638126 1.00372 1.27262 0.774643 10.2533 10−5

5 15 D6 0.990933 0.0380704 - - - - 10−1

- - D62 1.03351 0.0415125 - - - - 100

- - D8 1.00163 0.04148 0.813574 0.679671 - - 10−2

- - D6D8 0.997397 0.041748 1.09566 0.864998 - - 10−2

- - D10 0.998511 0.0417325 1.01919 0.865256 0.488463 6.30339 10−4

5 18 D6 0.965893 0.0260397 - - - - 100

- - D62 1.02891 0.0295697 - - - - 100

- - D8 1.00242 0.029555 0.669774 0.454578 - - 10−1

- - D6D8 0.996306 0.0298097 1.06217 0.656493 - - 10−1

- - D10 0.996742 0.0298038 1.03251 0.656615 0.168076 4.1875 10−4

5 21 D6 0.934215 0.0188138 - - - - 101

- - D62 1.02235 0.0224234 - - - - 100

- - D8 1.00275 0.0224291 0.500178 0.321628 - - 10−1

- - D6D8 0.994565 0.0226532 1.00184 0.548546 - - 10−1

- - D10 0.993985 0.0226603 1.04119 0.548338 -0.193425 2.94854 10−3

5 24 D6 0.895982 0.0141668 - - - - 102

- - D62 1.0137 0.0178232 - - - - 100

- - D8 1.00221 0.017844 0.307827 0.238731 - - 100

- - D6D8 0.992008 0.0180137 0.896514 0.501956 - - 100

- - D10 0.989903 0.0180328 1.0405 0.500969 -0.619413 2.188 10−3

5 27 D6 0.852562 0.0110361 - - - - 102

- - D62 1.00348 0.014677 - - - - 100

- - D8 1.00023 0.0146916 0.0976998 0.185623 - - 100

- - D6D8 0.987778 0.0147991 0.762986 0.490231 - - 100

- - D10 0.984127 0.0148064 1.02352 0.488319 -1.16773 1.71363 10−2

5 30 D6 0.806484 0.00885404 - - - - 103

- - D62 0.992757 0.0123987 - - - - 101

- - D8 0.996115 0.0123682 -0.125553 0.151125 - - 100

- - D6D8 0.977947 0.0124495 0.840751 0.460585 - - 100

- - D10 0.976295 0.0123872 0.980555 0.460251 -1.95454 1.41855 10−2

6 3 D6 1.029 1.41854 - - - - 10−3

- - D62 1.03012 1.42176 - - - - 10−3

- - D8 1.00443 1.42172 0.99779 38.6663 - - 10−5

- - D6D8 1.00436 1.42188 1.0049 38.8975 - - 10−5

- - D10 1.00766 1.42184 0.670863 38.8982 3.91389 527.092 10−5

Table 12: As described in Tab. 11.
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6 6 D6 1.0231 0.353626 - - - - 10−2

- - D62 1.02757 0.356846 - - - - 10−2

- - D8 1.0007 0.356806 1.03749 9.59054 - - 10−5

- - D6D8 1.00041 0.356982 1.06816 9.82338 - - 10−5

- - D10 1.00192 0.356962 0.915134 9.82374 1.75886 130.497 10−5

6 9 D6 1.01645 0.156419 - - - - 10−2

- - D62 1.02658 0.159669 - - - - 10−2

- - D8 1.00025 0.159631 1.00743 4.20693 - - 10−5

- - D6D8 0.999566 0.159811 1.07715 4.44411 - - 10−5

- - D10 1.0007 0.159795 0.963307 4.44439 1.26644 57.0715 10−5

6 12 D6 1.00712 0.0873974 - - - - 10−2

- - D62 1.02536 0.0906925 - - - - 10−1

- - D8 1.00017 0.0906579 0.952493 2.32371 - - 10−5

- - D6D8 0.998933 0.0908387 1.07632 2.56762 - - 10−5

- - D10 0.999839 0.0908262 0.985441 2.56787 0.964559 31.3958 10−5

6 15 D6 0.994553 0.0554535 - - - - 10−2

- - D62 1.02351 0.0588048 - - - - 10−1

- - D8 1.00002 0.0587756 0.87614 1.45338 - - 10−3

- - D6D8 0.998072 0.0589564 1.06774 1.70696 - - 10−3

- - D10 0.998801 0.0589462 0.995035 1.70717 0.724855 19.5399 10−5

6 18 D6 0.978148 0.0381078 - - - - 10−1

- - D62 1.02061 0.0415239 - - - - 100

- - D8 0.999437 0.0415022 0.779703 0.982276 - - 10−3

- - D6D8 0.996613 0.0416802 1.05023 1.24935 - - 10−3

- - D10 0.99712 0.0416732 0.999976 1.24952 0.46265 13.134 10−5

6 21 D6 0.957354 0.0276604 - - - - 100

- - D62 1.01624 0.0311447 - - - - 100

- - D8 0.998114 0.0311326 0.661893 0.700304 - - 10−2

- - D6D8 0.994301 0.0313028 1.01666 0.986123 - - 10−2

- - D10 0.994494 0.0313001 0.997552 0.986199 0.159608 9.3128 10−4

6 24 D6 0.931688 0.0208979 - - - - 101

- - D62 1.00994 0.0244451 - - - - 100

- - D8 0.995695 0.0244438 0.521384 0.51987 - - 10−1

- - D6D8 0.990869 0.0245973 0.954089 0.831728 - - 10−1

- - D10 0.990557 0.0246013 0.984813 0.83158 -0.229103 6.88186 10−4

6 27 D6 0.90095 0.0162879 - - - - 101

- - D62 1.00132 0.0198795 - - - - 100

- - D8 0.991787 0.0198876 0.356441 0.399246 - - 10−1

- - D6D8 0.986123 0.0200113 0.838812 0.746804 - - 10−1

- - D10 0.984951 0.020025 0.95527 0.746114 -0.770891 5.27224 10−4

6 30 D6 0.865429 0.0130248 - - - - 102

- - D62 0.990113 0.0166263 - - - - 100

- - D8 0.985926 0.0166361 0.165411 0.316445 - - 10−1

- - D6D8 0.979825 0.016718 0.640609 0.709609 - - 10−1

- - D10 0.977269 0.0167405 0.901631 0.707769 -1.59143 4.18391 10−3

7 3 D6 1.02288 1.9313 - - - - 10−4

- - D62 1.0237 1.93451 - - - - 10−4

- - D8 1.00665 1.93448 0.902131 71.6873 - - 10−5

- - D6D8 1.00662 1.93459 0.906743 72.0024 - - 10−5

- - D10 1.01023 1.93455 0.407461 72.0035 7.97618 1330.36 10−5

7 6 D6 1.01721 0.481831 - - - - 10−3

- - D62 1.02049 0.485035 - - - - 10−3

- - D8 1.00147 0.485006 1.00242 17.8204 - - 10−5

- - D6D8 1.00131 0.48513 1.02397 18.1364 - - 10−5

- - D10 1.00259 0.485113 0.847507 18.1368 2.7797 330.276 10−5

7 9 D6 1.01213 0.21341 - - - - 10−3

- - D62 1.01955 0.216634 - - - - 10−2

- - D8 1.00053 0.216606 0.995301 7.8458 - - 10−5

- - D6D8 1.00017 0.216734 1.04504 8.16588 - - 10−5

- - D10 1.00098 0.216723 0.933747 8.16615 1.71181 145.1 10−5

7 12 D6 1.0053 0.119464 - - - - 10−3

- - D62 1.0186 0.122719 - - - - 10−2

- - D8 1.00008 0.122693 0.960405 4.35565 - - 10−5

- - D6D8 0.999435 0.122822 1.04923 4.68214 - - 10−5

- - D10 1.00006 0.122813 0.964044 4.68236 1.2666 80.3171 10−5

7 15 D6 0.996155 0.0759814 - - - - 10−3

- - D62 1.01717 0.0792776 - - - - 10−1

- - D8 0.999478 0.0792539 0.907748 2.74141 - - 10−4

- - D6D8 0.998457 0.0793832 1.04596 3.0768 - - 10−4

- - D10 0.998956 0.0793763 0.97794 3.07699 0.96701 50.3672 10−5

7 18 D6 0.984248 0.0523652 - - - - 10−1

- - D62 1.01489 0.0557085 - - - - 10−1

- - D8 0.998356 0.0556884 0.838465 1.86601 - - 10−4

- - D6D8 0.996878 0.055817 1.0349 2.21329 - - 10−4

- - D10 0.997257 0.0558117 0.98335 2.21344 0.692647 34.1397 10−5

7 21 D6 0.969136 0.0381316 - - - - 100

- - D62 1.01137 0.0415263 - - - - 10−1

- - D8 0.996413 0.0415109 0.750673 1.33996 - - 10−3

- - D6D8 0.994416 0.0416366 1.01074 1.70288 - - 10−3

- - D10 0.99466 0.0416332 0.977706 1.70299 0.414387 24.4041 10−5

Table 13: As described in Tab. 11.
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7 24 D6 0.950354 0.0289032 - - - - 100

- - D62 1.00617 0.0323494 - - - - 10−1

- - D8 0.99327 0.0323398 0.64258 1.0007 - - 10−2

- - D6D8 0.990728 0.0324588 0.965326 1.38406 - - 10−2

- - D10 0.990763 0.0324583 0.960662 1.38407 0.0539281 18.1427 10−5

7 27 D6 0.927504 0.0225904 - - - - 101

- - D62 0.998806 0.0260823 - - - - 10−1

- - D8 0.98855 0.0260791 0.510485 0.770686 - - 10−2

- - D6D8 0.985523 0.0261851 0.882197 1.18069 - - 10−2

- - D10 0.985194 0.0261896 0.926521 1.18049 -0.467042 13.9165 10−5

7 30 D6 0.900336 0.0180942 - - - - 101

- - D62 0.988796 0.0216182 - - - - 10−1

- - D8 0.981838 0.0216204 0.349993 0.609175 - - 10−1

- - D6D8 0.978547 0.0217043 0.733969 1.05361 - - 10−1

- - D10 0.977557 0.0217169 0.868176 1.0529 -1.27983 10.9691 10−4

8 3 D6 1.01969 2.52294 - - - - 10−5

- - D62 1.02032 2.52614 - - - - 10−5

- - D8 1.0092 2.52613 0.768645 122.352 - - 10−5

- - D6D8 1.00919 2.5262 0.771495 122.764 - - 10−5

- - D10 1.01367 2.52614 -0.0367678 122.766 16.8834 2965.98 10−5

8 6 D6 1.01363 0.629749 - - - - 10−3

- - D62 1.01614 0.632943 - - - - 10−3

- - D8 1.00215 0.632922 0.963676 30.4573 - - 10−5

- - D6D8 1.00207 0.633013 0.979354 30.8692 - - 10−5

- - D10 1.0034 0.632995 0.740265 30.8698 4.94083 737.606 10−5

8 9 D6 1.00944 0.279159 - - - - 10−3

- - D62 1.01511 0.282366 - - - - 10−3

- - D8 1.00081 0.282345 0.979773 13.4404 - - 10−5

- - D6D8 1.00061 0.28244 1.01676 13.8562 - - 10−5

- - D10 1.00134 0.28243 0.885373 13.8565 2.6664 324.973 10−5

8 12 D6 1.00409 0.156453 - - - - 10−3

- - D62 1.01423 0.159683 - - - - 10−2

- - D8 1.00011 0.159663 0.96136 7.48544 - - 10−5

- - D6D8 0.99974 0.159759 1.028 7.90736 - - 10−5

- - D10 1.00024 0.159752 0.93779 7.90758 1.78433 180.588 10−5

8 15 D6 0.997018 0.0996584 - - - - 10−3

- - D62 1.01298 0.102919 - - - - 10−2

- - D8 0.999289 0.1029 0.924236 4.73028 - - 10−5

- - D6D8 0.998705 0.102997 1.02838 5.16059 - - 10−5

- - D10 0.999094 0.102991 0.958947 5.16078 1.3277 113.802 10−5

8 18 D6 0.987788 0.0688098 - - - - 10−2

- - D62 1.01098 0.0721055 - - - - 10−1

- - D8 0.997935 0.0720883 0.871844 3.23503 - - 10−4

- - D6D8 0.997091 0.072185 1.02034 3.67624 - - 10−4

- - D10 0.997399 0.0721807 0.96541 3.6764 1.00712 77.5742 10−5

8 21 D6 0.976005 0.0502132 - - - - 10−1

- - D62 1.00784 0.0535471 - - - - 10−1

- - D8 0.995699 0.0535325 0.803608 2.3351 - - 10−4

- - D6D8 0.994557 0.0536278 1.00129 2.79011 - - 10−4

- - D10 0.99478 0.0536247 0.961571 2.79023 0.69189 55.7899 10−5

8 24 D6 0.961253 0.0381497 - - - - 100

- - D62 1.00314 0.0415225 - - - - 10−1

- - D8 0.992216 0.0415112 0.716856 1.75299 - - 10−3

- - D6D8 0.990758 0.041603 0.964379 2.22523 - - 10−3

- - D10 0.990864 0.0416015 0.945701 2.2253 0.306376 41.7204 10−5

8 27 D6 0.943141 0.0298882 - - - - 100

- - D62 0.996439 0.0332972 - - - - 10−1

- - D8 0.987127 0.0332897 0.606923 1.35623 - - 10−3

- - D6D8 0.985379 0.0333745 0.896676 1.84988 - - 10−3

- - D10 0.985302 0.0333756 0.910389 1.84983 -0.209871 32.154 10−5

8 30 D6 0.921307 0.0239913 - - - - 101

- - D62 0.98722 0.0274291 - - - - 10−1

- - D8 0.980012 0.0274258 0.46873 1.07517 - - 10−2

- - D6D8 0.978078 0.0274981 0.77873 1.59523 - - 10−2

- - D10 0.977671 0.0275037 0.85077 1.59492 -1.0202 25.4018 10−5

Table 14: As described in Tab. 11.
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