
SciPost Physics Submission

QSpace – An Open-Source Tensor Library for Abelian and
non-Abelian Symmetries

Andreas Weichselbaum⋆

Department of Condensed Matter Physics and Materials Science,
Brookhaven National Laboratory, Upton, NY 11973-5000, USA

⋆ weichselbaum@bnl.gov

July 3, 2024

Abstract

This is the documentation for the tensor library QSpace (v4.0), a toolbox to exploit ‘quan-
tum symmetry spaces’ in tensor network states in the quantum many-body context.
QSpace permits arbitrary combinations of symmetries including the abelian symmetries
Zn and U(1), as well as all non-abelian symmetries based on the semisimple classical
Lie algebras: An, Bn, Cn, and Dn, or respectively, the special unitary group SU(n), the
odd orthogonal group SO(2n+1), the symplectic group Sp(2n), and the even orthogonal
group SO(2n). The code (C++ embedded via the MEX interface into Matlab) is available
open-source as of QSpace v4.0 on bitbucket [1] under the Apache 2.0 license.

QSpace is designed as a bottom-up approach for non-abelian symmetries. It starts
from the defining representation and the respective Lie algebra. By explicitly computing
and tabulating generalized Clebsch-Gordan coefficient tensors, QSpace is versatile in its
operations across all symmetries. At the level of an application, much of the symmetry-
related details are hidden within the QSpace C++ core libraries. Hence when developing
tensor network algorithms with QSpace, these can be coded (nearly) as if there are no
symmetries at all, despite being able to fully exploit general non-abelian symmetries.
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1 Introduction

The treatment of tensor network states in numerical simulations requires a set of standardized
elementary routines: ways to initialize tensors, Kronecker products to build tensor product
spaces, contractions to compute matrix elements or expectation values, etc. Together these
routines form a tensor library that is designed to provide a user-friendly environment. While
the individual tensor operations are straightforward linear algebra operations per se, the com-
plexity of a tensor library increases significantly if one intends to exploit symmetries. Yet
symmetries are important, both for the sake of numerical efficiency, but also to gain detailed
symmetry-resolved physical insights into the fabric of particular tensor network state realiza-
tions. By now, several mature open-source tensor libraries are available. Yet the overwhelming
majority of these only permit one to exploit abelian symmetries. This includes, for example,
iTensor [2,3], Uni10 [4], ALPS [5], or TeNPy [6]. Implementations of non-abelian symmetries
in tensor network libraries are scarce, with TensorKit [7] a notable recent exception.

QSpace also started from plain abelian symmetries originally in version 1 (v1). Yet with v2,
QSpace implemented non-abelian symmetries [8]. It was designed as a bottom-up approach,
based on the realization [9] that, as a generalization of the Wigner-Eckart theorem [10–14],
Clebsch-Gordan coefficients of an arbitrary-rank symmetric tensor can be factorized in the form
of a tensor product with reduced matrix elements. QSpace explicitly computes and tabulates
Clebsch-Gordan coefficients for standard tensor product decomposition (rank-3), as well as
higher-rank Clebsch-Gordan tensors (CGTs) obtained via contractions. It is in this sense that
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QSpace is considered a bottom-up approach: by explicitly computing and utilizing CGTs, the
tensor representation is known in full numerical detail which then enables general tensor
operations in a self-contained fashion. Specifically, QSpace does not rely on or use 6 j symbols
[9, 15], bearing in mind that these are known analytically for SU(2) only, where these are
simple numbers. For general non-abelian symmetry, however, the 6 j symbols become rank-4
tensors in outer multiplicity (‘4M symbols’) which introduces significant complications.

Tensor network simulations typically deal with lattice models comprised of sites whose
state space is considered small (microscopic). By iteratively adding site after site, ever larger
many-body Hilbert spaces can be built. Eventually, these are truncated in tensor network simu-
lations in a controlled fashion based on the underlying entanglement structure. This iterative
build-up of a Hilbert space precisely also underlies the design principle of QSpace for non-
abelian symmetries: one starts from small local units where all symmetry-related aspects can
be generated, and thus are known in a simple, transparent way. With these initial building
blocks one can ‘play lego’ then. One can build ever larger, more complex tensor network struc-
tures. From the QSpace perspective, this iterative nature automatically generates the respective
multiplet spaces as they occur on demand at each step, based on well-defined elementary steps
such as tensor product decomposition, contractions, etc. Newly generated symmetry related
data is tabulated and stored much like in a database (the RC_STORE in QSpace). QSpace thus
automatically adapts to what is needed in the simulations that are run, bearing in mind that it
is impossible to store all symmetry-related data for continuous non-abelian symmetries, since
that data set is infinite.

1.1 Version history

The QSpace tensor library has a long-standing history that started around 2006. Since its
inception, it has already been thoroughly scrutinized, debugged, and optimized. A distinctive
feature of QSpace has been to exploit arbitrary symmetries from the very beginning for the
sake of numerical efficiency. The initial motivation of QSpace was at the interface between the
density matrix renormalization group (DMRG [16, 17]) and the numerical renormalization
group (NRG [13, 18]). Yet since it was designed as a general tensor library from the very
beginning, QSpace is also equally applicable in other tensor network algorithms. QSpace went
open-source as of version 4 [1].

• QSpace v1.* (2006-2011) started as a tensor library for arbitrary sets of U(1) abelian
symmetries, with applications in the realm of NRG (fdm-NRG [19–21]), DMRG [22–24],
and their crossover [25,26].

• QSpace v2.* (2012-2015) newly introduced general continuous non-abelian symmetries
to its capability [8, 27, 28], then including the special unitary group SU(N) and the
symplectic group Sp(2N) where N ≥ 2 is dealt with as a parameter.

• QSpace v3.* (2015-2022) completed the set of semi-simple symmetries by also imple-
menting the special orthogonal groups SO(N), both for even and odd N , noting that
these represent different Lie algebras Dn and Bn with N = 2n or N = 2n + 1, respec-
tively. QSpace v3 also included significant performance upgrades, with full tabulation of
generalized Clebsch-Gordan tensors (CGTs) as well as their contractions via the intro-
duction of X-symbols [15].

• QSpace v4 (since 2022) finally was geared towards open source in response to frequent
requests from the community. QSpace v4 is mostly the state of QSpace v3.2 (last version
in v3.*), yet cleaned up in the sense of having completed and merged still open develop-
ment branches. It went open-source in 2022 as a git repository on bitbucket [1] under
the Apache 2.0 license.
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1.2 Target audience and additional literature

This documentation of QSpace assumes basic familiarity with tensor network states for corre-
lated quantum many-body states. This includes general tensor network operations and strate-
gies, as well as their graphical description in the form of tensor network diagrams. Many ex-
cellent introductory papers, tutorials, and reviews already exist in the literature in this regard,
e.g., see [6, 29–31] or the lecture notes in Ref. [32] amongst many others. This documenta-
tion does not intend to replicate these. Instead, it focuses on the implementation of general
symmetries in tensor network states, with a strong emphasis on the distinguishing feature of
QSpace, namely non-abelian symmetries. This documentation builds on the earlier publica-
tions on QSpace in Refs. [8,15] which already also put an emphasis on a more self-contained
pedagogical presentation (e.g., see the extensive appendices in [8] including App. A on Non-
abelian symmetries 101). As such, these are highly recommended additional literature that
complement this documentation.

1.3 Format conventions

The format for the coding syntax (in this font and color coding) used throughout this docu-
mentation is in intuitive compact Matlab semantics. The main reason is that this also reflects
the QSpace environment that the C++ QSpace core routines are embedded into (the many
cross-references within this documentation via hyperlinks are formatted in blue as shown;
non-hyperlinked terms or highlighted text are differentiated in a somewhat lighter color). A
detailed discussion of the structure of the vast low-level C++ code of the core routines, on the
other hand, is beyond the scope of this documentation. The Matlab syntax used here is basic
and concerns, for example, access to fields in structures, like X.field, cell arrays Q{i}, the
representation of 'strings', or matrix notation such as M(i,:) or M(:,j) for row i or column
j, etc. The color format is changed when required for the sake of differentiation or emphasis
of Matlab-specific QSpace topics, e.g., like the general (C++) QSpace implementation vs. its
Matlab QSpace, i.e., @QSpace counterpart. To visually indicate when the latter terms are hy-
perlinked, the color changes to a darker shade. Optional arguments to functions are usually
bracketed as in [. . .]. At the level of the operating system, (environmental) variables like v
are also referenced as $v or $(v) as in bash or Makefile semantic.

In this documentation, snippets of Matlab code using QSpace will be displayed based on
the minted latex package that also enables syntax highlighting,

1 >> fprintf(1,'\n Hello world from Matlab prompt!'); % some comment
2 >> [a,b]=helloworld('some','input',pi); % helloworld MEX example

Here >> indicates the Matlab command line prompt. The second line, for example, is a simple
MEX test routine, that assigns a='some', b='input', etc. As with the above example, QSpace
always assumes Matlab strings in single quotes ('...'). Textual output from Matlab com-
mands such as the above is displayed without any further syntax highlighting in the format

3 Hello world from Matlab prompt!
4 Hello world from MEX! (.mexmaci64: nargout=2, nargin=3)

The line numbers to the left are included for ease of reference in subsequent discussions.
These output displays may include further commands shown with a leading Matlab prompt,
together with their respective output. The output is frequently adapted for the purpose of this
documentation, e.g., by skipping empty or trivial lines such as 'ans = ' indicating the answer
to, i.e., result of a command.
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1.4 Outline

This documentation makes use of a broad range of semantics and definitions. Essential termi-
nology and concepts are introduced in detail in Sec. 2. This is complemented by Apps. A.1 and
A.2 which provide glossaries on frequently used acronyms and general terminology for tensor
networks and symmetries, respectively. These short glossaries are grouped by their meaning,
rather than alphabetically, such that quickly glossing through them from top to bottom should
be meaningful. The bare-bones data structure of QSpace tensors is discussed in App. A.3.

The general QSpace approach to implementing physical model systems is summarized in
Sec. 3. Because QSpace examples need QSpace tensors that need to be generated first, more
detailed examples for Secs. 2 and 3 are collected into Sec. 4 for clarity, with cross-references as
relevant. Section 5 provides a compilation of more involved examples, intended as simple tu-
torials already geared toward applications. The general part of this documentation concludes
in Sec. 6 which also comments on feedback and support.

System requirements are detailed in App. B.1. Download, compilation, and QSpace envi-
ronment are discussed in Apps. B.2 and B.3. Appendix C comments on state-of-the-art NRG and
DMRG applications that are already also present in QSpace, but whose detailed documentation
is beyond the scope of this documentation. App. D comments on detailed usage information
(like ‘man’ pages) and further documentation in the QSpace repository. Appendix E provides a
listing of the most relevant compiled binary QSpace MEX routines. Appendix F finally gives an
overview of the Matlab-intrinsic environment that QSpace is embedded into.

2 General QSpace Approach and Conventions

The simple main idea underlying QSpace is that for any tensor X with an arbitrary but fixed
number r of legs or indices, referred to as (tensor) rank r, the presence of a global symmetry
leads to a block decomposition of the tensor. Then for each block with well-defined symmetry
sectors q on all its legs, the symmetry-related aspects factorize [8,9],

X =
⊕

q
∥X∥q ⊗ Cq (1)

which is generalized and discussed in significantly more detail in Sec. 2.11 still. Here ∥X∥q
represents the reduced matrix element tensors (RMTs), and Cq the generalized Clebsch-Gordan
coefficient tensors (CGTs). Both mimic the structure of the original tensor X , and thus, in
particular, are also of the same rank r. A scalar rank-2 tensor, like a Hamiltonian, becomes
block diagonal. The listing of such non-zero blocks is denoted by the direct sum (⊕) over
symmetry block configurations permitted by symmetry. These are labeled by q here, which is
assumed collective over all legs. Effectively, a QSpace tensor consists of a list of RMTs ∥X∥q
with references to CGTs Cq. QSpace takes care of all the symmetry-related aspects and the
required bookkeeping. In this sense, the tensor X is also referred to as QSpace X.

The decomposition in (1) is also applicable to abelian symmetries. This is useful from the
coding point of view for the sake of a shared consistent data structure when having abelian and
non-abelian symmetries present at the same time. Fusing state spaces with abelian symmetries
can also be cast into the framework of CGTs, albeit trivially so by taking Cq = 1 when the set of
labels q collected over all legs is permissible from a fusion point of view, and Cq = 0 otherwise.
These trivial factors can be created on the spot, of course, with no need to tabulate.

In QSpace, the CGTs Cq for non-abelian symmetries are explicitly constructed on demand
once and for all, and maintained in a database for later reference. In the presence of multiple
symmetries, the CGTs in the decomposition in (1) further factorize, Cq =

⊗

s C (s)qs
, with C (s)qs

the CGT for symmetry s. The symmetry labels for any symmetry sector on a particular leg then
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also become the collection of labels across all C (s)qs
, i.e., q ≡ {qs} . All bookkeeping for this

additional layered structure is automatically taken care of by QSpace.
The remainder of this section summarizes frequently used terminology, conventions, and

acronyms that are extensively used with QSpace. For more elementary tensor-network and
symmetry-related definitions, it is advised to briefly also glance over Apps. A.1 and A.2 before
reading on.

2.1 QSpace stores tensors (not state spaces)

QSpace is a tensor library. Therefore it represents tensors (blobs in a pictorial representation),
but not state spaces per se (individual isolated legs or lines in tensor networks, i.e., indices).
QSpace operates on tensor objects that have indices (legs) attached. From the point of view of
symmetries then, e.g., when incoming charge needs to be preserved into outgoing charge, this
necessitates at least two indices. In this sense, QSpace necessarily represents tensors of rank
r ≥ 2. There are only two trivial exceptions that permit rank r < 2. These are:

QSpace tensor with rank r < 2

• rank 0: when computing expectation values or overlaps, the resulting object is fully
contracted, i.e., has no more open legs. Hence this represents a tensor of rank r = 0.
For an example, see (40) where a tensor is fully contracted with itself.

• rank 1: the only rank-1 tensor that is permitted from a symmetry point of view is a
tensor with a single leg in the vacuum symmetry sector i.e., with symmetry labels q = 0
(if there is no charge coming in, there is no need for it to leave). For an example, see (41).
A rank-1 tensor can occur naturally out of contractions, e.g., when fully contracting a
tensor of rank r on all its r indices with a tensor of rank r + 1. On general grounds, the
result of such a contraction can only have a non-zero contribution in the q = 0 symmetry
sector on the single remaining open leg.

Referencing state spaces To specify a particular state space in QSpace, this needs to be done
by referring to respective legs on an existing tensor (e.g., see getIdentity). Since objects are
referenced when handed over to routines (both Matlab and MEX routines alike), this is efficient
in the sense that tensors do not need to be copied for this purpose [cf. Matlab’s just-in-time
(JIT) concept where copies are only generated once an object needs to be altered]. Neverthe-
less, if desired, the minimal setting that gets closest to storing a state space on leg l of QSpace
X of some rank r ≥ l, is by defining the identity tensor on that leg in compact diagonal form:
diag(getIdentity(X,l)). This also inherits the dimensionality of each symmetry sector, as
well as the index tag (itag) for that leg.

2.2 Composite index for state spaces

To implement symmetries, any state space associated with tensor indices needs to be orga-
nized into symmetry sectors. When exploiting non-abelian symmetries, any state s must be
identifiable by answering the following questions: (1) what symmetry sector does it belong
to? Within that symmetry sector, (2) to which multiplet does it belong? And in that symmetry
multiplet, (3) what state does it represent? Hence for the description of any state space s in
the presence of non-abelian symmetries, this naturally acquires a composite index structure
that contains the answers to the three questions above [8],

|s〉 ≡ |qn; qz〉 . (2)

7



SciPost Physics Submission

This addresses the above questions in that q denotes (1) the combined set of symmetry la-
bels that specify the symmetry sector for all symmetries included. The index n then specifies
(2) the multiplet, and qz spans (3) the internal structure of an individual multiplet in that
symmetry sector q. To emphasize that the symmetry labels can refer to any symmetry or com-
binations thereof, QSpace generally uses the letter q for symmetry labels, as in QSpace for
quantum symmetry spaces. For the particular case of a single SU(2) symmetry, for example,
(q, qz)≡ (2S, 2Sz) reflects the spin quantum numbers.

The composite index structure in (2) can also be trivially applied to abelian symmetries.
Since each abelian ‘multiplet’ has only one state, this also represents the ‘maximum weight’
state. Hence the qz label may be promoted to the multiplet label, i.e., q ≡ qz and qz rendered
obsolete then. For the case of all-abelian symmetries, the redundant qz labels together with
their respective trivial CGTs can be skipped altogether. In QSpace this explicitly happens for
the case of all-U(1) symmetries which results in an empty X.info.cgr field in the QSpace data
structure for QSpace X (this reflects the original setting as of QSpace v1).

Within the QSpace data structure [see Eq. (35) and subsequent lines for an explicit exam-
ple], the symmetry labels q in Eq. (2) for a QSpace tensor X are stored as rows in the matrices
X.Q{l} where l = 1, . . . , r indexes the leg of the tensor. There is a one-to-one correspondence
between the rows X.Q{l}(i,:) with the respective RMT X.data{i} which describes the i’th
non-zero block in QSpace X. The index n in the decomposition (2) is not explicitly stored per
se, but is implicit as the index within the blocks of the RMTs stored in the cell array X.data,
e.g., when taking some matrix element X.data{i}(. . . , nl , . . .) with respect to leg l [for an
example, see discussion of output to (48)]. Similarly, qz in Eq. (2) corresponds to an implicit
index within the CGTs that also needs to deal with inner multiplicity [8]. The CGTs are tabu-
lated and stored in RC_STORE/CStore since fixed by symmetry. Hence an actual QSpace tensor
X only stores the relevant reduced data based on the multiplet structure (q, n). Concerning
the symmetry related aspects (qz) it suffices to only reference the underlying Clebsch-Gordan
data, referred to as Clebsch-Gordan references (CGRs) and stored in X.info.cgr. Overall, this
switches the description of a tensor from a state-based to a multiplet-based setting.

2.3 Direction of legs for tensors

All lines in a tensor network diagram are directed, i.e, carry an arrow (e.g., see Fig. 2; [15]).
This binary scheme of whether an index is ‘incoming’ (+) or ‘outgoing’ (-) from a tensor derives
from, and thus is equivalent to the respective binary concepts of raised vs. lowered indices,
or contra- vs. co-variant indices, but also bra- vs. ket-states. This binary concept is intrinsic
to tensors. For this reason, the direction of legs is meticulously enforced and tracked for all
tensors in QSpace.

The semantical preference of the notion of ‘direction’ is mainly due to pictorial represen-
tations where directed lines are easier to visualize. Besides, this also gives a simple pictorial
representation of the Einstein summation convention: a raised index that is summed over
with a paired-up lowered index ensures a well-defined direction of the line that depicts that
contracted index. This directed line necessarily leaves from one tensor and and enters an-
other. From the perspective of a tensor, the related notation of using +/- for directions of
its legs, as also used in the code this way, is motivated from the point of view of symme-
tries: for example, for U(1) charge conservation, the total combined incoming charge must
equal the total outgoing charge, i.e.,

∑

in qin =
∑

out qout which may be trivially rewritten as
+
∑

in qin −
∑

out qout = 0. This motivates that from the point of view of a tensor, an incoming
(outgoing) index adds (removes) charge, and hence is associated with a + (-), respectively.
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A
l ∈ L r ∈ R

σ ∈ s

Alσ
r ≡ ⟨lσ | ̂A |r⟩ =

(a) (b) A

S
σ′ 

σ
op

1 2

3
1

2

3

Figure 1: (a) Fusion of the local state space σ(i) by a tensor Ai as in an MPS. Skipping
the index i for readability, the left state space l ∈ L, and the local state space σ ∈ s
are fused into the state space r ∈ R to the right of site i. Irrespective of leg directions
on l and r, A-tensors use an LRs index order convention as indicated by the orange
labels. (b) (Irreducible) operator S like a spin operator as in Eq. (10) acting on local
state spaceσ,σ′ ∈ s. By convention, operators use (σ,σ′,op) index order convention
as indicated by the orange labels. The operator index (third leg) may be skipped and
thus absent for scalar operators where this represents a trivial singleton dimension.

2.3.1 Convention: Incoming leg to tensor is written as superscript index

Consider an A-tensor that fuses a local state space s(i), e.g., with a matrix product state (MPS)
|A〉 and local state spaces σ ∈ s(i) for some site i in mind [Fig. 1(a)]. For simplicity, the index i
is skipped as well as any other indices present on A for the argument here. The local identity
operator is given by

1̂1 =
∑

σ∈s

|σ〉
︸︷︷︸

≡|sσ〉

〈σ|
︸︷︷︸

≡〈sσ|

≡ |sσ〉〈sσ| ≡ (3)

with implicit summation over pairs of raised and lowered indices if not explicitly specified (cf.
Einstein summation convention). The above starts with the convention that (i) ket-states have
lowered indices, and hence are considered covariant. Therefore bra-states are contra-variant
and written with a raised index. Applying the identity in Eq. (3) to Â, one obtains

Â =
∑

σ

|sσ〉 〈sσ| Â
︸ ︷︷ ︸

≡Aσ

≡ Aσ|σ〉 . (4)

In a numerical context, one always has to use ‘matrix elements’ Aσ that are obtained in a
particular basis. By convention, such tensor coefficient spaces are written without hats. Now
also with graphical depictions in mind, raised or lowered indices will be assigned directions.
Intuitively from the perspective of a tensor, by convention, (ii) the index of the local state space
σ is considered ‘incoming’ to the tensor A. Hence in QSpace an incoming index to a tensor
coefficient space [as in Aσ ≡ 〈sσ| Â in Eq. (4)] corresponds to a projection onto a bra state and
is written as a raised index. The identity in Eq. (3) may thus be depicted graphically as shown
at its r.h.s., which also shows that a ket-state in itself is considered outgoing. Eventually, via
contractions, a lowered index needs to be paired with a raised index, or equivalently, a ket-
with a bra-state, or a co- with a contra-variant index, or an outgoing with an incoming leg.

The incoming index in Aσ in Eq. (4) is contracted with the outgoing index of the ket state
|σ〉 [see also right term in Eq. (3)]. As such, this represents the ‘operator’ Â with no open index,
thus written with a hat. It is more of an abstract object that is independent of a particular basis.
In a numerical context, however, only matrix elements occur, such as Aσ = 〈sσ|Â. This way, the
index σ as in in Aσ becomes an open, i.e., uncontracted index. Similarly, the identity operator
1̂1 as written in Eq. (3), has no open indices. However, when expressed in a particular basis,
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the matrix elements are 〈sσ|1̂1|sσ′〉 = δσσ′ . This ‘strips off’ the ket and bra from the r.h.s. in

Eq. (3), resulting in with open indices σ and σ′.

Now when applying an operator Ŝ on the site that is fused by the tensor Â, the matrix
element corresponds to the projection onto the local state σ [cf. Fig. 1(b)],

〈σ| ŜÂ =
∑

σ′

〈sσ|Ŝ|sσ′〉
︸ ︷︷ ︸

≡Sσ
σ′

〈sσ
′
|Â
︸ ︷︷ ︸

≡Aσ′

≡ Sσσ′ A
σ′ , (5)

having inserted the identity as in Eq. (3). Since by convention the index σ′ is incoming to A,
it has to leave and thus be outgoing for the tensor Sσσ′ via the projection to the ket-state |sσ′〉.
Therefore Sσσ′ ≡ 〈s

σ|Ŝ|sσ′〉 has bra-state σ as incoming, and the ket-state σ′ as outgoing. The
order of the bra indices relative to the ket indices is irrelevant, in that it can be trivially changed.
For physical operators, nevertheless, by standard convention, bra indices are typically listed
before ket indices. Hence their index order convention is 〈1|Ŝ|2〉 ≡ S1

2 ≡ S1
2 , and therefore

Sσσ′ ≡ Sσσ′ ≡ 〈s
σ|Ŝ|sσ′〉 . (6)

When following the direction of the indices in a pictorial representation, Eq. (5) ‘flows’ from
the left towards the right (upwards in Fig. 2). This is reverse to how one would read such an
expression, e.g., as part of an expectation value from a ‘time-ordered’ perspective, namely right
to left (downwards in Fig. 2): one starts with the ket-state |A〉 at the right, and then applies
particular operators in a well-defined sequence, and in this sense ‘time order’. This proceeds
towards the left until it meets a bra state at the very left for the case of a matrix element or
expectation value.

2.3.2 Leg directions in QSpace

The concept of raised or lowered indices applies to every level of a QSpace tensor. It applies
to the whole tensor, but also all RMTs and CGRs individually. The CGRs are references to
sorted CGTs (these are tabulated with sorted q-labels to avoid proliferation of entries). Bear-
ing in mind that the relative index order of raised relative to the lowered indices is irrele-
vant, the raised and lowered q-labels in CGTs can be simply grouped without paying atten-
tion to their relative order. For example, irreducible operators (irops) have CGTs of the form
Cq′

qqop
≡ 〈q′|Cqop

|q〉. For the case of a scalar operator with a singleton operator dimension hav-

ing qop = 0, this can be reduced to Cq
q . Standard CGCs have Cq1q2

q3
as they fuse (q1, q2)→ q3.

1 j symbols have CGTs Cqq̄ or their conjugate Cqq̄ which fuse (q, q̄)→ 0 or vice versa, with q̄
the dual irreducible representation (irep) to q. Again since the relative index order of raised
relative to the lowered indices does not matter, this documentation also uses the alternative
notation

(q1 . . . qlq
∗
l+1 . . . q∗r) ≡ (q1 . . . ql |ql+1 . . . qr) ≡ (q1, . . . , ql ; ql+1, . . . , qr) (7)

for a rank-r CGT Cq1...ql
ql+1...qr

, where the asterisk * on the l.h.s. explicitly denotes an outgoing index
(see also tensor conjugation). By listing all l incoming legs first, followed by the remaining
r − l outgoing legs with l ∈ [0, r], this permits the notation on the r.h.s. This index ordering
is adopted in the RC_STORE/CStore to avoid a proliferation of CGTs. On top of this simple
grouping of indices, the sorted CGTs in the RC_STORE also have the q-labels non-trivially sorted
in a lexicographical manner within the incoming as well as the outgoing indices.

QSpace permits an arbitrary permutation of legs of a tensor, with an example shown in
Eq. (43). For this the information on in- or outgoing cannot be simply grouped as in Eq. (7),
but needs to be specified explicitly with each leg. It is stored with the QSpace tensor as a
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whole with the tensor’s itags. By convention, a trailing '*' in the string X.info.itags{l}
indicates an outgoing index for leg l. If there is no trailing '*', the index is considered ingoing
instead. QSpace insists that directions are specified with the itags globally for a tensor, i.e.,
the field X.info.itags must be set, at the very minimum containing the conjugate flags for
every leg. Having the directions specified with the itags is important for the purely abelian
setting, since in that case X.info.cgr is not required and can be set empty. In the presence
of non-abelian symmetries, however, the leg directions specified with the itags is redundant
since this information can be derived from each individual CGR. The q-directions specified
with the itags via trailing asterisks for the tensor overall are thus fixed for a given tensor and
must be preserved when modifying its itags. To ensure this, QSpace provides the function
setitags(), with an example shown in Eq. (51).

The q-direction for CGTs as referenced by CGRs are collected and encoded as plain strings
qdir='η1η2 . . .ηr', with ηi ∈ {+,-}. For example, see X.info.cgr(i,j).qdir for a QSpace X.
The q-directions may also be derived in string form from the itags of a QSpace tensor via
qdir=getqdir(X,'-s'). For example, this yields the strings

'+-' for scalar operators

'+--' for irops (8)

'+-+' for A-tensors, etc.

QSpace also uses this string notation to organize much of the folder structure for each non-
abelian symmetry in the RC_STORE. Having sorted CGTs there, this groups all +’s to the front.

2.4 Conventions in pictorial representations

Pictorial representations are instrumental in describing tensor network approaches and algo-
rithms [17, 30, 33]. For example, Fig. 2 shows a tensor network diagram for an expectation
value of some product of interactions Ŝ†

i · Ŝ j . Based on this, general conventions in graphical
depictions of tensor networks with QSpace are as follows [8,15]:

• Tensors are denoted as some blob (box, circle, etc.). Each tensor has as many legs
attached as it has indices, the number of which defines its rank. The legs of tensors
represent starting or end points of lines.

• Every line in a tensor network carries an arrow: from the point of view of a tensor, arrows
specify incoming/outgoing legs or, equivalently, raised/lowered indices. A contracted
line has no open ends: it starts from some tensor, and terminates in another (possibly
also the same) tensor. Such a contracted line represents a summed-over index where, by
construction, a lowered index leaving some tensor needs to terminate as a raised index
with some other tensor (cf. Einstein summation convention).

• The tensor network diagram as in Fig. 2 is read top to bottom: starting from the ket-state
|A〉 at the top, a set of operators, gates, or interactions are applied (round objects S†

i ·S j).
The order of the operators applied is relevant, up to trivial shifts along the vertical line
they act upon, as long as they do not cross with other operators acting on the same line
(state space). The diagram is terminated eventually by a bra-state 〈A| at the bottom.
Overall, this results in the desired matrix elements or expectation value.

• By way of reading the diagram, this suggests an implicit ‘temporal’ order top to bottom
(big green arrow to the left), as defined by the particular order of operators applied onto
|A〉. With the intuitive convention that the local state space enters a ket state, however,
the ‘temporal’ direction in Fig. 2 is opposite to the arrows shown with the lines that are
associated with the local state space σi .

11
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• When taking a ket-state |A〉, one implies its coefficients 〈sσ|A〉 with index σ. That index
represents a projection onto a bra-state [cf. Eq. (4)]. This reflects the general situation in
numerical simulations: tensors are always cast into a particular basis. By attaching legs
to a tensor in a tensor network diagram, one implies that it is cast into a coefficient space
in some arbitrary but fixed basis that may be given a label (cf. itags). By convention
the ket-state like |σ〉 represents an outgoing index. Therefore the tensor coefficients
projected onto a bra-state are reverse and thus ingoing.

• When a tensor is shown as a filled (empty) object such as a box, circle, etc., its conjugate
tensor is shown as a mirrored empty (filled) shape, respectively, for visual differentiation
(e.g., see A∗, S∗ or S† in Fig. 2).

A1 A2 A3 A4 A5

A*1 A*2 A*3 A*4 A*5

S†
S

⟨A
| (

S† 5
⋅S

4)
(S

2⋅
S† 1)(

S 3
⋅S

† 4)(
S† 3

⋅S
2)

| A
⟩

tim
e

K2K1

σ2σ1 σ4σ3 σ5

K0 K5K4K3

S

S*S† ≡

Figure 2: Conventions in tensor network diagrams based on an MPS-based example
for the expectation value of some product of interactions Ŝ†

i · Ŝ j (pairs of connected
circles) like for Heisenberg spins. The corresponding mathematical expression is
specified to the left and vertically aligned with the various terms in the pictorial
representation. The definition of the operator S† is depicted to the right in terms of
the conjugate tensor S∗. It is the mirror image of S reflected horizontally and leg
directions reverted, such that the operator index enters S∗ (and thus also S†) from
the left, but exits S from the right (see also Fig. 9 for a similar context). The state is
given by |A〉 ≡

∏L
i Ai (ket-state described by the MPS at the top) operating on the

local state space σi for sites i = 1, . . . , L, having L = 5. Bond states, e.g., up to and
including site i are denoted as Ki (like ‘kept’ many-body states up to iteration i in the
presence of truncation). Here K0 is assumed the left vacuum state with trivial bond
dimension D0 = 1. Similarly, K5 describes the full MPS |A〉. Being a single many-body
state, hence also D5 = 1. The outer contractions (dashed lines) are thus trivial. The
direction of ‘time’ (green arrow) indicates the order of operators applied to the initial
ket-state |A〉 at the top.

2.5 Tensor conjugation (denoted by '*')

The standard concept of Hermitian conjugate, or equivalently conjugate transpose, is well-
defined only for rank-2 tensors, i.e., matrices or operators. For an irreducible operator S,
for example, its Hermitian conjugate S† = permute(S,'21*') 1 consists of transposition on

1The potentially missing 3 in the permutation '21*'→ '213*' is implied in QSpace for trailing indices that keep
their position preserved, i.e., act like an identity permutation. This way, S may be a rank-2 or rank-3 operator.
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the first two indices ('21'), and conjugation (the trailing '*'). For a general tensor, however,
transposition in itself is not well-defined, as it generalizes to a non-unique permutation that
is chosen depending on the context. The situation is different, though, in pictorial represen-
tations where the generalization of the transpose to arbitrary-rank tensors is well-defined in
that one takes the mirror image of the tensor (cf. A∗i or S∗ in Fig. 2; [17,30,34]). Nevertheless,
this leaves the freedom to rotate the tensor as a whole in the pictorial setting. But then this
holds for any tensor, conjugate or not. More specifically, tensor conjugation thus proceeds as
follows [15]:

(1) draw the mirror image of the original tensor in pictorial representations

(2) complex conjugate the array entries (relevant for complex RMTs only)

(3) revert arrows on all legs (i.e., swap raised/lowered indices)

(4) index spaces remain the same, such that symmetry labels are also left intact.

Point (4) is added for emphasis only here concerning symmetry labels. For better visual differ-
entiation of conjugate tensors concerning point (1), one may furthermore switch from filled
tensor objects to empty (outlined) ones, or vice versa (see conventions in Sec. 2.4, or A∗i or S∗

in Fig. 2 as explicit examples).
Point (1) only applies to pictorial representations but not to the practical numerical context.

Because the permutation underlying point (1) is not well-defined, tensor conjugation in QSpace
adheres to points (2-4) only. QSpace preserves the index order in tensor conjugations unless
specified otherwise by the user (see Sec. 4.2 for examples). Point (1) reflects the generalization
of the transposition of matrices. Effectively, this fully reverts the order of indices. But for
tensors of arbitrary rank, the starting point of what is considered the first index is not well-
defined unless one adheres to some arbitrary but fixed convention. For example, there are
many different ways in which the mirror plane can be drawn. In Fig. 2, for example, the A∗i
(bottom) are mirrored vs. their respective Ai (top) by a horizontal plane, whereas for the
interactions, the operator S∗ is mirrored by a vertical plane w.r.t. their paired up S operator
(see definition of S† to the right of Fig. 2).

Due to (3), tensor conjugation (or ‘Hermitian conjugate’) where present must always be
explicitly specified and included in QSpace, even if the matrix elements themselves in the RMTs
are not complex (point 2). This is important since reverting directions is equivalent to raising
all lowered indices and vice versa. This is an intrinsic concept of tensors that needs to be re-
spected for overall consistency. From the symmetry point of view, directions on legs frequently
also indicate types of orthonormalization. Hence by QSpace insisting on well-defined direc-
tions of legs throughout the tensor network, point (3) also helps to avoid errors in the coding
of tensor network algorithms.

When conjugating a tensor, the action in steps (3-4) will also be referred to as ‘conjugating’
indices or legs. For a given leg and symmetry sector q, this is denoted by q→ q∗. It needs to be
differentiated from the dual representation denoted by q̄. The latter only comes into the picture
when reverting directions of individual legs by applying, i.e., contracting 1 j symbols. This then
not only reverts the direction of the affected leg, but also maps symmetry labels to their duals,
q → q̄. Hypothetically, if one were to revert all arrows explicitly after tensor conjugation
back to their original direction by applying, i.e., contracting the respective 1 j symbols onto
every leg, the resulting (QSpace) tensor is generally different from the original one. Aside
from having flipped symmetry labels to their duals, for the case of complex RMTs the reduced
matrix elements would still also remain complex conjugated, bearing in mind that 1 j symbols
only have non-trivial structure within the CGTs, but behave like an identity within the RMTs.
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Uq Uq†

(b)
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q

(d)
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11q =

Figure 3: Identity and 1 j symbols – (a) Fusing a multiplet q with a scalar (singleton
0) trivially leads to the same multiplet q. Hence the underlying CGT must be the
identity 11q/
p

|q| up to the CGT (ortho)normalization convention. Since the singleton
index for the scalar irep (0) can be skipped, the same holds for rank-2 CGTs as in
(b). The identity

p

|q|Cq
q = 11q can be trivially inserted into or removed from any

directed line. (c) Construction of the 1 j symbol Uq (‘one q→ j’ symbol [35,36]) from
a standard rank-3 CGC Cqq̄

0 up to normalization involving the dual representation
q̄. The construction in (d-f) shows that 1 j symbols represent orthogonal matrices
(unitaries).

2.6 1 j symbols (individual ireps)

In the literature of SU(2), 3 j symbols refer to standard CGCs ( j1 j2| j3) that fuse angular mo-
menta ( j1, j2)→ j3. Within QSpace, symmetry labels are generally written as j→ q to empha-
size that these may represent labels for general (non-)abelian symmetries. Hence a standard
CGC is written as rank-3 CGT Cq1q2

q3
. Now for the case that two multiplets q1 and q2 fuse into

the scalar irep q3 = 0 [Fig. 3(c)], the respective CGT has a singleton dimension as third index
that may be skipped. This case is possible if and only if q2 is the dual representation to q1, i.e.,
q ≡ q1 = q̄2. This results in the CGT Cqq̄ ≡ Cqq̄

0 which exists and is unique for every irep q,
since no outer multiplicity can occur for CGTs of rank ≤ 2, the CGTs Cqq̄ are unique up to the
standard CGC sign convention. In QSpace, these particular rank-2 CGTs Cqq̄ are automatically
computed and stored for every new irep q that is generated in a tensor product decomposition
for non-abelian symmetries without necessarily performing the full decomposition of (q, q̄)
(see Ref. [15] for details). For abelian symmetries, the 1 j symbols can be trivially generated
on the fly with no need to store.

Importantly, every Cqq̄ exactly also represents an orthogonal transformation up to a nor-
malization factor [Fig. 3(c)],

Uq ≡
Æ

|q|Cqq̄ (1 j symbol) , (9)

where |q| represents the state space dimension of irep q, such that UqUq† = Uq†Uq = 11 (bear-
ing in mind that with all CGTs real, the dagger is equivalent to a simple transpose). These Uq

can be used to revert arrows on lines in a tensor network state, as sketched in Fig. 3(d-f) [15]
from the symmetry perspective of CGTs [in practice, reverting arrows typically also affects the
RMTs, e.g., when orthonormalizing state spaces in the process of shifting the orthogonality

14



SciPost Physics Submission

center (OC), etc.]. By inserting the identity UU† into a fully contracted line for irep q in be-
tween, say, tensors A and B, splitting this product, and contracting U and U† onto A and B,
respectively [indicated by the shaded gray arrows in the background of Fig. 3(f)], this results
in a (i) reverted arrow on that line, and also on the respective legs of the tensors A and B.
Furthermore, by construction, this simultaneously (ii) switches the symmetry sector on that
line to the dual representation, q→ q̄. Because of its usefulness, Uq is given a name. Since it
only depends on a single symmetry label q [or ‘one j’ symbol for SU(2)]with q̄ simply inferred,
it is called a 1 j symbol with reference to the literature of SU(2) [15,35,36].

Caveat self-dual ireps In the construction of the 1 j symbol as rank-2 tensors, the singleton
dimension in the scalar representation 0 [black dashed line in Fig. 3(e,f)] was skipped. This
results in a caveat, in that the truncated ‘stem’ of this singleton dimension [remnant of the
black dashed line in Fig. 3(f)] needs to emerge on the same side for both Uq and Uq†, here
emerging at the top. Alternatively, one could have closed the black dashed line in Fig. 3(e) at
the bottom.

More specifically, the caveat concerns self-dual ireps here, q = q̄, like all ireps in SU(2).
In that case the 1 j symbol Uq becomes indistinguishable from U q̄ in terms of symmetry labels
and q-directions, despite that they may differ by a sign [15], since Uq ≡ Cqq̄ = Cqq, yet
U q̄ ≡ C q̄q ≡ (Cqq̄)T = (Cqq)T = ±Uq. The last sign is negative, for example, for all half-integer
spins for SU(2). Hence when inserting UqUq† = 11 into a contracted line of a tensor network
for the sake of reverting its arrow, proper care must be taken that the same object is used twice,
once with and once without the dagger. Otherwise, this can give rise to erroneous signs. As a
safeguard in that regard, trailing primes are introduced with itags to mark dual state spaces,
as in Cqq̄ even if q = q̄.

2.7 Identity operator vs. 1 j tensor and marker for dual state space

The 1 j symbol was introduced above for a particular multiplet q of some symmetry. Yet it
can be easily generalized to cover full state spaces as implemented with getIdentity. This
will also be referred to as the 1 j symbol or 1 j tensor, nevertheless, based on its origin. The
1 j tensor is closely related to the identity operator [cf. Fig. 3]. Hence both of them refer to
the state space associated with a particular leg of a tensor and are also obtained by the same
QSpace routine getIdentity. See Sec. 4.3 for detailed examples. To start with, both objects are
of rank 2. However, while the identity operator is a plain scalar operator, the 1 j tensor is not
an operator per se, as it has both of its indices incoming (or both of them outgoing for its
conjugate). Therefore it is also not necessarily block-diagonal, but rather anti-block-diagonal
with respect to its symmetry sectors.

The identity operator E as obtained by getIdentity adheres to the index order convention
of operators as in Fig. 1(b). By having a scalar rank-2 operator here, E has one in- and one
out-going index. The 1 j tensor is obtained by simply adding the option '-0' (‘fuse into q = 0’)
to the same call to getIdentity otherwise. By contrast to the identity operator, this returns
a unitary 1 j-tensor U on the same state space, yet with both indices ingoing. It is real and
therefore satisfies UU T = UU† = 11. The QSpace U returned by getIdentity has the same
RMTs as the identity operator. However, instead of identity CGTs, it references the respective
1 j CGTs for the given state space, properly normalized via the respective CGRs. In this sense,
the 1 j-tensor U defined over an entire state space of a leg of a tensor is also frequently referred
to as a 1 j symbol itself.

Marking itag of dual state space When calling U=getIdentity(A,l,'-0') this returns the
full state space as present in QSpace A on leg l (first index in U) with its dual on the second
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index in U . To safeguard against the above caveat, the itag of the dual state space on the
second index is marked with a trailing prime (’). After all, the dual state space is different
from the original state space, and hence its itag also should be differentiated. The trailing
marker character serves as a toggle: reverting the arrow twice returns to the original itag.
Therefore adding a prime to an existing trailing prime, annihilates both of them, i.e., foo’’ →
foo. So if by the history of an algorithm, the input space already has a mark on its itag, then
that mark is removed for the dual space on the second index. Detailed examples are given and
discussed in Sec. 4.3.

2.8 Generating scalar (interacting) Hamiltonian terms from irops

A Hamiltonian represents a scalar operator. Hence from the point of view of symmetries,
all terms constituting a Hamiltonian term must be scalars themselves. With this in mind,
general two-body interaction terms in a Hamiltonian can always be written as or built from
scalar bilinears Ŝ†

i · T̂ j acting on sites i and j, also permitting i = j. Typically, Ŝ = T̂ , with
pictorial examples shown in Fig. 2, and explicit QSpace contractions to describe such pairwise
interactions provided in Eq. (42) or Sec. 5.1, e.g., Eqs. (48)–(50) together with Fig. 9.

From a symmetry point of view, the bilinear Ŝ†
i · T̂ j requires (i) that the operators Ŝ and T̂

are irops, or more generally operators. In the case of a pair of irops, (ii) these must transform
according to the same operator irep qop, as this is summed over (contracted) in the dot-product
Ŝ†

i · T̂ j . In addition, for the contraction to be valid, the index must be outgoing from one irop,
and incoming to the other irop. Therefore the general natural structure includes the conjugate
tensor, i.e., always makes explicitly use of the dagger, as in Ŝ†

i · T̂ j . The dagger may equally
well be written with the second operator, instead. For the example, consider the SU(2) spin
operator written as the irop that transforms like an S = 1 multiplet

S =





− 1p
2
S+

Sz
1p
2
S−



 (10)

where the minus sign with the first component originates from the application of raising or
lowering operators [8]. The inverse square root factors ensure the simple dot-product structure
for isotropic spin interactions, having Ŝ†

i ·Ŝ j =
1
2(Ŝi+Ŝ j−+H.c.)+Ŝiz Ŝ jz = Ŝi x Ŝ j x+Ŝi y Ŝ j y+Ŝiz Ŝ jz .

The components of the spin operator in Eq. (10) are non-hermitian, and thus do require the
dagger with Ŝ†

i · Ŝ j . For general operators, if the scalar result out of Ŝ†
i · T̂ j is non-hermitian

[e.g., as is the case for fermionic hopping described by S → F with F some set of fermionic
annihilation operators; see Eq. (50) and subsequent discussion], then the Hermitian conjugate
(Ŝ†

i · T̂ j)† = T̂ †
j · Ŝi needs to be added if part of a Hamiltonian. Hence a typical Hamiltonian

can be written as a sum of scalar operator contributions,

Ĥ =
∑

iα

ϵαi n̂αi +
∑

i j,α

Vαi j Ŝ†
αi · T̂α j [+ H.c.] (11)

which may be further extended also to include products of terms such as the above. Here
n̂α ≡ ĉ†

α · ĉα describes some set of local scalar operators, and Ŝα and T̂α some set of local irops,
typically having Ŝ = T̂ for a particular interaction. The Hermitian conjugate is required for all
interactions whose operator irep q is not self-dual. For example, it is not required for SU(2)
spin interactions Ŝ†

i · Ŝ j . It is required for fermionic hopping, though, when using U(1) charge
symmetry, since the annihilation operators F transform like charge q = −1 (they reduce charge
by 1), whose dual are creation operators with q̄ = +1.

Taking the irop S, its daggered version S† could be explicitly constructed, in principle:
the tensor S would have to be conjugated which reverts all legs, including the irop index. By
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subsequently applying a 1 j symbol U onto the irop index 3 and permuting indices 1 and 2, this
brings the irop S̃ ≡ US† back to canonical QSpace form for irops, with the crucial difference,
that the irop now transforms according to q̄. In practice, such a transformation to obtain a
canconical form of S† by using 1 j symbols etc. is never required when computing Ŝ†

i · T̂ j [e.g.,
see Fig. 9 and corresponding text]. Much to the contrary, it would be rather impractical and
prone to errors. Having both, S and S̃ ≡ S† in canonical irop form, the irop index is outgoing in
both tensors. This would prevent a simple contraction as in S̃ ·S on the irop index, because leg
directions are incompatible. Considering S̃† ·S, instead, this would be contractible in principle
for self-dual qop, such as for the SU(2) spin operator, but wrong in most cases, in the sense
that it gives a different operator S̃† · S = (SU†) · S ̸= S† · S.

Hence there shall never be a need to explicitly construct S̃ ≡ S† as canonical irop based on
1 j symbols, etc., when computing interaction terms in a Hamiltonian. What is solely required
is to contract the conjugate tensor of Si . This can be indicated on the fly as an option when
calling contract itself while ensuring that the ‘transposed’ indices are correctly contracted.
The latter is also dictated by the directions of the legs [e.g., see Fig. 9 and corresponding text].
Hence much of this is taken care of automatically when using auto-contraction based on itags.

2.9 Compact symmetry labels for non-abelian symmetries

The motivation for a ‘compact’ notation for symmetry labels (q-labels) of non-abelian symme-
tries is mainly for readability purposes, e.g., to have well-aligned displayed tables, but also
a means for a simple standardized notation in text. The compact notation also reflects the
situation in practice in the code, where an n-tupel of labels is just a vector of numbers without
any white space or separators. The contact notation permits a lean, concise specification of
symmetry labels. It is specific to non-abelian symmetries since ireps for any abelian symmetry
are always described by a single symmetry label only (see symmetry rank). Therefore plain
signed integer notation is used for abelian symmetries. This is also the only setting where
negative symmetry labels q < 0 can occur.

QSpace label convention for SU(2): q = 2S The concept of compact symmetry labels for
non-abelian symmetries relies on symmetry labels that are (i) non-negative and (ii) integer.
This is the case for all simple Lie algebras, except for the half-integer spins in SU(2) for histor-
ical reasons. The latter ‘exception’, however, is only by convention. Hence QSpace adopts the
alternative labeling convention for SU(2) which is fully aligned with the labeling scheme for
SU(N > 2) ireps more generally, namely by choosing the SU(2) multiplet label q = 2S ∈ N0.
This is consistent with the symmetry labels for SU(N) in general, in that they specify Young
tableaus [e.g., see Eq. (12)]: an SU(2) spin S has a Young tableau of a single row with q = 2S
boxes. This convention for SU(2) also permits the usage of plain integer labels for symmetry
labels, and thus avoids, e.g., the need to print half-integers. Half-integer spins S then map to
odd integers for q = 2S.

As a corollary, if an SU(2) symmetry gets broken down to U(1), the symmetry labels become
q = 2Sz ∈ {−2S,−2S+1, . . . , 2S}, thus also ensuring integer labels in the U(1) context for the
case of half-integer spins. For example, a spin S = 1/2 then acquires the U(1) spin labels
qS ≡ 2Sz ∈ {−1,1}.

QSpace label convention for U(1) charge From a practical point of view, it is desirable in
tensor network simulations to keep symmetry labels around q ∼ 0. This way the low-energy
symmetry sector remains the same with increasing system size also towards the thermody-
namic limit. This avoids a ‘running’ symmetry label that keeps growing proportional to block
size. For counting particle number (charge), it is therefore desirable to count particles relative
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to the average filling, i.e., q ≡ n− n0 with n0 the average filling per site for the entire system,
typically half-filling. For example, for a single spinful fermionic level, the total occupation
relative to half-filling n0 = 1 is given by the sectors qC ≡ n− n0 ∈ {−1, 0,1}, corresponding to
empty, half-filled, and fully occupied, respectively. This reflects the charge symmetry labels as
returned by getLocalSpace.

For the description of an odd number of flavors, however, such as a single spinless fermionic
level, the prescription above with a focus on ‘relative to half-filling’ would result in half-integer
labels for charge. Hence in the case of an odd number of flavors per site, where n0 for half-
filling becomes a half-integer, QSpace adopts the convention qC → 2(n− n0), which includes
a factor of 2 for the sake of having integer symmetry labels for charge. For a single spinless
fermionic level, therefore getLocalSpace returns qC ∈ {−1,1}. As for the case of SU(2) labels
above, this convention of applying a factor 2 is mainly for convenience and readability, yet also
for consistency across symmetries. For example, SU(2) particle/hole symmetry always takes
the viewpoint of particle number relative to half-filling. In this sense, when breaking down an
SU(2) particle/hole symmetry to U(1) charge, qC → 2(n− n0) is consistent with the QSpace
convention qS → 2Sz for spin.

On general grounds, U(1) labels may undergo an arbitrary linear map n→ q(n) = bn− a
with a, b ∈ N. Thus if the desired target value for the average filling n0 = a/b > 0 is rational,
this ensures that the integer charge labels q ∈ Z remain centered around q ∼ 0 when increasing
block or system size. Since this is a rather specialized setting, though, it is not implemented
in getLocalSpace as is. Nevertheless, one may tweak its output in this regard.

Compact alpha-numeric labeling scheme By QSpace convention, all symmetry labels for
non-abelian symmetries are compact non-negative integers. Therefore any set of q-labels
q = (q1, q2, . . . , qr) with qi ∈ N0 for a particular symmetry of rank r is a meaningful irep.
As already pointed out above, for the example of SU(N), these q-labels directly specify the
Young tableau in the sense that qi ≥ 0 specifies the offset (i.e., difference) of boxes from rows
i to i + 1,

q1

q2
(q1, q2, …, q𝔯) ≡

q𝔯

…

q𝔯+1

N
=

𝔯
+

1

(12)

This represents the Dynkin symmetry labels for SU(N) ireps. For a rank-r symmetry, there are
at most r rows since any qr+1 of completely filled columns, i.e., with r + 1 boxes, if present,
can be split off as a scalar factor in a product state like fashion: a filled column represents the
largest set of N particles that can be brought into a completely antisymmetrized state which
represents a singlet state. Hence from an irep point of view, the label qr+1=N is irrelevant and
can be skipped. This is indicated in Eq. (12) by fading out the leftmost qr+1 filled columns.

When exploiting non-abelian symmetries, one usually assumes that there is no sponta-
neous symmetry breaking on physical grounds.2 Therefore assuming a ‘non-magnetic’ state,

2If a non-abelian symmetry of a Hamiltonian is broken spontaneously in its low-energy regime, non-abelian
multiplets become macroscopically large. In this case, however, there is no gain in exploiting non-abelian symme-
tries. Rather, the symmetry should be reduced, e.g., to an abelian U(1) symmetry in the simulation itself for the
sake of numerical efficiency based on the underlying physics. As a corollary, the tendency of a system to generate
ever larger multiplets during initialization of a tensor network wave function, e.g., via iterative diagonalization in
an NRG-like fashion even for a uniform system, is a strong indicator of a spontaneously symmetry-broken ground
state.

18



SciPost Physics Submission

the symmetry labels qi do not grow macroscopically large with system size, but are rather
spread around qi ≥ 0. Then if the values for qi ∈ N0 do not grow macroscopically large, QSpace
adopts the following extension to the hexadecimal format for the sake of a compact notation:
the alphabetic characters A-Z are used do describe the range qi ∈ [10, 35]. If the operating
system supports a case-sensitive file system, the range is further extended to qi ∈ [36,61]
which maps to the lower-case alphabet a-z, respectively (the reference to a file system comes
into play here since q-labels are also inserted into file names within the file-based database
RC_STORE). For example then, for SU(2) the irep q='Y'≡ 34 corresponds to a multiplet with
spin S = 34/2 = 17. Therefore if a given set of q-labels satisfies qi ∈ N0 ≤ qmax

1 for all
i = 1, . . . , r with

qmax
1 =

�

61 (= 9+ 2× 26) for a fully case-sensitive file system, e.g., Linux
35 (= 9+ 1× 26) otherwise, like MacOS

(13)

the above compact extended hexadecimal notation is adopted for this particular set of sym-
metry labels in QSpace.

The range in Eq. (13) covers the vast majority of tensor network simulations. For example
for SU(2), typical tensor network ground state calculations in the singlet symmetry sector
q = 0 stay within q ≲ 10 i.e., S ≲ 5. This also generalizes to general non-abelian symmetries,
typically having qi ≲ 10, yet with significantly more possible combinations due to the presence
of i = 1, . . . , r symmetry labels. Hence, the compact symmetry labels overwhelmingly stay
within the ‘numeric’ range 0 . . . 9 for all qi , yet permit to exceed this range significantly within
the compact notation by including alphabetic characters. Overall this motivates the compact
alpha-numeric notation of symmetry labels

q ≡ (q1, q2, . . . , qr) ≡ (q1q2 . . . qr) ≡ 'q1q2 . . . qr' (14)

for a particular irep q, with all spacing (commas) in between the qi removed, and written with
or without brackets, like simple strings. For the case that qi > qmax

1 , a more extended display
with regular integers is chosen with the qi separated by spaces.

For example, the scalar representation is given by qscalar = (0 . . . 0r) ≡ 0, which is also
conveniently denoted by a single 0 in this documentation for any symmetry for readability.
The defining representation is given by qdef = (10 . . . 0r). For example, for SU(N),

qdef =











(1) equivalent to S = q/2= 1/2 SU(2)
(10) ≡ (1,0) SU(3)
(100) ≡ (1,0, 0) SU(4)

. . . . . . etc.

(15)

The dual representation for SU(N) simply flips the order of labels in the standardized scheme
above, i.e., q̄ = (qrqr−1 . . . q1).

2.10 Outer multiplicity

Outer multiplicity (OM) is ubiquitous when dealing with non-abelian symmetries in tensor
network algorithms. It adds significant overhead in the book-keeping when dealing with sym-
metries, yet is fully taken care of by QSpace in its MEX core routines. The discussion here
therefore serves as background information only. While it is important to be aware of on gen-
eral grounds when interpreting QSpace tensors, the actual book-keeping is hidden from, and
in this sense of no further concern for the typical QSpace user.

To be specific, consider a rank-4 tensor having SU(2) symmetry with two incoming legs and
two outgoing legs which, for simplicity, all carry the same spin S. This is described by (S, S|S, S)
or, equivalently, the CGT Cqq

qq with q = 2S in QSpace [cf. Fig. 4]. Now since (S, S) can be fused
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into M = 2S + 1 intermediate spins Si = 0, 1, . . . , 2S, each of these can again be ‘unfused’
symmetrically into the outgoing indices. Hence one may contract (SS|Si)∗i(SS|Si)∗ ≡ (SS|SS)i
on the intermediate index for any fixed Si (this represents a projector onto the intermediate
multiplet Si of dimension 2Si+1). Then i→ µ= 1, . . . , M takes the role of an outer multiplicity
index: for given CGT Cqq

qq with fixed ireps on all legs, there exist multiple orthogonal CGT’s
permissible by symmetry. Hence the CGT Cqq,µ

qq naturally acquires an additional index, the
OM index µ which spans the OM space of dimension M . The CGT Cqq

qq is unique then, up to
an arbitrary orthogonal rotation in OM space [this generalizes the sign convention of standard
rank-3 CGCs for SU(2)]. The choice of basis within this OM space in QSpace is discussed with
the CGT (ortho)normalization convention. Overall then, one has M > 1 in the presence of OM,
M ≤ 1 in the absence of OM, and M = 0 if a particular CGT does not exist at all, i.e., is not
permissible from a symmetry point of view.

For abelian symmetries, one always has M ≤ 1, i.e., outer multiplicity does not occur. It
is clear from the above example, however, that OM is already ubiquitous even for SU(2) for
tensors of rank r ≥ 4. For general non-abelian symmetries of symmetry rank r> 1, OM already
occurs at the fundamental level of standard CGCs, i.e, CGTs of rank r = 3 [8, 37, 38] (there
can never be OM for r ≤ 2, like scalar operators).

OM index is specific to tensor (not particular leg) Standard CGC decomposition Cq1q2
q3

may
tempt one to assign the OM index µ= 1, . . . , M with the fused multiplet q3, as there are M of
these occurring in the decomposition. However, by applying 1 j symbols, any other raised index
in Cq1q2

q3
can be lowered, while raising q3. While this changes symmetry labels to their duals,

this nevertheless also demonstrates that, by construction, precisely the same multiplicity will
occur in all these other instances, too. Therefore the OM index may be associated with any of
the legs, depending on the context. In this sense, the OM index belongs to a CGT as a whole,
and not to any particular leg. This disregard for the direction of the legs is also reflected in
the CGT norm convention in Eq. (20).

S

S

S

S

Si

Si → μ̃

C*C ∼ C̃ SS
SS,μ̃

(a)
q1

q2

q′ 1

q′ 2

qi

(b)

μ μ′ 

μ̃

qi, qj

∼ C̃ q1q2
q′ 1q′ 2,μ̃C′ C qj

Figure 4: Outer multiplicity (OM; figure adapted from [15]) based on the simple
specific example of a rank-4 CGT of SU(2) in panel (a) where the CGT contraction
(SS|Si) ∗i (SS|Si)∗ ≡ (SS|SS)i on the intermediate index for fixed intermediate mul-
tiplet Si ∈ 0, . . . , 2S gives rise to outer multiplicity for the rank-4 CGT C̃qq

qq,Si→µ̃
with

q = 2S and µ̃ = 1, . . . , M having M = 2S + 1. (b) More generally, contracting two
CGTs C and C ′ on two shared indices with fixed intermediate symmetry sectors qi
and q j . Each of the CGTs C and C ′ can have OM on their own, for general non-
abelian symmetries already so at the level of rank-3 CGTs as in (a). The combined
multiplicity is therefore determined by obtaining the resulting CGTs C̃ for all combi-
nations (µ,µ′, qi , q j). If multiple intermediate indices are contracted simultaneously,
like qi and q j above, then the plain contractions C̃(µ,µ′, qi , q j) are generally not or-
thogonal and typically overcomplete. Hence these need to be orthonormalized into
an arbitrary but fixed combined OM basis indexed by µ̃ [cf. Eq. (21)].
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OM can become arbitrarily large For non-abelian symmetries, OM typically grows exponen-
tially with the number of legs, i.e., the tensor rank [15]. Yet even at the level of standard rank-3
CGCs, OM can become arbitrarily large. For example, for SU(3) the CGT Cqq

q with q = (nn)
with n ∈ N0 has an outer multiplicity M = n + 1. That is, fusing two SU(3) multiplets (nn)
results in n+1 distinct multiplets with the same fused multiplet label (nn) amongst others, i.e.,
(nn)⊗ (nn) = (00)⊕ (nn)n+1 ⊕ . . . , where the exponent indicates OM. The multiplet (nn) has
dimension |q|= (n+1)3, and is self-dual, such that the scalar (00) also occurs in the decomposi-
tion above. To be specific, fusing two ireps in the adjoint representation (11), i.e., n= 1 above,
one obtains the full decomposition (11)⊗(11) = (00)⊕(03)⊕(11)2⊕(22)⊕(30), this gives the
adjoint (11) twice. In terms of multiplet dimensionality this reads 8⊗8= 1+10+(2×8)+27+10,
respectively, which adds up to the expected total of 82 = 64 states. Based on the unbound-
edness of OM even for rank-3 CGTs, there appears to be no simple way to fix a canonical OM
basis, e.g., w.r.t. to permutations of legs, etc., since that symmetry is necessarily finite given
the finite number of legs. To the best of our knowledge, there is no superior systematic way to
deal with arbitrarily large OM for general non-abelian symmetries. Hence a bottom-up con-
structive approach is adopted in QSpace that is based on demand, and thus arbitrary but fixed,
at the expense of a history dependent RC_STORE as discussed with Sec. 2.12.

2.11 General tensor decomposition

The general decomposition of a QSpace X in the presence of symmetries was already briefly
touched upon in the introduction [cf. Eq. (1)] in the absence of OM. In the presence of OM,
this becomes [8,15,39,40],

X =
⊕

q

�

∥X∥µq ⊗
�

wµ
′

µ Cqµ′
�

�

, (16)

where the OM indices µ and µ′ are implicitly summed over pairwise in a plain sum (
∑

µµ′).
With this, the OM indices are fully contracted in Eq. (16) as visualized in Fig. 5). In practice,
however, the CGTs Cqµ′ are referenced, and the summation over multiplicity is postponed
depending on the context. For pairwise contractions, for example, this summation is translated
to generating X-symbols [15] from the CGTs and contracting these onto the RMTs ∥X∥µq . That
is, the tensor product in Eq. (16) across RMTs and CGTs is never explicitly expanded per se, as
this would defeat the purpose of exploiting symmetries.

The leading direct sum (⊕) over q in Eq. (16) implies block structure, which translates to
the record index i in the QSpace tensor structure. Via the Wigner Eckart theorem one obtains
the tensor product (⊗) of the RMTs ∥X∥qµ with the CGTs Cqµ (assuming w= 11 for simplicity).
The RMTs and CGTs can be dealt with separately, and hence are stored separately. The RMTs
can be chosen freely depending on the physics or the algorithm, whereas the CGTs are fixed
by symmetry and hence referenced via the CGRs. The CGRs thus store the matrices wµ

′

µ , while
the RMTs ∥X∥µq carry trailing open OM indices µ for M > 1.

w-matrix An important element in the tensor decomposition (16) is the direct link across
the tensor product structure of the RMT and CGT via a plain regular sum on the OM indices.
It simply states that for every OM instance there can be a different RMT (the additional space
within the RMT due to OM only needs to be explicitly allocated when fusing state spaces [8]
which is taken care of by the getIdentity routine). When summing over the OM index denoted
in green in Eq. (16), one may insert an additional matrix, referred to as the w-matrix, which
lives directly on the OM link that connects the RMT to the CGT [cf. Fig. 5]. The w-matrix
can always be absorbed, i.e., contracted onto the RMT by carrying out the summation over
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Figure 5: Pictorial representation of tensor decomposition in Eq. (16) for the case
of an A-tensor for fixed symmetry sectors and hence a particular contribution q for
simplicity (figure adapted from [15]). The bare indices (l, r,σ) in the absence of
symmetries become composite indices [cf. Eq. (2)]. The RMTs ∥A∥q are stored with
a QSpace tensor, whereas the CGTs Cq are only referenced via CGRs which point into
the RC_STORE database. The CGRs also store the matrices wq with the tensor.

µ.3 However, there is practical value in keeping the w-matrix nevertheless: it permits one to
efficiently absorb rotations in OM space, e.g., as they occur out of permutations of the legs of
the tensor, but also to absorb scale factors. For this reason the w-matrix is stored with each
QSpace tensor via the CGR. It is a real matrix with the default normalization convention

w†w= 11 , (17)

typically taking the first non-zero matrix element in w to be positive. When w is contracted
onto the RMT, it can be simply replaced by w → 11 afterwards. By the convention that the
superscript index is the first index, i.e., wµ

′

µ ≡ wµ
′

µ, the index µ′ specifies its rows. Then by
Eq. (16) the row index of w links to the CGT, whereas the column index links to the RMT.
Typically, the OM dimension on the RMT is the same as that of the CGT, but it may also be
smaller. At any given time, the maximal OM dimension is set by the CGT (OM may grow
dynamically during simulations, until the full OM is exhausted). Yet the RMT of a given tensor
may only relate to a particular subset of OM directions, hence may have lower OM. For this
reason, w can have fewer columns than rows, i.e., it is a matrix of dimensions M × M ′ with
M ′ ≤ M . If M ′ < M , ww† ̸= 11, whereas Eq. (17) holds in any case.

There are only two exceptions to the normalization convention in Eq. (17). They are in-
tended for the sake of readability on the Matlab interface only (by contrast, the QSpace core
routines always adhere to Eq. (17) internally). In these cases the normalization in Eq. (17) is
only proportional to the identity, w†w = |w|211. For QSpace records q where |wq| ̸= 1, these
normalization factors are printed to the right when displaying a QSpace tensor (see display in
Fig. 7 for a specific example):

• rank-2 tensors (e.g., scalar operators): for the sake of the argument, consider an identity
operator X . In this case, for the sake of readability and also to avoid confusion, one
would like the RMTs themselves to be identities, i.e., ∥Xq∥ = 11 an identity operator
acting within symmetry sector q. But the CGTs have fixed CGT normalization convention
themselves. In particular, for a scalar operator like the identity, they are trivially given
by Cq

q =
1p
|q|

11|q| with |q| the multiplet dimension. Therefore to reconcile the desired

behavior of the RMTs with the CGT normalization convention, the remaining scale factor
can be absorbed at the level of the CGR with the w matrix by setting

wq =
Æ

|q| . (18)

3The w-matrix cannot be absorbed into the CGT since CGTs are defined once and for all. Besides, the data
format differs: CGTs are stored in higher precision, whereas the RMTs, same as the w-matrices, have plain double
precision arithmetic.
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This cancels the normalization factor of the CGT, thus resulting in a combined identity
operator, wC = 11. Since there is no OM for rank-2 tensors, the w in Eq. (18) is always
a plain number. Aside from identity operators, the altered normalization convention on
the w-matrix for the case of rank-2 tensors intuitively shows the ‘actual’ value of matrix
elements in the RMTs for scalar operators such as Hamiltonians or density matrices.

• rank-3 tensors with only one in- or outgoing index: similar to the previous case for rank-2
consider here for the sake of the argument the identity A-tensor [8] that describes the
fusion of two incoming state spaces without truncation into their combined state space.
Intuitively, one would also like to see parts of the sliced-up identity matrix in the RMTs
here too. That is, the entries in the RMTs should be either 0 or 1, as this indicates a
map of input multiplets to fused multiplets. For this, however, the rank-3 CGTs would
have to be normalized like standard CGCs, thus desiring

p

|q3|C
q1q2
q3

. Again this can be
achieved from the CGR point of view by setting

wq =
Æ

|q3| 11 . (19)

Now an A-tensor is a rank-3 tensor with one outgoing index only. Conversely, irops are
rank-3 tensors, with only one incoming index. In this sense, for generality, the nor-
malization in Eq. (19) is adopted for all rank-3 tensors that have one incoming or one
outgoing index only. The irep on this leg then defines the dimensional factor in Eq. (19).
In the absence of OM for these rank-3 tensors [such as for SU(2) throughout], w is again
just a plain number. Otherwise, the 11 in Eq. (19) is the identity matrix in the OM space
of the underlying Cq1q2

q3
or Cq3

q1q2
.

Avoiding high-rank tensors The block decomposition via q in Eq. (16) only includes per-
missible symmetry combinations for the given number of legs. However, it is important to
bear in mind in the context of tensor networks that this number of possible combinations q (or
equivalently, the number of records in a QSpace) can become quickly very large (exponentially
so) if tensors have many open legs, i.e., are high-rank.

This proliferation of non-zero blocks for large-rank tensors is already present for plain
abelian symmetries. Consider, for example, a tensor of even rank r, with r/2 incoming and
r/2 outgoing indices and where for the sake of the argument, all legs have the same state space,
say, with ns symmetry sectors each. Then all nr/2

s symmetry combinations of the r/2 incoming
legs are permissible since they can again be ‘unfused’ into the outgoing legs. Therefore the
number of blocks (RMTs) grows exponentially with the rank. In practice, there will be typically
many more combinations still that satisfy

∑

in qin =
∑

out qout. The proliferation of non-zero
blocks with tensor rank eventually holds generally. It is also irrespective of the direction of legs
since these can be easily flipped by contracting 1 j symbols which does not affect the number
of non-zero blocks.

For non-abelian symmetries, the situation is further exacerbated: the fusion of multiplets
typically gives rise to several combined ireps, which thus further increases the number of
internal fusion channels and hence non-zero blocks (e.g., hundreds of thousands for rank-6
tensors [34]). Furthermore, when building larger-rank tensors by contraction, also the OM of
the contracted tensors themselves will grow exponentially with increasing tensor rank [15].
If then one tries, for example, to contract two such large-rank tensors, this quickly translates
into extremely long lists of elementary pairwise block contractions (billions when contracting
rank-6 tensors [34]). While not necessarily memory-consuming, this may take far too long.

Hence reducing the tensor rank of large-rank tensors becomes mandatory. This can be
achieved in two ways: (i) Simply fusing legs which in itself has a significant positive impact
on the overall performance [34]. Alternatively, if the situation permits, one may also (ii)
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split up large-rank tensors into a tensor network of several lower-rank tensors such as tensor
trains [41]. This has strong links to data compression which is of central importance for tensor
network algorithms such as DMRG/MPS [17,42,43] even in the absence of any symmetry.

In principle, approach (i) could be carried out automatically, e.g., by fusing all incoming as
well as all outgoing indices into an effective matrix in the RMTs. However, such an ad hoc pro-
cedure may not always be efficient, e.g., for cases where there is a strong asymmetry between
the number of incoming vs. outgoing legs, besides that this would also makes permutations
considerably more involved. It is also not well-suited for the frequent situation where multiple
legs with mixed directions are contracted simultaneously. Hence as of QSpace v4, an automatic
recast of the (internal) representation of high-rank tensors to an effective lower-rank format
is not implemented. Rather the fusion of legs is left up to the user who then can decide more
sensitively depending on the algorithmic context. Similarly also the tensor decomposition (ii)
strongly depends on the context, and thus is left for the user to introduce where relevant.

2.12 CGT orthonormalization convention

All CGTs in QSpace adhere to the Frobenius-like normalization convention,

∥Cq∥2 ≡ tr(C†
q Cq)≡ tr(CqCq) = 11(M) , (20)

where the tensor trace is to be interpreted such that it fully contracts Cq with the conjugate of
itself on all legs, with only the OM index left open if present. The tensor Cq denotes a general
CGT with symmetry labels q combined over all legs with certain directions which are of no
further interest for the argument here. For simplicity, this collective q is written as a subscript
here, where nevertheless its conjugate is symbolically written as Cq with raised q.

The norm in Eq. (20) is invariant under an arbitrary orthogonal transformation on any
of the tensor’s legs. As this includes reverting directions of legs based on 1 j symbols, the
normalization in Eq. (20) is therefore independent of the directions of the legs (while also
switching to dual ireps). By not tying the normalization to a particular leg as in CGCs, this
bears significant practical advantages fully analogous to Wigner-3 j symbols.

In the presence of outer multiplicity, CGTs acquire an additional OM index µ = 1, . . . , M .
By convention, this is taken as trailing and thus slowest index at position r + 1 with r the
rank of the tensor,4 thus having Cq → Cqµ. In the presence of OM then, i.e., M > 1, the
r.h.s. of Eq. (20) becomes the identity matrix 11(M) in OM space. With this, the individual OM
components are fully orthonormalized [15],

Tr
�

C†
qµCqµ′
�

≡ Tr
�

CqµCqµ′
�

= δµ
µ′

. (21)

As the above shows, CGTs are unique up to an arbitrary but fixed orthogonal transformation
in OM space. By contrast, the basis within the state space of any leg is defined and thus
fixed with the respective multiplet decomposition, which itself may have to deal with inner
multiplicity [8]. In the absence of OM [such as in standard CGCs for SU(2)], the normalization
convention in Eq. (20) reduces to a sign-convention. This sign convention is still adopted in
any case in the standard fashion of CGCs, namely that the first non-zero entry in the CGT Cqµ
for any µ is positive.

Aside from the sign-convention on the basis vectors in OM space, this still leaves consider-
able arbitrariness in the presence of OM, i.e., M > 1. This arbitrariness is fixed within QSpace
by its operational procedure: CGTs are constructed once and for all with iteratively increasing
M ′ as they occur (first come first serve) and then stored in the RC_STORE/CStore [15], until

4QSpace uses generalized column-major storage for all tensors, throughout, RMTs as well as CGTs. While RMTs
are stored as full tensors, CGTs are stored in sparse format generalized to arbitrary rank tensors [8]. In either case,
listing the OM index as trailing index implies that data is blocked in storage w.r.t. the OM index since slowest.
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eventually at M ′ = M the full OM space is exhausted, and thus complete. This procedure
is motivated by the fact, that for larger-rank tensors, depending on the type of contractions
performed, the full dimension M in OM space may never be fully explored, and thus is not
required. In this sense, QSpace does not preemptively generate the complete OM space for
any CGT Cq the first time it occurs. This is different for standard rank-3 CGCs, which are
derived from an explicit numerical tensor product decomposition. By construction, their OM
space is always complete from the first time they are encountered. For other rank-3 CGTs that
derive out of contractions or higher-rank tensors, the OM space is built as it occurs out of
contractions. If a rank-3 CGT was first generated via a contraction, and later on is completed
via a tensor product decomposition, the existing CGT always has preference to ensure consis-
tency within the existing RC_STORE. Any additional OM space derived from the tensor product
decomposition is properly projected and renormalized.

History dependent RC_STORE By the operational procedure above, namely the deliberate de-
cision to not generate the full OM space in a unique, well-defined manner for any CGT encoun-
tered, the RC_STORE becomes history dependent. As such, the RC_STORE cannot be switched
across different tensor network simulations. This makes access to a global centrally maintained
RC_STORE essential. By meticulously applying and checking IDs together with high-resolution
time stamps with CGTs [15], QSpace insists on a particular RC_STORE database within a given
tensor network simulation to ensure overall consistency.

Norm of a QSpace tensor As a corollary, the norm of a QSpace X is defined by the full tensor
trace of X with the conjugate of itself, i.e., the Frobenius norm

∥X∥2 ≡ norm(X)^2≡ tr(X †X ) , (22)

With the CGTs normalized as in Eq. (21), when contracted with themselves, they result in a
simple identity matrix in OM space. Then if the w matrices on the OM links also follow their
own orthonormalzation convention, w†w = 11 [Eq. (17)], all that remains for obtaining the
norm of a QSpace tensor is to add up the square of the Frobenius norm for all RMTs (for the
case that w†w ̸= 11 [e.g., see Eqs. (18) or (19)], this needs to be contracted (or multiplied if a
simple number∝ 11) onto the RMTs when computing their norm squared). The normalization
conventions therefore considerably simplify obtaining the norm of a QSpace tensor. In any case,
the norm can be simply obtained using the class routine norm which automatically takes care
of all the above.

Representation of OM in QSpace tensors The tensor decomposition in Eq. (16) has an RMT
∥X∥µq for every symmetry configuration q, i.e., with symmetry labels fixed for every leg. The
combined set of labels for all legs as represented by q thus is unique in the direct sum (⊕). Con-
sequently, also for a QSpace X the combined, i.e, catenated symmetry labels Q=X.Q; Q=[Q{:}];
(cf. QSpace data structure and also subsref) are unique for any QSpace X. That is, QSpace
records as of QSpace v4 have unique symmetry labels for each record (this is in contrast to
v2 [8] or v3 which had OM split up as multiple records in a QSpace tensor with ‘degener-
ate’ q-labels). In the presence of outer multiplicity, i.e., M > 1, the OM index µ is carried
as an additional open trailing index in the RMTs (single index fused over the combined OM
for all non-abelian symmetries present). Hence it occurs at index position r + 1 with r the
rank of the tensor. In the QSpace display, it is indicated as @M with the RMT dimensions [see
Eq. (51) and subsequent display for an example]. This OM index eventually is connected via
the intermediary w-matrix to the referenced CGTs which then also carry trailing OM indices.

25



SciPost Physics Submission

2.13 CGT data storage and precision

All CGTs are real, highly sparse, and computed starting from better than quad-precision by
linking QSpace with the GMP/MPFR multi-precision library [44,45] during MEX compilation.
The CGTs are also stored in a higher precision format in RC_STORE/CStore. The major reason
for higher precision is the iterative nature of QSpace [15] that mimics the iterative nature of any
tensor network simulation: starting from the defining representation, an initial set of smaller
ireps is generated which usually more than suffices for the description of a physical lattice
site. Starting from this local state space (cf. getLocalSpace), ever more complex tensors
can be built by adding sites to the physical Hilbert space and thus to the tensor network. The
process of tensor product decomposition is fully numerical [8], and hence subject to numerical
precision error. The generalized raising/lowering operators (in the literature also referred to
as simple roots in the root space of a Lie algebra, [8,46]) are also computed fully numerically
within QSpace [cf. RC_STORE/RStore] subsequent to a tensor product decompositions via their
projection into the space of the newly encountered ireps [the generalized raising/lowering
operators could be generated directly, e.g., based on Gelfand-Tsetlin pattern calculus for SU(N)
[38]; but with general non-abelian symmetries also beyond SU(N) in mind, this approach
is not adopted in QSpace]. The numerical approach in QSpace also automatically ensures
consistency w.r.t. inner multiplicity (which describes the situation ubiquitous in rank r > 1
symmetries, namely where within a given multiplet the same qz-labels can occur multiple
times [8,37,38]). Therefore, by the design choice of QSpace as a true bottom-up approach for
non-abelian symmetries, any inaccuracy at an earlier stage is inherited to any later stage. In
this sense, the accuracy of CGTs deteriorates as the RC_STORE becomes ever larger. Empirically,
however, by starting better than quad precision (about 40 digits), all CGTs obtained in the
history of QSpace so far have been accurate at least up to 24 digits by monitoring numerical
noise. In this sense all CGTs are exact within double precision accuracy 10−16. This is also
important when exploiting the sparseness of CGTs since for that purpose, one needs to be able
to distinguish small CGT coefficients reliably from numerical noise [for example, for SU(4)
CGT coefficients as small as 10−9 have been encountered].

The sparse CGT data is stored in GMP/MPFR format. The MPFR library does not support
binary storage per se. The numerical data needs to be converted to int8 strings in a specified
base [44, 45]. In QSpace, for compactness, this numerical base is chosen as 2*3*5 = 30 [8]
(for comparison, hexadecimal has base 16). The reason for this choice is that it permits the
exact representation of fractions based on the prime numbers 2, 3, and 5, which thus includes
binary and decimal fractions. Within the mat-binary format, these strings are automatically
compressed. So eventually, the storage overhead of the string representation is expected to be
minor.

Sparse CGTs of arbitrary rank All CGTs are stored in sparse format. For rank r > 2, the
tensors are reshaped by grouping leading vs. trailing indices, such that the resulting ‘matrix’
is closest to square. Thereafter the sparse data can be stored as a standard sparse matrix. By
also storing the actual dimensions for all legs of the original tensor, this permits one to restore
the entire sparse tensor of arbitrary rank by returning to the original rank and recomputing
sparse index positions.

2.14 Order of legs (index order conventions)

QSpace supports arbitrary order of legs in a tensor. When permuting the index order (legs) of a
QSpace X, this applies the relevant permutation to each of the RMTs X.data{i}, and permutes
the symmetry labels for the legs in X.Q{:}, as well as the itags. The general index order is
also supported by the CGRs stored with a QSpace.
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Index order and CGRs The CGRs store references to sorted CGTs in the RC_STORE. These
CGTs have sorted q-labels to avoid the proliferation of entries. The required permutation (and
possible conjugation) to match the current index order of a QSpace X is auto-determined and
stored with the CGRs internally in the MEX core routines. However, when handed over to the
user space in Matlab, this permutation is applied to the CGRs in X.info.cgr, and hence is
not directly visible. An arbitrary permutation of the legs on a QSpace X is translated then to
the respective permutation relative to the underlying sorted CGT. The order of raised indices
relative to the lowered indices is irrelevant and can be trivially permuted. Subtleties arise,
however, for QSpace records with the same q-labels and directions on multiple legs, referred
to as degenerate q-labels, as this may lead to rotations in OM space (cf. 2M symbols). In
any case, all of this is taken care of in the QSpace core routine permute[QS] (MEX routine
permuteQS as called by the Matlab class wrapper routine permute).

Compact notation for permutations (with optional conjugation) The order of legs can
be changed using permutations. A permutation of length n ≤ r permutes the first n legs (or
all legs for n = r). In this sense, the specified permutation can be shorter than the rank of
the tensor. At the same time, one can also conjugate the tensor as a whole by specifying a
trailing '*' with the permutation. For permutations of length n ≤ 9, which is nearly always
the case, QSpace accepts a compact string notation for specifying permutations. For example,
'21*' denotes a transposition of the first two legs, i.e., the permutation p=[2 1] together with
overall conjugation '*'. In QSpace syntax, for example, the Hermitian conjugate of an irop S
can be obtained then via permute(S,'21*') which is equivalent to the non-compact semantic
permute(S,[2 1],'conj').

Compact notation for index sets (with optional conjugation) Specifying a subset of legs
permits the same compact notation as the permutations of legs above, including an optional
trailing conjugation flag '*'. This is relevant, for example, for contractions when several in-
dices are contracted simultaneously. For example, in Eq. (37) '13*' specifies the simultaneous
contraction of the preceding tensor on indices 1 and 3 while also taking its conjugate.

Index order for operators and leg directions An irreducible operator (irop) consists of an
irreducible set of operators that transform like a multiplet with symmetry operations applied
via a commutator. The set of operators thus acquires an additional index (referred to as irop
index) which, by convention, is always listed last, i.e., third. Therefore, the natural represen-
tation of an operator in the presence of symmetries is a rank-3 tensor [cf]. Fig. 1(b)]. If the
operator transforms like a scalar, i.e., with symmetry labels q = 0 on the irop index, this index
represents a singleton dimension which can be skipped. Thus the irop for scalar operators,
such as a Hamiltonian term or density matrix, can be reduced to rank 2.

The action of a particular operator is characterized by the symmetry labels on its irop
index. Consider, for example, the matrix elements of an annihilation operator, e.g., 〈s|ĉ|s′〉.
Ignoring spin for simplicity, this operator reduces charge q by 1, i.e., qs = qs′ −1. Based on this
intuitive notion, namely that the action of the operator is to lower the charge, this implies the
symmetry label of the irop qop = −1. For this to hold, however, the irop index must be grouped
with the ket state, and therefore is also outgoing. Together with the index order convention
S1

23 ≡ 〈1|S[3]|2〉 for an operator S, the leg directions of an irop are thus +--.
Not all rank-3 tensors with leg directions +-- are necessarily operators that act within a

particular state space. Therefore to explicitly declare an arbitrary QSpace tensor X of rank
3 with leg directions +-- an irop or operator more generally, QSpace recommends (and in
certain applications insists on) the additional flag 'operator' with rank-3 operators (see field
X.info.otype in Sec. A.3).
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Index order convention with A-tensors (MPS) The A-tensors as with an MPS adhere to the
LRs index order convention [cf. Fig. 1(a)], having 〈l|A[σ]|r〉where l ∈ L, r ∈ R refer to left and
right block states, respectively, with σ ∈ s the local state space. When L→R orthonormalized,
Alσ

r has leg directions +-+, when L←R orthonormalized, Arσ
l has leg directions -++, and when

at the orthogonality center (OC), Al rσ has leg directions +++ (all in).

Index order out of contractions The contraction of a pair of tensors, symbolically written
as A∗ B, always preserves the index order of the non-contracted indices. The ones of the first
tensor (A) are collected first, followed by the non-contracted indices of the second tensor (B).
Hence the index order out of contractions is fixed by the order of arguments handed over to
contract[QS].

2.15 Fully contracted CGT networks and M symbols

When projecting a CGT network onto a particular OM basis of the resulting CGT, this corre-
sponds to the evaluation of a fully contracted tensor network. It is relevant, for example, for
pairwise contractions of tensors [cf. X-symbols further below]. With this in mind, consider
then such a fully contracted tensor network of n CGTs. Each participating CGT may carry an
OM index µ that needs to be kept open since it links to an RMT [cf. Eq. (16)] which is outside
the discussion here. In this sense, a fully contracted tensor network of n CGTs has n open OM
indices, and thus is referred to as an nM symbol with n ∈ N. The q-labels for all contracted
legs are considered additional metadata.

1M and 2M symbols The normalization convention in Eq. (21) represents a 2M symbol δµ
µ′

.
However, since the multiplicity indices always refer to the OM space of the same CGT, in the
spirit of 1 j symbols, one may also refer to this as a 1M symbol. It is always simply a square
identity matrix in OM space. More non-trivially, in the presence of degenerate q-labels on
multiple legs with the same directions, a given CGT may be contractable with a permuted
version of itself. This can result in an orthogonal matrix and thus an actual 2M symbol.

3M symbols When contracting a pair of CGTs and projecting the result onto the target CGT,
this corresponds to a 3M symbol. In the specific context of tensor contractions, this is equiv-
alently referred to as X-symbols. Note that by construction (n = 3)M symbols with n an odd
number requires at least some non-rank-3 CGTs in its network, i.e., the presence of non-CGCs.

4M = 6 j symbols, 6M = 9 j symbols, etc In the context of SU(2), a fully contracted CGC
network consists of CGTs of rank 3 only. For this to be fully contractable, the total number n
of CGCs must be necessarily even. It has a total of 3n/2≡ 3ñ contracted legs, each carrying a
multiplet label. Using j with reference to SU(2), therefore a (3ñ)- j symbol is a fully contracted
network of n = 2ñ CGCs. For example, a 6 j symbol (ñ = 2) contracts n = 4 CGCs, and thus
represents a 4M symbol. Similarly, a 9 j symbol (ñ= 3) represents a 6M symbol, etc. In general,
a (3ñ)- j symbol is a (n = 2ñ) M symbol, with all j-labels on the contracted legs considered
additional metadata [15]. Therefore fully contracted networks of rank-3 CGTs correspond to
nM symbols with n an even number.

For the simple case of SU(2) where CGTs for rank r ≤ 3 do not have OM, (3ñ)- j symbols
are plain numbers. However, for a more general non-abelian symmetry of symmetry rank r> 1
like SU(N > 2), for example, the 6 j symbols are rank-4 tensors with open OM indices µ on
all its legs, hence 4M symbols. Since there is no simple canonical basis in OM space, besides
that the OM space even for CGCs (rank 3) can become arbitrarily large already for SU(3),
this makes it considerably more cumbersome to generalize 6 j symbols, etc., to arbitrary non-
abelian symmetries. Therefore analytical results for 6 j symbols are only available for SU(2),
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but not for rank r> 1 symmetries. For this very reason, QSpace does not use 6 j symbols at all.
It rather uses 3M symbols (X-symbols) instead.

2.16 Pairwise tensor contractions and X-symbols

When contracting a set of tensors, in practice, this is always carried out as a sequence of
pairwise contractions. For a particular pairwise contraction then, respective contractions occur
in parallel at the level of the RMTs, but also at the level of the CGTs for each non-abelian
symmetry included in the tensor representation [8].

The contraction of a pair of CGTs C ∗ D on a subset of indices results in another CGT E
[cf. Fig. 6]. By projecting the outcome of C ∗ D onto E (while completing the OM space of E
whenever relevant), the fully contracted tr(E∗(C D)) corresponds to a 3M symbol [Fig. 6(b)].
In the context of pairwise contractions (‘X’), QSpace refers to these as X-symbols [15].

In practice, the CGTs C and D in Fig. 6(a) as well as E in Fig. 6(c) are referenced in QSpace
tensors and stored in the RC_STORE once and for all once generated. Hence all that is required
eventually for a pairwise contraction of QSpace tensors are the X-symbols in Fig. 6(b,c). These
are contracted onto the OM indices of the input pair of RMTs [15], and in this sense fuse their
OM indices.

fig_xsym.pdf (v4 documentation)
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Figure 6: X-symbols (figure adapted from [15]) – When contracting a pair of CGTs
C and D on some subset of legs [panel (a)] with OM indices indicated in green, this
gives rise to a new CGT (C D) ≡ C ∗ D. The q-labels and q-directions are assumed
arbitrary but fixed for all non-green lines, but not shown for readability. The resulting
contracted tensor is expected to have a single OM index, hence the two green lines
in (a) need to be fused, as indicated in the remainder of the panels. If a CGT E with
the same rank and q-labels as (C D) already exists in the RC_STORE (up to sorting)
the contraction in (a) is projected into the existing OM space of CGT E by inserting
the identity 11 = E∗ · E, with the sum in the product performed over the OM space
of E [thick green line in (b)]. If the CGT E does not yet exist or is incomplete, the
additional OM components are generated via Schmidt decomposition out of (C D).
The lower gray-shaded area in (b) now encompasses a fully contracted network for
three CGTs, i.e., a 3M symbol. For the explicit purpose of pairwise contractions, these
are referred to as X-symbols.

2.17 Index tags (itags)

QSpace supports user-defined names on tensor legs with strings up to a length of 8 characters.
Since they represent tags assigned to indices, they are referred to as itags. The usage of itags
makes QSpace tensors significantly more user-friendly. For one, they allow one to identify
individual QSpace tensors more easily in a simulation. Hence the itags are also shown when
displaying a QSpace tensor. Moreover, QSpace supports auto-contraction based on itags, in
that a matching pair of itags with opposite directions (i.e., one in- and one outgoing) are
auto-contracted unless indicated otherwise. See help on contractQS for more on this.
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Within the QSpace core routines, itags are converted to unsigned long integers, thus
setting the size limit of 8 bytes. If an itag is shorter than 8 characters, it is padded by zeros.
For a QSpace tensor X of rank r, its itags are stored in the mandatory field X.info.itags{l}
for leg l = 1, . . . , r.

Itags are expected to be printable, mostly alpha-numeric characters in ASCII code range
33-126, excluding itag separators [,;|] (these characters are sometimes used to separate
multiple itags combined into a single string). It is recommended also to avoid the trailing
marker characters [’*] (see below) within an itag string to avoid confusion. The above ASCII
range is case-sensitive and excludes white space. The sign bit for each character is exploited
in QSpace core routines for other internal purposes, such as flagging itags that shall not be
contracted. With this then, for example, the following itags are all different from each other:
's1', 's01', 'S01', 's:1', 's-1', etc.

Trailing marker characters in itags The itags are also used to store the direction of legs for
a given QSpace tensor: a trailing ‘conjugate’ character '*' indicates outgoing legs, whereas
the absence of a trailing '*' indicates incoming. These directions must be maintained and
present even if the itags are empty otherwise. In case of inconsistency of the leg directions
specified with the itags of a QSpace tensor as compared to the q-directions in the CGRs (if
present), QSpace will throw an error.

Moreover, QSpace uses trailing primes to mark dual state spaces. Reverting the direction
of a leg changes the interpretation of the associated block state space. Therefore an auto-
mated modification of the itag is natural. It is useful for better interpretability, but also as a
safety measure that guards against contracting wrong indices that would carry the same itag
otherwise (see also 1 j symbols).

In summary, QSpace thus assigns special meaning to the following trailing marker charac-
ters in itags:

• A trailing asterisk (*) indicates a conjugate, i.e., outgoing index. Internally within the
C++ core routines, this is split off as q-directions for an entire tensor. Therefore they do
not count towards the 8-char limit of an itag.

• A trailing prime (’) indicates dual state space which occurs when a leg direction is re-
verted. The prime is considered an integral part of an itag, and hence counts towards
the 8-character length limit. For this reason, a trailing prime also occurs before a trailing
conjugate flag '*' if present.

Both of the trailing marker characters above act as a toggle. Since the dual of the dual of a state
space is the original state space, marking an already marked itag removes the trailing prime.
Similarly, taking the conjugate of an already conjugate index reverts its direction twice, and
therefore results in the original direction of that leg. Hence in this case, a trailing conjugate
character '*' is removed.

Remark on notation – In this documentation, an itag 'foo' with a trailing prime is frequently
printed as 'foo’'. The outer single quotes '...' denote a string, and differ in font from the
prime (’), for the sake of the discussion. They are considered the same, though, on the coding
level. Specifically, with Matlab syntax in mind, 'foo’' ≡ 'foo''' ≡ "foo'", yet noting that
as of QSpace v4, Matlab strings are always assumed to use single quotes.

Color coding When using QSpace in interactive Matlab terminal mode, trailing marker char-
acters in itags are replaced by color coding for the sake of readability: outgoing indices be-
come gray-ish (while skipping the trailing * character), and itags marked by the trailing prime
(’), acquire a color other than the default text color of the terminal (darker green as of QSpace
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v4, thus replacing the trailing prime; see Sec. 4.3 for examples). This way, for example, within
an MPS, bond itags for A-tensors associated with the left block (left relative to the OC) acquire
a different color as compared to the itags for A tensors associated with the right block.

The color coding of itags, of course, applies to non-empty itags only (i.e., itags that
contain actual printable string after removing trailing marker characters). If all itags are
empty, then the +/- notation for q-direction is used as strings when displaying itags (e.g., see
Fig. 7) with color coding applied. When only some itags are empty, no color substitution is
performed, with all trailing markers shown as is. By default, no color coding is applied for
non-interactive batch or cluster jobs where log output is expected to be redirected to log files.
The behavior can be changed via the environmental variable QS_LOG_COLOR.

3 QSpace Essentials

3.1 Starting point: getLocalSpace()

The starting point of any tensor network setup in QSpace is getLocalSpace. This permits
one to define a lattice site via a set of operators that act within that state space. However,
because these operators are expressed as matrix elements in a particular symmetry eigenbasis
of the site, this implicitly also represents its full state space, e.g., via the identity operator.
The way getLocalSpace operates is that it builds the local state space in Fock space without
symmetries first, since everything can be constructed there including the symmetry operators
for all requested symmetries. Based on this, getLocalSpace rotates and groups the basis into
symmetry multiplet spaces, and then ‘compresses’ the data via compactQS based on the Wigner-
Eckart theorem to obtain the RMTs while splitting off the CGCs as tensor product factors [cf.
Eq. (16)].

The overall argument structure of getLocalSpace() is as follows (for more detailed usage
information, see help getLocalSpace):

[op1,...,opN,Isym] = getLocalSpace(type [, symmetries] [, options]) (23)

The input specifies the type of a site, together with its symmetries, and further options.
It returns a set of representative operators op1,...,opN for the specified site (therefore N
depends on the input), together with an info structure Isym. The type of a site is a string that
can be any of the following:

'FermionS' spinful fermions
'Fermion' spinless fermions
'Spin' spin models

etc. other experimental setups of spin models

The argument symmetries consists of a comma-separated catenated string that specifies the
type and order of symmetries to use.
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Spinfull fermions For spinful fermionic models, i.e., type='FermionS', the following sym-
metry entries are supported,

'Acharge' abelian total charge, i.e., U(1)
'ZNcharge' abelian total charge, modulo N ≥ 2 ∈ N, e.g., 'Z2charge' for Z2

'SU2charge' SU(2) total particle-hole
'Aspin' abelian total spin, i.e, U(1)
'SU2spin' SU(2) total spin (S)
'SU2spinJ' SU(2) total spin (J = L + S)
'AspinJ' U(1) total spin (J = L + S)z
'SUNchannel' SU(N) channel symmetry
'SONchannel' SO(N) channel symmetry
'SpNchannel' Sp(N) symmetry with N even for N/2 channels combined with

SU(2) particle-hole charge symmetry

The order in which these symmetry labels are specified also determines the order of symmetries
used, and hence the order of the symmetry labels for any state space. The last three symmetries
only apply in the presence of multiple channels (or flavors). The number of channels can be
specified via the optional argument 'NC', or directly with the symmetry itself. For example,
'SUNchannel' with 'NC',3 is equivalent to 'SU3channel'. For the case of NC > 1 channels,
abelian (non-abelian) charge in all channels individually can be requested via 'Acharge(:)'
or 'SU2charge(:)', respectively.

Spinless fermions Spinless fermionic models, i.e., type='Fermion', support the symmetries
'Acharge' and 'SUNchannel' similar to the spinful case above. A subtlety concerns the case
of an odd number of channels NC. There the particle number relative to half-filling becomes
half-integer for the state space of a single site or, more generally, an odd number of sites. To
avoid this (also bearing in mind that QSpace insists on integer symmetry labels), a factor 2 is
applied to the charge symmetry labels. See Sec. 2.9 for more on this.

The fermionic models require that fermionic signs are explicitly taken care of in the appli-
cations via the fermionic parity operator Z. That is, graded tensors [47,48] are not implemented
in QSpace yet which eventually may allow one to take care of fermionic signs in an automated
fashion. Bosonic degrees of freedom with a finite local state space may be implemented as
tweaks of the U(1) fermionic models while stripping any fermionic signs based on the parity
operator Z. Bosonic degrees of freedom with infinite state space, such as harmonic oscillators,
need to be truncated. This can be done efficiently, e.g., via a shifted optimal boson basis [49].

Spin models Plain spin models such as SU(2) spin-S Heisenberg models can be setup with
type='Spin'. This typically only allows a single symmetry that is specified as an additional
argument, with the default being 'SU2' (see Sec. 3.1.2 below for examples). To obtain other
more complex spin models based on several symmetries, the fermionic models may be tweaked
e.g., via projections (see Sec. 5.3.1 for an example).

Special case: No symmetries QSpace also permits simulations in the absence of any sym-
metry. Yet since this is a rather atypical case when using QSpace, this proceeds via a tweak. For
example, no symmetries can be implemented via an auxiliary trivial abelian symmetry such
as U(1), where only the scalar symmetry label q = 0 of the vacuum is present on any leg.
With this, every tensor contains a single QSpace record only (thus a single full block as RMT).
An example is provided with the spin setting in line (30) below, which returns objects of the
above type. As shown in Sec. 4.4, for spin S = 1/2, S(i).data{1} contains the Pauli matrices
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[σz , 1p
2
σ−, − 1p

2
σ+] for i = 1, 2,3, respectively. The order and normalization of operators can

always be double-checked by inspection.

3.1.1 Example: Single fermionic site

The following call to getLocalSpace returns QSpace operators for a spinful fermionic site with
a single level (i.e., d = 4 states)

[F,Z,S,IS] = getLocalSpace('FermionS','Acharge,SU2spin'); (24)

The detailed structure of the returned QSpace tensors as displayed within Matlab is discussed
by the example of F in Sec. 3.2 (e.g., see Fig. 7) and also with (31). The operators returned by
(24) are the fermionic annihilation operators F (irop with two components, one for spin up,
and one for spin down), the fermionic parity operator Z, and the total spin operator S (hence
an irop with three components).

The last argument IS returned by (24) is an info structure that contains additional detailed
information concerning the chosen symmetry setup. As seen in (32), it contains the identity
operator IS.E, or IS.sym as a more verbose description of the symmetries as specified with
the input to getLocalSpace. This permits one to look up the order of symmetries later e.g., to
reconfirm whether the charge or spin symmetry is listed first, etc., since the symmetries spec-
ified with a QSpace tensor, such as A or SU2, no longer contain that information. Other fields
in IS also contain low-level information relevant to the internal workings of getLocalSpace
which may be safely ignored.

The symmetries of a model hold throughout a tensor network simulation. In this spirit,
the call to getLocalSpace defines the symmetry once and for all during the setup of a model.
Hence symmetries can only be switched during the setup for different simulations. For exam-
ple, for the same local state space of a single fermionic site, it may be changed then across
the following settings depending on the symmetries of the model Hamiltonian based on the
underlying model parameters:

'Acharge,Aspin' U(1)charge ⊗U(1)spin d∗ = 4= d (fully abelian)
'Acharge,SU2spin' U(1)charge ⊗ SU(2)spin d∗ = 3
'SU2charge,Aspin' SU(2)charge ⊗U(1)spin d∗ = 3
'SU2charge,SU2spin' SU(2)charge ⊗ SU(2)spin d∗ = 2 (fully non-abelian)

All describe the same local state space of d = 4 states. With increasing symmetry from top
to bottom, however, the local state space dimension is effectively reduced from d∗ = 4 → 2
multiplets. For comparison, the more involved example for NC=3 channels with symplectic
symmetry,

[F,Z,S,IS]=getLocalSpace('FermionS','SU2spin,SpNchannel','NC',3);

contains 4*NC=12 components in the irop F (creation and annihilation operators for each spin
and channel). The total spin irop S still has three components. The scalar parity operator Z
shares much of the structure of an identity matrix except that its diagonal entries are ±1. As
such it also reflects the full state space of a site. By contrast, the spin operator only acts within
partially occupied sectors since the fully occupied or empty states are singlets with spin matrix
elements all-zero. Yet zero blocks are not stored. In the present example of NC=3 spinful levels,
the largest non-abelian symmetry is given by the symplectic Sp(2*NC=6) symmetry. Within this
setting, the local space dimension d = 43 = 64 states is reduced to an effective dimension of
a mere d∗ = 4 multiplets!
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3.1.2 Example: Spin models

For spin-models, i.e., type='Spin' in Eq. (23), the argument symmetries is only allowed to
contain a single symmetry, assuming SU(2) if not specified. The options can specify the partic-
ular irep to use, assuming the defining irep, by default. For example, the following two lines
are equivalent for SU(2),

[S,IS] = getLocalSpace('Spin',S); (25)

[S,IS] = getLocalSpace('Spin','SU2',2*S); (26)

These return the spin operator for a spin S multiplet in the local state space with q-label q = 2S.
The usage in line (26) permits to switch to other non-abelian symmetries. For example,

[S,IS] = getLocalSpace('Spin','SU3','02'); (27)

returns the ‘spin’ operator [synonymous with the irop in the adjoint representation] for SU(3),
with the local state space in the 6-dimensional representation q='02'. Here the input supports
both, compact string ('02') and non-compact numeric notation ([0 2]).

Switch to abelian or no symmetry In the case of SU(2), the usage in line (25) also accepts
the following switches to abelian symmetries,

[S,IS] = getLocalSpace('Spin',S,'-A'); (28)

[S,IS] = getLocalSpace('Spin',S,'--Z2'); (29)

[S,IS] = getLocalSpace('Spin',S,'--nosym'); (30)

where the option '-A' returns the spin operator in abelian U(1) symmetries (equivalent to
Z∞), '--Z2' returns it with Z2 symmetry, and '--nosym' with no symmetry at all (effectively
implemented as trivial ‘U(1)’ with q = 0 only). In all cases, the returned spin operator S
has three entries corresponding to S= [Ŝz , 1p

2
Ŝ−, − 1p

2
Ŝ+]. See Sec. 4.4 for a more detailed

discussion.

Normalization of spin operator The spin operator S is a specific irop that transforms in
the adjoint representation. It has as many components as there are generators in the Lie
algebra. The spin operators out of getLocalSpace [e.g., Eq. (27)] adhere to standard normal-
ization conventions in the literature. This can be easily double-checked, e.g., via normQS().
For example, for an SU(2) spin in the defining irep, ∥S∥2 ≡ tr(S† · S) = (3/4) tr(11(2)) = 3/2.
Therefore it must hold for the respective QSpace spin operator that norm(S)^2 = 3/2, seen as
∥S∥=
p

3/2= 1.225 in line 17 below.
The normalization and sign of the spin operator for all ireps are entirely determined by

the definition of the spin operator in the defining representation. After all, the spin operators
in any other irep can be constructed by combining defining ireps and then computing the
matrix elements of Stot in the combined Hilbert space. This construction can be used to reach
any other irep. With this the normalization and sign of Stot is fixed by specifying these for
the defining irep. Hence one needs to be careful when manually constructing spin operators
directly for an irep other than the defining representation, e.g., based on existing CGTs.

Based on the above constructive approach, the spin operator is also well-defined in the
presence of OM for larger ireps: while the spin operator is unique in the defining irep (this
particular case never has OM), OM can arise for larger local multiplets. For example, consider
the SU(3) spin operator in the local irep q='11' also being in the adjoint representation. This
has M = 2. Yet from the constructive approach above, there is also only one well-defined spin
operator in this setting, since it can be expressed as Stot in the tensor product space of three
defining ireps (while there will be two ireps in '11' in this construction, both replicate the
same spin operators, since for both the RMT links the same way to their shared CGR).
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3.1.3 Beyond models implemented in getLocalSpace

The implemented settings for fermionic or spin models cover a wide range of applications.
Yet, in practice, situations will arise where the desired symmetry setting is not yet imple-
mented in getLocalSpace. In these cases, it is often sufficient to tweak the QSpace output of
getLocalSpace that captures the closest most relevant symmetry setting. For this, however, it
is essential that one fully understands in detail the general QSpace data structure. See Sec. 5.3
for detailed examples. As a last resort, one may contact QSpace support for help. Typical
strategies of tweaking the output of getLocalSpace may include:

• appending additional symmetries [see QSpace/addSymmetry.m].

• projecting fermionic models to a fixed charge sector, thus effectively obtaining a spin
model. If the charge label (relative to half-filling) is non-zero, the respective symmetry
labels (columns in X.Q) may be set to zero because they are all the same due to the
projection.

• converting abelian symmetries, like U(1) labels to ZN labels by changing the symmetry
name (cf. X.info.qtype) and converting the symmetry labels in X.Q) accordingly.

• the absence of any symmetries was already discussed above.

3.2 QSpace display

A summary of the content of a QSpace tensor is displayed by simply typing its name at the
Matlab command line prompt followed by enter (technically speaking, this is realized by over-
loading the display function in @QSpace).

For example, Fig. 7 displays the A-tensor as generated in (47), with detailed additional
explanations. The symmetry setting is a combination of U(1) charge with SU(2) spin, with
the order fixed by the call to getLocalSpace in (31). The display consists of a header info
section, followed by a listing of the symmetry blocks. The pair of header lines show global
tensor information, including itags for all legs and their directions. In case of itags that are
empty up to trailing markers, the q-directions are shown in the +/- format as this enables color
coding. See also applications for more examples. The subsequent listing of symmetry blocks
includes symmetry labels and dimensional information of the underlying RMTs and CGRs.
Note that trailing singleton dimensions are skipped for RMTs beyond rank-2 following Matlab
convention for dense arrays. By contrast, trailing singleton dimensions are displayed for CGTs,
as a reminder that CGTs are stored in generalized sparse format which always specifies the full
CGT dimensions.

The square-root dimensional factors to the right in Fig. 7 are shown only if the w-matrices
provided with the CGRs have anomalous normalization, i.e., w†w = d11 with d ̸= 1 (com-
bined as a product across all symmetries). In this case “{

p
d}” is included in the display as

a reminder of the altered normalization affecting the RMTs. From Eqs. (18) and (19), it is
generally expected that d reflects some multiplet dimensions, and therefore is an integer. This
motivates the notation with the surd (

p
) for the sake of readability and compactness.

4 Collection of Examples

QSpace uses a compact syntax for tensor network commands with usability and readability
in mind. While this compact notation may be self-explanatory to some extent, it takes some
time to digest and get used to. Hence it is discussed in detail with the examples in this doc-
umentation. This section provides a combined collection of examples referenced earlier in
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>> A 

     Q:  3x {10 x 2 }  having 'A,SU2'  A-matrix,  { K01, K02*, s02 } 
  data:  3-D double (1200)      3 x 10 x 3 => 4 x 16 x 4  @ norm = 4 

     1.  1x1        |  1x1x1 [ -1 0 ; -2 0 ; -1 0 ]           1. 
     2.  1x2        |  1x2x2 [ -1 0 ; -1 1 ;  0 1 ]      16 b     {√2} 
     3.  1x2        |  2x2x1 [  0 1 ; -1 1 ; -1 0 ]      16 b     {√2} 
     4.  1x3        |  1x1x1 [ -1 0 ;  0 0 ;  1 0 ]      24 b 
     5.  1x3        |  2x1x2 [  0 1 ;  0 0 ;  0 1 ]      24 b 
     6.  1x3        |  1x1x1 [  1 0 ;  0 0 ; -1 0 ]      24 b 
     :   ... 
     9.  1x2        |  1x2x2 [  1 0 ;  1 1 ;  0 1 ]      16 b     {√2} 
    10.  1x1        |  1x1x1 [  1 0 ;  2 0 ;  1 0 ]           1. 

(#legs = rank) x { #records x # -labels/leg }

based on dimensions of A.Q

q

overall tensor rank

and data class (always double)

total size of RMTs A.data

in memory (bytes)

symmetries [if empty, all abelian U(1)]

total effective dimension

(D* multiplets)

total dimension

(D states)

A.info.otype

itags, including leg directions

Frobenius norm  

of entire tensor

∥A∥

record 
index i

(effective) dimension of RMT A.data 

(skipping trailing singletons beyond dimension 2)

{i}

symmetry labels (  q-labels)

for each record  as in A.Q 


(one set for each leg , separated by ‘;’)

≡
i {l}(i, :)

l
 

RMT A.data : explicit value if scalar (like 1. here)

or memory size of block, otherwise [like 16 b(ytes)]

{i}

combined scale factor

based on A.info.cgr .cgw


(only shown if )
(i, :)

≠ 1

CGT

dimensions

other info if relevant

like `complex’ etc.


(here none)

truncating long

lists by default

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11

Figure 7: Typical QSpace display, e.g., as printed when typing the name of a QSpace
tensor on the Matlab prompt (>>) in the user interface. This display summarizes the
tensor’s data structure into a more readable form. The example here is based on the
A-tensor as obtained in (47). It fuses the state spaces of two spinful fermionic sites
with D = 4× 4→ 16 states [4 x 16 x 4 in line 2 after permutation to standard LRs
index order; cf. (47)]. The symmetry setting of U(1) charge (abelian 'A') with SU(2)
spin is shown as 'A,SU2' in line 1. Hence all multiplets carry two symmetry labels
q = (q1 q2), as reflected in the dimensions of Q in line 1, and the columns of q-labels
listed for each leg. The charge q1 represents particle number relative to half-filling
and hence can become negative, whereas q2 = 2S ≥ 0 reflects the SU(2) spin multi-
plet. Due to the presence of SU(2) spin, switching to the multiplet-based description
reduced the Hilbert space to an effective dimension D∗ = 3⊗ 3→ 10 multiplets (3
x 10 x 3 in line 2). Since each fused multiplet carries unique symmetry labels here,
this also translates to a total of 10 QSpace records. The record index is shown to the
left for reference. The RMTs A.data{i} represent reduced matrix elements. Hence
they are tensors with effective dimensions as shown in the second column (for the
RMTs only, this adheres to Matlab conventions that trailing singleton dimensions be-
yond two dimensions are skipped). The CGT dimensions are displayed in the third
column (shown including trailing singletons for non-abelian symmetries only; if a
QSpace has all-abelian symmetries, the CGT dimensions are skipped entirely). Long
listings are truncated, by default, as in line 9 by ': ...' for the skipped records 7-
8. For a full listing of all QSpace records, one needs to explicitly call the underlying
function display(A,'-f'), since this is the only way to specify options (like '-f'
for full display). The combined scale factor out of the CGRs [cf. Eqs. (18) and (19)]
is shown to the right. Since it always represents the square root of some (product
of) multiplet dimensions d ∈ N, it is printed for the sake of readability only for those
records where d ̸= 1 as

p
d.
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this documentation. Essential syntax-highlighted Matlab code is shown in a gray box. This is
followed by a detailed discussion of output objects and sanity checks on their structure. The
source and output lines are given line numbers to the left for ease of reference.

To provide QSpace examples, the first step is defining a set of exemplary QSpace tensors.
Hence to be specific, the examples below use the QSpace operators that act within the local
state space of a single spinful fermionic site with U(1) charge and SU(2) spin symmetry,

1 >> [F,Z,S,IS]=getLocalSpace('FermionS','Acharge,SU2spin'); (31)

The local state space s ∈ {|0〉, |↑〉, |↓〉, |↑↓〉} represents empty, singly up/down, and doubly oc-
cupied states, respectively (in contrast to earlier, e.g., Fig. 1, in what followsσ ∈ {↑,↓} ≡ {1, 2}
specifies the spin flavor index that underlies the local many-body state space s). By not spec-
ifying the number of flavors/channels above, by default, this assumes a single flavor (for ex-
amples with NC=3 flavors, see further below). The above call to getLocalSpace thus returns
the fermionic annihilation operators F̂ ≡ ( f̂↑, f̂↓)T in irop index order convention,

2 F =
3 Q: 3x { 2 x 2 } having 'A,SU2' operator, { +-- }
4 data: 3-D double (224) 2 x 2 x 1 => 3 x 3 x 2 @ norm = 2
5

6 1. 1x1 | 1x2x2 [ -1 0 ; 0 1 ; -1 1 ] -1.41421
7 2. 1x1 | 2x1x2 [ 0 1 ; 1 0 ; -1 1 ] -1. {

p
2}

the fermionic parity operator Ẑ = (−1)n̂, with n̂ the particle number operator [cf. Eq. (37)],

8 Z =
9 Q: 2x { 3 x 2 } having 'A,SU2' { +- }

10 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
11

12 1. 1x1 | 1x1 [ -1 0 ; -1 0 ] 1.
13 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] -1. {

p
2}

14 3. 1x1 | 1x1 [ 1 0 ; 1 0 ] 1.

the spin irop as in Eq. (10) with Ŝa =
∑

σσ′ f̂ †
σSσσ

′

a f̂σ and S± ≡ Sx ± iSy ,

15 S =
16 Q: 3x { 1 x 2 } having 'A,SU2' operator, { +-- }
17 data: 3-D double (112) 1 x 1 x 1 => 2 x 2 x 3 @ norm = 1.225
18

19 1. 1x1 | 2x2x3 [ 0 1 ; 0 1 ; 0 2 ] -0.866025 {
p
2}

and the structure IS with additional information,

(32)20 IS =
21 NC: 1
22 sym: 'Acharge,SU2spin'
23 E: [1x1 QSpace]
24 ...

The latter contains the identity operator (IS.E) as a reference for the complete local state
space, a reminder of the number of flavors (I.NC), as well as more verbose specification of
the symmetries used (IS.sym) for later identification. The remaining fields in IS are mostly
for debugging purposes, partly also duplicate data such as the parity Z, and hence can be
safely ignored. The above QSpace displays for F, Z, and S are simply obtained by typing the
respective name followed by enter, e.g., >> F, where the leading '>>' indicates the Matlab
prompt. The generated output conveniently summarizes the content of the specified QSpace
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tensor (technically, by overloading the display routine). The printed output is discussed in
detail with Fig. 7.

In the case of the fermionic annihilation operator F, line 3 identifies the symmetries used
in their specified order [A for abelian U(1), and SU2 for SU(2) spin]. It also shows that F is an
operator (see info.otype) with standard index order +--. The symmetry labels in lines 6–7
consist of two numbers q = [q1 q2] specified for each leg and separated by a semicolon. The
first label q1 encodes the particle number (filling) relative to half-filling. Here q1 ∈ [−1,0, 1]
on the first two legs corresponds to [0,1, 2] particles occupying the fermionic level. The second
label specifies the SU(2) symmetry labels, given by the integers q2 = 2S. The irop F transforms
in the labels of the third leg, namely qop= [-1 1]: that is, the operator F reduces particle
number by one (hence q1 = -1), and represents a spinor of two components (with q2 = 2S = 1
it transforms like a spin S = 1/2 representing up and down spin). All of this is as expected
for the set of fermionic annihilation operators F̂ ≡ ( f̂↑, f̂↓)T . Since the irop index represents a
single multiplet (line 4), the operator q-labels are the same for all records. Hence, the operator
is irreducible, i.e., it is an irop. For comparison, a pair-annihilation operator f̂↑ f̂↓ would have
qop

1 = −2. Therefore by simply looking at the action of an operator based on its irop symmetry
labels allows one to (roughly) identify an operator.

By inspection, the first record for F (line 6) describes the matrix elements 〈0| f̂σ|σ〉 from
singly occupied to empty, with the initial state on leg 2 and the final state on leg 1 (ket and
bra state for matrix element, respectively). The corresponding CGT has the printed symmetry
labels (0|1,1), bearing in mind q = 2S = 1 which happens to correspond to a 1 j symbol
for the first record. It is of size 1x2x2. Conversely, the second record in line 7 describes the
matrix elements from doubly to singly occupied state, 〈−σ| f̂σ|↑↓〉 where −σ denotes the spin
opposite to σ ∈ {↑,↓}. Its CGT hast the q-labels (1|0,1) and dimensions 2x1x2. Therefore the
CGT for the second record corresponds to an identity matrix, when ignoring the singleton on
the second index. The respective reduced matrix elements (RMTs) for the operator F turn out
to be plain numbers, thus of size 1x1 [x1] (left column), skipping the last trailing singleton
since beyond rank 2). Their value is directly displayed to the right. The signs (similar to the
sign in line 19 for S) are determined by the sign convention of the underlying CGT for the irop.
They are of no further concern, otherwise. What is important, though, is that the operator F
is defined once and for all, so that the same object is used for all sites that are identical.

The way getLocalSpace proceeds to obtain the QSpace representations above, is to start
from the Fock space description. For a single spinless fermionic level, in the basis (0,1) for
empty and occupied, the annihilation operator c, fermionic parity operator z, and identity
operator e are given by

c =

�

0 1
0 0

�

, z = [c, c†] =

�

1 0
0 −1

�

, e = {c, c†}=
�

1 0
0 1

�

(33)

with the sole non-zero matrix element of the annihilation operator being 〈0|ĉ|1〉 = 1. Hence
when combining two fermionic levels with different spin, for example, the matrix representa-
tion for the fermionic annihilation operators can be written by the 4× 4 matrices (assuming
the first factor in the tensor product to be the fast index, consistent with column-major),

f↑ = c ⊗ e =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






, f↓ = z ⊗ c =







0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0






(34)

having assumed the fermionic order |↑↓〉 ≡ ĉ†
↑ ĉ

†
↓ |〉 thus already leading to the fermionic sign

via z for f↓ above. It is important for the fermionic anticommutator relations which must be
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already built-in in the above matrix elements, e.g.,

{ f↑, f↓} = (c ⊗ e)(z ⊗ c) + (z ⊗ c)(c ⊗ e) = {c, z} ⊗ c = 0.

since cz = −zc by the very property of c that it changes the particle number by one. Combining
the annihilation operators into the set F = ( f↑, f↓)T , then for example

N = F† · F = f †
↑ f↑ + f †

↓ f↓ = (c
†c ⊗ e) + (c†c ⊗ z†z) = (n⊗ e) + (e⊗ n) ≡ N↑ + N↓

as expected, with n= c†c the occupation operator. QSpace takes the combined set F=(f↑,f↓)
T

above, organizes the state space based on symmetry operators (Class/@SymOp), and then
‘compresses’ it via compactQS. This diligently factorizes the CGTs as present in the RC_STORE,
with the remainder being in the RMTs.

Explicit data structure By typing F at the Matlab prompt, this invokes @QSpace/display to
conveniently summarize the specified QSpace data, e.g., as shown for F in lines 2–7. The bare
QSpace data structure as in App. A.3 is obtained by stripping the tensor F of its QSpace class
assignment via

25 >> struct(F) (35)

26 struct with fields:
27

28 Q: {[2x2 double] [2x2 double] [2x2 double]}
29 data: {2x1 cell}
30 info: [1x1 struct]

which is considerably less readable and informative as compared to lines 2–7 above, despite
referring to the same bare data. The two RMTs i= 1,2 in lines 6–7 are stored in F.data{i}

31 >> F.data'
32

33 1x2 cell array
34

35 {[-1.4142]} {[-1.0000]}

with the respective symmetry labels stored in F.Q{l}{i,:} for leg l,

36 >> F.Q{1}
37 -1 0
38 0 1
39

40 >> F.Q{2}
41 0 1
42 1 0
43

44 >> F.Q{3}
45 -1 1
46 -1 1

These are displayed as records i with lines 6–7 above5. The info structure

47 >> F.info
48 qtype: 'A,SU2'
49 otype: 'operator'
50 itags: {'' '*' '*'}
51 ctime: 0
52 cgr: [2x2 struct]

5As a Matlab technicality, note that F.Q{:} would not work here to display all entries; rather one would have
to use an intermediate assignment, as in Q=F.Q; Q{:}.
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is described in more detail with the data structure in App. A.3. It contains symmetry-related
content, such as the symmetry type F.info.qtype or the CGRs in cgr. The field itags specifies
the itag for each leg. Hence the number of entries has to match numel(F.Q), or equivalently
the rank of the tensor.

The field info.cgr is another structure array with one column per symmetry and as many
rows as there are records in the QSpace. In case of the operator F, for example, the entry
F.info.cgr(1,2) contains the CGR for the QSpace record i = 1 and symmetry 2, i.e., the
SU(2) spin symmetry as per the present setup in (31),

53 >> F.info.cgr(1,2)
54

55 type: 'SU2' % symmetry type
56 qset: [0 1 1] % symmetry labels (q-labels, here q = 2S)
57 qdir: '+--' % q-directions
58 cid: [1.50e+09 1.50e+09 690057 0 8] % RC_STORE specific IDs incl. time stamps
59 size: [1 2 2] % CGT size (dimensions, uint64 data type)
60 nnz: 2 % number of non-zero entries in CGT
61 cgw: 1 % w-matrix
62 cgt: [1x0 double] % auxiliary internal field for trace

The symmetry labels qset in line 56 are those from the referenced CGT and reflect the ones in
X.Q{l}(1,2) for leg l as listed with the QSpace display of this record i = 1. in line 6 earlier.
The dimensions in line 59 are also displayed there.
By contrast, the CGRs X.info.cgr(:,1) for the leading abelian U(1) symmetry are all trivial.
The underlying CGTs are C = 1., bearing in mind that only non-zero CGTs are present in a
QSpace tensor, i.e., only ones that are permissible from a symmetry point of view. For example,
the trivial CGR from the first record reads

63 >> F.info.cgr(1,1)
64

65 type: 'A'
66 qset: [-1 0 -1]
67 qdir: '+--'
68 cid: [0 0 0 0 1]
69 size: [1 1 1]
70 nnz: 0
71 cgw: 1
72 cgt: [1x0 double]

It reflects the plain number 1. by having size = 1, cgw = 1, nnz is ignored, no internal
IDs cid, etc. The symmetry labels qset = [-1 0 -1] are again consistent with those in
X.Q{l}(1,1) for leg l as displayed in line 6 earlier.

State space from operators The annihilation operator F is non-hermitian and contains only
off-diagonal symmetry blocks. Its full dimensions are shown as 3 x 3 x 2 in line 4 which only
references 3 out of the total of 4 states with either of the first two indices. The reason is that
an annihilation operator destroys an empty ket state |0〉, yet also has no matrix elements that
include the fully occupied bra state 〈↑↓|. However their union of symmetry sectors as obtained
by getIdentity when called on an operator like F here,

73 >> E=getIdentity(F) (36)

74 Q: 2x { 3 x 2 } having 'A,SU2' { +- }
75 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
76

77 1. 1x1 | 1x1 [ -1 0 ; -1 0 ] 1.
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78 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {
p
2}

79 3. 1x1 | 1x1 [ 1 0 ; 1 0 ] 1.

recovers the full 4 x 4 dimensional local state space (line 75) of the single spinful fermionic
level under consideration. By not having specified an index with the operator F in line 73, the
default behavior of getIdentity assumes an operator as input with standard index order,
and hence takes the union of the state spaces of the first two indices of F. The fact that the first
two indices of the annihilation operator must span the full state space of a site is also apparent
from the realization that its fermionic anticommutator relations must yield the identity [for
an explicit sanity check in this regard, see (38)].

s′ 

op ≡ σ
1

2

3F

=s′ ′ 

1

2

3F*

s′ 

s2

2

F
† ⋅

Fn = ∑
σ

f †
σ fσ ≡ F† ⋅ F = =

s′ 

s1

2

n

(a) (b) (c) (d)

s

Figure 8: Contraction n = F† · F to obtain the occupation operator in some (local)
state space s, having spin flavor σ ∈ {↑,↓}. (b) The contraction in (37) takes the
conjugate tensor of F reverts all arrows and also reflects the tensor, here vertically
as indicated by the gray line and rotating arrow. Hence the index order in 1 and 2
is already flipped up/down with F∗. By contracting indices '13*' on the first, i.e.,
lower tensor, the 1 takes the transpose, thus completing the Hermitian conjugate.
The remaining open indices are collected (c), thus giving rise to the new index order
in (d) for the occupation operator. Uncontracted, and thus open indices are collected
in the order of the input QSpace tensors to contract. Therefore the chosen order of
input arguments in the command Eq. (37) already returns the standard index order
for operators, as indicated by the orange labels in (d).

Occupation number operator The operators returned by getLocalSpace in (31) are con-
sidered elementary for the description of the specified site. Any other local operator can be
constructed from these, usually by simple one-liners. By construction, these operators are then
already consistent with the chosen symmetries. For example, the local occupation number op-
erator is obtained by

80 >> nloc = contract(F,'13*',F,'13') (37)

81 Q: 2x { 2 x 2 } having 'A,SU2' { +- }
82 data: 2-D double (224) 2 x 2 => 3 x 3 @ norm =

p
6

83

84 1. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {
p
2}

85 2. 1x1 | 1x1 [ 1 0 ; 1 0 ] 2.

with a pictorial representation presented in Fig. 8. In addition to the contraction of index 1
from the matrix product, the sum over spin corresponds to the simultaneous contraction of
the irop index 3 as specified by the strings '13*' or '13' in compact notation for the first and
second operator, respectively. The above display for nloc shows two block entries correspond-
ing to RMTs with 1. or 2. particles as printed to the right in lines 84 and 85, respectively.
These values reflect nloc.data{i}. There is no block record for 0. particles, as this would
represent a zero-block (more precisely, since block-diagonal zero blocks are usually kept in
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rank-2 operators, in the present case this block does not arise out of the contraction in the first
place). Note that for the value 1. to appear in line 84, the normalization of the w-matrix had
been tweaked, as indicated by the {

p
2} factor to the very right [cf. discussion with Eq. (18)].

The definition of nloc permits one to relate its trace tr(nloc) = tr(F† · F) = ∥F∥2 with the
norm of ∥F∥= 2 in line 4. This can be quickly double-checked as follows,

86 >> [ trace(nloc), norm(F)^2 ]
87

88 4.0000 4.0000

The trace above includes a factor of 2 for the sector q=[0 1] in line 84, since by representing
a spin half (2S = 1), this contains two states. Hence tr(nloc) = 0+2×1+2= 4. The fermionic
anti-commutator relations can be checked by

89 >> E=acomm(F,F')/2 % = 1
2

∑

σ{ f̂σ, f̂ †
σ} ≡

1
2 (F · F

† + F † · F) = 11 (38)

90 Q: 2x { 3 x 2 } having 'A,SU2' { +- }
91 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
92

93 1. 1x1 | 1x1 [ -1 0 ; -1 0 ] 1.
94 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {

p
2}

95 3. 1x1 | 1x1 [ 1 0 ; 1 0 ] 1.
96

97 >> isIdentityQS(E)
98

99 1

This needs to sum over σ ∈ {↑,↓} since F exists as an irop, where one cannot single out a
particular component σ, as this would break the symmetry. Line 97 checks whether E rep-
resents an identity operator (solely within the symmetry space present in the QSpace E, i.e.,
without knowledge of any potentially ‘absent’ zero blocks; this is no issue here, though). The
call to the QSpace routine acomm() above for the anti-commutator is equivalent to performing
the contraction in (37) plus its respective counterpart to complete the anti-commutator [see
comment with (38)],

100 >> E_ = ( contract(F,'13*',F,'13' ) + ...
101 contract(F,'23', F,'23*') ) / 2;
102 >> norm(E-E_)
103

104 0
105

106 >> E==E_
107

108 1

Lines 102 and 106 verify that E and E_ are the same tensors, indeed (line 102 is somewhat
more flexible as compared to the overload in @QSpace/eq.m, as one may use the former to
accept differences on the order of double precision noise in a general context). Similar to the
fermionic occupation operator in Eq. (37), one can construct the local Casimir operator from
the spin operator,

109 >> S2=contract(S,'13*',S,'13') % Ŝ2 = Ŝ† · Ŝ = 3
4 1̂1 (39)

110 Q: 2x { 1 x 2 } having 'A,SU2' { +- }
111 data: 2-D double (112) 1 x 1 => 2 x 2 @ norm = 1.061
112

113 1. 1x1 | 2x2 [ 0 1 ; 0 1 ] 0.75 {
p
2}
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Since the spin operator (10) is non-hermitian, the dagger is relevant. The above display shows
a single entry for the half-filled symmetry sector [0 1] only, which being spin-half (2S = 1),
is the only one with a non-zero Casimir, indeed, having the value 0.75 shown to the right.
All other symmetry sectors, namely empty and doubly occupied, have S2 = 0. Thus being
zero-blocks, these are absent. As a matter of fact, these were already absent in the spin op-
erator S that entered the contraction. The Casimir is thus already also reflected in the RMTs
of the spin operator, e.g., having the RMT

p

3/4 = 0.866025 in line 19 up to a sign. The
norm ∥S2∥ is given by 3

4∥ 11(2)∥ =
p

9/8 = 1.061 as seen in line 111. This is in contrast to
∥S∥=
p

3/4 ∥11(2)∥=
p

3/2= 1.225 in line 17 above.

Based on the set of QSpace operators introduced above, the following proceeds with explicit
examples for the main text earlier. This starts with examples for Sec. 2.1.

4.1 QSpace tensors of rank r < 2

Rank-0 tensor A tensor of rank r = 0 has no open legs, and hence can only represent a
scalar number. It naturally occurs when all indices have been contracted, e.g., when comput-
ing expectation values or overlaps. For example, computing the Frobenius norm of a tensor
translates to contracting a tensor fully with itself,

∥ f̂ ∥2 ≡ tr( f̂ † · f̂ ) =
∑

σ

tr( f̂ †
σ · f̂σ)

the result has no more open legs. In QSpace, this becomes

114 >> X=contract(F,'123*',F,'123') (40)

115 Q: [] having 'A,SU2' double scalar
116 data: { 4 }
117

118 >> getscalar(X)
119

120 4.0000

Therefore it has empty q-labels X.Q, and only a single RMT X.data{1} [cf. App. A.3] with
value X.data{1} = ∥F∥2 = 4 (cf. line 4). For rank-0 tensors, the QSpace display switches to
the simplified format in lines 115–116 above. The scalar value can be extracted by getscalar
(line 118) which also performs consistency checks (e.g., if X does not represent a scalar, it
throws an error).

Rank-1 tensor The only permissible rank-1 tensor is a tensor that carries the symmetry sector
of the vacuum state, namely q = 0. For a general non-empty QSpace X of rank r ≥ 2, the rank-1
tensor representing the vacuum state can be obtained by

121 >> V=getvac(F,'-1d') (41)

122 Q: 1x { 1 x 2 } having 'A,SU2' { + }
123 data: 1-D double (112) 1 x 1 @ norm = 1
124

125 1. 1 | 1 [ 0 0 ] 1.

With the option '-1d', this returns a vector of length d = 1 (line 125). Rank-1 tensors in q = 0
with dimension d > 1 can occur naturally out of contractions, e.g., when fully contracting a
tensor of rank r on all its r indices with a tensor of rank r + 1. Without the '-1d' option,
getvac in Eq. (41) returns a rank-2 tensor that represents the identity operator in the vacuum
state, and thus is of dimension 1× 1.
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4.2 Permutations and index order

QSpace tensors support an arbitrary index order that can be permuted as desired. While some
tensors such as operators or A-tensors assume certain index order conventions for coding pur-
poses, these are relevant for applications only, but not for QSpace tensors per se. For the sake
of the argument, consider an operator that describes fermionic hopping from site s02 and s01,
i.e., f̂ †

1 · f̂2 =
∑

σ f̂ †
1σ · f̂2σ with σ ∈ {↑,↓},

126 >> F2=contract(F,'-op:s01','*', Z*F,'-op:s02', [2 3 1 4]) (42)

127 Q: 4x { 4 x 2 } having 'A,SU2' { s01, s02, s01*, s02* }
128 data: 4-D double (448) 2 x 2 x 2 x 2 => 3 x 3 x 3 x 3 @ norm =

p
8

129

130 1. 1x1 | 2x1x1x2 [ 0 1 ; -1 0 ; -1 0 ; 0 1 ] 1.41421
131 2. 1x1 | 2x2x1x1 [ 0 1 ; 0 1 ; -1 0 ; 1 0 ] -1.41421
132 3. 1x1 | 1x1x2x2 [ 1 0 ; -1 0 ; 0 1 ; 0 1 ] -1.41421
133 4. 1x1 | 1x2x2x1 [ 1 0 ; 0 1 ; 0 1 ; 1 0 ] -1.41421

written as rank-4 tensor here by only contracting the operator index via the dot product in
the operators, thus having 〈s1s2| f̂

†
1 · f̂2|s′1s′2〉. By specifying a conjugate flag '*' with the first

operator F, this takes its Hermitian conjugate. The option '-op:s01' assigns operator itags
for site 's01' on the fly. Specifically, this assigns the temporary itags {'s01','s01*','op*'}
to the preceding input operator [cf. Fig. 1(b)]. Similarly, the second operator Z*F gets assigned
the operators itags for site 's02' (because in a simulation typically more than 10 sites are
included, QSpace frequently uses a 2-digit format for site or bond indices in itags, like 's01'
and 's02' above for the sake of aligned displays).

Fermionic signs are applied by contracting the parity operator Z≡ (−1)n̂ from the left onto
the operator F acting on site 2. This assumes a fermionic order where site 1 comes before site 2
when building a Fock state space, e.g., f̂ †

2 f̂ †
1 |〉 similar to Eq. (34). Hence the matrix elements

for f̂1 acquire fermionic signs depending on the state of site 2 which thus gets the parity
operator applied (see also appendix in [50] for more discussion on fermionic signs). Since
both, Z and F, are operators, one can simply use the operator * for matrix multiplication in
Z*F.6 The default operator itag assigned above by the option '-op:..' is 'op'. In the present
example, this is the only matching itag in the auto-contraction. Therefore the contraction
results in a rank-4 tensor that explicitly acts on the two separate sites s01 and s02.

Command (42) also includes a trailing permutation that is applied to the overall result.
Therefore it is equivalent to

134 >> F2=contract(F,'-op:s01','*',Z*F,'-op:s02');
135 >> F2=permute(F2,'2314') % may also write permutation as [2 3 1 4] (43)

The contraction in line 134 collects the uncontracted legs of the first operator conj(F) [note
the '*' flag in the contraction], followed by the uncontracted ones from the second operator,
maintaining their original order. The bra and ket indices of the rank-4 operator F2 out of
the contraction can therefore be properly grouped by the permutation [2 3 1 4] (line 135,
or trailing option in line 126) with the effect (s∗1, s1, s2, s∗2) → (s1, s2, s∗1s∗2). This finalizes the
transpose for the first operator, which was conjugated by the flag '*' in the contraction. With
this, the itags of the final output for F2 have q-directions ++-- as seen from the trailing
conjugate flags '*' in the itags in line 127.

6The matrix multiplication operator * is overloaded via @QSpace/mtimes.m to perform a QSpace contraction;
this also deals with potential rank-3 operators as input, like F here. As a safety measure, this requires the explicit
marking of the QSpace as an ‘operator’ via the flag F.info.otype='operator'. Here this is automatically set via
getLocalSpace, e.g., see line 3 above.
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The permutation in line 135 accepts compact string notation aside from the plain numerical
representation. By contrast, line 126 insists on a numerical representation of the permutation
to differentiate it from other string options meant for contractions. Line 135 accepts any
valid permutation to be applied to F2, including an optional trailing conjugation flag '*'. For
example, the following swaps bra with ket indices and also applies overall tensor conjugation,
i.e., obtains the Hermitian conjugate 〈s1s2| f̂

†
2 · f̂1|s

′
1s′2〉 for given rank-4 tensor,

136 >> F2_ = permute(F2,'3412*')
137

138 Q: 4x { 4 x 2 } having 'A,SU2' { s01, s02, s01*, s02* }
139 data: 4-D double (448) 2 x 2 x 2 x 2 => 3 x 3 x 3 x 3 @ norm =

p
8

140

141 1. 1x1 | 1x2x2x1 [ -1 0 ; 0 1 ; 0 1 ; -1 0 ] 1.41421
142 2. 1x1 | 1x1x2x2 [ -1 0 ; 1 0 ; 0 1 ; 0 1 ] -1.41421
143 3. 1x1 | 2x2x1x1 [ 0 1 ; 0 1 ; 1 0 ; -1 0 ] -1.41421
144 4. 1x1 | 2x1x1x2 [ 0 1 ; 1 0 ; 1 0 ; 0 1 ] -1.41421

While the itags of the resulting F2_ are identical to the ones from F2, their content is different,
as can be checked by norm(F2-F2_) which results in 4.

4.3 1 j tensor and trailing marker characters

The identity operator in Eq. (36) is a regular operator with one in- and one out-going index.
Instead of the identity, one may request the 1 j tensor by the same call to getIdentity, yet
adding the option '-0' (‘fusing to q = 0’),

145 >> U=getIdentity(F,'-0') (44)

146 Q: 2x { 3 x 2 } having 'A,SU2' { ++ }
147 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
148

149 1. 1x1 | 1x1 [ -1 0 ; 1 0 ] 1.
150 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {

p
2}

151 3. 1x1 | 1x1 [ 1 0 ; -1 0 ] 1.

This shows a colored itag in line 146 when using the Matlab terminal mode, for readability.
The actual 'U.info.itags' are {'','’'}, with the first itag empty, and the second itag just a
prime (’). Since no string delimiters are shown with itags in the QSpace display, empty strings
would not display at all. Hence, in case of empty strings, the q-directions +/- are displayed,
instead. In the presence of a trailing prime marker character, the itag is colored as above.
The color coding is understood by terminals only, but not the Matlab desktop environment.
For the latter by default, line 146 above would display as

152 Q: 2x { 3 x 2 } having 'A,SU2' { ++' }

instead, which shows the marker character with the second itag, ++'≡ {+,+'}. The same can
also be enforced by setting setenv QS_LOG_COLOR 0 in the environment, e.g., on the Matlab
prompt itself. If getIdentity is called referencing a tensor leg that carries an itag, then that
itag is inherited,

153 >> E=setitags(getIdentity(F),{'s01','s01'});
154 >> U=getIdentity(E,'-0')
155

156 Q: 2x { 3 x 2 } having 'A,SU2' { s01, s01 }
157 ...
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again with colored output as in Matlab terminal mode. The remainder (...) is the same as
in lines 147–151. The actual itags U.info.itags are {'s01', 's01’'}, as displayed in the
Matlab desktop, where line 156 would read

158 Q: 2x { 3 x 2 } having 'A,SU2' { s01, s01' }

If one were to take the conjugate tensor of U , this results in all outgoing legs, with the second
leg still also marked, which in terminal mode would translate to the color coding for the sake
of readability,

159 >> conj(U)
160 ...
161 Q: 2x { 3 x 2 } having 'A,SU2' { s02, s02 }
162 ...

where the an outgoing itag is printed in gray, and if marked, the original brighter green in
line 156 becomes a darker green. In the Matlab desktop, the itags are fully spelled out

163 >> conj(U)
164 ...
165 Q: 2x { 3 x 2 } having 'A,SU2' { s02*, s02'* }
166 ...

The trailing marker toggle inserted by getIdentity with the option '-0' may be disabled by
using the option '-z', instead (z as in zero in '-0' for historical reasons; not recommended),

167 >> Uz=getIdentity(E,'-z')
168

169 Q: 2x { 3 x 2 } having 'A,SU2' { s01, s01 }
170 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
171

172 1. 1x1 | 1x1 [ -1 0 ; 1 0 ] 1.
173 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {

p
2}

174 3. 1x1 | 1x1 [ 1 0 ; -1 0 ] 1.

In this case, the itags (line 169) are the same for both legs and become indistinguishable from
the ones for the transpose of the tensor. However, taking the transpose of Uz,

175 >> Uz_=permute(Uz,'21')
176

177 Q: 2x { 3 x 2 } having 'A,SU2' { s01, s01 }
178 data: 2-D double (336) 3 x 3 => 4 x 4 @ norm = 2
179

180 1. 1x1 | 1x1 [ 1 0 ; -1 0 ] 1.
181 2. 1x1 | 2x2 [ 0 1 ; 0 1 ] 1. {-

p
2}

182 3. 1x1 | 1x1 [ -1 0 ; 1 0 ] 1.

give rise to a minus sign with the second entry (with the permutation absorbed into the w-
matrix, and hence showing up with the curly bracket to the very right). Therefore Uz is clearly
different from Uz_, having norm(Uz-Uz_) =

p
8, even though indistinguishable, say, pictori-

ally when including itags. Both are unitaries, though, and therefore can act as 1 j symbols.
However, mixing them up when reverting directions of legs, e.g., by inserting Uz * Uz_† ̸= 11
into a line in a tensor network, this is likely to give wrong results because of sign errors,
even though the contraction is possible on principle grounds. To avoid such sources of errors
that may be difficult to spot, the trailing prime as a marker character was introduced with
QSpace v4. After all, the dual state space is different from its original one, even if the consid-
ered state space may happen to be self-dual in the sense that it maps onto itself as a whole, as
in the present example. Trying to contract a marked with a non-marked itag then, will result
in an error because such itags are considered different.
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4.4 Spin-half spin operators

The spin operators for a single spin S = 1/2 are obtained as in Eq. (28),

1 >> [S,IS] = getLocalSpace('Spin',1/2,'-A'); (45)

resulting in

2 >> S % equivalent to display(S)
3

4 1. (U1) { +-- } 3D double 0.7071 224 2x2x1
5 2. (U1) { +-- } 3D double 0.7071 112 1x1x1 operator
6 3. (U1) { +-- } 3D double -0.7071 112 1x1x1 operator

Since S is a QSpace array of more than two entries, the QSpace display switches to a list view
with one-liners for each entry in S that further summarize the header lines in the detailed
display for each S(i) with i = 1,2, 3. To see the full QSpace display of all entries in the QSpace
array S, one needs to call the underlying display routine together with the option '-v' that
stands for more ‘verbose’,

7 >> display(S,'-v')
8

9 S(1) =
10 Q: 3x { 2 x 1 } abelian U(1) { +-- }
11 data: 3-D double (224) 2 x 2 x 1 @ norm = 0.7071
12

13 1. 1x1 [ 1 ; 1 ; 0 ] 0.5
14 2. 1x1 [ -1 ; -1 ; 0 ] -0.5
15

16 S(2) =
17 Q: 3x { 1 x 1 } abelian U(1) operator, { +-- }
18 data: 3-D double (112) 1 x 1 x 1 @ norm = 0.7071
19

20 1. 1x1 [ -1 ; 1 ; -2 ] 0.707107
21

22 S(3) =
23 Q: 3x { 1 x 1 } abelian U(1) operator, { +-- }
24 data: 3-D double (112) 1 x 1 x 1 @ norm = 0.7071
25

26 1. 1x1 [ 1 ; -1 ; 2 ] -0.707107

By inspection, this shows that the returned spin operator S has three entries corresponding to

S = [Ŝz , 1p
2
Ŝ−,− 1p

2
Ŝ+] . (46)

For algorithmic convenience, this keeps Ŝz to the front by permuting Ŝ+ to the end w.r.t.
Eq. (10), such that S(1) is either Ŝz or the full spin irop in case of SU(2) spin. The spin oper-
ator S above is derived from the representation as S = 1 irop in Eq. (10), here corresponding
to symmetry labels Sz ∈ {0,−1,+1} or qop = 2S ∈ {0,−2,+2} for the irop q-label with the
third index in lines 13f, 20, and 26, respectively [hats are used with the operators in (46) to
differentiate them from the symmetry labels |S=1; Sz ∈ −1,0, 1〉 here for the S = 1 multiplet
underlying the irop]. This explains the normalization and signs in the components of S up to
the permutation of the entries. Note that the inverse square root factors with the lowering and
raising operator lead to the same norm |S(i)|= 1p

2
= 0.7071 (i = 2,3) as compared to the Sz

operator (i = 1). As such, they also allow for a convenient S† · S contraction for isotropic spin
interactions.
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Having U(1) spin, all three operators in S are distinguishable by their irop symmetry labels.
Therefore the three spin operators may be combined into a single spin operator by simply
‘adding’ them,

27 >> Sop=sum(S)
28

29 Q: 3x { 4 x 1 } abelian U(1) { +-- }
30 data: 3-D double (448) 2 x 2 x 3 @ norm = 1.225
31

32 1. 1x1 [ -1 ; -1 ; 0 ] -0.5
33 2. 1x1 [ -1 ; 1 ; -2 ] 0.707107
34 3. 1x1 [ 1 ; -1 ; 2 ] -0.707107
35 4. 1x1 [ 1 ; 1 ; 0 ] 0.5

Because all irop symmetry sectors in S are different, addition translates into a direct sum ⊕
here. This simply catenates all QSpace records into a single list, since the entries are still
differentiated by their U(1) irop labels, thus preserving the RMT block structure. The resulting
Sop is no longer irreducible from a symmetry perspective, though. Therefore in contrast to the
individual entries S(i), the combined Sop no longer qualifies as an ‘irop’, since it has multiple
operator symmetry labels listed with its third index. It is still a perfectly well-defined operator,
nevertheless. The norm of the spin operator Sop,

∥S∥2 ≡ tr(S† · S) =
∑

i=1,2,3

tr (S†
i Si) =
∑

a=x ,y,z

tr (S†
aSa) = 3× (2 1

22 ) =
3
2

agrees with line 30, having |S|=
p

3/2= 1.225. The combined spin operator Sop also permits
one to easily obtain the Casimir Ŝ2 ≡ Ŝ† · Ŝ,

36 >> S2=contract(Sop,'13*',Sop,'13')
37

38 Q: 2x { 2 x 1 } abelian U(1) { +- }
39 data: 2-D double (224) 2 x 2 @ norm = 1.061
40

41 1. 1x1 [ -1 ; -1 ] 0.75
42 2. 1x1 [ 1 ; 1 ] 0.75

resulting in 3
411 as expected for the underlying spin-half. The contraction on the third index

above implements the dot product in Ŝ† · Ŝ.

Switch to Z2 symmetry The option '-A' in the setup (45) requested abelian U(1) symmetry.
By specifying '--Z2', instead, this switches to a Z2 symmetry representation [cf. Eq. (29)],

43 >> [S,IS] = getLocalSpace('Spin',1/2,'--Z2')

44 S(1) =
45 Q: 3x { 2 x 1 } having 'Z2' operator, { +-- }
46 data: 3-D double (224) 2 x 2 x 1 @ norm = 0.7071
47

48 1. 1x1 [ 1 ; 1 ; 0 ] -0.5
49 2. 1x1 [ 0 ; 0 ; 0 ] 0.5
50

51 S(2) =
52 Q: 3x { 1 x 1 } having 'Z2' operator, { +-- }
53 data: 3-D double (112) 1 x 1 x 1 @ norm = 0.7071
54

55 1. 1x1 [ 0 ; 1 ; 1 ] 0.707107

48



SciPost Physics Submission

56

57 S(3) =
58 Q: 3x { 1 x 1 } having 'Z2' operator, { +-- }
59 data: 3-D double (112) 1 x 1 x 1 @ norm = 0.7071
60

61 1. 1x1 [ 1 ; 0 ; 1 ] -0.707107

By comparison to the earlier U(1) spin operator, the setup of the model changed from q = 2S
for U(1) spin to a Z2 setting with q ∈ {0,1} ≡ {↑,↓}, as seen from Sz in lines 44ff. The spin
operator S(1)= Sz carries qop = 0, whereas the operators Ŝ+ and Ŝ− become indistinguishable
in terms of irop symmetry labels, both having qop = 1 due to the Z2 symmetry. However,
when including the symmetry labels for all legs, all entries for the spin operator above are still
distinguishable from a symmetry sector point of view. Hence the earlier U(1) constructions in
lines 27 and 36 still also work.

Switch to no symmetry By switching the symmetry option in (45) from '-A' to '--nosym'
(‘no symmetries’), this effectively turns off symmetries [cf. Eq. (30)],

62 >> [S,IS] = getLocalSpace('Spin',1/2,'--nosym')

63 S(1) =
64 Q: 2x { 1 x 1 } having 'A' { +- }
65 data: 2-D double (136) 2 x 2 @ norm = 0.7071
66

67 1. 2x2 [ 0 ; 0 ] 32 b
68

69 S(2) =
70 Q: 2x { 1 x 1 } having 'A' { +- }
71 data: 2-D double (136) 2 x 2 @ norm = 0.7071
72

73 1. 2x2 [ 0 ; 0 ] 32 b
74

75 S(3) =
76 Q: 2x { 1 x 1 } having 'A' { +- }
77 data: 2-D double (136) 2 x 2 @ norm = 0.7071
78

79 1. 2x2 [ 0 ; 0 ] 32 b

This is a tweak to abelian U(1), seen as 'A' in the header lines, that only uses symmetry labels
q = 0. This trivial setting is equivalent to having no symmetry at all. The RMTs are 2 × 2
matrices,

80 >> S(1).data{1}
81

82 0.5000 0
83 0 -0.5000
84

85 >> S(2).data{1}
86

87 0 0
88 0.7071 0
89

90 >> S(3).data{1}
91

92 0 -0.7071
93 0 0
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now reflecting in detail the spin operators in terms of the Pauli matrices, [1
2σz , 1p

2
σ−, − 1p

2
σ+],

respectively. In the present case of no symmetry, there are no symmetry labels that can describe
the action of the operators. Hence all operators are rank-2 scalars. This way, all spin operators
become indistinguishable in terms of irop q-label. These spin operators can no longer be
combined into a single spin operator as in line 27, since the RMTs are no longer distinguishable
by symmetry labels. Hence sum(S) would no longer perform the direct sum (⊕) by catenating
the QSpace records, but actually add the RMTs which is not meaningful.

5 Simple Tutorials and Applications

This section extends on the simple examples in Sec. 4 which supplemented the earlier sections
in the main text. Here the focus shifts more toward tensor network applications. For this
purpose, it should be noted that the public QSpace repository already contains significantly
more than the bare tensor library documented here, e.g., see the listing of (MEX) applications
in App. C. The full documentation of this is left for the future. Nevertheless, the standard help
explaining the purpose and usage of any function is available as part of the repository. Yet
their discussion and the description of the related setup scripts are beyond the scope of this
documentation, which focuses on QSpace as a tensor library. Still, the interested user may find
it rewarding to explore. Since fdm-NRG [19] has been one of the first applications of QSpace,
it is discussed in more detail in Sec. 5.6.

Sanity checks for tensors that have a simple interpretation and structure are also frequently
included. These are helpful in practice quite generally, as they ensure that one has a good un-
derstanding of all the operators and tensors that one is dealing with. Much of the same spirit
also underlies the earlier examples given, and QSpace as a whole. There are many consistency
and plausibility checks internally in the QSpace MEX core routines and in the Matlab envi-
ronment. At negligible numerical overhead, these assertions are safeguards to ensure overall
consistency.

5.1 Iterative build-up of many-body state spaces: Two fermionic sites

An elementary step to building many-body state spaces is the iterative addition of a new site.
The example here shows how to start this within QSpace by adding a second site. To be specific,
suppose one wants to describe two interacting spinful fermionic sites with respective local state
spaces σi and site index i = 1, 2 in a combined state space. The description of a single site
again starts with (31) above. With this, one can begin to take iterative tensor products of that
state space with copies of itself to build a many-body basis.

Reminding oneself that QSpace is a tensor library that encodes tensors only, state spaces
are specified by pointing to particular legs of a given tensor. Hence, when expanding a Hilbert
space via a tensor product, one needs to pick operators that represent the complete state space,
i.e., by having non-zero blocks in every symmetry sector of the target state space. Natural
choices are the identity stored with IS.E [cf. Eq. (31)], or the parity Z. When building a tensor
product of state spaces, the routine getIdentity takes two QSpaces as input, both representing
a state space of their own (here by having identical sites, the operator Z is listed twice),

1 A=getIdentity(Z,Z,[1 3 2]);
2 A=setitags(A,{'K01','K02','s02'}); (47)

In line 1, one may use Z → IS.E, instead. One even could have used F instead of Z, since if
no explicit leg index is provided with the input, getIdentity assumes an operator, and hence
combines the state spaces from the first two legs [same argument as with Eq. (36) above].
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Either way, A encodes the tensor-product fusion of the state spaces of two sites. The optional
last argument [1 3 2] in line 1 specifies a permutation to be applied to the returned output
A-tensor. By default, the output of getIdentity in line 1 has an index order that lists the two
input spaces first (in the order specified), and lists the combined state space last (third index).
By permuting this order as specified in line 1, this returns the rank-3 A-tensor with index order
that adheres to the LRs index order convention [cf. Fig. 1]. As an implementational detail, the
permutation in line 1 requires a numeric format, since a (compact) string representation such
as '132' would be interpreted as an itag for the fused index, instead.

From an MPS perspective, the above tensor product of sites σ1 and σ2 may represent the
start of a physical chain. Virtual bond indices specify the many-body state spaces that are kept
from one iteration to the next. Henceσ1→ K1 ≡ 'K01' may be considered the state space that
is kept from iteration 1 (cf. Fig. 2). QSpace, and hence also this documentation, frequently
uses a 2-digit format for site or bond indices for the sake of aligning display output, bearing
in mind that typically more than 10 sites are present in a simulation. Hence 'K01' instead of,
e.g., 'K1'. By adding site σ2 →'s02', one arrives at the combined state space 'K02'. The
itags in line 2 are thus chosen as in Fig. 2 for A2 at the start of an MPS. With this, the A-tensor
returned with line 2 reads (see Fig. 7 for detailed explanations of this very example)

3 >> A
4 Q: 3x {10 x 2 } having 'A,SU2' A-matrix, { K01, K02*, s02 }
5 data: 3-D double (1200) 3 x 10 x 3 => 4 x 16 x 4 @ norm = 4
6

7 1. 1x1 | 1x1x1 [ -1 0 ; -2 0 ; -1 0 ] 1.
8 2. 1x2 | 1x2x2 [ -1 0 ; -1 1 ; 0 1 ] 16 b {

p
2}

9 3. 1x2 | 2x2x1 [ 0 1 ; -1 1 ; -1 0 ] 16 b {
p
2}

10 4. 1x3 | 1x1x1 [ -1 0 ; 0 0 ; 1 0 ] 24 b
11 5. 1x3 | 2x1x2 [ 0 1 ; 0 0 ; 0 1 ] 24 b
12 6. 1x3 | 1x1x1 [ 1 0 ; 0 0 ; -1 0 ] 24 b
13 7. 1x1 | 2x3x2 [ 0 1 ; 0 2 ; 0 1 ] 1. {

p
3}

14 8. 1x2 | 2x2x1 [ 0 1 ; 1 1 ; 1 0 ] 16 b {
p
2}

15 9. 1x2 | 1x2x2 [ 1 0 ; 1 1 ; 0 1 ] 16 b {
p
2}

16 10. 1x1 | 1x1x1 [ 1 0 ; 2 0 ; 1 0 ] 1.

The itags are shown in the header line 4. With K02 the outgoing index, it has the trailing
conjugate flag '*'. Since q-directions need to be preserved, when setting itags via setitags
there is no need to specify the trailing asterisk with K02 in line 2 (if trailing asterisks had been
specified, these would be ignored).

The norm in line 5 shows ∥A∥= 4, i.e., ∥A∥2 = tr(11) = 16, which is consistent with the full
Hilbert space dimension reflected in the dimensions [4 16 4] of A in the same line. The square
root factors to the very right, as always, are just reminders of the tweaked normalization with
the w-matrix [cf. Eq. (19)], so that the reduced matrix elements read 1., as one may expect for
a normalized mapping of state space, represented as a sliced-up identity matrix in multiplet
space. For example, in line 13, the factor

p
3 [which is due to having the fused multiplet

q = 2S = 2 of dimension 3] is split off into the w-matrix, such that the RMT can read 1. When
the RMT has dimensions > 1, this shows the size of that RMT in bytes instead of its value.
For example, for the 1x2[x1] RMT in line 8, 2 * (8 bytes for double) = 16 b. The trailing
singleton dimensions in the RMT on index 3 are not shown (second column).

With the 2-site Hilbert space described by A, one can now proceed to compute matrix
elements in the combined many-body state space. Consider, for example, the spin interaction
S12 ≡ A†(S†

1 · S2)A when cast into the basis A [see Fig. 10(d) or also Fig. 9 with (Z)F → S for
pictorial representations]

17 S12 = contract(A,'!2*',{S,'-op:K01','*',{A,S,'-op:^s'}}) (48)
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18 Q: 2x { 2 x 2 } having 'A,SU2' { K02, K02* }
19 data: 2-D double (288) 4 x 4 => 6 x 6 @ norm = 0.866
20

21 1. 3x3 | 1x1 [ 0 0 ; 0 0 ] 72 b
22 2. 1x1 | 3x3 [ 0 2 ; 0 2 ] 0.25 {

p
3}

23

24 >> S12.data{1}
25

26 0 0 0
27 0 -0.7500 0
28 0 0 0

Before explaining the compact semantics of the contraction in Eq. (48), the output in QSpace
S12 is examined. As expected for the operator S†

1 · S2, there are only matrix elements at half-
filling in the above display for S12, having q1 = 0 for the first symmetry label. More restrictive
still, non-zero matrix elements can only derive from the half-filled space on either site. The
respective tensor product of two spin-halfs gives one singlet (q2 = 0) and one triplet state
(q2 = 2S = 2). The triplet state is represented by the second record in line 22 which has
〈S†

1 · S2〉 = 0.25 as expected. The singlet across both sites is buried within the first record in
line 21 where it appears as the second entry (line 27) and carries the value 〈S†

1 ·S2〉= -0.7500,
as expected for the singlet. In the global half-filled sector, there are two other states in the
scalar sector q=[0 0], namely the combination of an empty at site 1 with completely filled at
site 2, or vice versa. Their expectation value 〈S†

1 ·S2〉= 0, thus corresponding to the other two
zero entries along the diagonal in lines 26 and 28. Because they are part of the same global
symmetry sector, they also need to appear here within the same RMT indexed by n as in Eq. (2).
This results in the RMT of dimension 3× 3 in lines 26–28. Since the Hamiltonian preserves
spin symmetry, the matrix elements of S12 must already be in a diagonal representation, as
seen above, indeed.

Contraction semantics The nested contraction in Eq. (48) consists of three levels, based on
the pairwise contraction pattern fixed by adding brackets to S12 = A† (S†

1 · (S2 A)),

S12 = contract(A,'!2*', {S,'-op:K01','*', {A, S,'-op:^s'}
︸ ︷︷ ︸

≡C2

}

︸ ︷︷ ︸

≡C1
︸ ︷︷ ︸

≡C0

) (49)

[see Fig. 10(d) or also Fig. 9 with (Z)F → S for pictorial representations]. The underlying
MEX routine contractQS supports nested cell structures based on pairwise contractions, also
referred to as a contraction pattern. With this, one may contract any arbitrary number of
tensors in a single call to contract (the Matlab wrapper routine contractQS). For any included
pairwise contraction, the two involved tensors can be either an existing QSpace specified as
argument, or another cell {. . .} thus adding another recursive ‘level’ to the contraction. The
latter indicates a nested contraction that must be carried out first, so its result can be used.
If further cells are encountered, contractQS proceeds recursively through the nested calls as
they are encountered. Eventually, at the deepest level of any set of nested calls must be two
QSpace objects to be contracted [like with C2 in Eq. (49)] which then is carried out first. Each
QSpace input with empty itags may have an option that assigns itags on the fly, typically via
'-op:..' as above. Each QSpace or cell also accepts an option that specifies what indices
(not) to contract and whether to take the conjugate. This option is specified via a compact
string with the format [[!]cidx][*] where terms in square brackets are optional. The term
cidx represents a compact string that explicitly specifies which indices to contract (or not
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to contract in the presence of the leading '!'). If cidx is empty, an implicit auto-contract
searches for all matching indices based on their itags. The trailing * takes the conjugate of
the preceding QSpace or cell. For an explanation of all options available for contractions, see
help contractQS, or equivalently, contractQS -h.

The nested cell structure, as provided by the input to contractQS, fully determines the
order of contractions. Specifically, QSpace does not optimize or restructure the order of con-
tractions. The optimal order of contractions is thus left for the user to determine. In any
contraction like T12 ≡ T1 ∗ T2, the non-contracted, i.e., kept indices of the first tensor T1 are
collected before the ones in the paired up T2, while maintaining their original order. This holds
for any pairwise construction in the nested structure provided to contractQS. This way, the
structure of the input to contractQS also fully determines the index order of the final result.

⟨A | ̂f †
1 ⋅ ̂f2 |A⟩K2

≡

(a) (b) (c) (d)

FF*

K′ 1 K′ 2

K1 K2A*

A K′ 1 K′ 2 F†
1 (ZF )2A K′ 2

K1 K2A*

σ2

σ′ 2

σ2

op
op

C2 C1 C0

F*

A*

(ZF )2A

K1 K2

1

2

3

1

2

3Z

Figure 9: Computing the matrix elements for the fermionic hopping f̂ †
1 · f̂2 in the

combined basis K2 corresponding to the nested cell contraction in (50). The contrac-
tion includes four tensors, as shown in (b). By taking the conjugate of the tensor F1,
i.e., F acting on K1 ≡ σ1, similar to Fig. 8 again the up/down reflected mirror image
is drawn for F∗. This is emphasized by the gray line with a rotating arrow and the
reverted index order 1 and 2. Auto-contraction based on itags automatically links
the indices correctly to take the transpose for the Hermitian conjugate F†

1 overall.
Since F2, i.e., F applied to σ2, acts on |A〉 first [panel (b)], the operator line op leads
to a crossing of the line σ2 below F2, indicated by the blue symbol. Because the oper-
ator line op carries an odd charge parity, this crossing gives rise to a fermionic swap
gate [33]. Here this translates into the parity operator Z (blue) applied to σ2 at the
location of the blue symbol. This is equivalent to taking F → ZF for site 2. If spin
operators S†

1 ·S2 had been considered instead of the fermionic operators f̂ †
1 · f̂2 here,

the precise location of the line crossing (above or below F2→ S2) would be of no fur-
ther importance because the spin operators carry an even charge parity on op (hence
they also commute, S†

1 · S2 = S2 · S
†
1). The nested cell contraction in (50) gives the

sequence of pairwise contraction indicated in panels (b-d). The contractions C2, C1,
and C0 highlighted by the gray shaded area are with reference to Eq. (49). The last
contraction C0 in panel (d) gives the resulting scalar operator in the state space K2.

Returning to the example in Eq. (49), the innermost cell C2 occurs at nested contraction
level 2. It is contracted first. Since S does not have any itags assigned yet (after all, it can
be applied to any site), they are assigned on the fly by the provided ‘hint’ whose semantics
is along the lines of a simplified regular expression: by specifying '-op:..', the tensor S is
assumed to be an operator, i.e., of rank 2 or 3, that acts on a particular leg on the other paired
up tensor in the contraction (here A in C2). By looking for an itag that starts with s (denoted
by ^s; see C++ std::regex for more on this syntax), in the present case, this is sufficient to
uniquely identify leg s02 on A. In this sense, the syntax in the contraction internally assigns on
the fly the itags {'s02','s02*','op'} to the operator S for this particular contraction. Based
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on these itags then, QSpace auto-contracts this spin operator onto s02 of A. The temporary
itags in S that are not contracted, are inherited by and kept with the temporary tensor C2.

Given C2 as a temporary object in memory, the next cell to be contracted is C1, at nested
contraction level 1. Analogous to C2, this now contracts S onto K01. More precisely, because of
the presence of the '*' option, this applies the conjugate, and hence effectively the Hermitian
conjugate and thus the dagger of S onto K01. The subsequent auto-contraction in C1 also
contracts the assigned default operator itag 'op' for both instances of 'S'. Overall, therefore
this contracts S†

1 · S2.
The last contraction C0 at base level 0 uses the temporary QSpace tensor C1. The result

out of C0 is returned and assigned to S12 (technically, C0 is already generated in the memory
space of the output S12 to avoid copying objects). For this last contraction, however, all indices
can be paired up, and hence auto-contraction would contract them all. To avoid this, QSpace
introduces the ‘not’ semantics '!...'. For example, here by specifying '!2..' after the first
operator, this indicates that index 2 of that operator (here referring to the combined state
space K02) shall not be contracted and thus left open, even though the itags could be paired
up, in principle. Finally, the trailing * indicates also to take the conjugate tensor of A. This
corresponds to bra states, and therefore concludes the calculation of the matrix elements in
the combined state space K02 of sites 1 and 2.

Completely analogous to the spin interaction above, one can also compute the matrix ele-
ments for the fermionic hopping across sites 1 and 2, T12 ≡ f †

1 · f2 → F∗1 · (ZF)2,

29 >> T12 = contract(A,'!2*',{F,'-op:K01','*',{A,(Z*F),'-op:^s'}}); (50)

This contraction is the same as in (48), except for the operators acting on the two sites, sub-
stituting (S,S) → (F, Z*F). Here by having fermionic operators, one needs to incorporate
fermionic signs [33, 50]. As a short remnant from a Jordan Wigner string for the nearest-
neighbor hopping here, the fermionic parity operator Z is applied onto the second F operator.
In terms of fermionic order, this adopts the convention that the first site acts on the vacuum
state first, followed by the second site, etc. Hence similar to (42), as f1 needs to be pulled
past any f †

2 when computing matrix elements in Fock space, it leaves a trail of parity operators
(here to be applied onto f2 from the left). In the pictorial representation of Fig. 9, the cross-
ing [33, 50] of the operator line op with σ2 is precisely the location where the parity gate Z
needs to be applied if the local operator has a fermionic character. This results in S→ ZF for
the operator acting on site σ2. Adding the Hermitian conjugate to T12, one obtains a typical
Hamiltonian term

30 >> H12 = T12 + T12'
31

32 Q: 2x { 3 x 2 } having 'A,SU2' { K02, K02* }
33 data: 2-D double (448) 7 x 7 => 11 x 11 @ norm = 4
34

35 1. 2x2 | 2x2 [ -1 1 ; -1 1 ] 32 b {
p
2}

36 2. 3x3 | 1x1 [ 0 0 ; 0 0 ] 72 b
37 3. 2x2 | 2x2 [ 1 1 ; 1 1 ] 32 b {

p
2}

It is hermitian, as can be explicitly checked by computing norm(H12-H12’), which yields 0.
When looking at the overall dimensions of H12, one realizes a subtlety: the combined Hilbert
space for two spinful fermionic levels has a dimension of 16, yet H12 shows a dimension of 11
x 11 in line 33. Apparently, 5 out of 16 states went ‘missing’. The only way this can occur is
that these belong to symmetry sectors of H12 that represent zero blocks, i.e., have Frobenius
norm below or comparable to numerical double precision noise (individual states cannot be
missing within otherwise present symmetry sectors). For the efficiency of a tensor library,
such zero-blocks are not stored by default. They are kept nevertheless, however, in QSpace
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for scalar operators (cf. skipZerosQS). With diagonal zero blocks absent here, nevertheless,
these sectors did not arise out of the contraction itself. Indeed, this is a consequence of the
symmetry sectors present in the input tensors of the contraction.

From the one-particle picture, there are two spin-degenerate single-particle levels for the
Hamiltonian H12 above at energies ϵ± = ±1. When building the many-body state space for
this, the ground state represents the doubly-filled level ϵ− at energy E0 = −2. It corresponds
to a half-filled state and hence belongs to the symmetry sector q = [0 0] (line 36). Adding or
removing particles then gives the many-body excitation spectrum E ∈ {−2,−1,0, 1,2} (e.g.,
see first column in lines 64–73 below). Here the completely empty or filled sectors ([±2 0],
both 1-dimensional) are missing in H12, since indeed, these have hopping matrix elements
equal to zero. By comparing to the symmetry sectors on A in lines 7–16 [or equivalently,
but more readable, by comparing to the output of E2 in line 38 below], one finds that the
remaining symmetry sector that is missing is ([0 2]). One also quickly realizes why: this is
the triplet state at half-filling (having S = 2/2 = 1). Indeed, with an up-spin on each site,
spin-preserving hopping is impossible. This adds up to the total of 1 + 1 + 3 = 5 ‘missing’
states, or correspondingly, 3 symmetry sectors. They may be added to H12 by an infinitesimal
(with the value zero also permitted) to also include all-zero eigenvalue blocks. Since H12 has
non-diagonal RMTs, eigenvalue decomposition yields,

38 >> E2=getIdentity(A,2);
39 [U12,E12,I12] = eig( H12 + 0*E2 );

Here eig is a wrapper to the MEX routine eigQS. Line 39 adds the identity operator of the
full state space on leg 2 in A, i.e., K02, with weight zero. Being a scalar operator, the resulting
diagonal zero-blocks are kept. The reference to the A-tensor ensures a complete state space by
construction. The output of the above can be inspected, as usual, by simply typing the object’s
name,

40 >> U12
41 Q: 2x { 6 x 2 } having 'A,SU2' { K02, K02* }
42 data: 2-D double (784) 10 x 10 => 16 x 16 @ norm = 4
43

44 1. 1x1 | 1x1 [ -2 0 ; -2 0 ] 1.
45 2. 2x2 | 2x2 [ -1 1 ; -1 1 ] 32 b {

p
2}

46 3. 3x3 | 1x1 [ 0 0 ; 0 0 ] 72 b
47 4. 1x1 | 3x3 [ 0 2 ; 0 2 ] 1. {

p
3}

48 5. 2x2 | 2x2 [ 1 1 ; 1 1 ] 32 b {
p
2}

49 6. 1x1 | 1x1 [ 2 0 ; 2 0 ] 1.
50

51 >> E12
52 Q: 2x { 6 x 2 } having 'A,SU2' { K02, K02* }
53 data: 2-D double (704) 6 x 10 => 10 x 16 @ norm = 4
54

55 1. 1x1 | 1x1 [ -2 0 ; -2 0 ] 0.
56 2. 1x2 | 2x2 [ -1 1 ; -1 1 ] 16 b {

p
2}

57 3. 1x3 | 1x1 [ 0 0 ; 0 0 ] 24 b
58 4. 1x1 | 3x3 [ 0 2 ; 0 2 ] 0. {

p
3}

59 5. 1x2 | 2x2 [ 1 1 ; 1 1 ] 16 b {
p
2}

60 6. 1x1 | 1x1 [ 2 0 ; 2 0 ] 0.
61

62 >> I12.ee
63

64 -2.0000 1.0000
65 -1.0000 2.0000

55



SciPost Physics Submission

66 -1.0000 2.0000
67 0.0000 1.0000
68 0.0000 1.0000
69 0.0000 3.0000
70 0.0000 1.0000
71 1.0000 2.0000
72 1.0000 2.0000
73 2.0000 1.0000

The columns of U12 encode the eigenstates that bring H12 into diagonal form E12. The latter
is stored in compact diagonal format (storing the diagonal only for each RMT as a row vector,
as seen by the RMT dimensions in the second column). The compact diagonal format can
be expanded to a regular diagonal matrix via diag(E12). As seen from E12, there are three
symmetry sectors that have zero blocks (all of them containing a single multiplet, which thus
prints the 0. to the right).

The full eigenspectrum is provided in plain numeric format with the info structure IS
returned as third argument. The first column in I12.ee in lines 64–73 shows the many-body
spectrum E ∈ {−2,−1, 0,1,2} as discussed above. Each row represents a particular multiplet.
The combined multiplet dimension over all symmetries, i.e., the eigenenergy’s degeneracy is
specified in the second column. In the absence of non-abelian symmetries, the second column
is omitted since in that case it would contain only trivial 1’s. In the example here, the second
column adds up to 16. This confirms the full Hilbert space dimension.

5.1.1 Changing local state space or symmetries

In the above discussion, the overall symmetry was specified exactly once, namely in Eq. (31)
which defines the type of ‘site’ to use. Since symmetries are global, all symmetries to be
included need to be defined there once and for all. If one were to switch to a different symmetry
combination, line (31) is the only one that needs to be changed for the entire subsequent
discussion. For example, one may use the same fermionic model, yet with NC=1→ 3 fermionic
channels (flavors),

1 [F,Z,S,IS]=getLocalSpace('FermionS','Acharge,SU2spin,SUNchannel','NC',3);
2 [F,Z,S,IS]=getLocalSpace('FermionS','Acharge,SU2spin,SU3channel'); % equivalent

The local state space of a site now consists of dloc = 43 = 64 states which can be reduced to
an effective d∗loc = 10 multiplets, e.g., as seen by inspecting the identity operator [cf. (32)],

3 >> IS.E
4

5 Q: 2x {10 x 4 } having 'A,SU2,SU3' { +- }
6 data: 2-D double (1120) 10 x 10 => 64 x 64 @ norm = 8
7

8 1. 1x1 | 1x1 1x1 [ -3 0 00 ; -3 0 00 ] 1.
9 2. 1x1 | 2x2 3x3 [ -2 1 10 ; -2 1 10 ] 1. {

p
6}

10 3. 1x1 | 1x1 6x6 [ -1 0 20 ; -1 0 20 ] 1. {
p
6}

11 4. 1x1 | 3x3 3x3 [ -1 2 01 ; -1 2 01 ] 1. {
p
9}

12 5. 1x1 | 2x2 8x8 [ 0 1 11 ; 0 1 11 ] 1. {
p
16}

13 6. 1x1 | 1x1 6x6 [ 1 0 02 ; 1 0 02 ] 1. {
p
6}

14 7. 1x1 | 4x4 1x1 [ 0 3 00 ; 0 3 00 ] 1. {
p
4}

15 8. 1x1 | 3x3 3x3 [ 1 2 10 ; 1 2 10 ] 1. {
p
9}

16 9. 1x1 | 2x2 3x3 [ 2 1 01 ; 2 1 01 ] 1. {
p
6}

17 10. 1x1 | 1x1 1x1 [ 3 0 00 ; 3 0 00 ] 1.
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Here every symmetry sector on each of the 2 legs in the total of 10 records carries 4 symmetry
labels q ≡ (q1, q2, q3, q4) ≡ (q1 q2 q3q4), as also indicated with the dimensions 2x {10 x 4}
in line 5. Based on the order of symmetries requested with getLocalSpace, the first sym-
metry label describes the filling relative to half-filling. Given NC=3 flavors, this has the range
q1 ∈ {−3,−2, . . . , 3} from empty to completely filled, respectively. The second symmetry label
describes SU(2) spin, q2 = 2S, with the largest spin multiplet given by q2 = 3 (line 14), i.e.,
spin S = 3/2. It derives from the spin-half for each half-filled level, and hence has combined
symmetry labels [0 3 00]. The last two symmetry labels (q3q4) describe the SU(3) channel
or flavor symmetry. The largest SU(3) multiplet above (11)≡ 8 in line 12 contains 8 states
(hence referred to as octet; for SU(3) this is also the adjoint representation). Having combined
symmetry labels [0 1 11], again this describes states at half-filling. With NC=3 being odd, half-
filling necessarily has a non-zero spin, here 2S = 1. Hence the combined multiplet dimension
in [0 1 11] is 2× 8= 16 states (see CGT dimensions in line 12).

The QSpace displays as the ones above are just for information. Their understanding re-
quires a rudimentary understanding of the symmetries used, including their labeling structure.
The display is generated automatically by QSpace. Looking more closely at the individual en-
tries permits simple consistency checks like the ones above. This ensures that one has a good
understanding of the tensors under consideration.

Once a single site is defined with the symmetries employed, one can proceed identically
to the earlier case of a single flavor to build a many-body state space. For example, two sites
can be combined identically as in (47)

18 >> A=getIdentity(Z,Z,[1 3 2]);
19 >> A=setitags(A,{'K01','K02','s02'}) (51)

In the present case, however, this results in

20 A =
21

22 Q: 3x {258 x 4 } having 'A,SU2,SU3' A-matrix, { K01, K02*, s02 }
23 data: 3-D double (38.08k) 10 x 260 x 10 => 64 x 4,096 x 64 @ norm = 64
24

25 1. 1x1 | 1x1x1 1x1x1 [ -3 0 00 ; -6 0 00 ; -3 0 00 ] 1.
26 2. 1x2 | 1x2x2 1x3x3 [ -3 0 00 ; -5 1 10 ; -2 1 10 ] 16 b {

p
6}

27 3. 1x2 | 2x2x1 3x3x1 [ -2 1 10 ; -5 1 10 ; -3 0 00 ] 16 b {
p
6}

28 4. 1x1 | 2x1x2 3x3x3 [ -2 1 10 ; -4 0 01 ; -2 1 10 ] 1. {
p
3}

29 5. 1x3 | 1x1x1 1x6x6 [ -3 0 00 ; -4 0 20 ; -1 0 20 ] 24 b {
p
6}

30 : ...
31 117. 1x8x1 @2 | 2x1x2x1 8x8x8x2 [ 0 1 11 ; 0 0 11 ; 0 1 11 ] 128 b {

p
8}

32 138. 1x12x1 @2 | 2x3x2x1 8x8x8x2 [ 0 1 11 ; 0 2 11 ; 0 1 11 ] 192 b {
p
24}

33 : ...
34 257. 1x2 | 1x2x2 1x3x3 [ 3 0 00 ; 5 1 01 ; 2 1 01 ] 16 b {

p
6}

35 258. 1x1 | 1x1x1 1x1x1 [ 3 0 00 ; 6 0 00 ; 3 0 00 ] 1.

As compared to the A-tensor for NC=1 in (47) and its output following line 3, the fusion of two
sites here leads to considerably more entries (258 vs. 10 earlier). By default, the listing is
truncated, strongly so in the present case, skipping records 6–256 in lines 30–33, except for
two largest entries, either in size or outer multiplicity. Lines 31–32 show records 117 and 138,
both of which are entries with outer multiplicity M = 2, denoted via “@2” with the dimensions
of the RMTs. This outer multiplicity is also reflected in the trailing dimensions of the respective
CGTs [e.g., having a trailing “x2” for the CGTs for SU(3), as in 8x8x8x2, while having no OM
with the CGTs for SU(2), hence showing a trailing “x1” with their dimensions, as in 2x1x2x1].
To display all records in A, one can type display(A,'-f'). The overall tensor dimensions in
the header (line 23) are as expected, fusing 64× 64→ 4, 096 states. In terms of multiplets,
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this fuses 10×10→ 260 multiplets, total which is about an order of magnitude smaller. From
the header in line 23 still, the norm is given by ∥A∥ =

p

4,096 = 64 also reflecting the fused
state space dimension. While from the display of the identity for a single site in lines 3–17
all input multiplets have unique symmetry labels showing an RMT size of 1x ..., record 138
(line 32) here reports 12 multiplets in the fused sector [0 2 11]. This combines a spin S = 1
with an SU(3) multiplet (11), such that these multiplets contain 3 × 8 = 24 states each (cf.
also w-factor to the very right).

The other commands earlier with NC=1, such as the spin interaction or fermionic hopping,
can be used here also for NC=3 identically without any change. Hence with the symmetries
only specified at the very beginning of a setup with getLocalSpace, the actual tensor network
commands can be implemented the same way irrespective of the symmetry setting, whether
abelian or non-abelian symmetries were used, whether multiple symmetries are used in par-
allel, or just individual ones, or no symmetry at all. Hence once the local state space with
the desired symmetries is defined, the subsequent code can proceed nearly as if there had
been no symmetries at all. This allows one to focus on tensor network algorithms without
having to worry much about symmetries, while fully exploiting complex symmetry settings,
nevertheless.

Further increasing the symmetry for NC=3 in line 1 above to symplectic (e.g., by having
particle/hole symmetry on a bipartite lattice as well as SU(NC) channel symmetry [8]),

36 [F,Z,S,IS]=getLocalSpace('FermionS','SU2spin,SpNchannel','NC',3);
37 [F,Z,S,IS]=getLocalSpace('FermionS','SU2spin,Sp6channel'); % equivalent (52)

As seen from the fermionic parity (or equally from the identity in IS.E),

38 Z =
39 Q: 2x { 4 x 4 } having 'SU2,Sp6' { +- }
40 data: 2-D double (448) 4 x 4 => 64 x 64 @ norm = 8
41

42 1. 1x1 | 4x4 1x1 [ 3 000 ; 3 000 ] -1. {
p
4}

43 2. 1x1 | 3x3 6x6 [ 2 100 ; 2 100 ] 1. {
p
18}

44 3. 1x1 | 2x2 14x14 [ 1 010 ; 1 010 ] -1. {
p
28}

45 4. 1x1 | 1x1 14x14 [ 0 001 ; 0 001 ] 1. {
p
14}

in the symplectic case the local state space of d = 64 states has been reduced to an effective
d∗ = 4 multiplets. There are still a total of four symmetry labels here to identify a multiplet,
q = (q1 q2q3q4), but the split up changed. The first label q1 = 2S now specifies the SU(2) spin
multiplet. Since Sp(6) is a rank r= 3 symmetry, it carries the remaining three labels (q2q3q4).
The scalar 000≡ 1 is shown with line 42, the defining 100≡ 6 in line 43. The largest Sp(6)
muliplet occurs with line 45, namely 001≡ 14. Note that Sp(6), like the leading spin SU(2),
is self-dual. The annihilation operator

46 F =
47 Q: 3x { 6 x 4 } having 'SU2,Sp6' operator, { +-- }
48 data: 3-D double (672) 4 x 4 x 1 => 64 x 64 x 12 @ norm =

p
384

49

50 1. 1x1 | 3x4x2 6x1x6 [ 2 100 ; 3 000 ; 1 100 ] 1.15470 {
p
18}

51 2. 1x1 | 4x3x2 1x6x6 [ 3 000 ; 2 100 ; 1 100 ] 2.44949 {
p
4}

52 3. 1x1 | 2x3x2 14x6x6 [ 1 010 ; 2 100 ; 1 100 ] -1.73205 {
p
28}

53 4. 1x1 | 3x2x2 6x14x6 [ 2 100 ; 1 010 ; 1 100 ] -2.16025 {
p
18}

54 5. 1x1 | 1x2x2 14x14x6 [ 0 001 ; 1 010 ; 1 100 ] -2.44949 {
p
14}

55 6. 1x1 | 2x1x2 14x14x6 [ 1 010 ; 0 001 ; 1 100 ] 1.73205 {
p
28}

now has become an irop with (NC=3) × 4 = 12 components (line 48) that transforms like a
single multiplet in the symmetry sector [1 100], consistently also of dimension 2 × 6 = 12.
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Each of these components contributes equally to the norm ∥F∥2 = tr(F†F) = 12 ∗ 26−1 = 384
(line 48). The SU(2) spin operator acts trivially in the symplectic sector having 000,

56 S =
57 Q: 3x { 3 x 4 } having 'SU2,Sp6' operator, { +-- }
58 data: 3-D double (336) 3 x 3 x 1 => 50 x 50 x 3 @ norm =

p
72

59

60 1. 1x1 | 4x4x3 1x1x1 [ 3 000 ; 3 000 ; 2 000 ] 1.936491 {
p
4}

61 2. 1x1 | 3x3x3 6x6x1 [ 2 100 ; 2 100 ; 2 000 ] -1.414214 {
p
18}

62 3. 1x1 | 2x2x3 14x14x1 [ 1 010 ; 1 010 ; 2 000 ] -0.866025 {
p
28}

The spin sectors S = 0 are absent since these correspond to zero blocks. The norm of the
individual RMTs in lines 60–62 already reflect the Casimir for the respective local spin, hav-

ing values (
q

15
4 ,−
p

2,
q

3
4), and thus ±
p

S(S + 1) for q1 = 2S ∈ {3, 2,1}. This emphasizes
the importance of the relative weight across the RMTs. The relative signs are also equally
important.

The tensor product space of two sites can proceed the same way as in the initial setting in
(47). The A-tensor now becomes

63 A =
64 Q: 3x {61 x 4 } having 'SU2,Sp6' A-matrix, { K01, K02*, s02 }
65 data: 3-D double (7.828k) 4 x 61 x 4 => 64 x 4,096 x 64 @ norm = 64
66

67 1. 1x4 | 1x1x1 14x1x14 [ 0 001 ; 0 000 ; 0 001 ] 32 b
68 2. 1x4 | 2x1x2 14x1x14 [ 1 010 ; 0 000 ; 1 010 ] 32 b
69 3. 1x4 | 3x1x3 6x1x6 [ 2 100 ; 0 000 ; 2 100 ] 32 b
70 4. 1x4 | 4x1x4 1x1x1 [ 3 000 ; 0 000 ; 3 000 ] 32 b
71 5. 1x1 | 1x1x1 14x84x14 [ 0 001 ; 0 002 ; 0 001 ] 1. {

p
84}

72 6. 1x2 | 2x1x2 14x14x14 [ 1 010 ; 0 010 ; 1 010 ] 16 b {
p
14}

73 : ...
74 35. 1x6 | 3x3x3 6x14x6 [ 2 100 ; 2 010 ; 2 100 ] 48 b {

p
42}

75 36. 1x6 | 4x3x2 1x14x14 [ 3 000 ; 2 010 ; 1 010 ] 48 b {
p
42}

76 : ...
77 60. 1x2 | 4x6x3 1x6x6 [ 3 000 ; 5 100 ; 2 100 ] 16 b {

p
36}

78 61. 1x1 | 4x7x4 1x1x1 [ 3 000 ; 6 000 ; 3 000 ] 1. {
p
7}

This reduces the full Hilbert space for the two sites from D = 642 = 4096 states to an effective
D∗ = 61 multiplets across 23 symmetry sectors [the latter can be seen from getIdentity(A,2)].
The matrix elements in (48) or (50) can be computed as previously without any change.

5.2 Swap operator for two spins S = 1

The following proceeds similar to the previous two-site examples [e.g., see (47)], yet switches
from a fermionic state space for a site to a spin S = 1 in SU(2),

1 [S,IS]=getLocalSpace('Spin','SU2',2); % 2S=2 => S=1
2 A=getIdentity(S,S,[1 3 2]); % may also use S → IS.E instead
3 A=setitags(A,{'K01','K02','s02'});

4 >> A
5

6 Q: 3x { 3 x 1 } having 'SU2' A-matrix, { K01, K02*, s02 }
7 data: 3-D double (336) 1 x 3 x 1 => 3 x 9 x 3 @ norm = 3
8

9 1. 1x1 | 3x1x3 [ 2 ; 0 ; 2 ] 1.
10 2. 1x1 | 3x3x3 [ 2 ; 2 ; 2 ] 1. {

p
3}

11 3. 1x1 | 3x5x3 [ 2 ; 4 ; 2 ] 1. {
p
5}
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The state space of two sites as described by A results in a total spin S ∈ {0,2, 4}/2 = {0,1, 2},
as expected. The following then computes the ‘interaction’ X that describes a plain swap of the
state space of two sites, also known as the permutation operator. This operator X is Hermitian
with eigenvalues ±1 since X 2 = 1. Its matrix elements can be obtained as follows,

12 A_= untag(A); % required for the next line
13 X = contract(A_,'13*',A_,'31'); % swap operator

14 >> X
15 Q: 2x { 3 x 1 } having 'SU2' { +- }
16 data: 2-D double (336) 3 x 3 => 9 x 9 @ norm = 3
17

18 1. 1x1 | 1x1 [ 0 ; 0 ] 1.
19 2. 1x1 | 3x3 [ 2 ; 2 ] -1. {

p
3}

20 3. 1x1 | 5x5 [ 4 ; 4 ] 1. {
p
5}

This swap operator X is already diagonal with eigenvalues ±1 as shown with the RMTs. The
itags in the contracted local indices were temporarily removed (untag in line 12), since the
swap operator contracts legs with otherwise different itags [see Fig. 10(a)]. Leaving the itags
in place would result in an error due to itag mismatch [cf. Fig. 10(c)]. The contraction in
line 13 uses compact index notation. It contracts legs 1 and 3, i.e., K1 ≡ σ1 and σ2 of the
conjugate of the first tensor with legs 3 and 1, i.e., σ2 and σ1 and thus reverse order, on the
second tensor (tensor conjugation leaves the order of legs intact).

Now an interaction of two spin-S sites can be decomposed into powers (S†
1 · S2)

n of the
spin-spin interaction, which forms a (non-orthonormalized) operator basis. Clearly, by only

⟨A |X12 |A⟩K2
≡

(a)

σ1 K′ 2

K2A*

A
σ2

(c)

σ2σ1

σ′ 2σ′ 1

X12 ≡

⟨A | (S†
1⋅S2)2 |A⟩K2

≡

(d) 

(e)

⟨A |S†
1 ⋅ S2 |A⟩K2

≡

σ1 K′ 2

K2A*

A
σ2

σ1 K′ 2

K2A*

A
σ2

SAS

SS1 =

SS2 =

U†U†

UU

=

(b)

SS*

SS*

SS*

Figure 10: (a) The swap operator X12 acting on two sites i ∈ {1, 2} with respective
local state spacesσi . (b) The swap operator is invariant under arbitrary unitary trans-
formations on the local state spaces since UU† = 1 annihilate each other along the
diagonal lines. (c) The matrix elements of the swap operator expressed in the com-
bined state space as described by an A-tensor. (d-e) The matrix elements of (S†

1 ·S2 )n

for n = 1 and 2, respectively. The contraction in (d) is the same as in Fig. 9, except
that spin operators are applied here. Similarly, also the conjugate operator for the
first site is drawn as the vertical mirror image as indicated by the gray circular arrow
and line. The intermediate object in the contraction indicated by the blue dashed
box in (d), referred to as SAS in the text (line 21), can be reused in (e).
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having 2S+1 RMTs, each of which is given by a single number, one reaches a complete basis for
n ≤ 2S. Hence powers n ≥ 2S + 1 can be expressed in terms of smaller powers. For example,
for spin-half sites the identity and the spin operator already exhaust the complete set of local
operators, since 22 = 1+ 3. For the swap operator here for S = 1 sites, this implies

X =
2
∑

n=0

an (S
†
1 · S2)

n . (53)

with coefficients an to be determined. The operator for n = 0 refers to the identity which has
the same QSpace structure as displayed with X in line 14, except that it has all +1’s in the right
column for the RMTs. The case n= 1 gives the Heisenberg interaction SS1 [cf. Fig. 10(d)],

21 >> SAS = contract(S,'-op:K01','*',{A,S,'-op:^s'});
22 >> SS1 = contract(A,'!2*',SAS)
23

24 Q: 2x { 3 x 1 } having 'SU2' { K02, K02* }
25 data: 2-D double (336) 3 x 3 => 9 x 9 @ norm =

p
12

26

27 1. 1x1 | 1x1 [ 0 ; 0 ] -2.
28 2. 1x1 | 3x3 [ 2 ; 2 ] -1. {

p
3}

29 3. 1x1 | 5x5 [ 4 ; 4 ] 1. {
p
5}

and n= 2 the quadrupolar term SS2 [cf. Fig. 10(e)],

30 >> SS2 = contract(A,'!2*',{S,'-op:K01','*',{SAS,S,'-op:^s'}})
31

32 Q: 2x { 3 x 1 } having 'SU2' { K02, K02* }
33 data: 2-D double (336) 3 x 3 => 9 x 9 @ norm =

p
24

34

35 1. 1x1 | 1x1 [ 0 ; 0 ] 4.
36 2. 1x1 | 3x3 [ 2 ; 2 ] 1. {

p
3}

37 3. 1x1 | 5x5 [ 4 ; 4 ] 1. {
p
5}

Now by collecting the RMTs for n = 0, 1,2 , as well as for X in lines 18–20 into columns, one
can determine the coefficients an in Eq. (53),





1
−1
1





!
=





1 −2 4
1 −1 1
1 1 1









a0
a1
a2



 ⇒





a0
a1
a2



=





−1
1
1



 (54)

and therefore

X = −1+ S†
1 · S2 + (S

†
1 · S2)

2 . (55)

A simple countercheck confirms the coefficients in Eq. (55), indeed,

38 >> E2 = getIdentity(A,2);
39 >> X_ = -E2 + SS1 + SS2
40

41 Q: 2x { 3 x 1 } having 'SU2' { +- }
42 data: 2-D double (336) 3 x 3 => 9 x 9 @ norm = 3
43

44 1. 1x1 | 1x1 [ 0 ; 0 ] 1.
45 2. 1x1 | 3x3 [ 2 ; 2 ] -1. {

p
3}

46 3. 1x1 | 5x5 [ 4 ; 4 ] 1. {
p
5}

with norm(X_-X) returning numerical double precision noise < 10−14. This not being exactly
zero is due to the square root factors shown to the right. For this reason, X==X_ returns false.
The QSpace routine sameas(X,X_) based on norm(X_-X) returns true.
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Physical interpretation By using a simple swap operator on local state spaces of dimension
dloc = 3, an arbitrary 3-dimensional unitary U can be inserted as UU† into any of the two lines
in Fig. 10(a). This takes the interpretation of transforming the local state space for each site.
However, with X12 → (U ⊗ U)X12(U† ⊗ U†) = (UU† ⊗ 1)(1⊗ UU†)X12 = X12 being identical
to X [most easily seen by considering the pictorial representation in Fig. 10(a)], this implies
that the swap operation in the above Hamiltonian actually has an enlarged symmetry, namely
SU(dloc). For the case of the spin S = 1 here, this is the well-known SU(3) symmetric point
of the bilinear-biquadratic Heisenberg model for S = 1 at the phase boundary of the Haldane
phase [51,52].

5.3 Tweaking local state space

The local state space of a site is set up via a call to getLocalSpace, which has many standard
symmetry setups already implemented. Nevertheless, situations that may go beyond what is
already provided by getLocalSpace can arise. The typical way to proceed then is to tweak its
output starting from a symmetry setup that may be considered closest to the target setup.

To be specific, consider for example SU(2) spin-halfs with an additional two symmetric
orbital flavors, i.e., SU(2)spin⊗SU(2)orbital. This does not exist ready-made in getLocalSpace.
Two ways to deal with this situation are discussed below.

5.3.1 Project fermionic setup to spin model and complete operator basis

Starting from a spinfull fermionic model with NC=2 orbital flavors

47 [F,Z,S,IS]=getLocalSpace('FermionS','Acharge,SU2spin,SU2channel'); (56)

the state space can be inspected by Z or IS.E,

1 >> E=IS.E
2

3 Q: 2x { 6 x 3 } having 'A,SU2,SU2' { +- }
4 data: 2-D double (672) 6 x 6 => 16 x 16 @ norm = 4
5

6 1. 1x1 | 1x1 1x1 [ -2 0 0 ; -2 0 0 ] 1.
7 2. 1x1 | 2x2 2x2 [ -1 1 1 ; -1 1 1 ] 1. {

p
4}

8 3. 1x1 | 1x1 3x3 [ 0 0 2 ; 0 0 2 ] 1. {
p
3}

9 4. 1x1 | 3x3 1x1 [ 0 2 0 ; 0 2 0 ] 1. {
p
3}

10 5. 1x1 | 2x2 2x2 [ 1 1 1 ; 1 1 1 ] 1. {
p
4}

11 6. 1x1 | 1x1 1x1 [ 2 0 0 ; 2 0 0 ] 1.

Looking for the spin S = 1/2 sector at a filling of n = 1 particle on the site, this corresponds
to q1 = −1 relative to half-filling. This contains a single multiplet in line 7 which is thus the
one of interest. It can be projected by just picking this record from the identity using getsub,

12 >> q0=-1; i=find(Z.Q{1}(:,1)==q0); % finds record i=2. (line 7 above)
13 >> E=getsub(E,i) % reduces E to record(s) i
14

15 Q: 2x { 1 x 3 } having 'A,SU2,SU2' { +- }
16 data: 2-D double (112) 1 x 1 => 4 x 4 @ norm = 2
17

18 1. 1x1 | 2x2 2x2 [ -1 1 1 ; -1 1 1 ] 1. {
p
4}

Since now only a trivial single abelian symmetry sector is present in terms of charge, it can be
skipped (removed) as follows,

62



SciPost Physics Submission

19 >> E=rmAbelian(E,1)
20

21 E =
22 Q: 2x { 1 x 2 } having 'SU2,SU2' { +- }
23 data: 2-D double (112) 1 x 1 => 4 x 4 @ norm = 2
24

25 1. 1x1 | 2x2 2x2 [ 1 1 ; 1 1 ] 1. {
p
4}

26

27 >> clear F Z

The syntax in line 19 removes the symmetry at position 1 from E, i.e., the abelian U(1) charge.
Projecting to a single charge sector renders the fermionic operators irrelevant (line 27). The
spin operator, finally, can be projected the same way as the identity above,

28 >> S=getsub(find(S.Q{1}(:,1)==q0)); % having q0=-1 from line 12 above
29 >> S=rmAbelian(S,1)
30

31 S =
32 Q: 3x { 1 x 2 } having 'SU2,SU2' operator, { +-- }
33 data: 3-D double (112) 1 x 1 x 1 => 4 x 4 x 3 @ norm =

p
3

34

35 1. 1x1 | 2x2x3 2x2x1 [ 1 1 ; 1 1 ; 2 0 ] -0.866025 {
p
4}

which transforms like a S = q/2= 1 irop. This is the same spin operator as for a single
fermionic flavor [cf. (31), and subsequent display in lines 15ff] that acts trivially, i.e., like an
identity in the orbital space.

The pseudo-spin operator in the orbital space can be obtained from a complete operator
basis for the local state space. For its construction, one needs to obtain the tensor product
space in E with the dual of its state space as obtained by the 1 j symbol in line 36,

36 >> U=getIdentity(E,'-0');
37 >> X=getIdentity(U,1,U,2);
38 >> X=contract(U,'!1*',X,[2 1 3])
39

40 Q: 3x { 4 x 2 } having 'SU2,SU2' { +-- }
41 data: 3-D double (448) 1 x 1 x 4 => 4 x 4 x 16 @ norm = 4
42

43 1. 1x1 | 2x2x1 2x2x1 [ 1 1 ; 1 1 ; 0 0 ] 0.5 {
p
4}

44 2. 1x1 | 2x2x1 2x2x3 [ 1 1 ; 1 1 ; 0 2 ] 0.866025 {
p
4}

45 3. 1x1 | 2x2x3 2x2x1 [ 1 1 ; 1 1 ; 2 0 ] 0.866025 {
p
4}

46 4. 1x1 | 2x2x3 2x2x3 [ 1 1 ; 1 1 ; 2 2 ] 1.5 {
p
4}

The tensor product in line 37 derives from the fact that the full operator space of a state space
of dimension d is described by d2 ≡ d ⊗ d operators. However, the incoming dual state space,
i.e., primed index in X still needs to be reverted by contracting the same 1 j symbol in line 38, so
that X represents a standard operator [cf. Fig. 1]. The trailing permutation [2 1 3] restores
the operator index order +--, as seen in line 40. Having a dimension of 1x1x4 in terms of
multiplets (line 41), the object X is not an irop, though. Rather, it contains a (direct) sum
of four irops that span the complete operator space of a single site. This consists of the four
records in the above display, each of which represents an irop with a unique operator q-label:

• Record 1. (line 43) transforms like a scalar qop = [0 0]. Since this is the only operator
of this type and bearing in mind that X represents a complete operator basis, it must be
the identity operator up to the scale factor given by RMT value 0.5 shown to the right.
Via the tensor-product in getIdentity in line 37 each operator has Frobenius norm 1
which explains this factor, since ∥1

211(4)∥= 1.
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• Record 3. (line 45) represents an irop that transforms according to qop = [2 0]. This
identifies it as the spin operator like in line 35 above up to a sign (note that the sign
is irrelevant in bilinear products, as long as the same operator S is used consistently
throughout). Incidentally, in the present setting the value of its RMT 0.866025=

p
3

2 is
consistent already with both, the normalization of a spin-half operator (Ŝ2 = 3

4 11(4)), as
well as the normalization out of the tensor-product in getIdentity in line 37, having
∥Ŝ∥2 = tr(3

411(4)) = 3 representing three normalized operators, indeed.

• Record 2. (line 44) represents an irop that transforms according to qop = [0 2]. There-
fore this entry describes the pseudo-spin operator in orbital space.

• Record 4. (line 46), finally, represents an irop that transforms according to qop = [2 2].
As such this is a spin-orbit interaction ST up to a factor 2 when comparing to RMT value

of 1.5 to the standard SU(2) spin normalization
Æ

(Ŝ T̂ )2 =
p

Ŝ2 T̂2 = 3
4 11(4).

By construction, the above full operator basis in X permits one to extract all (other) irreducible
operators within the present symmetry setting. Here this includes the pseudo-spin operator T
in orbital space (choosing the same sign convention as in S),

47 >> T=-getsub(X,3)
48

49 Q: 3x { 1 x 2 } having 'SU2,SU2' { +-- }
50 data: 3-D double (112) 1 x 1 x 1 => 4 x 4 x 3 @ norm =

p
3

51

52 1. 1x1 | 2x2x3 2x2x1 [ 1 1 ; 1 1 ; 2 0 ] -0.866025 {
p
4}

The remaining last operator within the present symmetry setting is the spin-orbit term

53 >> ST= getsub(X,4)/2;
54

55 Q: 3x { 1 x 2 } having 'SU2,SU2' { +-- }
56 data: 3-D double (112) 1 x 1 x 1 => 4 x 4 x 9 @ norm = 1.5
57

58 1. 1x1 | 2x2x3 2x2x3 [ 1 1 ; 1 1 ; 2 2 ] 0.75 {
p
4}

The combination of these four irops that describe spinors of dimension 1+3+3+3×3= 16= 42

thus, indeed, exhausts the operator basis of given local state space.

5.3.2 Appending additional symmetries

Alternative to the previous projective approach, one may tweak the output of getLocalSpace
by adding other symmetries still. Starting with a plain SU(2) spin-half, one can manually add
an additional SU(2) symmetry, here to the identity operator returned by getLocalSpace. For
the example above, this starts here with the simpler spin model,

1 [S,IS]=getLocalSpace('Spin','SU2',1); % initial spin-half (q=2S=1)
2 E=addSymmetry(IS.E,'SU2','q',1)

3 E =
4 Q: 2x { 1 x 2 } having 'SU2,SU2' { +- }
5 data: 2-D double (112) 1 x 1 => 4 x 4 @ norm = 2
6

7 1. 1x1 | 2x2 2x2 [ 1 1 ; 1 1 ] 1. {
p
4}

By default, addSymmetry appends the specified symmetry in the scalar irep q = 0. By explicitly
specifying q = 1 in line 2, this adds the second SU(2) symmetry in the form of an S = 1/2
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multiplet. It is interpreted here as SU(2) symmetric orbital. The local state space therefore be-
comes 2×2= 4 dimensional as seen in line 5. Since addSymmetry always applies a square-root
factor of the multiplet dimension added, the identity E already has the correct normalization
(which matter of fact, is the motivation as to why addSymmetry behaves this way).

Next, the spin operators are tweaked. First, this generates the orbital spin operator T in
line 8 based on S, before adapting the spin operator S itself in line 9,

8 T=addSymmetry(S,'SU2','pos',1,'q',1); % `spin' operator in orbital sector
9 S=addSymmetry(S,'SU2','q',1); % adapts existing spin operator

Line 8 uses the option 'pos',1 which inserts the new symmetry at location 1, i.e., prepends
the symmetry rather than appending it (see help addSymmetry for more detailed usage infor-
mation). The display of the operators above reads

10 T =
11 Q: 3x { 1 x 2 } having 'SU2,SU2' operator, { +-- }
12 data: 3-D double (112) 1 x 1 x 1 => 4 x 4 x 3 @ norm =

p
3

13

14 1. 1x1 | 2x2x1 2x2x3 [ 1 1 ; 1 1 ; 0 2 ] -0.866025 {
p
4}

15

16 S =
17 Q: 3x { 1 x 2 } having 'SU2,SU2' operator, { +-- }
18 data: 3-D double (112) 1 x 1 x 1 => 4 x 4 x 3 @ norm =

p
3

19

20 1. 1x1 | 2x2x3 2x2x1 [ 1 1 ; 1 1 ; 2 0 ] -0.866025 {
p
4}

which is consistent with the alternative approach earlier. With respect to the operator index
(index 3) the above shows that S (T) acts like a spin operator in the first (second) symmetry,
respectively, thus confirming SU(2)spin ⊗ SU(2)orbital in this order. Similarly to E above, the
operators S and T are again also already correctly normalized (

p
3 in header lines 12 and 18),

since, e.g., ∥S∥2 = tr( 1(2) ⊗ 3
41(2) ) = 3.

5.4 Local operators beyond getLocalSpace

The routine getLocalSpace returns a set of elementary operators that are representative of
the chosen site. Many operators can be derived in simple one-liners, as already shown earlier.
However, there are exceptions as already partly discussed in the previous section, e.g., when
generating the orbital pseudy spin operator T in line 47 or the spin-orbit operator TS in line 53
from a complete operator basis. This approach is reviewed once more in a more elaborate
example for orbital spin operators below, together with an alternative strategy for obtaining
local spin operators based on a Schrieffer-Wolff-like construction. Both represent instructive
approaches for generating additional local operators.

The following discussion is based on the fermionic state space for NC=2 orbitals in (56)
with a local Hilbert space of dloc = 42 = 16 states. The spin operator S for the entire fermionic
state space as returned by (56) reads

21 >> S =
22 Q: 3x { 3 x 3 } having 'A,SU2,SU2' operator, { +-- }
23 data: 3-D double (336) 3 x 3 x 1 => 11 x 11 x 3 @ norm =

p
12

24

25 1. 1x1 | 2x2x3 2x2x1 [ -1 1 1 ; -1 1 1 ; 0 2 0 ] -0.866025 {
p
4}

26 2. 1x1 | 3x3x3 1x1x1 [ 0 2 0 ; 0 2 0 ; 0 2 0 ] -1.41421 {
p
3}

27 3. 1x1 | 2x2x3 2x2x1 [ 1 1 1 ; 1 1 1 ; 0 2 0 ] -0.866025 {
p
4}
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As with the earlier symplectic example in the symplectic case, the norm of the individual

RMTs already reflect the Casimir for the respective local spin, having values (
q

3
4 ,
p

2,
q

3
4),

and thus
p

S(S + 1) for q1 = 2S ∈ {1, 2,1}. The normalization as well as the (relative) signs
of the records in the irop S are important. While the signs here are all the same, this is not
always the case, e.g., as seen in the earlier example. The global sign of any spin operator is
fixed after defining the sign of the spin operator in the defining representation. Furthermore,
since the spin operator is well-defined in the defining representation, it must be in any other
many-body state space derived from it. Hence the spin operator, representing ‘total spin’, is
well-defined and thus unique in any state space.

The spin operator above has irop labels qS =[0 2 0]. Based on (56) with q = (q1, q2, q3),
these symmetry labels are q1 for abelian U(1) charge, q2 = 2S for the spin SU(2), and q3 = 2S
for the orbital SU(2). As the irop labels qS show, the spin operator acts non-trivially only in
the SU(2) spin sector. There it reflects the adjoint representation (S = 1) that incorporates the
complete set of generators for that symmetry.

Complete operator basis Any local operator lives within the complete set of local operators.
While constructing the latter may appear overkill for specific local operators, this approach
is instructive, nevertheless. The complete operator basis Eop is built starting from the tensor
product of the local state space with its dual via a 1 j-tensor (line 28), followed by a contraction
of the same 1 j-tensor in the line below [using the local operators out of getLocalSpace as in
(56); same construction as in lines 36–38]

28 >> U = getIdentity(IS.E,'-0');
29 >> Eop = contract(getIdentity(U,1,U,2),2,U,'2*',[1 3 2])

30 Q: 3x {60 x 3 } having 'A,SU2,SU2' { +-- }
31 data: 3-D double (7.734k) 6 x 6 x 60 => 16 x 16 x 256 @ norm = 16
32

33 1. 1x1x6 | 1x1x1 1x1x1 [ -2 0 0 ; -2 0 0 ; 0 0 0 ] 48 b
34 2. 1x1x6 | 2x1x2 2x1x2 [ -1 1 1 ; -2 0 0 ; 1 1 1 ] 48 b {

p
4}

35 3. 1x1x3 | 1x1x1 3x1x3 [ 0 0 2 ; -2 0 0 ; 2 0 2 ] 24 b {
p
3}

36 4. 1x1x3 | 3x1x3 1x1x1 [ 0 2 0 ; -2 0 0 ; 2 2 0 ] 24 b {
p
3}

37 5. 1x1x2 | 2x1x2 2x1x2 [ 1 1 1 ; -2 0 0 ; 3 1 1 ] 16 b {
p
4}

38 6. 1x1 | 1x1x1 1x1x1 [ 2 0 0 ; -2 0 0 ; 4 0 0 ] 1.
39 : ...
40 59. 1x1x6 | 2x1x2 2x1x2 [ 1 1 1 ; 2 0 0 ; -1 1 1 ] 48 b {

p
4}

41 60. 1x1x6 | 1x1x1 1x1x1 [ 2 0 0 ; 2 0 0 ; 0 0 0 ] 48 b

By construction, Eop encodes all (dloc = 16)2 = 256 local operators. It represents 60 irops that
transform in a total of 24 different ireps, as seen from getIdentity(Eop,3). If one were to
project the local state space to a particular single multiplet, this would generate an effective
spin model. Only a global normalization of irops has to be fixed then.

For the full local state space, the spin operator as returned by getLocalSpace must also be
contained in Eop. A search for all records in Eop that have the symmetry labels qS =[0 2 0]
on the operator index 3 via getsub results in,

42 >> S_ = getsub(Eop,[0 2 0],3)
43

44 Q: 3x { 3 x 3 } having 'A,SU2,SU2' { +-- }
45 data: 3-D double (384) 3 x 3 x 3 => 11 x 11 x 9 @ norm = 3
46

47 1. 1x1x3 | 2x2x3 2x2x1 [ -1 1 1 ; -1 1 1 ; 0 2 0 ] 24 b {
p
4}

48 2. 1x1x3 | 3x3x3 1x1x1 [ 0 2 0 ; 0 2 0 ; 0 2 0 ] 24 b {
p
3}

49 3. 1x1x3 | 2x2x3 2x2x1 [ 1 1 1 ; 1 1 1 ; 0 2 0 ] 24 b {
p
4}
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It describes an operator subspace of three entries (having dimensions 1x1x3 for all RMTs)
which is solely due to having three QSpace records here. The spin operator can be built as
some linear superposition within that subspace. However, a priori, it is unclear how to obtain
the correct coefficients for this linear superposition as in lines 25–27 from the present setting.

The spin operator for the SU(2) spin symmetry is known, of course, because it is explicitly
returned by getLocalSpace. This has the benefit that one has a reference to compare various
approaches to. Suppose one needs the pseudo-spin operator in the local state space above
for the orbital degrees of freedom or the intertwined spin-orbit operator. These are no longer
available from getLocalSpace. For these, one needs to address the problem of how to make
the spin operator unique, at least up to a global scale factor. For this purpose, one may target
the spin operators more concretely, as discussed next.

Spin operators from second-order fermionic hopping An alternative route to generalized
‘spin operators’ is physically motivated by Schrieff-Wolff transformations, where a second-
order perturbation in the tunneling maps fermionic cotunneling to an effective ‘spin model’.
There with f̂i the complete set of local fermionic operators with i = 1, . . . , N f indexing all
flavors or flavor combinations, one needs to decompose the pool of operators { f̂ †

i f̂i′} into
irops. Hence rather than building the full operator space for the local state space, one can
constrain oneself to the operators obtained out of the bilinear F†⊗F, here with a Kronecker
rather than a dot-product on the irop indices.

Since F† as a conjugate operator has the irop index ingoing, this procedure is equivalent to
the construction of the complete operator basis in lines 28–29, except that one takes the irop
space of F, instead. Replacing IS.E in line 28 by F on leg 3, one obtains,

50 >> U_ = getIdentity(F,3,'-0');
51 Eop_ = contract(getIdentity(U_,1,U_,2),2,U_,'2*',[1 3 2])

52 Q: 3x { 4 x 3 } having 'A,SU2,SU2' { +-- }
53 data: 3-D double (448) 1 x 1 x 4 => 4 x 4 x 16 @ norm = 4
54

55 1. 1x1 | 2x2x1 2x2x1 [ -1 1 1 ; -1 1 1 ; 0 0 0 ] 0.5 {
p
4}

56 2. 1x1 | 2x2x1 2x2x3 [ -1 1 1 ; -1 1 1 ; 0 0 2 ] 0.866025 {
p
4}

57 3. 1x1 | 2x2x3 2x2x1 [ -1 1 1 ; -1 1 1 ; 0 2 0 ] 0.866025 {
p
4}

58 4. 1x1 | 2x2x3 2x2x3 [ -1 1 1 ; -1 1 1 ; 0 2 2 ] 1.5 {
p
4}

The spinfull NC=2 model here based on (56) has a combined total of N f = 2× 2 = 4 flavors.
Hence the pool of operators { f̂ †

i f̂i′} has 4×4= 16 entries. These are cast into three irops here
that span the full space of the operator pool, as seen from the overall dimensions 4 x 4 x 16
in line 53. By having RMTs of dimension 1x1 [x1] only, each record now corresponds to an
irop that is unique up to normalization.

The tensor Eop_ still needs to be contracted onto the two irop indices in F†F. By choosing
the SU(2) spin irop in line 56, one obtains the spin operator

59 >> x = getsub(Eop_,[0 2 0],3); % select spin operator having q=[0 2 0]
60 Sop = contract({F,'1*',F,1},'24',x,'21')

61 Q: 3x { 3 x 3 } having 'A,SU2,SU2' { +-- }
62 data: 3-D double (336) 3 x 3 x 1 => 11 x 11 x 3 @ norm =

p
12

63

64 1. 1x1 | 2x2x3 2x2x1 [ -1 1 1 ; -1 1 1 ; 0 2 0 ] -0.866025 {
p
4}

65 2. 1x1 | 3x3x3 1x1x1 [ 0 2 0 ; 0 2 0 ; 0 2 0 ] -1.41421 {
p
3}

66 3. 1x1 | 2x2x3 2x2x1 [ 1 1 1 ; 1 1 1 ; 0 2 0 ] -0.866025 {
p
4}

67



SciPost Physics Submission

This is precisely the spin operator returned by getLocalSpace in lines 21–27, already also with
the correct normalization, as confirmed by norm(S-Sop)≤ 10−14. The normalization can be
easily double-checked, bearing in mind that the spin operator returned by getLocalSpace de-
scribes the total spin of the local state space. For NC=2 fermionic channels with Si the spin oper-
ator for channel (orbital) i, this leads to ∥S∥2 = ∥S1+S2∥2 = 2∥S1∥2 tr(11(4)2 ) = 2·(3

42)·4= 12,
in agreement with line 62.

The present approach now also allows the extension to other generalized spin operators.
For example, one may choose the SU(2) pseudo-spin irop in the orbital sector (line 57),

67 >> x = getsub(Eop_,[0 0 2],3); % select pseudo-spin operator
68 Top = contract({F,'1*',F,1},'24',x,'21')

69 Q: 3x { 3 x 3 } having 'A,SU2,SU2' { +-- }
70 data: 3-D double (336) 3 x 3 x 1 => 11 x 11 x 3 @ norm =

p
12

71

72 1. 1x1 | 2x2x1 2x2x3 [ -1 1 1 ; -1 1 1 ; 0 0 2 ] -0.866025 {
p
4}

73 2. 1x1 | 1x1x1 3x3x3 [ 0 0 2 ; 0 0 2 ; 0 0 2 ] -1.41421 {
p
3}

74 3. 1x1 | 2x2x1 2x2x3 [ 1 1 1 ; 1 1 1 ; 0 0 2 ] -0.866025 {
p
4}

which shows the same RMT values as the previous spin operator 'Sop', or the spin-orbital
sector in line 58,

75 >> x = getsub(Eop_,[0 2 2],3); % select spin-orbit operator
76 STop = contract({F,'1*',F,1},'24',x,'21') / 2

77 Q: 3x { 4 x 3 } having 'A,SU2,SU2' { +-- }
78 data: 3-D double (448) 4 x 4 x 1 => 14 x 14 x 9 @ norm = 3
79

80 1. 1x1 | 2x2x3 2x2x3 [ -1 1 1 ; -1 1 1 ; 0 2 2 ] 0.75 {
p
4}

81 2. 1x1 | 1x3x3 3x1x3 [ 0 0 2 ; 0 2 0 ; 0 2 2 ] 0.866025 {
p
3}

82 3. 1x1 | 3x1x3 1x3x3 [ 0 2 0 ; 0 0 2 ; 0 2 2 ] 0.866025 {
p
3}

83 4. 1x1 | 2x2x3 2x2x3 [ 1 1 1 ; 1 1 1 ; 0 2 2 ] -0.75 {
p
4}

In the last case, the norm was adapted to yield the expected value ∥STop∥2 = 2 · 2 · (3
42)2 = 9,

having S = S1 + S2, T = T1 + T2, where Si and Ti are spin and orbital operators, respectively
with i = 1, 2 indexing either orbital or spin. The same factor 1/2 was already also encountered
earlier in a similar context with the operator ST on p. 64.

5.5 Building rank-5 PEPS tensor

Projected entangled pair states (PEPS [30, 34, 53, 54]) can be used to tile a tensor network
state in one or higher dimension. If a set of tensors is used to tile the lattice to infinity, this is
referred to as iPEPS (or iTEBD in 1D [55]). As with any lattice model, one needs to (i) define
the local state space of a site (in QSpace in terms of getLocalSpace), followed by (ii) an
initialization of the tensor network state as a whole. Assuming a 2D square lattice, an A-tensor
in iPEPS becomes a rank-5 tensor that combines the virtual indices left (L), top (T), right (R),
and bottom (B) with the local state space of a site (s) [cf. Fig. 11].
For example, starting with a local state space described by an SU(3) spin in the defining rep-
resentation (10)≡ 3 [cf. Eq. (15)],

1 >> [S,IS]=getLocalSpace('Spin','SU3','10');

one may proceed to initialize the rank-5 tensor as sketched in Fig. 11(a). Assuming, for sim-
plicity, that the state spaces on all virtual indices are the same, one nevertheless needs to
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Figure 11: Example for building rank-5 tensor for 2D PEPS, which ties the virtual
state space at the L(eft), T(op), R(ight), and B(ottom) with the local state space of a
site (s). Contracting the tensor decomposition in (a) based on rank-3 tensors yields
the rank-5 tensor in (b). Assuming periodic tiling of a 2D-PEPS based on a unit cell
comprised of a single tensor A, the state spaces L and R must match, yet with reverse
direction, and ditto for T and B.

make an initial choice for this state space. To this end, one may build some arbitrary but fixed
combination of symmetry sectors derived from the local state space E,

2 >> E=IS.E; U=getIdentity(E,'-0');
3 A2 = getIdentity(U,1,U,2);
4 E2 = getIdentity(U,1) + getIdentity(U,2) + getIdentity(A2,3);
5 E2.data=repmat({eye(2)},size(E2.data)); % 2 multiplets / symmetry sector

6 E2 =
7 Q: 2x { 4 x 2 } having 'SU3' { +- }
8 data: 2-D double (544) 8 x 8 => 30 x 30 @ norm =

p
30

9

10 1. 2x2 | 1x1 [ 00 ; 00 ] 32 b
11 2. 2x2 | 3x3 [ 01 ; 01 ] 32 b {

p
3}

12 3. 2x2 | 3x3 [ 10 ; 10 ] 32 b {
p
3}

13 4. 2x2 | 8x8 [ 11 ; 11 ] 32 b {
p
8}

Line 4 combines the local state space, its dual via the 1 j symbol U on index 2, and their fused
state space via A2 into an identity tensor E2. Since there is no overlap of symmetry sectors
of the terms added here, one can combine these spaces as a direct sum (⊕) simply by adding
them up. Line 5 then sets the dimension to two multiplets per symmetry sector by setting all
RMTs in E2 to eye(2) = 11(2).

With the state space E2 for all virtual indices assumed the same, one can combine two of
these, like L and T , via the tensor V as depicted in Fig. 11(a),

14 >> V=getIdentity(E2,E2);
15 X=getIdentity(V,3,E); % combine with local state space E

Since the fused state space in X as in Fig. 11(a) shall be contracted to the conjugate of V (which
then links to B and R), their dimensions need to be matched,

16 >> [Q3,dd]=getQDimQS(V,3);
17 [I,J]=matchIndex(X.Q{3},Q3);
18 for i=1:numel(I)
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19 s=size(X.data{I(i)});
20 X.data{I(i)}=randn([s(1:2), dd(J(i))]);
21 end

Here getQDimQS in line 16 returns the symmetry sectors (rows in Q3) and their respective
number of multiplets (integer vector dd) for leg 3 in V. Line 17 finds all matching sectors in X
on the third leg with the entries in Q3, returned as I and J, respectively. The loop then matches
the dimension on the third leg of the respective RMT to the one in V via dd, while randomizing
their content using randn. With this, all ingredients in Fig. 11(a) are defined and contractable.
For transparency, one may add itags now,

22 >> LT=setitags(V,{'L','T','LT'}); % L,T → LT
23 BR=setitags(V,{'B','R','BR'}); % B,R → BR
24 X =setitags(getsub(X,I),{'LT','s','BR'}); % getsub is optional here

The QSpace LT describes the upper tensor V in Fig. 11(a) that combines L and T . Similarly,
BR describes the lower tensor V that combines B and R (up to tensor conjugation, which will
reverse arrows in the contraction). Line 24 selects the subset of records in X that matched
BR (this step is optional since non-matching symmetry sectors drop out in the contraction
anyway), and also assigns itags. Based on the assigned itags, the contraction into the rank-5
tensor A5 in Fig. 11(b) can be carried out making use of auto-contraction,

25 >> A5=contract({LT,X3},BR,'*',[1 2 4 5 3]); % final permution to LTBRs index order
26 d2=getDimQS(E2);
27 A5=A5*(d2(end)/norm(A5));

28 A5 =
29 Q: 5x {85 x 2 } having 'SU3' { L, T, B*, R*, s }
30 data: 5-D double (39.26k) 8 x 8 x 8 x 8 x 1 => 30 x 30 x 30 x 30 x 3 @ norm = 30
31

32 1. 2x2x2x2 | 1x1x1x3x3 [ 00 ; 00 ; 00 ; 10 ; 10 ] 128 b
33 2. 2x2x2x2 | 1x1x3x3x3 [ 00 ; 00 ; 01 ; 01 ; 10 ] 128 b
34 3. 2x2x2x2 | 1x1x3x1x3 [ 00 ; 00 ; 10 ; 00 ; 10 ] 128 b
35 4. 2x2x2x2 | 1x1x3x8x3 [ 00 ; 00 ; 10 ; 11 ; 10 ] 128 b
36 5. 2x2x2x2 | 1x1x8x3x3 [ 00 ; 00 ; 11 ; 10 ; 10 ] 128 b
37 6. 2x2x2x2 | 1x3x1x1x3 [ 00 ; 01 ; 00 ; 00 ; 10 ] 128 b
38 : ...
39 84. 2x2x2x2x1 @10 | 8x8x3x8x3x10 [ 11 ; 11 ; 10 ; 11 ; 10 ] 1.2 k
40 85. 2x2x2x2x1 @10 | 8x8x8x3x3x10 [ 11 ; 11 ; 11 ; 10 ; 10 ] 1.2 k

The trailing permutation in line 25 sets the index order LTBRs, as also seen in the display in
line 29. Lines 26–27 apply some normalization to A5 given the earlier randomization in line 20
[getDimQS in line 26 returns the multiplet and state space dimensions for all legs in E2, with
d2(end)= 30 the state space dimension of the last leg; this stands for the total number of
states on the bond indices [LTRB] as described by E2; cf. line 8].

The tensor A5 has multiplet dimensions 8 x 8 x 8 x 8 x 1 (line 30) that correspond to
a respective 30 x 30 x 30 x 30 x 3 states. The 1 multiplet q=(10) on the last leg describes
the local state space σ ∈ s with 3 states. It is the same throughout all 85 records, which
reflect permissible symmetry combinations across all five legs. By default, the full listing is
truncated for readability (dots in line 38). The display also shows two entries with largest outer
multiplicity [M = 10, indicated by the trailing @10 with the RMT dimensions in lines 39–40,
as well as the trailing 6-th dimension x10 with the respective CGTs]. They also happen to be
the largest and last two records. Otherwise, these would be shown as intermediate records.
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5.6 fdm-NRG: Iterative diagonalization of Wilson chain and spectral functions

The following more elaborate example demonstrates how to use QSpace for the iterative diago-
nalization in the context of the numerical renormalization group (NRG [13,18]). It is included
with this documentation since the NRG was one of the first applications of QSpace [8,19,50].
The example here is based on the standard single impurity Anderson model (SIAM).

The following code represents the script NRG/xnrgQS.m in the repository, with additional
comments and a focus on auto-contractions based on itags. It reciprocates the hard-coded
MEX routine NRGWilsonQS. For transparency and the sake of the discussion here, however, the
iterative diagonalization can also be coded in Matlab itself, while nevertheless utilizing the
QSpace toolbox via the MEX routines for tensor product, contraction, diagonalization, etc. It
also uses QSpace Matlab utility routines in the lib/ directory of the repository, such as setdef,
isset, add2struct, cto, etc., whose purpose is simple and intuitive, as will be indicated. A
full explanation can be found in their respective help. Since the following source mimics the
algorithm behind NRGWilsonQS, the format of the output data is also chosen in a compatible
way. This then permits, for example, subsequent usage of the MEX routine fdmNRG_QS to
compute correlation functions (see fdm-NRG below).

NRG basics The NRG is a long-standing powerful impurity solver that tackles 0+ 1 dimen-
sional physical problems [13, 18]. For this, the impurity Hamiltonian is mapped onto the
so-called Wilson chain. It is described by the general Hamiltonian

Ĥ = Ĥ0(d̂, f̂0) +
∞
∑

n=0

�

tnf̂†
n · f̂n+1 +H.c.
�

(57)

where d̂σ ≡ (d̂)σ are the fermionic operators for the impurity (‘d-level’ for historical reasons),
where σ denotes spin. The fermionic operators for the bath (̂fn)σ ≡ f̂nσ are organized into a
semi-infinite chain where the impurity couples to the first Wilson site f̂0 only. From a symmetry
point of view, any term in the Hamiltonian needs to represent a scalar. Hence the hopping term
on the right naturally includes the scalar dot product f̂†

n · f̂n+1 ≡
∑

σ f̂ †
nσ f̂n+1,σ implemented via

the contraction in line 155 below. The hopping amplitudes tn ∼ Λ−n/2 in Eq. (57) derive from
the NRG coarse-graining with its dimensionless discretization parameter Λ≳ 2. The resulting
exponential decay with increasing n is essential to the NRG, as this justifies the iterative diag-
onalization. In this sense, the chain structure in NRG does not represent real space, but rather
energy scales which, nevertheless, may be interpreted as an inverse length scale [56,57]. Due
to the effective one-dimensional character of the Hamiltonian in Eq. (57), NRG is naturally
suited to an MPS description. As a characteristic of NRG, the MPS is not obtained variation-
ally but rather via iterative diagonalization [50,58]. Nevertheless, it is arguably closely related
to a variational approach [24–26].

Setup of model (SIAM) The starting point of any NRG is the Hamiltonian H0 [= Ĥ0 in (57)]
that defines the impurity (d̂) together with its interaction with the bath site at the location of
the impurity (̂f0). The matrix elements of H0 are written in the basis encoded in the A-tensor A0.
With index order LRs in mind, it fuses the impurity (d → L) with the first Wilson site ( f0→ s)
where H0 is expressed in R. Together this sets the stage for the iterative diagonalization, fully
defined by the fermionic operators F (with Z) for a Wilson site and the hopping amplitudes ff.

For the SIAM, the impurity is described by a single spinfull fermionic level that already
shares the same structure as a Wilson site f̂n. Moreover, for the SIAM all interaction is contained
within the impurity itself via the Hubbard U , whereas the ‘interaction’ with the bath becomes a
plain fermionic hopping via the impurity’s hybridization function. Therefore for the case of the
SIAM, the NRG setup can be simplified in that H0 describes the impurity (d̂) only. The bath-
site f̂0 can be already taken care of as an iterative NRG step. With this the sum in Eq. (57)
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can be extended to start from n = −1, with the additional hopping term taking care of the

hybridization of the impurity via t−1 ≡
q

2DΓ
π , with the D := 1 the half-bandwidth of the bath.

The latter sets the unit of energy, unless specified otherwise. In any case, the iterative NRG
diagonalization only requires the initial A0 and H0, the fermionic operators F (with Z), and the
couplings ff in the same units as H0. This does not care about the precise starting point of the
iterative diagonalization which is also in the spirit of the MEX routine NRGWilsonQS.

For the SIAM, therefore the ‘left’ state space of A0 can be taken as the vacuum state (|〉 → L),
and the local state space as the impurity itself (d → s). Then H0 describes the impurity
Hamiltonian only. The hopping amplitude Γ is prepended to the couplings as ff(1)= t−1.
Since getNRGcoupling takes Γ as input parameter, the hoppings are already returned this way
(line 29). The setup for the SIAM thus chooses the following adapted version of the Hamilto-
nian in Eq. (57),

Ĥ = ϵd n̂d + BŜz +
U
2 n̂d(n̂d − 1)

︸ ︷︷ ︸

≡Himp → H0 (lines 49–51)

+
N
∑

k=1
(lines 89–166)

�

ff(k) f̂†
k−2 · f̂k−1 +H.c.

�

︸ ︷︷ ︸

(lines 153–157)

(58)

with ff(k)≡ tk−2 and f−1 ≡ d.

In the script NRG/xnrgQS.m, the initialization of the SIAM reads,

1 % SIAM impurity parameters (all energies in units of the half bandwidth D:=1)
2 %
3 % U onsite interaction
4 % epsd impurity level position
5 % Gamma hybridization strength of impurity
6 % B magnetic field acting on impurity (Zeeman splitting; applied as −BSz)
7

8 setdef('U',0.12,'Gamma',0.01,'B',0); % set default values
9 setdef('epsd',-U/2); % half-filling by default

10

11 % NRG discretization parameters
12 %
13 % Lambda coarse graining strength (≳ 2, dimensionless)
14 % N length of Wilson chain
15 % Nkeep number of multiplets to keep (or states if all-abelian)
16 % Etrunc energy truncation threshold (complementary to Nkeep)
17 % z shift of logarithmic discretization, as in Λ(z−n)/2 with z ∈ [0, 1[
18 %
19 % By setting Nkeep large, by default, preference is given to
20 % truncation by energy; using Nkeep, nevertheless, as a safeguard.
21

22 setdef('Lambda',2,'N',55,'Nkeep',1024,'Etrunc',7,'z',0);
23

24 % Collect model and NRG parameters (global info structure for reference)
25 global param
26 param=add2struct('-',U,epsd,Gamma,B,N,Lambda,z);
27

28 % NRG hopping parameters
29 ff=getNRGcoupling(Gamma,Lambda,N,'z',z); % default z=0 if not specified
30

31 % Local state space: single spinfull fermionic level
32 % For the SIAM this is the same for the impurity and the Wilson sites.
33 % The option '-v' enables more verbose output.
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34 if ~isset('B')
35 SYM='Acharge,SU2spin';
36 else SYM='Acharge,Aspin'; % results in SS = [S+, S−, Sz] below => SS(end)=Sz
37 end
38 [FF,Z,SS,IS]=getLocalSpace('FermionS',SYM,'-v');
39

40 % Construct local occupation operator
41 % depending on SYM above, FF may contain a different number of operators (nF)
42 N0=QSpace(size(FF)); nF=numel(FF);
43 for i=1:nF % i ≡ σ for nF>1
44 N0(i)=contract(FF(i),'13*',FF(i),'13'); end % f †

σ · fσ
45 N0=sum(N0); %

∑

σ nσ

The command setdef in lines 8, 9, or 22 sets default values for the specified variables if not yet
set, i.e., if they are not defined or empty. The command add2struct in line 26 adds specified
variables as fields to the structure param where the leading input argument '-' indicates to
start from an empty structure. This collects physical model and discretization parameters for
general information purposes later. The call to getNRGcoupling in line 29 returns the Wilson
chain hopping parameters ff, starting with ff(1)=

p

2Γ/π. The above also sets the stage for
the definition of A0 and H0,

46 % A-tensor for H0 (LRs index order convention)
47 A0 = getIdentity(getvac(IS.E),IS.E,[1 3 2]);
48

49 % Impurity Hamiltonian [in R-basis of A0, as in LRs]
50 H0 = epsd*N0 + (U/2)*N0*(N0-IS.E) + 0*IS.E;
51 if isset('B'), H0 = H0 - B*SS(end); end % SS(3=end) contains Sz

The command getvac in line 47 returns the vacuum state space for the symmetry setting of
the input. If a finite value for the magnetic field is set, the setup via SYM in line 36 switches to
abelian U(1) spin symmetry. In this case, as can be checked by inspection of SS, the impurity
Sz operator is returned as SS(3) ≡ SS(end) in line 51. The magnetic field is applied as −BSd

z
at the impurity only [it is ignored for the bath, assuming B≪ (D = 1)], where the minus sign
ensures that for B > 0 one also obtains a positive magnetization 〈Sd

z 〉.
The above concludes the setup of the impurity. Based on A0, H0, and ff, this could pro-

ceed with the MEX routine NRGWilsonQS from here [hard-coded C++ code, e.g., called via the
rnrg (‘run NRG’) script which for the SIAM calls setup/setupSIAM_SU2x2.m as a more elab-
orate version of the setup above]. For transparency, however, the iterative diagonalization is
explicitly transcribed into the Matlab script xnrgQS discussed here.

Iterative diagonalization To proceed with the iterative diagonalization, the setup above
is further adapted. The couplings ff from line 29 above are in physical units of the half-
bandwidth (D = 1). Since finite-size spectra should be compared in rescaled units of order 1,
the exponentially decaying couplings ff∼ Λ−k/2 are also rescaled to order 1,

52 % Rescale hoppings from global to iterative units of order 1 (see usage below)
53 rL=sqrt(Lambda); % rL = `root Lambda'
54 ff=ff.* rL.^(1:N-1);

Since at the first iteration ff(1) incorporates the first Wilson site f0, this leaves the Hamiltonian
H0 at iteration ‘0’ in its original units.

By default, the data from the iterative diagonalization is stored to files (one file for each
iteration, starting from *_00.mat for iteration ‘0’ which diagonalizes the input H0),
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55 % Save data by default to files in the local Matlab data directory (LMA)
56 % as $LMA/NRG/myNRG_##.mat with ## the Wilson shell index k
57 % where LMA is expected to exist as environmental variable
58 setdef('sflag',1); % set sflag=0 to disable
59 if sflag
60 fout={'NRG' '/myNRG'};
61 cto lma; % `change to' directory $LMA
62 if ~isdir(['./' fout{1}]), system(['mkdir ' fout{1}]); end
63 fout=[fout{:}];
64 wblog('I/O','using %s_##.mat',fout);
65 end

Storing the data to files allows one to use the data later, e.g., for computing spectral functions
via fdmNRG_QS further below. The code proceeds with initializing variables and data spaces,

66 % Initialize iterative diagonalization
67 % K kept space (AK ≡ AK)
68 % D discarded space (AD ≡ AD)
69 % scalar operators only have KK → K, DD → D (like HK ≡ HK, HD ≡ HD)
70 % general operators also have off-diagonal blocks KD, DK (cf. FKK ≡ FKK)
71 k=0; % start at Wilson shell `0' (impurity only)
72 AK=setitags(setitags(A0,'-A',k),1,'Lvac'); % sets itags {'Lvac','K00','s00'}
73 HK=setitags(H0,'-op:K',k); % sets itags {'K00','K00*'}
74 AD=QSpace; % inits to empty QSpace [= QSpace()]
75

76 % Fermionic operator F in KK space
77 FKK=QSpace(1,nF);
78

79 % Keep track of general data along iterations
80 EX=nan(N,2); % 2 columns: highest kept and lowest discarded energy
81 E0=zeros(1,N); % subtracted ground state energy for each iteration
82 N4=[]; % number of kept and discarded multiplets/states
83

84 % Initialize structure to collect iterative diagonalization
85 Inrg=struct('N',N,'Lambda',Lambda,'EK',[],'HK',QSpace(1,N));
86

87 fprintf(1,'\n'); disp(param);
88 fprintf(1,'\n');

By iteratively keeping all eigenstates below some energy (Etrunc) or count (Nkeep) threshold
(cf. line 22), this partitions states into kept (AK≡ AK) and discarded (AD≡ AD) states for any
iteration. Ultimately, the collection of AK for all iterations together with the lowest energy
eigenstate for the last iteration k = N constitutes the ground state MPS for given Wilons chain
of length N . Expressing operator matrix elements in terms of kept and discarded (based on AK
and AD, respectively), leads to sectors KK, KD, DK, and DD (e.g. see operator F→ FKK ≡ FKK).
For scalar operators, there are no off-diagonal contributions, hence a single label K or D suffices,
such as for HK ≡ HK . By using itags as in lines 72–73 this will simplify the specification of
contractions, but also characterize QSpace tensors more generally, while making the output
more readable and identifiable. Basic NRG data will be collected into the info structure Inrg
initialized in line 85. Line 87f summarizes the setup by displaying the parameters used.

The following then proceeds with the actual iterative diagonalization,

89 % Iterative diagonalization based on couplings ff(k)
90 for k=1:N % Wilson shell index

74



SciPost Physics Submission

91 if k<N || ~sflag
92 o={'Nkeep',Nkeep,'Etrunc',Etrunc};
93 else o={'Nkeep',0}; % by default, discard all states at last iteration
94 end
95

96 % Collect info on total expanded dimension (K+D)
97 % this copies 2 entries for non-abelian: [multiplet, state space] dimension
98 % where q(1,*) are multiplet dimensions
99 q=getDimQS(HK); N4(k,:,2)=q(:,2); % total dimension K+D

100

101 % Exact diagonalization of expanded space (may also use QSpace/eig wrapper here)
102 [ee,I]=eigQS(HK,o{:});
103

104 ee=ee(:,1); % first column (relevant for non-abelian symmetries only)
105 EK=QSpace(I.EK); % MEX files cannot return QSpace objects, only structures
106 ED=QSpace(I.ED); % hence the conversion to QSpace objects here
107

108 % Subtract ground state energy [except for k==1: H0 → keep E0(1)=0]
109 if k>1, E0(k)=min(ee); ee=ee-E0(k); end
110

111 if EK % i.e., non-empty
112 % EK is returned in compact diagonal format => take dimension on 2nd index
113 Dk=getDimQS(EK); N4(k,:,1)=Dk(:,2);
114 EK=EK-E0(k); q=EK.data; % also subtract E0 in QSpace EK
115 EX(k,1)=max([q{:}]); % largest kept energy
116 end
117 if ED % repeat for ED
118 ED=ED-E0(k); q=ED.data;
119 EX(k,2)=min([q{:}]); % smallest discarded energy
120 end
121

122 if sflag % obtain AD before AK is changed right next
123 AD=contract(AK,I.AD,[1 3 2]); end
124 AK=contract(AK,I.AK,[1 3 2]); % LRs index order convention
125 if sflag
126 q=struct('AK',AK,'AD',AD,'HK',EK,'HD',ED,'E0',E0(k));
127 save(sprintf('%s_%02g.mat',fout,k-1),'-struct','q');
128 end
129

130 % Collect `finite size' energy spectra
131 % (note that nrg_plot.m prefers Inrg.HK if present, plots EE otherwise)
132 m=min(Nkeep,length(ee));
133 EE(1:m,k)=ee(1:m); % plain energies without symmetry resolution
134 Inrg.HK(k)=EK; % same energies but with symmetry resolution
135

136 if k==N, fprintf(1,'\n\n'); break; end
137

138 % Wilson shall k starts here
139 % compute matrix elements for next iteration (propagate FKK)
140 for i=1:nF
141 % operator index order KK[op] here by having FF to the right
142 FKK(i)=contract(AK,'!2*',{AK,FF(i),'-op:^s'});
143 end
144

145 % Add new shell as described by `local space' in IS.E
146 AK=getIdentity(I.AK,2,IS.E,[1 3 2]); % LRs convention
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147 AK=setitags(AK,'-A',k); % generates itags { K<k-1>, K<k>*, s<k>}
148

149 % Rescale and propagate Hamiltonian
150 HK=diag(EK*rL); % expand compact diagonal representation
151 HK=contract(AK,'!2*',{HK,AK});
152

153 % add hopping to newly added site
154 for i=1:nF, q=ff(k)*Z*FF(i); % include fermionic parity Z here!
155 Q=contract(AK,'!2*',{FKK(i),'*',{AK,q,'-op:^s'}});
156 HK=HK+Q+Q'; % +Q' adds hermitian conjugate (" + H.c.")
157 end
158

159 % Make sure, zero-diagonal blocks are also included (important for k=1 only)
160 HK=HK+0*getIdentity(AK,2);
161

162 % Generic log output: current Wilson shell @ largest kept energy
163 % (to be compared to chosen truncation energy Etrunc)
164 fprintf(1,' %4d/%d (%g) EK=%.3g ... \r',k,N,max(Dk(1,:)),EX(k,1));
165

166 end % of iteration (Wilson shell) k

When adding a new Wilson site in lines 145–160 for the next iteration, the extended state
space is exactly diagonalized in line 102. This also carries out the truncation into kept (K)
and discarded (D) states [cf. lines 105 and 106]. Two parameters govern this truncation
as provided with the options o{:}, namely Etrunc≡ Etrunc and Nkeep≡ Nkeep. This keeps
at most Nkeep states (multiplets in the presence of non-abelian symmetries), or fewer if the
energy threshold Etrunc is reached earlier. Near-degenerate eigenstates are never cut across by
the truncation but kept together (or truncated) in full to avoid artificial symmetry breaking of
symmetries that are not explicitly enforced. As per lines 92–93, both truncation parameters,
Nkeep and Etrunc, are used for all iterations except for the last one, where all states are discarded.
Hence with no states kept, this way the Wilson chain is naturally terminated [59].

NRG converges exponentially with increasing Etrunc [58]. On empirical grounds, typically
a value of Etrunc≡ Etrunc ≳ 7 (in rescaled units as in the source above) leads to good con-
vergence. By truncating based on an energy threshold, this mimics truncation at about a
comparable discarded weight and hence comparable accuracy along the Wilson chain [58].
Therefore it is typically recommended to truncate based on Etrunc, while keeping Nkeep suf-
ficiently large, yet set nevertheless as a safeguard on what is affordable numerically. With
this in mind, when increasing the complexity of the impurity or number of (bath) flavors, this
quickly also increases the number of states within the energy interval [0, Etrunc] relative to the
ground state energy for any iteration. In this case, one needs to work (exponentially) harder
by keeping more many-body states for comparable accuracy, i.e., the same Etrunc.

The iterative diagonalization is wrapped up again in the spirit of NRGWilsonQS,

167 % Finalize Inrg info structure (used by nrg_plot.m)
168 Inrg.E0=E0;
169 Inrg.EK=EX;
170 Inrg.EScale=Lambda.^(-(0:length(E0)-1)/2);
171 Inrg.Itr=add2struct('-',Etrunc,Nkeep); % Itr = info on truncation
172

173 % Cumulative `physical' value for E0
174 % i.e., global ground state energy in units of bandwidth
175 Inrg.phE0=sum(E0.*Inrg.EScale);
176
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177 if ndims(N4)==2
178 Inrg.NK=N4; % abelian symmetries only
179 else Inrg.NK=reshape(N4,[],4); % non-abelian
180 end
181

182 if sflag
183 f=sprintf('%s_info.mat',fout);
184 save(f,'-struct','Inrg');
185 end
186

187 % Finalize numeric array EE for finite-size spectra
188 % collected data sets have variable length => replace trailing zeros
189 % for shorter records by nan except so that these are ignored by plot()
190 EE(~EE)=nan; % same as EE(find(E==0))=nan;
191 EE(1,isnan(EE(1,:)))=0; % restore zero for first value (ground state)

The bare energy spectra collected in the numeric array EE as finalized above may be plotted
as is or used for data analysis. The plot script nrg_plot.m (see below), however, prefers the
QSpace array Inrg.HK collected in line 134, as this contains symmetry resolution. This is
reflected then in the line colors of the NRG ‘energy flow diagram’ as generated by nrg_plot.

NRG energy flow diagram The finite-size spectra collected from the iterative diagonaliza-
tion can be combined and plotted as standard NRG energy flow diagrams [13, 18]. QSpace
provides the general plot script nrg_plot.m for this purpose. These energy flow diagrams give
a concise, detailed overview of the relevant energy scales of the impurity problem down to the
lowest-energy fixed points. For this, it is important to be aware that the Wilson shell k directly
translates to an energy scale Λ−k/2 in units of the half-bandwidth D: impurity models are 0+1
dimensional, with ‘0’ the impurity, and ‘+1’ the direction of the chain indicating energy scale.
The following thus generates the NRG energy flow diagram which summarizes the collected
finite-size spectra from the iterative diagonalization,

192 % Summarize result by plotting NRG energy flow diagram
193 if ~exist('plotflag','var') || plotflag % disable by setting plotflag=0
194 param.D=Nkeep;
195 nrg_qdisp=10; % turn on legend with symmetry labels (at most 10 entries)
196 nrg_plot % main plot script for NRG energy flow diagram
197 end

The call to nrg_plot in line 196 generates a plot with five panels as shown in Fig. 12. All
panels have the Wilson shell index on the horizontal axis, which starts from high energies at
the left and progresses to exponentially small energy scales towards the right. The top two
panels show standard NRG energy flow diagrams for even and odd iterations. Due to the open
boundaries of the Wilson chain at any shell (iteration) k, intrinsic even-odd alternations arise
in the energy spectra. Hence to avoid zig-zag lines in plots, a smooth energy flow is obtained
by plotting even and odd iterations separately (see labels for vertical axis). While they provide
qualitatively similar behavior in terms of flow across fixed points towards the low-energy stable
fixed point, they differ significantly in their details. By convention, the impurity together with
the first Wilson site f̂0, i.e., H0 in Eq. (57), is considered an even iteration [13,18].

For the default SIAM parameters in lines 8f, the convergence in the energy flow diagram
in Fig. 12 for k ≳ 35 is attributed to having reached energies sufficiently below the Kondo
scale. Generally, the NRG finite-size spectra converge in the low-energy fixed point to the
corresponding problem-dependent stable fixed point spectrum. Therefore once the spectra
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Figure 12: Standerd NRG energy flow diagram (top two panels) for the collected
finite-size spectra from the iterative diagonalization of the Wilson chain. This plot is
generated by nrg_plot (line 196), used with the default model parameters U = 0.12,
ϵd = −0.06, Γ = 0.01, B = 0 and hence U(1)charge ⊗ SU(2)spin, as well as the default
NRG-specific parameters N = 55, Λ = 2, z = 0, Etrunc= 7, and Nkeep= 1024. The
lower three panels show the subtracted ground state energy offset ∆E0 for even and
odd iterations, the truncation energy bounded by max(EK) < min(ED) relative to
Etrunc (gray line), and the number of multiplets kept (D∗K) together with the ex-
panded Hilbert space dimension when adding a Wilson site (D∗tot). The maximum of
D∗K ≤ 250 kept SU(2) multiplets corresponds to DK ≤ 560 states (reflecting the data
in Inrg.NK). The dimensions of the expanded state space that had to be diagonalized
exactly in line 102 is also shown for reference, having D∗tot ≤ 931 multiplets corre-
sponding to Dtot ≤ 2240 states. With D∗K ≤= 250 < (Nkeep = 1024), all truncation
was performed based on energy, as also confirmed by the second to last panel.
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become self-repetitive (straight lines for iterations k ≳ 40), the iterative NRG diagonalization
can be stopped (here at iteration k = N = 55). The crossover around k∗ ∼ 25 towards the low-
energy fixed point is in good agreement with the analytical value of the Kondo temperature
[60,61], e.g., as returned by the function TKondo.m provided with the QSpace repository: based
on the parameters in the global structure param, TKondo without any further input parameters
returns T analytic

K = 2.20 · 10−4 which compares well to TNRG
K ∼ Λ−k∗/2 ∼ 1.7 · 10−4 (bearing in

mind that the Kondo scale is a crossover scale, it is only determined up to a prefactor of order
one, depending on the particular physical or numerical prescription used to define TK).

The third panel out of nrg_plot in Fig. 12 shows the lowering of the ground state energy
with each iteration by adding another Wilson site. This is based on the data in Inrg.E0 which
is again plotted separately for even and odd iterations. One observes that below the Kondo
scale k ≳ k∗, even iterations lower the energy more. Hence the ‘ground state’ of the system is
better reflected by even iterations. For this reason, nrg_plot adds the label ‘ground state’ to
the upper panel for even iterations, together with its symmetry sector Q and the cumulative
‘ground state energy’ Eg taking all NRG iterations into account (Inrg.phE0 in line 175). On
physical grounds, the SIAM flows to strong coupling in which case one may think of H0 as
already forming a screened singlet, which is also an even iteration. Thus in the low-energy
fixed point the impurity spin has been absorbed into, and in this sense, has become fully
screened by the bath.

The fourth panel analyzes the truncation energy by plotting up to which energy states were
kept along each iterative diagonalization. This also shows an additional line that corresponds
to the lowest discarded energy. When truncating based on energy, the latter line lies above
Etrunc, whereas the former line is upper bound by Etrunc, as seen in Fig. 12, having Etrunc=7.

The fifth (lowest) panel shows the number of states DK (or number of multiplets D∗K in
the presence of non-abelian symmetries) that were actually kept along the iterative diago-
nalization (line 113), together with the expanded state space Dtot (line 99) that had to be
fully diagonalized (line 102) at each step before truncating, and thus splitting it into kept and
discarded states (lines 105–106).

Certain degrees of freedom become frozen out when proceeding to lower energy scales.
Generally, therefore, the entanglement and hence the number of required states along the
iterative diagonalization show a monotonically decreasing behavior. This behavior agrees with
Zamolodchikov’s c-theorem [62] and is typically well reflected in the bottom panel of Fig. 12.
It is also reflected in the upper two panels where levels tend to ‘dilute’ when moving to lower
energy scales towards the right, i.e., levels have an average tendency to move upward. Of
course, this excludes the start of the iterative diagonalization before truncation sets in (vertical
marker line in the bottom panel) up until the maximum of states is reached soon after. The
early iterations around when truncation sets in, are thus the most expensive ones in an NRG
simulation. If these can be performed in a stable converged sense, e.g., by keeping sufficiently
many states up to the required Etrunc, then arbitrary low-energy scales can be reliably reached
by NRG at (typically considerably) lower numerical cost per iteration.

fdm-NRG spectral functions The iterative diagonalization of the Wilson chain has the unique
and powerful property that it builds an approximate, but complete many-body eigenbasis that
is fully tractable, in practice [59, 63]. This permits one to obtain thermodynamical data in a
text-book like fashion by directly evaluating Lehmann representations in the spirit of the full
density matrix (fdm-)NRG [19,64]. This includes thermal quantities both in the static as well as
the dynamical context. Since the underlying procedure of fdm-NRG requires significantly more
book-keeping as compared to iterative diagonalization, e.g., when collecting spectral data into
energy bins, etc., this algorithm only exists hardcoded as the MEX routine fdmNRG_QS. Typi-
cally, it is run after NRGWilsonQS, yet may also be run after the iterative diagonalization based
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on xnrgQS above under the condition that the data was stored in a compatible file format by
not disabling sflag in lines 58ff. Generally, dynamic correlation functions 〈O1∥O

†
2〉ω require

the specification of a pair of operators O1 and O2 which in the context of the NRG are local
operators. In QSpace this translates to operators that can be expressed within the state space
described by A0. If O1 is not set, QSpace assumes O1 =O2, by default. Then by choosing the
fermionic operator O2 ≡ op2=F(1) below as the operator acting on the impurity, this computes
the impurity spectral function 〈d̂∥d̂†〉ω for the SIAM,

198 if sflag

199 % Compute the dynamical correlation function 〈O1|O†
2〉 where O1 =op1 and O2 =op2

200 % are operators acting on the impurity (more precisely, acting within A0 here)
201 op1=[]; % operator O1 (empty takes default: op1=op2)
202 op2=FF(1); % operator O2: here fermionic annihilation operator
203 zflags=1; % whether to use fermionic parity Z with op[12] (here: yes)
204

205 nostore=1; % do not store matrix elements of op[12] in NRG basis to files fout*
206 locRho=1; % use local thermal density matrix, i.e., do not store Rho(T)
207 % to files fout* either, but keep it in memory
208

209 % Look for relevant options set in Matlab for fdmNRG_QS
210 % where a trailing '?' indicates a non-mandatory option
211 ofdm=setopts('-','T?','zflags?','-nostore?','-locRho?','nlog?','emin?','emax?');
212 % main fdm-NRG routine
213 [om,a0,Ifdm] = fdmNRG_QS(fout,op1,op2,Z, ofdm{:});
214 fdm_plot; % plot script to summarize its output
215 end

One may specify an arbitrary temperature T in line 211 (by default, it is taken as the energy
scale towards the end of, but still within given Wilson chain; in this sense, the default tem-
perature is T = 0+; the actual temperature used is returned in Ifdm.T). The result out of
fdmNRG_QS in line 213 includes the discrete spectral data a0 [one column per requested opera-
tor pair in op1(i) and op2(i), where i ≤ n correlation functions can computed in a single call
to fdmNRG_QS]. The discrete spectral data a0 is collected on a uniform logarithmic frequency
grid om≡ω with energy range [emin, emax] for both, positive and negative energies and nlog
bins per decade (line 211). Any spectral weight outside this range is added to the closest
extremal bin, so no spectral weight is lost. The returned frequency grid om already catenates
negative and positive frequencies into a sorted vector that matches a0 in length. Again the
spectral output is analyzed within Matlab based on the plot script fdm_plot in line 214. This
also broadens the spectral data in a log-Gaussian fashion [19]. A detailed discussion of this
is outside the scope of this documentation and hence is left for the future. In case of interest,
please feel free to explore and, if needed, to contact support.

6 Conclusion

This documentation of the QSpace tensor library focuses on its basic structure in the ecosystem
it was developed in, namely C++ MEX embedded into Matlab on Linux-like environments, in-
cluding macOS. While the public repository with QSpace v4 nevertheless already also includes
powerful applications in the context of NRG and DMRG, these are mostly only mentioned in
passing here. Further documentation in that regard is left for the future.

The embedding into Matlab is due to historical reasons. Since the requirement of a stan-
dard Matlab license represents some barrier for the usage of QSpace in the community, how-
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ever, the longer-term perspective is to replace the embedding into Matlab by other open envi-
ronments eventually, with Julia a particularly attractive more recent candidate. Yet the QSpace
core libraries will continue in the C++ code base in any case. The environment, however, that
these are embedded into as an API library, may be subject to change in the future.
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6.2 Feedback and support

While this documentation explains the more general setting of QSpace as a tensor library,
by the very volume of the sources included in the public git repository, this documentation
is necessarily far from complete. Therefore aside from this documentation, interested users
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are encouraged to explore the git repository and specifically also the Docu folder there for
additional updated resources.

Feedback and bug reports General feedback, as well as bug reports are welcome. The
primary contact in this regard should be via the public QSpace repository, e.g., by raising an
issue there. The general contact will also be maintained and kept up to date with the wiki
pages also supported by the public repository. As a last resort, an email may be sent directly
to the author of this documentation as provided on the front page.

When a reproducible bug is encountered in QSpace, be it on the Matlab side or in the
behavior of MEX files, a bug report is welcome. It will be checked and fixed in due time. Ideally,
a bug report should include a minimal Matlab script that contains the problematic command
that causes a particular error or unexpected behavior. This should permit one to reproduce
the error without referencing other user-defined functions. This may be complimented with a
small mat-file that contains particular instances of QSpace tensors. All of this can be uploaded
with the git repository when raising an issue.

Support The software in the public git repository for QSpace is open source under the Apache
2.0 license, hence free of charge, and provided as is without any guarantee. In this sense actual
support beyond this documentation is subject to the specific circumstances, the availability of
the author, or specific agreements.

A General Definitions

A.1 Acronyms

The following list of acronyms is central to QSpace and this documentation. It is grouped by
their meaning rather than sorted alphabetically, with more basic definitions coming first. The
main text includes frequent hyperlinks into this listing.

irep (multiplet) Irreducible representation – Non-abelian symmetries organize state spaces
into multiplets that form irreducible units (ireps) when acted upon with the generators of the
symmetry. That is, starting from any state in the multiplet, one can reach any other state by
applying some sequence of generators. In this sense, all states within an irep are connected
by symmetry. For a particular non-abelian symmetry, specific ireps include:

Scalar representation: Trivial multiplet that consists of a single state invariant under all sym-
metry operations. It is also referred to as a singlet. In QSpace, the scalar representation is
always referred to as q = (0, . . . , 0r)≡ 0, for abelian and non-abelian symmetries alike, with r

defined in Eq. (59). The apparent exception of parity symmetry with q ∈ {+1,−1} is equiva-
lent to Z2 with q ∈ {0, 1}, which then again also has q = 0 as its scalar representation. In this
sense, QSpace prefers Z2 to encode parity.

Defining representation: The smallest non-trivial unit that by taking tensor-products with itself
can generate any other multiplet for given symmetry. This is also reflected in ireps represented
by Young tableaus for SU(N) where the defining irep represents a single box, and the tensor
product of any irep (Young tableau) with the defining irep adds a box. This is also in the spirit
of tensor networks where many-body Hilbert spaces are generated by iteratively adding sites
that may be given, e.g., in the defining irep. For any non-abelian symmetry, similarly QSpace
always also starts from the Lie algebra in the defining representation. Its symmetry labels are
always qdef = (1,0, . . . , 0r) with r the rank of the symmetry [see also Eq. (15)]. As such, it is
one of the r fundamental representations that have only one 1 it its q-labels and zero else.
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Adjoint representation and spin operator: For any multiplet, there must exist a set of operators
that can carry out the symmetry transformations of given non-abelian symmetry within the
multiplet’s state space. That is, there must exist an irreducible operator for any multiplet
that transforms according to an irreducible representation that has as many operators as there
are generators in the Lie algebra, i.e., has the dimension of the Lie algebra. This irreducible
representation is called the adjoint (qadj) which is always self-dual. The respective irop is also
referred to as ‘spin operator’ with reference to SU(2). From the above argument together with
1 j symbols, the adjoint must always appear when fusing any multiplet q with its dual q̄ (see also
construction of complete operators basis). This permits a generic way to generate the adjoint,
namely fusing q ⊗ q̄ for any q. In the simplest case, when taking the defining irep qdef, the
adjoint is guaranteed to occur without outer multiplicity. For example for SU(2), 1

2⊗
1
2 = 0⊕1,

or 1+3 in terms of dimensionalities, or within QSpace having q = 2S, 1⊗1= 0⊕2. Here the
spin operator transforms like an S = 1 multiplet, which is the adjoint representation for SU(2),
indeed, also referred to as triplet then. For SU(3), this becomes (10)⊗(01) = (00)⊕(11)≡ 1+8
with now the octet (11) the adjoint.

irop Irreducible operator – Similar to states, in the presence of non-abelian symmetries it
also must be possible to organize all operators into irreducible units that are connected via
commutators with the symmetry generators. Hence an irop directly also reflects the structure
of a particular irep of a symmetry, and is thus said to transform according to that irep. A
particularly simple example are scalar operators (like Hamiltonians or density matrices) which
transform according to q = 0, and thus commute with all generators of the group.

CGC refers to a standard textbook Clebsch-Gordan coefficient space, i.e., a CGT of rank r = 3
with q-directions ++-. These arise out of tensor product decomposition (fusion rules) of two
multiplets (q1, q2|qtot). Usually used with non-abelian symmetries, they can also be used to
(trivially) represent the fusion rules for abelian symmetries or discrete symmetries.

CGT refers to a Clebsch Gordon tensor as a generalization of CGCs to tensors of arbitrary
rank r ≥ 2 via contractions. Like CGCs, CGTs are also always real. In QSpace, they are stored
in generalized sparse column-major order and computed in high-precision format via MPFR
using quad precision at 128 bits. For later retrieval, they are tabulated and stored with sorted
q-labels in RC_STORE/CStore. This contains CGCs as a subset in CStore/++-/ and 1 j symbols
in CStore/++/.

CGR CGT reference – QSpace tensors themselves no longer carry explicit CGTs since these
can be tabulated and stored once and for all (as of QSpace v3). Therefore QSpace tensors
only carry references to sorted CGTs, referred to as CGRs. These carry a permutation and
the w-matrices as additional information. In a QSpace X, the CGRs are stored in X.info.cgr.
The RC_STORE/CStore only stores sorted CGTs, meaning they all have their q-labels lexico-
graphically sorted w.r.t. to their legs within the group of incoming and outgoing legs, with
the incoming legs listed first and at least as many incoming as there are outgoing legs (for
the reverse case, tensor conjugation is used). For this reason, a CGR also implicitly encodes
an arbitrary permutation p together with a potential conjugate flag in addition to the CGT
reference. A CGR together with the stored (and thus sorted) CGT can thus describe an uncon-
strained CGT with respect to the index order of incoming or outgoing legs. This is central to
the QSpace data structure.

RMT refers to generalized reduced matrix element tensor: as known from the Wigner-Eckart
theorem [10], matrix elements of operators factorize into reduced matrix elements in a tensor
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product with the respective CGT [cf. Eq. (16)] [9]. In QSpace, generalized column-major order
is assumed for RMTs of any rank. The RMTs are always stored in double precision format, or
interleaved double for complex-valued tensors for real and imaginary parts.

MPS Matrix product state [17,30,65] – Tensor network state with a one-dimensional struc-
ture, also referred to as tensor train [66], typically with open (or in the case of translational
invariance, infinite) boundary conditions.

PEPS Projected entangled pair states – A way to describe physical systems by tensor networks
in higher dimensions [53,54,67] with extension to fermionic systems [33].

TNS Tensor network state [29, 54, 68] – general terminology for arbitrary tensor network
topographies, including MPS, PEPS, TTNs, etc. From a physical perspective, it typically refers
to a single state, i.e, with no other external legs than the physical site indices.

TTN Tree tensor network state [69, 70] – arbitrary TNS in the absence of loops, which in-
cludes MPS with open boundaries as a trivial example.

LRs MPS index order convention (l, r,σ) with l ∈ L(eft) block, r ∈ R(ight) block, σ ∈ s for
local state space. This keeps the typically large block dimensions for L and R to the front, like
a matrix, that is stacked then with respect to the index for the small state space σ. Assuming
column-major, the last index σ is the slowest in terms of data layout in computer memory. See
also operator index order convention.

OC Orthogonality center [71] – Tree tensor networks (TNSs), including the special case of
an MPS with open boundary conditions, permit strict orthonormalization of all block state
spaces w.r.t. any bond since cutting any bond bisects the TNS into disconnected tensor network
blocks. This also permits a clean implementation of symmetries and well-conditioned local
tensor environments [72, 73]. In this case, tensors in a TTN can have multiple indices that
‘enter’, but at most one index that ‘leaves’ it, in the sense that it acts as an isometry that maps
all incoming state spaces onto one fused state space that is typically truncated. Such a TTN can
only have one tensor with all indices incoming, referred to as the orthogonality center (OC).
All arrows in a TTN flow toward the OC then. It ties together otherwise disconnected blocks of
a TTN into the wave function for the full system. The OC may be moved iteratively throughout
the tensor network, a process referred to as sweeping and related to automatic differentiation.

OM Outer multiplicity – only applies to CGTs, and refers to the fact, from a tensor and sym-
metry point of view that for fixed symmetry sectors on all legs, the fusion of incoming legs can
result in multiple orthogonal combinations for the same fixed symmetry sectors of the outgoing
legs [8, 15]. The presence of OM, µ = 1, . . . , M with M > 1 thus translates to an additional
trailing OM index µ in CGTs that links to an additional trailing OM index µ′ in the respective
RMTs via an auxiliary w-matrix [cf. Eq. (16)].

MEX files Matlab executables (MEX, [74]) are C++ binaries that are compiled via Matlab’s mex
interface, with file extensions *.mex*, like *.mexa64 (Linux) or *.mexmaci64 (macOS). They
represent functions that can be called directly from within Matlab like regular Matlab func-
tions, but are based on externally compiled binaries that are interfaced via Matlab’s MEX API.
This permits efficient complex data structures with access to C++ coding standards (C++11),
highly optimized open-source libraries such as the standard template libraries (STL), as well
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as C++ style garbage collection. The MEX compilation requires mex setup C++. QSpace uses
the option '-R2018a' with mex to enable standard interleaved complex data format.

NB! Nota bene – Latin for ‘be aware’ to indicate something important. Frequently used in
source code comments and in wblog output.

QS or QSP refers to QSpace, e.g., as trailing part of file names as a low-level way to dif-
ferentiate namespaces like MEX functions *QS, or as prefix for QSpace specific environmental
variables like QS[P]_*.

Wb Alternative acronym for the initials of the author (AW), frequently used in help or usage
information, and comments in the code.

A.2 Terminology

The following glossary of terminology is central to QSpace and this documentation. Like with
the acronyms above, the order of entries is grouped by meaning rather than alphabetically
sorted. More elementary concepts come first, so reading through the entries from top to bottom
should be meaningful. The main text includes frequent hyperlinks into this listing.

Sites are the smallest physical units in a tensor network that are typically formulated on a
lattice (a notable exception in the realm of physics are continuous MPS [75]). For a finite tensor
network of L sites then, sites are indexed i = 1, . . . , L in a well-defined order. Typically, sites
are taken identical, while nevertheless the Hamiltonian may impose site-specific parameters.

Dimension refers to the index range of a particular index (leg) of a tensor. It needs to be
differentiated from the number of legs of a tensor referred to as its rank.

Local dimension d: refers to the Hilbert space dimension d of a site which typically is inde-
pendent of site i. It is considered small and therefore is denoted by lowercase d(i).

Bond dimension D: refers to the dimension of the auxiliary or virtual state space on a bond
that connects two tensors within a TNS. Since it is typically significantly larger than the local
dimension, it is denoted by a capital D, and typically varies for different bonds across a TNS.

Effective dimension D∗: When dealing with non-abelian symmetries with multiplets that con-
tain several states grouped as ireps, the total number of states D on any Hilbert space can be
reduced to an effective dimension D∗ which counts multiplets only. For larger-rank symme-
tries, one quickly encounters D∗≪ D. Empirically, one can gain a total dimensional reduction
on average by a factor of about ∼ 3r with r the rank of the symmetry [8, 76], e.g., ∼ 3N−1

for SU(N). This has dramatic effects on numerical efficiency. Since the RMTs carry effective
dimensions, e.g., the typical cost for matrix operations of order O(D3), when exploiting non-
abelian symmetries can be effectively reduced to O((D∗)3). For SU(N), this implies a speedup
of O(33(N−1) ∼ O(30N−1) which makes a significant difference for any step N → N + 1. For
SU(2) this amounts to more than one order, and for SU(3) about three orders of magnitude
of speed up for comparable accuracy of the simulation.

Singleton dimension: refers to a leg in a tensor whose dimension is 1, i.e., its index range is
limited to a single value. Consider, for example, a rank-3 tensor X with dimensions D×D×1. It
has a trailing singleton dimension, i.e., an index space that has a trivial range X (i, j, 1) on that
last index. If in the presence of symmetries, this index also carries the symmetry label q = 0,
i.e., corresponds to the scalar irep like the vacuum state, then this additional dimension is also
irrelevant from a symmetry point of view, and can be skipped altogether. In the case of trailing

85



SciPost Physics Submission

scalar singleton dimensions beyond rank 2, the rank of a tensor thus can be trivially reduced.
This is partly used in QSpace with irops that represent a scalar operator that reduces a rank-3
irop to a rank-2 scalar operator [e.g., see @QSpace/fixScalarSop(); for the reverse process
of reattaching a singleton irop dimension, one may use @QSpace/makeIrop()]. Leading or
intermediate singleton dimensions, on the other hand, are never skipped.

Multiplet dimension: refers to the number of states in a specific multiplet. It is denoted by |q|
for irep q. See entry multiplet / irep dimension below for the scaling of typical dimensions
depending on the non-abelian symmetry.

State spaces Every index (leg) in a tensor network represents a state space. This can be
either the physical state space of a site, or the virtual or auxiliary state space of a bond.

Local state space: refers to the state space of a site i in the lattice model analyzed, and is
usually denoted by σ(i) ∈ s(i) or s itself, e.g., if σ is already used to specify spin. Typically, sites
are considered identical, thus skipping the subscript i where unambiguous.

Bond states: refer to the auxiliary or virtual indices that connect tensors. They can be inter-
preted as many-body block states if the tensor network has no loops, such as a tree tensor
network or an MPS. In the presence of loops like in PEPS one may interpret the bond states
as actual fictitious auxiliary state spaces that live on both sides of a bond and which thus de-
scribe an orthonormal state space consistent with symmetries by fiat in this ansatz. The pair of
auxiliary states associated with a bond are then maximally entangled into a singlet, followed
by local projection to the physical state space on every site. This PEPS interpretation directly
generalizes the AKLT [77] construction.

Operators with and without hats (carets) By definition, matrix or array coefficients repre-
sent operators or tensors in a particular basis of a state space. Therefore, general operators are
shown with hats before casting them into a particular basis. This is generalized to arbitrary
tensors, including A-tensors as in Alσ

r ≡ 〈lσ|Â|r〉. The hat is removed once specific matrix (or
array) elements are addressed. In this sense, operators with hats can only occur in the ab-
stract, but not in the computational context. Tensors expressed within QSpace therefore never
carry hats in discussions.

(Generalized) matrix elements Matrix elements are coefficients of operators in a particular
basis, such as Sσσ′ ≡ Sσσ′ ≡ 〈σ|Ŝ|σ

′〉 [cf. Eq. (6)]. This can be generalized to arbitrary tensors,
e.g., Tσ1σ2

σ3σ4σ5
≡ 〈σ1σ2|T̂ |σ3σ4σ5〉, which are then referred to as coefficient spaces, array

elements, generalized matrix elements, or simply still also matrix elements.

Rank of a tensor The rank r of a tensor, i.e., its tensor rank, refers to the number of legs or
indices associated with a tensor. A tensor with r legs is thus referred to as a tensor of rank r,
or simply a rank-r tensor. With the terms tensor and array used interchangeably, this also may
be referred to as an array of rank r.

Disambiguation: The tensor rank is also known as order or degree of a tensor. It needs to
be differentiated from the Schmidt or matrix rank.7 The latter only applies to matrices and
refers to the number of non-zero Schmidt coefficients. It is typically of lesser importance in
tensor networks in practice, since the singular values from a singular value decomposition for

7This semantics is also consistent, for example, with Wolfram’s tensor rank in Mathematica as obtained by the
function TensorRank[] vs. MatrixRank[]. In Matlab, by contrast, the tensor rank of an array is obtained by
ndims() which returns the number of dimensions while skipping trailing singletons beyond tensor rank 2.
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some arbitrary but fixed bisection of a tensor are assumed to decay without abruptly becoming
exactly zero numerically. A ‘low-Schmidt-rank’ approximation for tensors in this sense always
translates to truncation on an auxiliary intermediate index. This comes with a truncation error,
also referred to as the discarded weight, which is controlled by the number of states kept on
that intermediate index. The bisection of a tensor by organizing all its indices into two non-
empty groups is also unique for matrices only. This becomes ambiguous for tensors with three
or more indices. The particular generalization of the matrix rank to tensors in terms of the
canonical polyadic decomposition (CPD)8 may be referred to as CP rank to distinguish it from
tensor rank. Given a tensor of higher rank (many indices), a low-rank approximation can also
be obtained by a tensor decomposition [79, 80] described by some tensor network of lower-
rank tensors (i.e., tensors with fewer legs and auxiliary intermediate indices). A prototypical
example is the decomposition of a many-body wave function into an MPS. In this sense, a low-
rank approximation in the above sense has the same objective as a low CP-rank decomposition.
Both refer to a tensor decomposition.

Rank of a symmetry The rank rS of a continuous non-abelian symmetry S refers to the
number of symmetry labels required to specify an arbitrary multiplet. This is derived from
the number of generators that can be simultaneously diagonalized. These are referred to as
the Cartan subalgebra and generalize the Sz operator for SU(2). For example, SU(N) is a
symmetry of rank r = N − 1, which implies a single label for SU(2), but two for SU(3), etc.
An abelian symmetry like U(1) has r = 0. In that case the multiplet space becomes trivial, as
the multiplet and weight label of its only state become identical. Therefore r> 0 distinguishes
non-abelian from abelian symmetries.
On practical grounds, it is convenient to also define the adapted rank (note the marginally
different font),

r ≡max(1, r) (59)

which then specifies the number of symmetry labels required for any symmetry, abelian and
non-abelian alike.

Generators of Lie algebra The space of generators in any Lie algebra can be organized in
a canonical way that generalizes the combination of the diagonal operator Sz and raising and
lowering operators S± known for SU(2). This corresponds to and can also be visualized by the
root diagram for the adjoint representation [46].

Cartan subalgebra: Maximal set of mutually commuting generators in a Lie algebra. This gen-
eralizes the single Sz operator for SU(2) to a set of r operators, with r the symmetry rank [46].
Since mutually commuting, these ‘z-operators’ can be simultaneously diagonalized. Their com-
bined diagonal entries then define the qz labels in Eq. (2) for any irep (r-tupel of numbers, also
referred to as weights).

Simple roots: The remainder of generators, aside from the Cartan subalgebra, can be orga-
nized into pairs of raising and lowering operators. For any Lie algebra, there exists a minimal
set of so-called simple roots which permits one to traverse any multiplet (irep or irop) in the
spirit of raising/lowering operators [46]. For a symmetry of rank r, it therefore suffices to con-
strain oneself to the r simple positive roots (‘raising’ operators), together with their Hermitian
conjugate, the r simple negative roots (‘lowering’ operators).

8Also referred to as PARAFAC decomposition [78] which also may be seen as a generalization of a principal
component analysis (PCA) to higher dimensions.
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Maximum-weight state and q-labels: The maximum weight state of a multiplet is destroyed
by any raising operator. Then starting from the maximum-weight state, one can sequence
the entire multiplet by applying the minimal set of lowering operators (simple negative roots)
only. Eventually, one reaches the complimentary minimal weight state that is destroyed by any
of the lowering operators. The qz-labels for the maximum-weight state of an irep can be used
to uniquely identify the irep. QSpace employs a linear map that transforms the (non-standard,
but convenient) internal qz labels for the maximum weight state to standard multiplet labels
consistent with the literature [8], e.g., consistent with labels for the Young tableau for SU(N).
They are referred to as q-labels [cf. Eq. (2)] and written in compact notation.

Multiplet / irep dimension A continuous non-abelian symmetry of rank r explores an r-
dimensional label space. This consists of a non-negative dense set of integers qi ∈ N0 that
are collected into an r-tupel q = (q1, q2, . . . , qr ≥ 0). This not only holds for the multiplet
labels, but also for the state space of each multiplet individually, since the generalization of
spin Sz → qz [8] also explores an r-dimensional weight space qz . Empirically, this gives rise to
a typical range of the multiplet dimension |q| encountered in tensor network simulations

1≤ |q|≲ 10r . (60)

This assumes that the entire physical state is globally ‘non-magnetic’, i.e., in or close to the
singlet symmetry sector qtot = 0. For example, abelian symmetries have r = 0. Therefore
their multiplet dimension is |q| = 1 which is consistent with Eq. (60). In DMRG simulations
with non-spontaneously broken SU(2) spin symmetry, the typical multiplet range reaches a
dimension q + 1 = 2S + 1 ≲ 10, i.e., S ≲ 5. Since this range is there for every one of the r

dimensions in the label space, this motivates Eq. (60) as also confirmed in practice.
Equation (60) implies that the typical multiplet dimension grows exponentially with the

rank of the symmetry. For example, for tensor network simulations that truncate dynamically
on the bond state spaces while exploiting SU(N) symmetry, the SU(N) multiplets quickly ex-
plore dimensions from 1 (q = 0) up to ∼ 10N−1. Therefore increasing the symmetry rank
by one, as in SU(N) → SU(N + 1), always makes a significant difference in numerical cost.
On the other hand, symmetries of the same rank have comparable numerical costs. Hence
when using QSpace it is important to be aware of the scaling of typical multiplet dimensions
with symmetry rank as indicated with Eq. (60). This strongly affects the numerical cost when
generating the RC_STORE. As compared to the cost of dealing with the RMTs, however, the
numerical cost for RC_STORE is typically negligible for symmetries of rank r ≤ 2, which thus
includes SU(3).

Irep dimensions are known in QSpace from the RC_STORE. Generally, new ireps can only
occur when decomposing tensor product spaces. This also automatically provides their dimen-
sion (the dimension of multiplets in any Lie algebra can also be determined analytically via
the Weyl character formula [46, 81]). Other than that, multiplet dimensions are usually less
important from the user’s perspective. Nevertheless, the dimensions of the ireps are shown
for information purposes. For any given QSpace X, irep dimensions for multiplets are explicitly
stored with the CGRs in X.info.cgr.size. These are used when displaying a QSpace [e.g.,
see Fig. 7].

Dual representation For any symmetry sector q there exists exactly one unique dual repre-
sentation denoted as q̄. It is the only irep that, when fused with q, also generates the scalar
irep, q ⊗ q̄ = 0 ⊕ qadj ⊕ . . . amongst other multiplets for q ̸= 0 (based on the construction
of a complete operator basis, this always also includes the adjoint qadj at least once). The
scalar representation cannot result from any other fusion, i.e., (qq′|0) = 0 for any q′ ̸= q̄. The
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defining property (qq̄|0) is essential to 1 j symbols. One way to think about dual representa-
tions from a physical point of view is that if one creates a particle with symmetry labels q, the
respective hole must transform in q̄, so they can annihilate each other. That is, if a particle
creation operator transforms according to q, the annihilation operator must transform accord-
ing to q̄. In this sense, every irep q has a unique dual q̄ which represents its time-reversed
partner. Therefore the dual representation must always have the same multiplet dimension,
i.e., |q|= |q̄|. For the case q = q̄, the irep is called self-dual.

For SU(N), the dual for a particular irep q is simply given by q̄ = flip(q), i.e., by flipping
the order of symmetry labels. This can be easily motivated pictorially with reference to Young
tableaus: q̄ is precisely the unique irep (Young tableau) that when ‘flipped around’ (rotated by
180◦) perfectly complements q by filling up the gray shaded space in Eq. (12) below the Young
tableau with boxes down to the dashed line at the bottom. This way q̄ completes q like two
puzzle pieces that together result in a completely filled rectangular block of (r+ 1)× (

∑

i qi)
boxes. With the latter being equivalent to the scalar q = 0, q̄ thus always permits the fusion
(qq̄|0). It follows from the above argument that a rank-1 non-abelian symmetry such as SU(2)
is necessarily self-dual, i.e., q = q̄ for all q. The symplectic symmetries Sp(2N) as well as
SO(2n + 1) and SO(4n) are self-dual as well, whereas for SO(4n + 2) the last two values in
the q-labels of an irep need to be swapped to obtain the dual.

Many Abelian symmetries are also not self-dual. For example, U(1) with q + q̄ = 0 and
hence q̄ = −q, this is not self-dual. It is instructive to compare to an SU(2) multiplet with spin
S and spin-projection Sz: the latter reflects the abelian behavior, having Sz →−Sz under time
reversal, and thus ‘S̄z = −Sz ’ in case of a U(1) spin symmetry. By contrast, S remains the same,
S̄ = S, since the weight diagram is symmetric under inversion.

Disambiguation: In QSpace the operator ∗ (raised asterisk) does not denote ‘dual’, but is re-
served for (tensor) conjugation. The conjugation of a tensor, by definition, leaves symmetry
labels invariant, thus having q∗ = q, yet with reverted directions.

Symmetry labels (individual symmetry) Any given index or state space is decomposed into
symmetry sectors described by symmetry labels [cf. Eq. (2)]. For abelian symmetries, these
can be chosen as plain integers q ∈ Z, such as U(1) or Zn. For non-abelian symmetries, the
symmetry labels specify ireps, and are tuples of non-negative integers, based on Dynkin labels
which for SU(N) directly specify the respective Young tableau.9 The symmetry labels for SU(2)
are chosen as q = 2S, and thus are also integers. The length of the tuple is equal to the rank
of the symmetry. By having non-negative integers for non-abelian symmetries, this permits a
compact notation of ireps. In QSpace therefore all symmetry labels are represented by signed
integers, generally referred to as q-labels. For an individual symmetry s, they are given by
q ∈ Zrs , with rs ≥ 1 the number of labels [cf. Eq. (59)]. The scalar representation is also
denoted by the shortcut notation q = 0.

Note on multiplet specification by dimension: The specification of an irep via the single label
of its state space dimension only is generally insufficient for non-abelian symmetries of rank
r > 1, because it is not unique. With reference to the literature, the bold notation in terms
of multiplet dimension is used in parallel, nevertheless, if unambiguous, like 3 ≡ (10) for the
defining representation of SU(3). However, note for example, that the ireps (40) and (21) of

9The emphasis on integers is also convenient within the QSpace core libraries since then there cannot be any
issues with rounding errors. Initially, the irep labels for a non-abelian multiplet are derived internally from a linear
map of the weights of the maximum weight state [8]. The weights are chosen in a most convenient, non-standard
way in double precision format. The linear map on the maximum weight state also includes non-integers. Yet the
resulting q-labels are standard and thus must correspond to integers up to rounding errors. This also serves as a
simple internal consistency check.

89



SciPost Physics Submission

SU(3) accidentally share the same multiplet dimension d = 15. Hence in that case the notation
15 to specify these multiplets becomes ambiguous [similarly so also for their respective duals
(04) or (12), for which 1̄5 becomes ambiguous].

Symmetry labels (set of symmetries) In the presence of multiple (nsym) symmetries, for
any given index or state space the symmetry labels for all symmetries are catenated into a
single tuple. For generality, also their combination is referred to as q-labels, q ≡ (q1, . . . , qnsym

).
Here qs with s = 1, . . . nsym describes the symmetry labels for symmetry s, where qs itself may
already contain multiple labels for non-abelian symmetries depending on the symmetry’s rank.
For a QSpace X, these combined q-labels are collected as rows in the matrices X .Q{ j} for leg j.
The vacuum state has the scalar representation for all its symmetries, and is therefore also
denoted by the shortcut notation q = 0, meaning zero labels across all symmetries present.

Symmetry labels (multiple legs) For a tensor X of rank r one may consider a particular
symmetry sector with fixed q-labels for all legs. This corresponds to a QSpace record that via
CGRs references the respective CGTs (one for each symmetry). Depending on the context, the
combined set of these q-labels is also collectively referred to as q-labels for simplicity.

Degenerate q-labels: A CGT has well-defined q-labels on all its legs. For a given CGT then,
if multiple legs have the same q-labels as well as the same directions, this is referred to as
degenerate q-labels in QSpace [15]. This is important for the interplay of CGRs with sorted
CGTs.

Scalar operator A scalar operator is an irop that transforms like the scalar representation
q = 0. Therefore it consists of a single operator where the trailing singleton irop dimension
on the third index can be trivially skipped. Examples include Hamiltonians or density matrices.

A-tensor When fusing two (incoming) state spaces into the combined (outgoing) state space,
this is described by a rank-3 tensor. The pairwise fusion of state spaces is a generic operation
for any type of tensor network. When adhering to an LRs index order as with an MPS, this
is frequently referred to as A-tensor in QSpace, and thus also in this documentation. A call
to getIdentity() returns an identity A-tensor which describes the full, i.e., untruncated com-
bined state space based on an identity matrix in multiplet space that is sliced up into RMTs [8].
As such, this represents a map from input multiplets to fused multiplets.

QSpace record A QSpace consists of a listing of non-zero blocks (App. A.3), each of which has
well-defined symmetry labels on all legs as discussed with Eq. (16). In a QSpace tensor X these
entries are referred to as records, indexed by i= 1, . . . , nX with nX the total number of blocks.
Record i then consists of the RMT X.data{i} together with symmetry labels X.Q{l}(i,:) on
leg l. The QSpace display as in Fig. 7 shows one line per record.

Vacuum state The vacuum state, like in the absence of any sites, always carries the scalar
representation for all its symmetries. Hence it is described by the trivial symmetry labels q = 0.
The identity operator for the vacuum state based on the symmetry configuration specified with
reference to the symmetries of some existing QSpace tensor X can be obtained via getvac(X).

Zero blocks and scalar operators When exploiting symmetries, tensors decompose into a
block structure since many matrix elements are zero because of symmetry. If entire blocks
are zero, because forbidden from a symmetry point of view, these are naturally absent in a
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tensor library that exploits symmetries. However, there can also be blocks that are permitted
by symmetry, but are zero nevertheless, in the sense that the RMT’s Frobenius norm is below
a threshold representing numerical noise. Such ‘zero blocks’ are generally also skipped, with
one notable exception: scalar operators. Diagonal zero blocks in scalar operators are kept
when present, by default, to avoid confusion. For example, a Hamiltonian may have zero
eigenvalues for an entire block, more likely so for small state space such as a single site. Such
blocks with all-zero eigenvalues contain relevant state space information that is generally of
interest and, hence, is not skipped. This behavior is a safety measure against ‘missing’ state
space. See also skipZerosQS.

A.3 QSpace data structure

The data structure of QSpace within the MEX routines is represented by an extensive C++ class.
On the Matlab interface, this is mapped onto a Matlab structure that, for convenience, is cast
into a Matlab wrapper class @QSpace. Assuming a QSpace tensor X with i= 1, . . . , nX records,
within Matlab its data is organized as a structure object with the following fields :

• X.data contains the RMTs: it is a cell array where X.data{i} contains the RMT for
record i. It has double floating point precision (interleaved double in case of complex
matrix elements). With reference to symmetries, this corresponds to the block ∥X∥q in
Eq. (16) with q→ i.

• X.Q contains the symmetry labels (q-labels): QSpace insists that all symmetry labels are
plain integers (qi ∈ Z). In the QSpace MEX core routines, X.Q is represented as a C++
signed int array (4 bytes), thus |qi|≲ 109. Like X.data, the field X.Q is also a cell array.
In this case, however, X.Q{l}(i,:) contains the combined set of symmetry labels for
record i on leg l.

• X.info represents a substructure with the following fields [e.g., see line 47 after Eq. (35)]:

– qtype contains the symmetry setting in compact string notation (comma-separated
list without white space, containing entries such as 'SU2' for SU(2), or 'A' for
abelian which is taken synonymous for U(1), etc.). If qtype empty, the fully abelian
setting of all-U(1) symmetries is assumed (see below).

– otype contains ‘operator type’ (mostly a safeguard and this sense optional): values
include 'operator' to emphasize that given QSpace is not any rank r ≤ 3 tensor,
but represents an operator, either scalar rank-2 or an irop of rank 3 that adheres
to index order conventions. In case a particular user-created tensor satisfies the
definition of a standard operator of rank 2 or 3, the operator flag may be set
manually via X.info.otype='operator'. This field accepts one other much lesser
used value, 'A-matrix'. This serves to emphasize that given rank-3 QSpace is an
identity A-tensor with an MPS in mind.

– itags (mandatory field) cell array of strings that contains the itags including
q-directions via trailing asterisks '*'. As of QSpace v4, there must be one itag for
each leg in the order of legs as present. Hence the number of itags, i.e., the length
of the cell array, must match the number of entries in X.Q. This must hold even if
the itags per se are empty, because of the additional information of the trailing
markers such as *. Itags are restricted in length to at most 8 characters (excluding
the trailing *) since within the QSpace core library they are directly mapped into
numerical IDs of type unsigned long for convenience. The sign bits are used for
other internal purposes. Hence the character set is restricted to the ASCII range
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33-126 up to marker characters. As such this includes any case-sensitive alpha-
numeric strings with simple separators, yet without white space.

– cgr is a structure array that contains the CGRs including the w-matrix as stored in
the subfield cgw (always in double precision and real). The field cgr is only mean-
ingful for non-abelian symmetries. Hence, if empty, the fully abelian setting of all-
U(1) symmetries is assumed (see below). It is non-empty in the presence of (also)
non-abelian symmetries. In this case the number of columns in cgr equals the num-
ber of symmetries used in the order specified during setup (cf. getLocalSpace),
i.e., the entry X.info.cgr(i,s) represents the CGR for record i and symmetry s.
This also includes any abelian symmetries present then, with trivial CGRs gener-
ated on the fly for the sake of overall code homogeneity.

– ctime creation time stamp of QSpace object (for tracking purposes only).

Default U(1) symmetries – If the field info.cgr together with info.qtype is empty, the
abelian setting of all-U(1) symmetries is assumed. In this case, the symmetry labels in
the matrix X.Q{l} for leg l refer to a separate U(1) symmetry for each column then. This
corresponded to the original setting in QSpace v1.10

To reveal the bare data structure of a QSpace X, one may call struct(X), with an example
shown with Eq. (35) and the subsequent lines. Since this data structure is technical and there-
fore rather unreadable in raw format, QSpace provides the display routine. Matlab invokes it
automatically whenever an object is displayed, e.g., as part of an output or just by typing the
name of a QSpace tensor. This conveniently extracts and displays the most relevant information
in the QSpace data structure in a formatted output. See Fig. 7 for an example.

Interplay of QSpace tensor and RC_STORE A CGR references a CGT in the RC_STORE. How-
ever, since the latter only stores sorted CGTs, a CGR implicitly also stores a permutation (poten-
tially including a conjugate flag) to be incorporated just in time when required with the sorted
CGT. In this sense, the CGR, while referencing a sorted CGT, nevertheless can represent an un-
constrained CGT that is consistent with any index order of given QSpace tensor. Note that this
procedure also defines any unsorted CGT: it equals a sorted CGT with the given permutation
(and possibly conjugation) applied. The presence of degenerate q-labels (i.e., when the same
symmetry label is present at multiple legs) leads to subtleties that are properly dealt with in
QSpace [15]. The setting above, based on ‘reference plus permutation’ is explicitly used by the
CGRs within the C++ core library. This becomes somewhat hidden and thus is implicit in the
structure returned to Matlab: the q-labels and q-directions shown in info.cgr already have
the permutation (and conjugation flag, if any) applied to them, while nevertheless also stor-
ing IDs and high-resolution time stamps to the sorted CGT in the field cgr.cid. By re-sorting
the q-labels in the CGR, the C++ code regenerates the relevant permutation and identifies the
underlying sorted CGT. This permits QSpace to translate the Matlab CGRs in info.cgr into
proper pointer references in the MEX core libraries. By also providing the IDs, this ensures
and subsequently enforces that the correct underlying RC_STORE is present for consistency.

10The field info.cgr was added with QSpace v3, whereas QSpace v2 still had the CGTs stored with the QSpace
tensors themselves without any CGRs [8].
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B QSpace Installation and Environment

B.1 System requirements

B.1.1 Matlab and Unix-like environment

The QSpace core library is written in C++. This is embedded into Matlab via the MEX API
which is included with the basic Matlab environment. All of the configurations assume a Unix-
like environment, such as Linux (assumed, by default) or also macOS, both within a bash shell
environment and standard access to Perl. To be specific, QSpace does not yet run on a Windows
operating system, unless Linux is emulated.

Up to the current version QSpace v4, one needs access to a fully functional Matlab environ-
ment. A basic Matlab license suffices for this, i.e., there is no need for any particular Matlab
toolbox. A potential exception is the Matlab compiler toolbox for MCC compilation if an ap-
plication is intended to be run on a high-performance computing (HPC) cluster environment.
If the Matlab license permits one to run arbitrarily many Matlab instances, there is no need
for the MCC toolbox. By the setup above, QSpace requires an environmental setup for Matlab,
e.g., see the ./system folder provided with the git repository. In particular, the Matlab script
system/ml.m shows how Matlab using QSpace can be started within a terminal without having
to load the full Matlab desktop).

The QSpace functionality is fully packaged into hard-coded MEX routines as a wrapper for
Matlab intended for tensor network applications. These binaries can be called directly from
within Matlab like any other Matlab command. This was the philosophy of QSpace from its
very inception: by embedding it into Matlab, this significantly enhances the user-friendliness
of QSpace. This makes it efficient to test new tensor network algorithms right on the Matlab
prompt, or run and debug Matlab scripts that use QSpace. This permits one to focus directly on
tensor network algorithms that fully exploit complex symmetry settings, rather than having to
worry about the underlying implementation. The inner workings of the C++ core tensor library
are mostly hidden from the point of view of a user application within Matlab.

Matlab terminal mode Matlab can be started either with the full-fledged graphical Matlab
desktop, or within an existing terminal (referred to as ‘terminal mode’). The latter still permits
all graphical capabilities, such as plotting figures which respond to the environmental system
variable DISPLAY. The embedding of QSpace into Matlab was developed in this slim mode.
Hence this is also the recommended way of using QSpace with Matlab. For one, this is light-
weight and hence beneficial when working remotely. On the other hand, by directly using a
regular terminal for the Matlab prompt, this also permits color coded log output for the sake of
readability (the latter is based on printed escape sequences which are supported by terminals,
but not the Matlab desktop).

Matlab scoping The git repository provides a full Matlab environment for QSpace, including
many convenient Matlab utility routines in ./lib. As this may interfere with other user-specific
environments within Matlab, the QSpace Matlab environment may be wrapped into a package
as this supports namespaces to isolate project environments (not included with the QSpace git
repository itself at the current stage). Using import statements should allow one to access to
model class or function names defined in other scopes (packages) without having to use fully
qualified references throughout. At a lower level, including or excluding the QSpace directories
into the Matlab path as in ./startup.m has a similar effect.
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B.1.2 C++ libraries required for MEX compilation

Since MEX files are compiled for usage in Matlab, it is advised to link against external libraries
as provided with the Matlab install where present. The main reason is that these libraries
are modified such that they can properly deal with error handling consistent with the Matlab
ecosystem (e.g., an error should not terminate an entire Matlab session, but rather return to
the Matlab prompt). The required dependencies are specified in Source/Makefile. It consists
of the following three standard libraries:

GMP/MPFR multi-precision libraries QSpace uses a higher-precision data format for all its
CGTs based on the GNU GMP/MPFR multi-precision library [44,45]. All CGTs in the RC_STORE
are stored in this format, using quad precision at 128 bits. The MPFR library is linked from the
location of the Matlab install under MATLAB_ROOT. See Source/Makefile for more details. By
contrast, the GMP library is linked from the operating system for technical reasons, hence must
be installed if not present (while the GMP is also present under MATLAB_ROOT, it does not come
with a header file there, besides that it also appears to have non-standard mathworks/Matlab
adapted 'mw_*' naming conventions).

LAPACK/BLAS libraries QSpace uses the standard LAPACK/BLAS library [82] as provided
with Matlab (-lmwblas, -lmwlapack; see Source/Makefile). From a coding point of view,
they behave identically to standard LAPACK/BLAS routines. It is a priori unclear, though,
how Matlab itself uses these libraries internally. Therefore at times minor performance differ-
ences may be observed when benchmarking with native linear algebra routines at the Matlab
prompt. For example, there exist multiple LAPACK routines with and without divide-and-
conquer schemes, such as dgesvd vs. dgesdd for singular value decomposition.

OpenMP library QSpace permits parallelization on top of standard parallelization in library
routines such as LAPACK/BLAS, based on the open multi-processing (openMP [83]) framework
to parallelize loops. Together with the parallelization within LAPACK/BLAS this results in
nested parallelization. The library (lib)iomp5 is provided with Matlab and hence also linked
from there. See Source/Makefile for more details.

B.2 Download and install

The public git repository for QSpace includes the C++ core sources, as well as the extensive
source for the Matlab wrapper environment. As such there is no automated installation process
per se for QSpace. The git repository may be pulled into a dedicated QSpace directory in one’s
Matlab home directory, as specified by the environmental variable MYMATLAB. References to
directories or files in the git repository therefore, by default, assume $MYMATLAB as the root
directory. After setup of the system environment, only the MEX binaries need to be compiled
in ./Source ≡ $MYMATLAB/Source/ as discussed below.

Currently, there are two (nearly identical) public git repos available under the QSpace
project [1] https://bitbucket.org/qspace4u/

• qspace-v4-pub/ – main repository developed on and intended for a Unix-like environ-
ment. It contains the most recent and up-to-date QSpace version, yet without any MEX
binaries. Thus, The MEX files must be (re)compiled by the user. This is also the setting
associated with this documentation.

• qspace-v4-osx12-monterey/ – duplicate of the above intended for macOS, which also
includes compiled MEX binaries for Intel CPUs. These *.mexmaci64 binaries are com-
piled with OSX12/Monterey on Intel-based Macs. Hence as of QSpace v4.0, the ARM
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architectures (M1, M2, etc.) are not yet supported. For updates, please consult the
documentation with the repository. The advantage of this repository is that, assuming
that all required libraries are present, QSpace should work as is without the need for
any additional compilation. Yet because this git repository also contains binaries, it is
not updated as frequently. Because macOS is unix-like, one can always clone the repo
qspace-v4-pub above instead, and (re)compile for macOS.

B.2.1 System environment setup

The setup of the QSpace system environment is centralized around system/matlab_setup.sh
(bash shell script). As this file is part of the git repository, it should not be edited. By default, it
expects a bash script system/matlab_setup_user.sh which is not part of the git repository, to
avoid that it gets overwritten during git updates. Hence this file needs to be generated. It is the
only file that should be edited to configure the environment (see environmental variables for
more). A template is provided in system/matlab_setup_user.sh-template. In summary, the
following is the recommended procedure to set up the QSpace system environment (command
displays are shown with blue background here to indicate bash script),

1 cd $MYMATLAB/system/
2 cp matlab_setup_user.sh-template matlab_setup_user.sh
3 edit matlab_setup_user.sh # use your favorite plain-text editor

where the path $MYMATLAB specifies the location of the QSpace repository. This reflects the
environmental variable of the same set in matlab_setup_user.sh later. The edit in line 3
only requires very few lines to change when using the specified template. It can be done
with any plain text editor (in the case edit → vim, the repository also provides the optional
system/.vim and .vimrc to configure vim; for these files to take effect, one may rsync them
to one’s home directory via rsync -irp ./system/.vim* $HOME/). If one wants to use a
different file other than matlab_setup_user.sh, then the script system/matlab_setup.sh
permits one to define the environmental variable QS_CONFIG_ML_SH, instead. This then needs
to specify the alternative user file name with a fully qualified path if not located within the
system/ folder of the repository.

The setup is finalized by the Perl script system/matlab_setup.pl which is automatically
called at the end of system/matlab_setup.sh. Again since it is part of the repository, the user
should not edit it. This script cleans up the setup, in that double-checks and completes the
setup where possible. For convenience, one may define an alias (feel free to rename),

4 alias mlsetup="source $MYMATLAB/system/matlab_setup.sh"

This may also be added to one’s $HOME/.bashrc setup for later usage. Once the edit in line 3
is complete and the alias above is defined, then the simple command

5 mlsetup

should suffice to configure the required QSpace Matlab environment in the current shell. Be-
cause the environmental setup is centralized around system/matlab_setup.sh, the call to
mlsetup is sufficient to setup the Matlab environment whenever one deals with QSpace. This
includes the regular usage of QSpace (e.g., see system/ml), but also compilation (e.g., see
Source/Makefile or also MCC/Makefile.template).

Potential hickups The environmental setup of QSpace makes certain assumptions that may
lead to potential hiccups. These concern the system PATH:

95



SciPost Physics Submission

• Include current directoy – The environmental setup of QSpace assumes that the current
directory '.' is included in the system PATH. This concerns, for example, the usage of
auxiliary perl scripts located in ./system or ./Source. Hence the system PATH should
include the current directory '.', e.g., with lower priority towards the end of PATH.

• Matlab programs – It is recommended to have $MATLAB_ROOT/bin in the system’s PATH
with higher priority, i.e., by listing it to the front of $PATH to avoid mixups with programs
that accidentally share the same command name, like mex, etc.

B.2.2 MEX compilation

Once the git repo is cloned and the environment set up, the last step is to (re)compile the MEX
files. The recommended way for this is via ./Source/Makefile at the level of the operating
system, which calls Matlab’s mex command from there (in principle, mex also could be called
from within Matlab). In either case, this first requires the Matlab environment to be configured
as described above, since the Makefile makes use of this.

The MEX compilation based on the mex command requires a C++ compiler installed on the
system. Matlab has constraints on which C++ compilers are supported and compatible with a
given Matlab release. Hence the recommended way to choose a compatible C++ compiler is
via Matlab’s setup in this regard,

6 mex setup C++ # required once for a given Matlab release

which may be run either from a terminal, e.g., after a call to mlsetup, or from the Matlab
prompt. Note that the QSpace Makefiles assume gcc on Linux and Xcode/clang on macOS.
The mex setup above looks for compatible C++ compilers on the system. If more than one
compiler is found, this becomes an interactive process where one needs to choose. The infor-
mation on the chosen compiler is then stored within one’s $HOME directory. Hence this only
needs to be run once for a given Matlab version. However, since the selection of a compatible
C++ compiler is Matlab release specific, the setup in line 6 needs to be repeated whenever one
switches to a new Matlab version.

Once a compatible C++ compiler has been chosen, one can proceed to compile the MEX
files in a terminal. A test compile (based on helloworld.cc) can be run first to double-check
whether the Matlab setup proceeds without error,

7 cd ./Source
8 mlsetup && make test # compiles helloworld.cc into MEX file

When the above commands run successfully, this can be followed by the full compilation

9 make -B all # may add option -j $np to parallelize compilation

This compiles a total of about 40 MEX files. About half of these are QSpace core routines
that are compiled into the ./bin folder with file names ending in QS, thus also referred to
as QS-routines. The remaining utility routines are compiled into the ./util folder. The full
(re-)compilation can be rather time consuming when run sequentially. However, since there
are no dependencies across the MEX files, the compilation of the MEX files can be trivially
parallelized to speed up the process. This is achieved by specifying the option -j $np to make
in line 9 where np specifies the number of compilation targets to run in parallel. A sensible
choice for np will depend on the number of available cores on one’s system.
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Safeguards and assertions The C++ core library of QSpace includes many internal safe-
guards to ensure consistency. These safeguards usually correspond to simple and thus fast
checks. In this sense, the overhead should be minimal. Some of the more severe checks can
be turned off, however, by defining __WB_SKIP_ASSERT in wblib.h.

B.2.3 Matlab startup

A typical Matlab startup proceeds as in the bash script system/ml provided with the repos-
itory. With the QSpace repository located at $MYMATLAB, starting Matlab from that directory
(cd $MYMATLAB) automatically sources ./startup.m which is important to set up the QSpace
environment within Matlab, e.g., by properly extending the Matlab path. Since this script is
part of the git repository, it should not be altered. For that purpose, at the end of the script
./startup.m, it looks for another script ./startup_loc.m in the same directory, and if present,
also runs it. This is intended to add automated user-specific configuration to one’s Matlab en-
vironment, by generating and editing that file (using one’s favorite text editor),

10 edit ./startup_loc.m # optional Matlab specific user configuration

As seen in system/ml, it first sources system/matlab_setup.sh (equivalent to mlsetup in
lines 4-5 above), switches to the directory $MYMATLAB, and then starts Matlab from there. In
the case of system/ml, this starts Matlab into a terminal without the full desktop environ-
ment (by specifying the option -nodesktop) and without the Matlab splash window during
startup (-nosplash). With the DISPLAY variable active, i.e., not disabled via -nodisplay, the
full graphical interface for figures is available, nevertheless. Running system/ml without any
errors or warnings is an essential first assurance that QSpace is set up properly.

B.3 QSpace Environment within Matlab

The extensive C++ code base provides the QSpace core functionality. This is packaged into
elementary MEX routines to run tensor network algorithms within Matlab. By convention,
all MEX routines that deal with elementary QSpace tensor operations have a trailing QS to
their name, e.g., as in eigQS(). They are referred to as QS-routines, and are located in the
bin/ directory of the QSpace repository. Other MEX utility routines are collected in the util/
directory. These have no trailing QS extension to their name. Both directories are included in
the Matlab path via the startup script in $MYMATLAB.

@QSpace wrapper class The QSpace class in Class/@QSpace wraps the C++ QSpace class
object after being cast into a Matlab data structure by the MEX routines. For the sake of
the discussion in this documentation, to differentiate it from the C++ counterpart, this Matlab
wrapper class is frequently referred to as @QSpace or simply also QSpace with differentiated
color-coding to further emphasize the Matlab class context where important.

By also overloading a range of Matlab functions, the @QSpace class simplifies operations
in Matlab and therefore makes QSpace considerably more user-friendly. Simple operations
on QSpace objects are directly coded within Matlab in @QSpace, while it leaves the heavy-duty
weight lifting to the MEX routines. The class constructor QSpace() together with the more than
a hundred other class routines in Class/@QSpace [cf. Sec. F.1] ensure that the proper QSpace
tensor structure is maintained consistent with the MEX core routines. Last but not least, this
wrapper class also provides a compact formatted display of QSpace objects that summarizes
the most important information about a QSpace tensor (e.g. see Fig. 7 in Sec. 3.2).

For a QSpace X, the command X=struct(X) strips it down to the underlying plain structure
object in Matlab [see (35) for an example]. Conversely, given such a structure, it can be cast
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back to a class object via X=QSpace(X). By construction, @QSpace methods only apply to, and
hence can only be called on QSpace objects. By Matlab convention, this implies that an @QSpace
member function is called if at least one QSpace object is present in the input argument list. It
does not necessarily have to be the first argument, though.

MEX files return structures: Matlab does not permit MEX routines to return a user-defined
Matlab class object like QSpace. Hence QSpace objects out of MEX returns can only be returned
as a structure object.11 For that reason, very simple wrapper routines exist for QS-routines, that
effectively behave like foo(X) ≡ QSpace(fooQS(X)), with contractQS an example. The name
for these routines is the same as for the respective MEX routine up to a trailing 'QS', i.e.,
fooQS() becomes foo(). To locate uniquely which function gets called, one may use Matlab’s
command which in any context.

More generally, when an @QSpace routine foo() is called, it operates on an input that
includes at least one QSpace object. It may include calls to multiple MEX routines or none
at all. If QSpace tensors are returned, they are usually cast into QSpace objects if they exist
as plain data structures, e.g., out of MEX routines. The @QSpace routines typically perform
additional tasks coded within Matlab. Therefore the type and order of the return arguments
are not necessarily the same as compared to a respective MEX routine called. For example,
eig() mimics the output of Matlab’s native eig() routine rather than that of eigQS().

B.4 MEX environment

MEX routines are C++ compiled binaries that can be called from within Matlab like any other
Matlab function. From a C++ point of view, the standard entry point

0 int main(int nargin, char **argin) { ... }

is replaced by

1 void mexFunction(
2 int nargout, mxArray *argout[],
3 int nargin, const mxArray *argin[]) {
4 ...
5 }

where the Matlab arguments via the generic data type mxArray* are handled via the Matlab
API. The input in line 3 is by const pointer, and hence by reference and read-only. This way
QSpace can avoid copies for input QSpaces where read-only suffices. All MEX routines in
QSpace are also effectively wrapper routines that package a particular functionality of the C++
QSpace sources. This way, all MEX files are typically rather simple C++ files themselves.

Memory management Once a function is called in Matlab, it stays resident in memory so
that later calls gain performance. The same also holds for MEX routines, with the effect that
global variables in MEX routines are persistent in memory, i.e., they keep their data from one
MEX call to the next. QSpace widely exploits this when dealing with the RC_STORE, because
data can be read on demand once and for all. Nevertheless, this data cannot be shared across
different MEX files. Functions and their associated memory spaces can be cleared in Matlab
via clear functions. This triggers standard C++ garbage collection, which ensures that the
global data with MEX routines is also properly released. It is important to note, though, that

11Effectively, the casting into a QSpace Matlab class and the corresponding error handling needs to occur within
the Matlab session, and cannot be outsourced to the MEX API. The situation is different when MEX routines store
data into files, since Matlab does permit one to save a QSpace data structure as a designated QSpace object into a
mat-file. The casting into the Matlab run-time object then occurs when the mat-file is loaded.
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QSpace does not use the memory allocation routine provided by the Matlab API, but rather uses
standard C++ memory management. Hence while clear functions does release all memory
allocated by the MEX functions via the underlying C++ class destructors, this is not necessarily
visible in the memory consumption of the Matlab process as a whole from the perspective
of the operating system. Subsequent MEX calls may reuse freed-up memory. The detailed
behavior here, however, very much depends on the particular operating system.

QSpace avoids copies of arguments at MEX interface The MEX API hands over input vari-
ables by constant reference (line 3 above). This is used by QSpace to avoid generating explicit
copies of input QSpace tensors where possible. That is, in Matlab spirit, QSpace copies are gen-
erated just in time (JIT) only where required. The data format of generalized column-major for
tensors is consistent across all Matlab and QSpace arrays. With Matlab’s switch to interleaved
complex data since 2018, this is also consistent with the data format for complex numbers in
standard LAPACK/BLAS routines. Similarly, also the output in line 2 above is handed over as
a pointer. Therefore to avoid copying output data back to Matlab, output QSpace tensors are
created in MEX-compliant data spaces as soon as possible within the C++ core routines.

Error handling MEX routines temporarily switch the error handling from Matlab to standard
C++ which also concerns handling interrupts such as Ctrl-C. Errors are therefore caught within
C++. Before returning to Matlab, however, the Matlab-specific signal handlers are restored.
This is ensured by an outer try/catch block in every MEX routine.

When interrupting Matlab while inside a MEX routine, the behavior is typically as follows:
When Ctrl-C is pressed the first time, (1) this instantaneously prints a message that confirms
that the interrupt was received. However, the MEX routine will continue and still try to finish
its current step until the next point that is natural for the MEX routine to terminate, e.g.,
after some finished iteration in a loop. When pressing Ctrl-C additional times, the MEX
routine gives (2) a warning that the MEX routine will be terminating immediately, and (3)
actually terminate immediately. Enforcing the termination is considered unsafe, though, with
potentially erroneous behavior. This motivates the above behavior.

Warnings Warnings in MEX routines are typically general wblog messages to stdout both
within Matlab scripts, as well as in MEX files with the tag 'WRN' in them. In MEX routines, this
reflects standard output, though. Hence this will typically not be recognized by the Matlab
debugger as a warning (this is in contrast to MEX errors 'ERR' which always are dealt with
as an error also within Matlab by throwing an exception). Only in very few instances, does a
warning within a MEX function also escalate to the Matlab environment as a proper Matlab
warning that can be caught via dbstop if warning with the Matlab debugger. So far this only
concerns contractQS. This MEX routine issues a proper warning when it tries to automatically
fix missing conj flags when contracting tensors, or when regular expressions operating on
itags within contractQS have no effect because they do not match. Since this should be
checked and fixed in the Matlab code right where it is called, it is useful to be able to stop the
Matlab execution there.

B.5 HPC environment and parellization

MCC compilation The Matlab compiler (MCC) toolbox can be acquired with Matlab. It
permits one to decouple an arbitrary number of cluster jobs from Matlab license requirements
since the Matlab license is required only for the MCC compilation. This collects all relevant
code from the Matlab path, including MEX binaries. It builds a standalone application that can
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eventually be deployed without a Matlab license. While there is no runtime speedup in this
process, the MCC compilation output contains everything required for a cluster job to run.

Parallelization (multiple jobs) When running multiple jobs, it is highly recommended to
have a mostly complete RC_STORE that is used in a centralized fashion, e.g., over a network
drive, in combination with a differential setup with job-specific local storage (see more on this
with the environmental variable RC_STORE). If an RC_STORE needs to be built from scratch, a
good practice is to run a test job upfront which generates most of the symmetry-related data.
When post-analyzing job data where one still also non-trivially operates on QSpace tensors,
e.g., via contractions, then the original RC_STORE must be accessible.

Parallelization (single job) QSpace parallelizes at the level of MEX routines which is moti-
vated by the following: QSpace tensors intrinsically consist of lists of blocks (RMTs) each of
which is stored in full, generalized column-major format. When working through such lists,
e.g., in the context of contraction, eigen- or singular-value decomposition, it is desirable to
parallelize the respective loops. For the RMTs, this amounts to mostly trivial parallelization.
For example, in the context of contractions there are frequently a large number of pairwise
contractions of RMTs to be performed which have matching symmetry sectors in the contracted
indices. In the presence of multiple symmetries and rank r > 2 tensors, this can quickly reach
hundreds or many thousands of individual pairwise contractions [34].

In this sense, outer loops are parallelized in QSpace using openMP. This responds to the envi-
ronmental variable QSP_NUM_THREADS. At a lower level, also the elementary steps of operating
on individual (pairs of) RMTs are parallelized simply by linking the standard LAPACK/BLAS li-
braries. These parallelize themselves, typically responding to OMP_NUM_THREADS (since Matlab
has a tendency to overwrite or ignore those, one may rather use setNumThreads.m, instead,
as provided with the QSpace repository). Together with the openMP parallelization, this gives
rise to nested parallelization, in that every worker in the loop itself can parallelize.

Parallelizing loops, ideally, relates to trivial and thus efficient parallelization. This is mostly
the case for the RMTs, and hence also in the presence of only abelian symmetries, where all
symmetry-related constraints can be quickly obtained on the fly. For non-abelian symmetries,
however, QSpace makes use of an RC_STORE that needs to be kept consistent across all workers.
Therefore, critical symmetry-related operations that may lead to updates in the RC_STORE need
to be forced into serial mode via critical sections or object-specific openMP locks (mutex and
semaphores) for synchronization. Since symmetry-related operations can trigger a range of
a priori unexpected additional actions, this slows down the parallelization of loops in QSpace
for larger QSP_NUM_THREADS. Hence typically, one may use QSP_NUM_THREADS≲ 8.

From the above outset, the parallelization is optimized by combining openMP with native
parallelization of LAPACK/BLAS routines. Much of this parallelization is CPU-centered still.
Hence as of now, QSpace does not support GPU parallelization [84]. If in the future openMP,
together with LAPACK/BLAS, seamlessly supports GPUs, this also should enable access to GPUs
for QSpace.

Subtleties and potential issues with parallelization Tensor operations can trigger an a pri-
ori unexpected set of additional actions that need to be properly synchronized across different
threads when parallelizing. The following, for example, shows how contractions can trig-
ger tensor product decompositions which may result in proliferating requests for CGT-specific
locks, and worst case, in deadlocks.

To be specific, consider the example of contracting two tensors. The contraction needs to
be performed both, at the level of RMTs, as well as at the level of CGTs for each non-abelian
symmetry involved. Because the latter are tabulated, most CGTs may be present already from
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earlier simulations. But there is a chance that new symmetry-related data is created. Therefore
when a particular CGT resulting out of the contraction is requested as a reference (CGR) from
the internal buffer in memory, there needs to be a lock on this particular object in the buffer:
after all, it may not be in memory yet e.g., because a simulation just started. The thread thus (i)
issues an object-specific openMP lock and then (ii) reads the object from the buffer. If present,
it can release the lock. If not yet present, the thread keeps the lock active, and (iii) tries to
read the CGR from the RC_STORE. If not present there either, the thread (iv) will generate the
requested CGT, e.g., by performing the contraction explicitly and tabulating the result for the
future, before releasing the lock.

With the further assumption that the contraction results in a rank-3 tensor that has two
incoming and one outgoing index or vice versa, this reflects a standard CGC that can also
be obtained from tensor product decomposition, instead. If at least one input multiplet is
of smaller dimension, in the sense that it may reasonably occur in a local state space of a
site, QSpace does not obtain the CGT by contraction, but (v) rather gives preference to the full
tensor product decomposition, as this automatically also generates full outer multiplicity where
present. This is carried out by the present thread in addition to (iv) above. The thread then
(vi) projects the contracted CGT in (iv) onto the CGT out of the tensor product decomposition
in (v), before it finally releases the lock.

Now to further complicate things, a tensor product decomposition not only generates the
particular CGT of interest, but typically also additional other CGTs. Accidentally, some of these
may coincide with CGTs that occur in the present tensor contraction as encountered by other
threads which simultaneously also try to acquire locks themselves. Worst case, such scenarios
can result in deadlocks if QSP_NUM_THREADS is chosen too large. This situation, however, can
only occur if a sufficiently large number of new objects needs to be generated for the existing
RC_STORE. Hence a pragmatic way to deal with competing locks as described above, is to
test run a particular simulation first in serial mode by unsetting QSP_NUM_THREADS. This will
generate most of the required entries in the RC_STORE, which then can be made accessible
globally in the spirit of a differential storage setup via the environmental variable RC_STORE.

B.6 Environmental variables

The following environmental variables are specific to QSpace. They are defined when setting
up the Matlab environment for QSpace via system/matlab_setup.sh. The mandatory ones
are indicated, otherwise default values will be auto-determined by matlab_setup.pl which
finalizes the setup. As these variables are used in various places either during MEX compilation,
startup of Matlab, or while using QSpace within Matlab, they are expected to be exported to
sub-shells (e.g., using bash export).

ARCH system architecture (auto-determined based on system call uname -sm, by default) –
Used in Source/Makefile to distinguish between system environments as specified with Mat-
lab in $MATLAB_ROOT/sys/os/$ARCH/, such as glnxa64 for Linux or maci64 for macOS.

LMA local Matlab data directory (path, mostly optional) – In some applications provided with
QSpace, this expects the designation of a (local) Matlab directory intended for data storage.
For example, used with 'cto lma' to change directories (‘change to’) which then looks for the
environmental variable in upper case letters LMA. E.g., see line 61 with Sec. 5.6 above.

MATLAB_ROOT Matlab root directory (path; mandatory) – The location of the Matlab install:
if multiple Matlab versions are present, this typically includes the Matlab version string. The
Matlab binary is expected to be located in $(MATLAB_ROOT)/bin/[matlab]. The variable
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MATLAB_ROOT is essential for the compilation via the Makefiles since these need to link to
headers and libraries in the Matlab install.

MCC_TAG system dependent subdirectory in ./MCC used with MCC compilation (string which
defaults to 'bin*' based on the MEX file extension [mex]*).

MYMATLAB location of the cloned QSpace git repository (path; mandatory) – Since the repos-
itory also includes an extended Matlab environment with wrapper and utility routines from
within which applications and simulations are run, this is referred to as ‘my Matlab’, typically
located somewhere within the HOME directory like ∼/Matlab/.

MEX location of MEX / C++ source directory (path; defaults to ./Source).

QSP_NUM_THREADS (non-negative integer) – Number of threads to be used with QSpace on top
of standard LAPACK/BLAS parallelization (which itself parallelizes based on OMP_NUM_THREADS).
This gives rise to nested parallelization. If QSP_NUM_THREADS is not set, no such parallelization
is performed.

QS_LOG_COLOR Enables/disables color coding (intended for Matlab terminal mode only, as-
suming a dark terminal background) – By default, the color coding is turned on in interactive
terminal mode where it may be disabled by export QS_LOG_COLOR=0. The color setting affects
both, the output of MEX routines, as well as log entries purely within Matlab, e.g., based on
the lib/wblog.m logging routine.

QS_CONFIG_ML_SH Optional specification of bash configuration file for Matlab system envi-
ronment (used by system/matlab_setup.sh; defaults to system/matlab_setup_user.sh).

RC_STORE The environmental variable

RC_STORE=path1:. . .:pathN

points to the location where symmetry-related data is written or, subsequently, read. The
variable RC_STORE contains one or multiple paths separated by a colon ':' for the sake of
a differential storage setup, where the last path is assumed to contain the newest symmetry-
related data if any. To be specific, the lookup of symmetry-related data proceeds as follows,

pathN → path1 → . . . → pathN-1
︸ ︷︷ ︸

read until found

not found
−→ pathN
︸ ︷︷ ︸

write

When QSpace requires a particular symmetry related object, this starts by looking into the last
(because newest) path, pathN. If the object looked for is found there, it is read and returned. If
the object is not found, QSpace proceeds to the first and then the subsequent directories until
the object is found. If nowhere found, then the desired symmetry-related object is computed,
where by the iterative nature of QSpace, all required input for this is assumed to be present
from the earlier RC_STORE history. The result is then stored in the last path, pathN, in RC_STORE
and, finally, also returned.

The above procedure permits a differential setup where all paths except the last one (pathN)
are read-only. New or updated data is written to the last path only. For an interactive Matlab
session, a single path is recommended. For cluster jobs, the recommended setting is two paths:
RC_STORE=(global_path):(local_path), where global_path points to an RC_STORE that is
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mostly complete in the required symmetry-related data based on earlier calculations. This may
be available from a network drive, where required entries are typically read once and for all,
and stored in memory (larger CGT objects are frequently purged from memory, though, since
CGRs are typically all that is needed once no more new OM components are generated for the
CGTs under consideration). By contrast, the local_path is meant to be a local directory with
the cluster job. The major reason for this differential setup above is to avoid race conditions
and thus clashes across different cluster jobs operating on the same RC_STORE [newly gener-
ated CGTs get assigned IDs which are referenced elsewhere, such as in X-symbols; therefore
these must be consistent across the entire RC_STORE; they may get corrupted in case of race
conditions from parallel executions of different simulations, e.g., cluster jobs; by contrast, the
parallel execution within threads of the same simulation uses OMP critical sections, as well as
other OMP locks based on mutex and semaphores for synchronization].

Once all jobs are finished, their RC_STORE have diverged from each other if local_path,
is non-empty. This way they have become incompatible with each other. However, for future
purposes, one may choose one particular job, e.g., one that generated the most new symmetry-
related data in terms of the number of file entries or disk usage in local_path, and simply
rsync all content in its local_path on top of global_path (assuming there are no more active
jobs that still access global_path).

RC_SYNC (optional path) The environmental variable RC_SYNC is complimentary to RC_STORE.
For historical reasons, it is intended for file locks only to synchronize symmetry-related oper-
ations across parallel jobs. However, since file locks are not entirely reliable over network
drives, if configured at all due to their impact on performance, the initial concept of file locks
has been mostly abandoned in QSpace, such that setting the variable RC_SYNC is optional. For
cluster jobs the recommended setting, instead, is to use a differential RC_STORE.

Relevant system environmental variables

DISPLAY handles the graphical display of graphical output from Matlab when run in terminal
mode (assuming Matlab is not run with the -nodisplay option). The variable DISPLAY belongs
to the X11 window system (e.g., XQuartz on macOS) and is usually automatically set if X11 is
present on one’s system.

PATH system path – Matlab and the C++ compiler must be visible on the system PATH. There-
fore it needs to be properly adapted. Furthermore, the current directory '.' is expected to
be included in the system PATH, such that QSpace specific local bash or Perl scripts, e.g., in
./system or ./Source are found.

B.7 RC_STORE database

The RC_STORE is a file-based database that stores all symmetry-related content for non-abelian
symmetries [8,15]. All data is computed on demand once and for all, and then stored for later
usage. The root path of this database is specified via the environmental variable RC_STORE. To
avoid race conditions across parallel jobs, this supports a differential setup via the specification
of multiple paths. Nevertheless, for the sake of the argument here, RC_STORE is assumed to
specify a single path.

For each symmetry $sym, QSpace generates a sub-directory $RC_STORE/$sym/, e.g., with
sym=SU2, etc. Referring to this as the current directory '.' in what follows, QSpace maintains
a detailed log file ./$sym.log for all operations carried out for symmetry $sym. Furthermore,
QSpace stores and maintains three database directories, R-, C-, and X-stores (for historical
reasons, this is only partly reflected in the name ‘RC’_STORE, since X was added with QSpace
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v3). All data files are stored in Matlab binary format (mat-files), even if all file extensions have
been altered by QSpace-specific conventions to reflect their content.

• ./RStore – stores all irreducible representations Rq for the ireps q encountered dur-
ing given RC_STORE history for symmetry sym. The respective data is stored in files
RStore/(q).rep where the extension indicates ‘representation’. Here Rq includes a full
basis decomposition in terms of weight labels that may include degeneracies, i.e., inner
multiplicity [38], as well as a sparse representation of the diagonal Cartan subalgebra
(generalized ‘z-operators’ Sz≡ Sz) and of the simple roots (generalized minimal set of
raising operators Sp≡ S+) of the Lie algebra [8,46].

• ./CStore – stores all sorted CGTs Cq as files CStore/$qdir/(q).cgdwhere the extension
indicates generalized Clebsch-Gordon data. All CGTs are stored in sparse format gener-
alized to arbitrary rank and in roughly quad-precision (GMP/MPFR). The latter ensures
that all CGTs are exact when converted to double precision. The CGTs are grouped in
subdirectories based on their sorted q-directions $qdir [incoming (+) before outgoing
(-)]. Their combination thus represents the tensor rank. For example, standard CGCs
are stored in the subdirectory CStore/++-/. All 1 j symbols are stored in CStore/++/.
These duplicate the entries of the type (qq̄|0) in CStore/++-/ if present [15]. The latter
directory also stores the fusion rules as obtained from full tensor-product decomposi-
tions. As these represent maps of 2 in- into 1 out-going leg, i.e., operates on a total of 3
legs, this is reflected in the file extension *.mp3).

• ./XStore – stores the X-symbols [15] derived from all encountered pairwise CGT con-
tractions C ≡ A∗ B that are not trivially zero due to non-permissible12 combinations of
symmetry labels in the uncontracted indices present in C . With this the XStore typically
contains by far the largest number of files. Most of these are small because X-symbols
are small objects in general. The X-symbols are stored in files like XStore/$qdir/(A)_ia
(B)_ib.x3d where the extension indicates X-symbol data which always operates on 3
outer multiplicity indices. The file name itself shows the contraction performed with
reference to the input tensors A and B (specified by their compact q-labels), as well as
the respective contracted indices ia and ib (also in compact format if multiple indices
are contracted simultaneously). The files are grouped into subdirectories based on the
q-direction $qdir of the resulting tensor C .

Sorted CGTs The ./CStore stores sorted CGTs only: For one, this includes the more trivial
ordering that all incoming (+) legs are listed before all outgoing (-) ones. Yet this also includes
the considerably more subtle ordering within each group of directions where the legs are sorted
w.r.t. their q-labels in lexicographic order. If there are more outgoing than incoming indices,
then the conjugate CGT is stored. Therefore all CGTs in the RC_STORE have at least as many
incoming indices as there are outgoing ones. These q-directions are then used as subfolder
names to organize the CGTs in the RC_STORE, like CStore/++-/ for standard rank-3 CGCs. By
only storing sorted CGTs in the above sense, this avoids the proliferation of closely related
entries in the RC_STORE. A general non-sorted, and in this sense unconstrained CGT can be
obtained, nevertheless, in combination with a CGR.

RC_STORE initialization Whenever a symmetry $sym is requested for the first time, QSpace
creates and initializes the above directory structure in $RC_STORE/$sym/. It creates the rep-
resentation Rdef for the defining irep in the RStore, as well as it’s dual if different. QSpace

12The check on zero-contraction of a pair of CGTs is based on simple checks concerning the resulting rank-2
or rank-3 CGTs C only. Therefore many contractions that resulted in zero for rank r > 3 are stored, neverthe-
less. While such contractions may be zero during the initial build of the RC_STORE depending on the particular
contraction performed, the resulting CGT can be permissible, nevertheless, and hence non-zero eventually.
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then loops several times by generating tensor-product decompositions of the existing content
in the RStore with itself while putting an upper threshold on the product dimension of the
input for the case of larger-rank symmetries. This is intended at the very least to generate all
smaller ireps that typically are required in the description of a local site before performing any
contraction.

The initialization process is speedy for small symmetries such as seconds for SU(2), but
becomes quickly more elaborate for larger symmetries [the cost grows exponentially with the
rank of the symmetry; cf. Eq. (60)]. For rank-2 symmetries like SU(3), the initialization pro-
cess should be completed within minutes. But for SU(4) one should be already prepared to
wait several hours while the RC_STORE is built the first time. The initial process of generating
lower-dimensional ireps may be interrupted, though, worst case by killing the process (Ctrl-C
while still waiting for the present generation cycle to finish). The next time the RC_STORE is
accessed for a given symmetry, it already exists. Still, subsequent computations for larger-
rank symmetries may take considerable time in any case, since the RC_STORE still needs to be
extended in the course of building a many-body Hilbert space.

Once a tensor network simulation is finished, though, by construction all relevant symmetry-
related data is present. That is, repeating the same or similar simulations will have access to a
(near) complete RC_STORE. At this point the full speedup of exploiting non-abelian symmetries
is achieved. This is also a major reason why a centrally maintained RC_STORE is important for
larger symmetries, like beyond SU(3), as this can make use of existing symmetry-related data.
Besides, later access to an RC_STORE is also important if one wants to analyze and still operate
non-trivially on QSpace tensors at a later time in a new Matlab session or with memory cleared,
since QSpace tensors are tied to a particular RC_STORE.

B.8 Logging

QSpace uses a streamlined format when logging data to standard output (stdout). This is
based on the routine wblog() that behaves similarly in Matlab scripts (which call lib/wblog.m),
as well as with a C++ analog in MEX routines. It represents a tweaked formatted output to the
stdout stream, like fprintf(stdout,fmt,arg1,arg2,...) with fmt some format string. This
translates to wblog(tag,fmt,arg1,arg2,...). For example,

1 wblog('TAG','some info (value of pi=\%g)\nand more\N-> hint: ...',pi)

generates output with the format

2 [file-name:lineno] HH:MM:SS TAG some info (value of pi=3.14159)
3 [file-name:lineno] HH:MM:SS TAG and more
4 -> hint: ...

It automatically prepends a header portion of about 36 characters that includes an automati-
cally determined pointer into the source code at the location of the wblog command for refer-
ence [file name (possibly abbreviated) and line number (lineno)], a time stamp in 24H format,
and a 3-character tag (the first input argument) as described below. The remainder of the input
to wblog is mostly forwarded to printf() and hence accepts the same syntax with minor addi-
tional tweaks concerning the format string. Newlines are permitted, as in the example above,
which then repeat the header portion. Tweaks include, e.g., the non-standard \N which inserts
a newline without the header portion. Every wblog entry is terminated with a newline. This
can be prevented by a trailing '\\' in the format string.

The 3-character TAG is used for a rough categorization of log entries via tags. It can be
chosen arbitrarily, but is typically within the following set that has special meanings assigned:
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'ERR' for errors13

'WRN' for warnings14

'<i>' for more important infos
'I/O' for I/O related messages
'NB!' for critical things to be aware of (‘nota bene’),
'SUC' succeeded with a certain operation
'ok.' some successful check performed
'* ' log-level 1
' * ' log-level 2
' *' log-level 3
... etc.

When using QSpace in interactive Matlab terminal mode, some log output is shown in color for
emphasis depending on their TAG (like ERR messages in dark red, WRNs in lighter red, NB! or
OK! in dark green, ok. in lighter green, etc.; the particular color coding may change in future
versions, though).

The leading pointer into the source code facilitates to track down where a particular log
message originated from, be it a C++ reference from within a MEX file, or reference to a Matlab
script. The file name always reflects the bare file name, i.e., skips any path. It may include pro-
gram tags, current Matlab subroutine, etc. To align log entries with respect to the subsequent
time stamp, 20 characters are reserved for file-name:lineno. If it does not fit within that
space, various schemes for abbreviating the file name are adopted depending on the context,
thus giving preference to the readability of the log output by aligning entries. Skipped string
portions in the file name are indicated by a prime (’).

C QSpace applications in the repository

The QSpace repository also includes state-of-the-art implementations of fdm-NRG [19] and
DMRG. The standard iterative diagonalization of the NRG was already discussed in more detail
in Sec. 5.6. However, the full implementation of fdm-NRG is considerably more involved,
with its documentation beyond the scope of this documentation. Similar so for the DMRG.
Please consult the ./Docu folder in the git repository for future updates. Nevertheless, it is
emphasized here in passing, that these implementations already exist in the public QSpace
repository. The interested reader may find it rewarding to explore. In case of more detailed
interest, please also feel free to contact the author in this regard.

C.1 DMRG simulations

By default, runDMRG located in the DMRG/ folder launches a DMRG simulation for the ground
state of the isotropic Heisenberg model (wsys='Heisenberg') with nearest-neighbor inter-
action J = 1 and next-nearest neighbor interactions set to J2 = 0.25 exploiting SU(2) spin
symmetry,

1 runDMRG

13The 'ERR' tag throws an error in the MEX files, but continues in Matlab code. To also throw an error in the
latter case, QSpace uses wbdie(). For the debugger to also stop with ERR in Matlab code, QSpace provides the
command dberr.

14The 'WRN' tag in the MEX files and also Matlab code usually does not raise any signal or issue but continues.
It leaves it up to the user to check the log output for warnings. Nevertheless, to stop the debugger in an interactive
session with 'WRN' in Matlab code, QSpace provides the command dbwrn.
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The Hamiltonian is encoded in HAM which represents the QSpace Matlab Class/@Hamilton1D.
Simply typing HAM will show essential information concerning the model Hamiltonian. The
model parameters are stored in the structure HAM.info.param. The lattice structure can be
inspected via plot(HAM). A summary of the DMRG sweeps can be generated by the plot script
plot_Hamilton1D.

C.2 NRG impurity solver

A typical NRG run involves two parts [13,18]: (i) Iterative diagonalization (line 1 below which
by default selects the single impurity Anderson model). This collects finite-size spectra in kept
and discarded resolution [19,59] as already explicitly demonstrated in Sec. 5.6. This then per-
mits one to (ii) define a thermal state via the full density matrix (fdm) for statistical properties
but also spectral properties (line 4 below) that can be evaluated efficiently in textbook-like
fashion in Lehman representation [19,50],

1 rnrg; % NRG iterative diagonalization
2 % nrg_plot % generates NRG energy flow diagram
3

4 rfdm % computes fdm-NRG correlation functions
5 % fdm_plot % summarizes computed fdm-NRG spectral data

A graphical summary of the results can be generated by the respective plot scripts in lines 2
and 5 (these scripts are automatically called at the end of the respective previous commands in
lines 1 and 4, hence they are commented out). Further hard-coded QSpace MEX applications
exist in the fdm-NRG context in the repository, as listed in Sec. E.2 together with the MEX
routines underlying rnrg and rfdm above.

D Additional information and documentation

D.1 Additional usage and help info

All QSpace routines, MEX as well as Matlab functions, come with their own help and usage
information (like ‘man pages’). It can be looked up with the standard Matlab help command.

Help and usage of MEX functions For MEX routines denoted by fooQS here, the following
are all equivalent

• help fooQS

• fooQS -h

• fooQS -?

where the last two are simple redirects to the first call. That is, all help files to MEX files
are stored as Matlab m-files. For this reason, Matlab finds two entries for every MEX routine
in its respective directory: the actual MEX binary fooQS.mex*, but also fooQS.m. The latter
contains usage information based on an extended header comment without any source. It is
recommended that both files are located in the same folder in the Matlab path. Then when
calling the function, this finds the fooQS.mex* file first. When calling the help, Matlab ignores
the MEX file and thus finds the fooQS.m first, instead. Further flags supported by the QSpace
MEX files are
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• fooQS --version shows version information of QSpace and linked libraries

• fooQS --ping dummy call of a MEX routine with the effect
that it becomes resident in the Matlab workspace

Help and usage of Matlab (class) routines Similar to the help on MEX routines above,
also all Matlab routines have a help that can be looked up in standard Matlab syntax. For
example, help on the Matlab QSpace class routines (located under Class/@QSpace/) based on
the placeholder routine foo can be obtained as follows:

• help foo display help for function foo

• help QSpace/foo display help on a particular class method

• methods QSpace listing of all existing methods in Class/@QSpace

Identifying and locating functions Given the many functions and methods in the QSpace
environment within Matlab, one can identify and thus locate the relevant functions at the
Matlab prompt but also at any debug breakpoint, with the native Matlab command

which [path/]foo[QS] [-all]

where terms in square brackets are optional. The first line in the output then shows the routine
that has the highest precedence, and hence would get called in given context. The option -all
permits one to see all overloaded routines, as well as class routines that share the same name.
With this, all subsequent output lines, if any, show routines or functions that are shadowed.
A subsequent help on a particular function or MEX routine from that list will provide more
detailed usage information.

Matlab debugger The Matlab debugger offers a useful low-level tool that permits one to
gain better insight into the behavior of particular Matlab sources. Matlab simulations can be
stopped at any location in a Matlab function (at specified line #) by setting a breakpoint,

dbstop in [class/]foo [at line #]

This permits one to inspect and alter variables in a particular context. Also in the absence
of any error whatsoever, this can be useful for analyzing or a better understanding of the
behavior of a code. The commands dbup and dbdown traverse the caller stack. See also the
QSpace related dberr and dbwrn that respond to wblog.

D.2 Docu/ folder

The QSpace repository also contains the documentation folder ./Docu that is maintained with
the repository. It may be looked up for comments on most recent changes, such as readme
files, or additional more recent documentation. Other main entries are:

QSdocs.pdf This contains a complete listing of the help to all MEX routines as well as
QSpace methods (member functions). It has been auto-compiled into the single PDF file
Docu/QSdocs.pdf (70+ pages). This file may be consulted in parallel to this documentation.

Doxygen Some general documentation of the C++ code base that was auto-generated via
doxygen. This provides an overview of the general outline of the C++ code structure. Its
output is located in Docu/html/, which can be viewed in a web browser starting from the
Docu/html/index.html. It also compiled into a single PDF Docu/doxygen.pdf (900+ pages).
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E Listing of MEX Routines

E.1 QSpace core MEX routines

The following short description of the most relevant MEX routines is sorted in alphabetic order.
For a detailed description of all MEX routines, please see their respective help. Note that
the help output for all MEX routines has also been automatically compiled into the single
PDF file Docu/QSdocs.pdf for reference. The MEX routines are all coded in C++, with the
sources located in ./Source. With about 100,000 lines of code, this far exceeds the present
documentation which rather focuses on QSpace usage and applications. Nevertheless, an auto-
generated doxygen documentation is included in the repository.

compactQS() Used by getLocalSpace() to bootstrap QSpace tensors from Fock space. This
routine obtains reduced matrix elements based on the Wigner-Eckart theorem and existing
rank-3 CGTs in the RC_STORE. It ensures that all non-zero matrix elements of the input were
accounted for in magnitude and sign. It is essential to getLocalSpace, but is typically never
called explicitly or needed elsewhere in an application.

contractQS() This routine performs (nested sets of) pairwise contractions of QSpace tensors.
It supports two modes: (i) An explicit mode for a single pairwise contraction where contrac-
tion indices are fully specified. Here, q-directions together with itags, if set, need to match
nevertheless. (ii) Auto-contraction based on itags with options to set itags on the fly: this
mode supports contractions of a set of tensors where the order of the contraction in terms of
pair-wise contractions is explicitly specified based on a nested cell input data structure. In
case of errors in the input, the auto-contraction of nested cell structures can be debugged by
adding the verbose option '-v'.

diagQS() Returns all diagonal matrix elements of a scalar tensor as a single column vector
(hence for rank-2 tensors only); In the presence of non-abelian symmetries, this returns a
second column that specifies the degeneracies when converting multiplets to states. See also
QSpace/diag.m.

eigQS() Performs eigendecomposition of a scalar tensor (hence for rank-2 tensors only).
The first output argument returns the complete set of eigenvalues as a column vector. In the
presence of non-abelian symmetries, this returns a second column that specifies the degenera-
cies when converting multiplets to states. These degeneracy factors are important as weight
factors, e.g., for a normalized density matrix spectrum. This routine also implements various
truncation schemes with truncation based on combinations of (i) maximal number of multi-
plets, (ii) an energy threshold (assuming the input is a Hamiltonian), or (iii) weight threshold
(assuming the input is a density matrix). In this case the second output argument returns a
structure with QSpace tensors AK≡ AK , AD≡ AD, EK≡ EK , and ED≡ ED for eigenstates (A*)
and eigenvalues (E*) split into kept (K) and discarded (D) state spaces, respectively. The eigen-
vectors in A* are stored as columns, and the eigenvalues in E* in compact diagonal QSpace
representation, meaning that this only stores the diagonals as a vector in the RMTs. It may be
expanded using @QSpace/diag().

getDimQS() (integer vector or matrix) Get overall dimensions of a QSpace tensor for all legs
based on all QSpace records. For a tensor of rank r, a 1× r vector is returned for all-abelian
symmetries. In the presence of non-abelian symmetries, a second row is returned. In this case,
the first row contains the effective dimension (in terms of multiplets), and the second row the
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corresponding full dimension based on states. See also getQDimQS for detailed dimensions of
symmetry sectors on a particular leg.

getIdentityQS() Get identity tensor either (i) for the state space with respect to a single
QSpace, with an optional flag '-0' to obtain the 1 j-tensor, instead, or (ii) get the identity
A-tensor for the tensor product space of two state spaces with reference to two input QSpace
tensors. By default, as of QSpace v4, the 1 j symbol in case (i) marks the dual space on the
second index with a trailing prime (’) [for backward compatibility, the same itag for the dual
space is returned with the option '-z', standing for ‘zero’ as an alternative to '-0'. However,
the recommended way is to use markers as with the updated behavior of '-0'].

getQDimQS() Get detailed dimensions for all symmetry sectors on a specified leg of a QSpace
tensor, returning q-label resolved dimensions both for the reduced multiplet level (RMTs), as
well as the combined multiplet dimensions. See also getDimQS for total dimensions.

getRC() Load RC_STORE specific data (for inspection, experimental, or debugging purposes).

getSymStates() Group Fock space decomposition into symmetry spaces before call to com-
pactQS in getLocalSpace. Like compactQS, this routine is never explicitly called or needed
elsewhere in an application.

isIdentityCG() (boolean) Whether given QSpace tensor has identity CGRs; returns 1 for
scalar operators or rank-2 tensors with fully abelian symmetries. By contrast, 1 j tensors with
non-abelian symmetries return 0.

isIdentityQS() (boolean) Whether QSpace represents an identity operator as a whole, which
thus also checks the RMTs to be identities within numerical (double precision) noise.

isHConjQS() (boolean) Whether rank-2 QSpace is Hermitian conjugate within numerical
noise. In the case of all-abelian symmetries, the input tensor H may represent a scalar operator
decomposed as a tensor of even rank r = 2n, where a return value of 1 requires, aside from
additional checks on the RMTS, that the first n indices are incoming, and the remaining n
indices outgoing.

normQS() (number) Computes Frobenius norm ∥X∥ ≡
p

tr(X †X ) for QSpace X as in Eq. (22).

orthoQS() Computes QR-like decomposition based on prior SVD for given QSpace tensor,
also allowing for truncation [same as svdQS, except that singular values are already contracted
onto one of the isometries out of the SVD as specified by the input].

permuteQS() Permute legs of QSpace tensor together with optional tensor conjugation.

plusQS() Add QSpace tensors, as in C = A+bfac*B where, by default, bfac=1 results in plain
addition. By contrast, specifying bfac=-1 results in subtraction, etc.

setupRCStore() Triggers initial setup and generation of RC_STORE for specified symmetry
(this is automatically triggered anyways when calling compactQS with a new symmetry in
getLocalSpace, so there is usually no need to explicitly call setupRCStore).
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skipZerosQS() Skip QSpace records that have all matrix elements in their RMT below some
numerical threshold (default 10−14 for double precision noise). These zero blocks are allowed
by symmetry, but are zero due to application-specific reasons. By default, diagonal zero blocks
for rank-2, i.e., scalar operators are kept, nevertheless. Zero-blocks for rank-2 operators can
also be forced to be skipped with the option '--all'.

svdQS() Singular value decomposition (SVD) of some tensor typically representing an or-
thogonality center (OC). For non-abelian symmetries, the SVD is constrained w.r.t. a particular
leg since no automated fusion of legs is performed in this routine.

traceQS() (number) Full trace of rank-2 scalar QSpace tensor, properly including weights by
degeneracies within multiplets.

E.2 NRG related hard-coded MEX applications

The following MEX routines are also located in the ./bin folder. Most of these have already
been applied in the past, as indicated by the references below. However, this documentation
mentions these in passing for completeness only. In any case, a help is provided with each of
these routines.

NRGWilsonQS() Iterative diagonalization for Wilson’s Numerical Renormalization Group
(NRG, [18]) for quantum impurity models [19,50].

fdmNRG_QS() Full density matrix (fdm-NRG) approach to computing impurity spectral that
conserve spectral sum rules to within numerical precision for arbitrary temperatures [19,50].
Together with NRGWilsonQS this is a powerful black-box quantum impurity solver.

fgrNRG() Fermi Golden rule adaptation of fdmNRG_QS to compute absorption and emission
spectra on quantum impurities [21,50,85].

tdmNRG() Time-dependent quench adaptation of fdm-NRG starting from thermal equilib-
rium in the initial Hamiltonian (closely related to fgr-NRG transformed to real-time domain).

getSmoothSpec() Log-Gauss broadening of spectral data, e.g., as obtained from fdm-NRG
[13,19], with smooth transition to linear binning across zero energy.

getSmoothTDM() Broadening of spectral data for quantum quenches to smoothen data in
the real-time domain [50]. Closely related to getSmoothSpec().

E.3 QSpace MEX utility routines

The ./util folder contains hardcoded C++ utility MEX routines. The listing below only men-
tions the more important ones. Additional MEX files in the public repository but not listed
here, were partly for testing purposes and hence can be safely ignored. Yet as always, the help
provided with them explains their purpose.

helloworld() Hello-world routine to test MEX file setup.

kramers() Kramers-Kronig transformation of spectral data (back and forth from real to imag-
inary and vice versa; e.g., used with NRG spectral data).
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matchIndex() matches two sets of indices that are stored as rows in a matrix (typically con-
taining integer values, such as symmetry labels, to avoid issues with double precision noise). It
returns the indices of the matching rows, similar to Matlab’s intersect(A,B,'rows'), yet with
crucial practical differences. If rows are not unique, in the sense that certain index sets appear
multiple times identically across different rows, then all-to-all matches are included within
such ‘degenerate’ subspaces as in a tensor product. An optional additional info structure is
returned as third argument. This contains additional data such as indices of non-matching
entries, etc. See also uniquerows.

cgs2double() converts an MPFR-encoded Clebsch-Gordan data space, like the multidimen-
sional arrays as stored in the RC_STORE, to regular double-precision decimal format (mostly for
inspection and testing purposes only). See also lower-level routine mpfr2dec or @SymStore.

mpfr2dec() converts MPFR-encoded numerical arrays as stored in the RC_STORE to regular
double-precision decimal format (mostly for inspection and testing purposes only). See also
higher-level routine cgs2double.

uniquerows() group rows in a matrix (typically assuming integer values to avoid issues with
double precision noise), returning a matrix with unique rows. Additional return arguments
provide detailed information on the dimension of grouped blocks with identical row entries
together with indices to the original data. See also matchIndex.

wbrat() Acquire a rational approximation for float numbers based on continued fractions
(similar in functionality to Matlab’s rat.m function, but this routine automatically also checks
for possible representations in terms of the square root of rationals, as they frequently occur in
CGTs. It picks the closest representation (with or without square root) in terms of numerical
accuracy. This routine returns a string with syntax that can be reevaluated within Matlab. An
additional info structure returned as second argument provides the integers P and Q as obtained
for the rational approximation P/Q. If this routine fails a find a rational approximation with
the requested accuracy, the original value is returned instead.

F QSpace Related Matlab Environment

The following gives a listing and brief description of the more important Matlab routines and
additional class constructions. Since there are plenty of helper routines, including some 250+
m-files in ./lib, these cannot be all described in detail here. Yet as always, all routines are
provided with a help that explains their purpose.

F.1 Class/@QSpace

The @QSpace class is a Matlab wrapper environment for the C++ QSpace class used in MEX
files. Since a tensor X thus becomes QSpace object X, it also simly referred to as QSpace X then.
The @QSpace class contains more than a hundred class methods which cannot be all dis-
cussed in detail here. Only the most noteworthy ones are listed in the following. A com-
plete listing including their help output has also been compiled and included in the PDF file
Docu/QSdocs.pdf in the QSpace repository. Rather than alphabetically sorted, the following
entries are grouped mainly by topic.

QSpace() constructor of the @QSpace wrapper class.
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display() prints a convenient formatted summary of a given QSpace tensor. Matlab automat-
ically invokes it when displaying a variable by simply typing its name at the Matlab prompt. It
shows a 2-line header generated by info(), followed by a listing of records. See Fig. 7 for an
example, together with a detailed explanation of the printed output. For larger QSpaces with
more than about 12 non-zero blocks (records), display truncates the listing, by default: it
shows the first 5 entries, up to two intermediate entries if largest in RMT size followed by the
last two entries. The listing of all entries can be enforced, nevertheless, by explicitly invoking
the display routine with the equivalent options '-f' or '-a'.

Like logging with wblog(), the display of QSpace tensors also supports color-highlighted
output for readability when Matlab is run in interactive Matlab terminal mode. In this case,
itags are color-coded by interpreting trailing marker characters.

plus(), minus(), sum() Overload of simple algebraic operators + (plus) or - (minus). These
are extended wrappers of the MEX routine plusQS. The routine sum(A,dim) permits to sum
up a QSpace array A along dimension dim (by default, dim=1; this follows similar semantics as
Matlab’s native sum routine). This adds up QSpaces and hence returns a QSpace (vector).

Simpler cases where for a rank-2 tensor a plain numerical value x is added or subtracted,
are handled within the Matlab wrapper routine itself. For example, in H+x with H some rank-
2 tensor, the scalar x is interpreted as proportional to the identity matrix for all symmetry
sectors that are present in H (be aware, though, that H may have missing diagonal all-zero
blocks; hence to ensure a full state space, one may rather use H+x→ H+x*Id, instead, with Id
representing a complete identity operator within a given state space).

oplus() The routine oplus(A,B,d12) permits the direct sum of two tensors along dimensions
d12 (default: [1 2]) while respecting the symmetry structure. Both QSpaces A and B must have
the same tensor structure (same rank, same q-directions, etc). If d12 specifies two dimensions
(indices), this catenates blocks in a ‘block-diagonal’ fashion along specified dimensions d12
[the Matlab analogon for matrices with d12=[1 2] is blkdiag(A,B), except that oplus only
combines blocks that also share the same symmetry sectors; other blocks unique to either A
or B are included as is in the output]. If d12 specifies a single dimension (index), symmetry
matching blocks are catenated along that dimension only [the Matlab analogon in this case
would be cat(d12,A,B)].

uplus(), uminus() are unary operators that implement the unary plus and minus, i.e., syntax
such as X=+Y or X=-Y.

transpose(), ctranspose() overload the operators .' and ’ for plain transpose and Hermi-
tian conjugate, respectively.

times(), mtimes(), mrdivide() overload the respective algebraic operators .*, *, or / (for
division by number only). The routine mtimes is an extended wrapper routine to the MEX
function contractQS. Simple multiplications with scalar numeric values are handled within
the wrapper routine itself.

comm(), acomm() computes commutator or anticommutator, respectively, for a pair of op-
erators. For irops, the irop index will necessarily also be contracted in this process. These
routines are based on contractQS.
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real(), imag(), isreal() extract real and imaginary parts of a QSpace (simple Matlab func-
tions that operate on the RMTs (i.e., on X.data for a QSpace X), or check whether QSpace is
complex [~isreal()].

sqrt() takes square root of rank-2 QSpace that are diagonal (and diagonal only; this is en-
forced). Warnings are issued if input data is negative or complex.

logical(), not(), isempty() boolean operators that check whether a QSpace is empty. The
method not() is the inverse of logical(). For example, for QSpaces X and Y, this permits sim-
ple syntax such as if X && ~Y, (do something); end. The method isempty() is somewhat
more elaborate than logical(), as it includes further structural checks.

eq(), ne(), isequal(), sameas() Overload of Matlab’s == and ~= operators (wrappers to
@QSpace/isequal). This permits the syntax X==Y for QSpaces X and Y. The method sameas()
permits differences in data up to some epsilon (default: 10−10 on a relative scale).

getsub() selects sub-list of QSpace records while maintaining the QSpace structure, other-
wise. The index of records to select may be specified explicitly, as in getsub(X,I) with record
index I, or implicitly by selecting a particular symmetry sector, as in getsub(X,[qlabels],dim)
which only selects the records that have specified qlabels (set specified as rows in a matrix)
on leg dim.

subsref(), subsasgn() overloads indexing and access to fields in a QSpace object. As a tech-
nical subtlety concerning Matlab, note that for a QSpace X, typing X.Q{:} on the Matlab prompt
does not work as expected for a plain Matlab structure. Since the operation X.Q needs to be
rerouted via the overloaded method subsref here, this operates like a function call. There-
fore typing X.Q{:} on the Matlab prompt only displays X.Q{1}. To display all entries in X.Q,
this requires, e.g., a temporary assignment followed by its display, like Q=X.Q; Q{:}. Simi-
larly, catenating symmetry labels across all legs as in Q=X.Q; Q=[Q{:}] is not equivalent to
Q=[X.Q{:}]. The latter rather corresponds to X.Q{1} only. This is a Matlab peculiarity, which
returns a comma-separated list for Q{:}. For a function call, this would require the rather awk-
ward syntax Q=cell(1,numel(X.Q)); [Q{:}]=X.Q{:} which is simply equivalent to Q=X.Q in
the first place.

diag() toggle rank-2 QSpace tensor between diagonal and non-diagonal representation. This
mimics the behavior of Matlab’s diag() function. This function deals with the compact diag-
onal behavior, e.g., as returned by eigQS or svdQS. With the option '-d', this routine returns
a plain numerical vector of all diagonal entries (see also diagQS in this regard).

getitags() gets the complete set of itags for given QSpace tensor.

setitags() Set itags of QSpace while preserving q-directions (trailing conjugate flags '*').
Any trailing '*' specified with the input strings will be ignored. This routine accepts a range
of specialized settings. For example, for A-tensors, the following are equivalent,

1 A=setitags(A,'-A',4)
2 setitags(A,{'K03','K04', 's04'})
3 setitags(A,{'K03','K04*','s04'})

114



SciPost Physics Submission

as may be used, e.g., for site 4 in an MPS (e.g., see Fig. 2). Conjugate flags, as in line
3, are ignored. Since line 2-3 specify A by name, they will also assign the changes to A
in the workspace same as in line 1. For operators, S=setitags(S,'-op:s',4) sets itags
{'s04','s04' [,'op']}, with the last ‘operator’ index skipped if S is of rank 2. See help on
setitags for more details.

itagrep() Change itags based on regular expressions (uses Matlab’s regexprep).

untag() Remove itags for specified QSpace tensors. For convenience, if no return argu-
ment is requested and all tensors are specified by name, as in untag(A,B,. . .), all objects will
get updated in the caller workspace, nevertheless, using Matlab’s assignin('caller',...).
Therefore [A,B,...] = untag(A,B,...); and untag(A,B,...) are equivalent.

isscalarop() (boolean) whether input represents scalar operator, i.e., is of rank 2 and is
block-diagonal for all symmetries.

fixScalarOp() for scalar operators with trailing irop index having qirop = 0, this trailing
singleton irop index (third leg) is skipped. See also reverse operation makeIrop().

makeIrop() transform scalar rank-2 operator back to an irop by explicitly adding a trivial
irop index (third leg) with scalar symmetry labels q = 0. This is the reverse operation to
fixScalarOp().

appendSingletons() Append indices in the scalar symmetry sector q = 0 for all symmetries
and thus of dimensions 1 (singletons) to given QSpace tensor.

addSymmetry() Add new symmetry to specified QSpace tensor. By default, this appends the
symmetry in the irep of the scalar representation q = 0 as an additional symmetry. This routine
is intended for specialized model setups to tweak an existing output of getLocalSpace(). Like
getLocalSpace, there should be no need to call this routine after the model setup.

If the symmetry label q for the new symmetry is explicitly specified and non-scalar with
multiplet dimension |q| > 1, then a

p

|q| factor is applied to given QSpace X. This mimics
having added |q| copies, such that the norm ∥X∥2 =norm(X)^2 will change by a factor |q|.

getvac() Get identity operator (‘state space’) in the vacuum state for the symmetry setting
of the input QSpace. Hence this has dimensions 1× 1 and all-zero q-labels, yet is aware of all
symmetries and their order. With the option '-1d', this returns a vector of length d = 1, with
an example shown in (41).

SEntropy() compute von-Neumann entropy assuming that the input QSpace represents a
scalar density matrix.

plotQSpectra() Plot eigenspectrum of scalar input operator in a symmetry-resolved manner.
With option '-ES', this plots the entanglement spectrum instead (the latter is intended for
normalized density matrices only).

contract() simple wrapper for contractQS.

dim() simple wrapper for getDimQS.

115



SciPost Physics Submission

eig() simple wrapper for eigQS.

getIdentity() simple wrapper for getIdentityQS.

permute() simple wrapper for permuteQS.

skipzeros() simple wrapper for skipzerosQS.

F.2 Class/@SymOp

Utility class to generate a minimal set of generators (symmetry operators, or ‘SymOp’ for short)
in terms of raising and z-operators (simple positive roots Sp and Cartan subalgebra Sz, respec-
tively) when setting up symmetries in models. It is used in getLocalSpace only, e.g., with
objects of this type returned in IS.SOP→ Sp, Sz together with the MEX routine getSymStates
to bootstrap symmetry spaces. This class should not be relevant otherwise, hence can be safely
ignored from an application point of view.

F.3 Class/@SymStore

The @SymStore class offers basic utility routines to access the RC_STORE. It is intended mainly
for information, testing, and debugging purposes. It does not try to generate any symmetry-
related data. Therefore if the requested data is not yet present in the RC_STORE, this class
returns an error.

Load generators The minimal set of generators (simple roots and Cartan subalgebra, or
conversely, raising and z-operators) for SU(2) for the defining representation q = 2S = 1 can
be loaded from the RC_STORE via I = SymStore('SU2','-R','(1)') with the option '-R'
which thus looks up the folder $RC_STORE/SU2/RStore/. The round brackets with the string
of the q-labels in the last input argument are optional. The returned generators are encoded
as sparse MPFR arrays. These can be converted to regular double-precision arrays via the
MEX utility routine cgs2double(I.Sz). Since the output is rank-2 in the present context, this
permits and thus also returns a regular sparse double array.

Load CGTs CGTs can be loaded with the option '-C' which looks up the CStore folder.
For example, the CGC for the tensor product (S1 = 1)⊗ (S2 = 1)→ (Stot = 1) for 'SU2' spins
can be loaded via I = SymStore('SU2','-C','(2,2;2)','-f'), bearing in mind the labeling
convention with Eq. (7) and that within QSpace, q = 2S, thus resulting in '(2,2;2)'. Since
CGTs may get large, the data returned with the -C option effectively contains a reference by
default. The option '-f' then enforces that the full CGT is loaded. With this then, I.cdata
contains the CGT in MPFR format, while I.CData ≡ cgs2double(I.cdata) contains the same
data but already converted to a double-precision multidimensional array.

Load fusion map Lastly, the fusion map out of two multiplets can be accessed via the op-
tion '-M' which looks up the currently generated CStore/++-/*.mp3 files. For example, with
reference to the previous example, the command q = SymStore('SU2','-M','(2,2)')

1 J12: [2 2] % (re)confirms input multiplets [q1, q2] ("[J1, J2]")
2 J: [3x1 double] % complete set of fused multiplets (stored as rows)
3 omult: [1 1 1] % respective OM (one value for each row in J)
4 cgr: [3x1 struct] % respective CGRs
5 c2eps: 0 % floating point error estimate
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6

7 >> q.J'
8

9 0 2 4

returns all outcomes of the fusion of the two SU(2) multiplets (S1 = 1)⊗ (S2 = 1) with q.J
(having J*≡ q* for historical reasons here). With q = 2S, therefore S ∈ {0, 1,2} as expected.

F.4 Class/@Hamilton1D

An application class that underlies DMRG/runDMRG.m. This permits to run DMRG simulations
on simple pre-setup models as defined in runDMRG with the option to adapt to one’s needs.
Since this class is rather extensive on its own, it will be described in more detail elsewhere.
Yet please feel free to explore. In case of issues or more detailed questions, please also feel
free to contact the author of this documentation in this regard.
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