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Abstract

We introduce a mathematical framework for symmetry-resolved entanglement entropy
with a non-abelian symmetry group. To obtain a reduced density matrix that is block-
diagonal in the non-abelian charges, we define subsystems operationally in terms of sub-
algebras of invariant observables. We derive exact formulas for the average and the
variance of the typical entanglement entropy for the ensemble of random pure states with
fixed non-abelian charges. We focus on compact, semisimple Lie groups. We show that,
compared to the abelian case, new phenomena arise from the interplay of locality and
non-abelian symmetry, such as the asymmetry of the entanglement entropy under sub-
system exchange, which we show in detail by computing the Page curve of a many-body
system with SU(2) symmetry.
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1 Introduction

Symmetries play a fundamental role in isolated quantum systems as they result in conservation
laws and constraints for physical quantities, including the entanglement entropy. In this paper,
we study the interplay between locality, symmetries and entanglement. In particular, we show
that the Page curve for the typical entanglement entropy |1, 2| captures new phenomena proper
of systems with a non-abelian symmetry group |[3].

For abelian symmetries, such as number conservation or charge conservation, the notion
of typical entanglement entropy [4—12| and its relation to symmetry-resolved entanglement
[13-15] is well studied. The main ingredients are immediate to define. For instance, consider
a system composed of two parts A and B, which carry a representation of an abelian group
with charge Q@ = Q4 + Qp. A symmetry-resolved state is an eigenstate of the total charge,
Qlbg) = ql1g), and the Hilbert space at fixed total charge ¢ decomposes as a direct sum of
tensor products

/H(q) @ (fH(QA) ® fH(q QA)) (1)
The direct sum over subsystem charges g4 is a consequence of the constraint ¢ = g4 + ¢p
imposed by charge conservation. To evaluate the entanglement entropy S4 = —tra(palogpa)

of the pure state [¢),), we first compute the density matrix p4 of the restricted state, which
is defined by the partial trace over B as usual [16], pa = trg|yg)(¢q|. Note that, as
[W’q><¢q|,Q} = 0, we have that the reduced density matrix commutes with the charge in

A, ie., [pa,Qa] =0, and therefore it takes the block-diagonal form py = @, p(qA) pfff“) with

each block of definite charge g4 having probability p(?4). The generalization to a non-abelian
symmetry group is not immediate and requires new tools, which we introduce in this paper.

To illustrate the new aspects that arise in the presence of a non-abelian symmetry, consider,
for instance, a compos1te system that is invariant under the non-abelian symmetry group
SU(2), with generators J = Ja+ Jp. How do we define a symmetry-resolved state? Clearly,



it cannot be a simultaneous eigenstate of the components J*, JY, J* as these observables do
not commute. The only simultaneous eigenstates have J? = 0. Even if we were to diagonalize
only a set of commuting observables such as J? and J # we still face the issue that the non-
abelian charges are not additive over subsystems as, for instance, J? #* j}—}—j ]__23. In the abelian
case, the proof that p4 is block diagonal uses the additivity of the charges Q = Q4+ Qp. Is pa
block diagonal in the non-abelian case? This question is related to how we define a subsystem.
Do we measure only the group-invariant degrees of freedom or also the rotational degrees of
freedom? We address these questions in detail, developing a mathematical framework for
symmetry-resolved entanglement that applies to a general non-abelian symmetry group G.
We introduce the notions of (i) symmetry-resolved states and observables, (ii) locality and
symmetry-resolved subsystems, and (iii) symmetry-resolved entanglement entropy and its
statistics over random symmetry-resolved states.

As a concrete example of the interplay of locality, non-abelian symmetry, and entangle-
ment, let us consider a system of N spin-1/2 particles with SU(2) invariant Hamiltonian. Our
mathematical analysis only requires the symmetry group G, and the Hamiltonian is used here
simply to provide a physical motivation. For instance, we can consider the random Heisenberg
Hamiltonian [17, 18]

N
with J =) "5, (2)
n=1

where the coupling constants ¢, are assumed to be normally distributed with zero average
and unit variance, S, are the individual spin operators, and p is a coupling constant. The
system is invariant under global SU(2) rotations generated by J,

[H, J']=0. (3)
This example allows us to illustrate the three notions that play a central role in this paper:

(i) Symmetry-resolved states and observables. Due to the presence of symmetry, the spec-
trum of the Hamiltonian splits into symmetry-resolved sectors corresponding to the eigen-
values of the conserved charge J2. Mathematically, the Hilbert space Hy of the system
decomposes as a direct sum over sectors of spins j,

My = @Y = @ (Hon o Hd) 0

J Sym

As shown in Fig. 1, each sector ’H%) of spin j consists of (2j+1) x dim Hg) orthogonal states,

where the (25 + 1)-multiplets describe the rotational degrees of freedom [j,m) € 1Y) of the

sym
system. The internal degrees of freedom are rotational invariant states |7, xg) € 7—[8). A
symmetry-resolved state |1;) is defined as a state of the factorized form,

States of this form have been considered also in [19-21]. We define symmetry-resolved observ-
ables Og, i.e., rotationally invariant observables that commute with the symmetry generators,
[Oc, J'] = 0. Note that the symmetry-resolved states defined by (5) are not generic states
in the sector of spin j, as they have no entanglement between the rotational state |j, m) and
the internal state |j, x¢). This definition is justified by the notion of symmetry-resolved ob-
servables O¢, which cannot entangle rotational and internal degrees of freedom. Moreover,
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Figure 1: Energy spectrum of the SU(2)-invariant random Heisenberg Hamiltonian (2) with N = 6.
On increasing the parameter p, the spectrum splits in symmetry-resolved blocks H%) of fized spin j,
(4), with each block consisting of (2§ + 1) x dim Hg) states as shown in the table. We show also the
transitions induced by the local observable STS5 and by the G-invariant local observable Si-8,.

if the state can only be prepared and measured with the observables O¢, then the rotational
states |j,m) serve only as an ancilla, and the states of interest are the ones described above.
In the following, we denote by Ak the algebra of observables of the system and by Ag C Ax
the subalgebra of G-invariant observables. While Ay is defined at the kinematical level, the
algebra Ag knows about the symmetries of the dynamics.

To illustrate these definitions, let us suppose a large energy gap exists between the different
sectors of spin j because the parameter p in the Hamiltonian is large. Then, the observables
O¢ can induce only low-energy transitions because they have vanishing matrix elements be-
tween different sectors in the energy spectrum. Furthermore, they satisfy the selection rule
Am = 0 because they are rotationally invariant. States prepared and measured with these
accessible observables Og take the form (5).

(ii) Locality and symmetry-resolved subsystems. A spin system like the one described
by the Hamiltonian (2) has a built-in notion of locality associated with the single spins 5’;1
that compose the system. These local subsystems come with a notion of tensor product
decomposition H = H 4 ® Hp for spins in the subsystems A and B. The observables O 4 that
act only on the subsystem A form the subalgebra Axa4 C Ag of K-local observables in A:
They are kinematically local, but they do not preserve the symmetries of the dynamics. To
define symmetry-resolved subsystems that are local in A, we consider observables Og4 that
are both G-invariant and act only on the degrees of freedom in A. They form the subalgebra
of G-local observables in A, given by the intersection:

Aca = AranNAg. (6)

As an example, the observable ST S5 € Ag4 and the observable §1 . gg € Aga act locally
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Figure 2: Matriz elements of the K-local observable STS5 (1a)—-(2a), of its SU(2)-projected version
> PiSTS3 Py (1b)-(2b), and of the G-local observable Sy - S5 (1¢)-(2¢). Block-diagonal matriz ele-
ments in the spin-lattice basis (1a) highlight the local or non-local nature of the observable, while the
off-diagonal matriz elements in the energy basis (2a) determine the possible transitions between energy
levels. While the SU(2)-projected observable allows only SU(2)-invariant transitions (€ Ag) (2b), it
is not a local observable (¢ Axa) (1b). Hence, the SU(2)-projected observable is not G-local, (6).
On the other hand, the observable S-S, € Aga is both local (1c) and induces only SU(2)-invariant
transitions (2c).

on the first two spins only, but the first induces transitions between multiplets in the energy
spectrum while the second does not as it is G-invariant.

A subsystem can be defined operationally in terms of a subalgebra of observables we can
access. Here, we are interested in G-local observables in A. The restriction of a symmetry-
resolved state |t;) to the subalgebra Ag, is given by the density matrix pga. As G-local
observables in A commute with the generator of rotations in A, we have that [pg4, JA] =0
and therefore the reduced density matrix takes the block-diagonal form

paa =@ oy (7)
Jja
Note that the choice of a G-local subalgebra is crucial here as it is associated with a decom-

position of the Hilbert space ’H%) as a direct sum over jg4,

Hy =M © D (Had @ HagY). (8)
Jja
Note also that this structure differs from the one found in the abelian case: the Hilbert

space of rotational degrees of freedom ’Hg,) is non-trivial in the non-abelian case, and the

m
complement Hg’B]A) is not labeled by a difference of the charges j and ja as in Hg_“)



in Eq. (1). Furthermore, if instead we had considered the usual reduced density matrix
pi A = trpl;)(1;], a different structure would arise. The kinematical density matrix pg 4 is
defined as a trace over the kinematical degrees of freedom in B and represents the restriction of
the state to the subalgebra of K-local observables Ax 4. We note that in the non-abelian case
the K-local reduced density matrix pga is not of a block-diagonal form, as J? # J 3 +J, 1%
and K-local observables induce transitions between sectors with different spins j4 in the
subsystem A. In Fig. 2, we also show that considering instead a microcanonical truncation of
local observables [22] by introducing projectors PU) we can forbid transitions between sectors
at the expense of locality. The operational definition of a subsystem in terms of the subalgebra
of G-local observables guarantees that the subsystem is both local and G-invariant.

(iii) Symmetry-resolved entanglement entropy and typicality. If we have access only to
symmetry-resolved observables in the subsystem A, i.e., to the subalgebra Ag 4, then the ac-
cessible entanglement entropy is defined by the restriction of the state to this subalgebra. For
a symmetry-resolved state [1;), the accessible entropy is the symmetry-resolved entanglement
entropy Sga defined as the von Neumann entropy of the density matrix pga, which in turn
can be expressed as the sum of two terms:

Saa([¥;)) = —tr(paalog pga) = Zp(“ (¥4 log pd4) — N pU) logplia) . (9)

JjA

The symmetry-resolved entanglement entropy Sg4(]1j)) can be understood as the sum of two

terms, ngnf) and ngm). One first deﬁnes the symmetry-resolved entanglement entropy at
fixed system and subsystem charges 5’82) as the von Neumann entropy of the density matrix

pgﬁ) in each sector j4. Then the configurational entropy Sg;nf) is given by its average over

(num)

the probability pU4) of finding the state in the sector j4, and the number entropy Seiq i
the Shannon entropy of the probability pU4). The table below summarizes the definitions
commonly used in the literature:

Total symmetry-resolved entanglement entropy  Sga(|¢;))

Symmetry-resolved entanglement entrop, i j
cod o ° ' gy’ = —tr(pdy log p(éﬁ’)

at fixed system & subsystem charges (10)
Configurational entropy Conf => ja P () )
Number entropy (Shannon) quzm =— ZjA p(jA) log plda)

Now, given a random state [1;) that is symmetry resolved, we can ask what is the prob-
ability of finding entanglement entropy Sga. It turns out that the exact formulas for the
average (Sga) and the variance (ASga)? derived for a general subalgebra of observables in
[2] apply here unmodified, once one uses the dimensions of the Hilbert spaces appearing in the
decomposition (8). For a system composed of N > 1 spins, there is a typical value (Sga) of
the entropy that characterizes completely the Page curve of subsystems [1, 2| as the variance
of the probability distribution P(Sg4) is exponentially small in N.

It is important to note that the G-invariant notion of entanglement entropy Sga intro-
duced here is distinct from the usual notion of kinematical entanglement entropy Sxa =
—tr(px alog pra) which probes also the rotational degrees of freedom |7, m) that are not G-
invariant. In Fig. 3, we illustrate the difference with an example. We consider the case of
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Figure 3: For a system of N = 6 spins with total spin j = 1, magnetization m = +1 and subsystem
size Ny = 3, we show: (a) the probability distribution of the G-local (purple) and the K-local (yellow)
entanglement entropies Sga and Sk a of a sample of random symmetry-resolved states, including a
comparison of the numerical values (tga,oca) and the exact values ((Sga), ASga) of the average
and variance of P(Sga); (b) the entanglement entropy of a superposition of the two states (11), which
highlights the non-trivial relation between Sga and Ska; at p = 0: Sga = Ska =0, at p = %
Saa > Ska, and at p=1: Sga > Saga = 0.

N = 6 spin-1/2 particles in a random state with j = 1 and m = +1, and a subsystem con-
sisting of N4 = 3 spins. For the same sample of random states, we report the histograms for
the probability distributions P(Sg4) and P(Sk 4), which are shown to be distinct, Fig. 3(a).
The statistical average ug4 and variance aé 4 match numerically the exact formulas (Sga)
and (ASg)? that we derive in this paper for the G-local entanglement entropy. The K-local
entanglement entropy with SU(2) symmetry is studied in [21] where asymptotic formulas at
large N are derived for (Sx4) and (ASk4)? using a combination of analytical and numerical
methods. To date, there is no analytical result for the average K-local entanglement entropy
(Ska) at finite N. We note that, because of the contribution of the rotational degrees of
freedom |j,m), we have that typically, the kinematical entanglement entropy S 4 is larger
than the symmetry-resolved entanglement entropy Sga of a random state. However, the
relation between the two is non-trivial as shown in Fig. 3(b) where we consider a specific
(non-random) family of states for which Sg4 is instead larger than Sk 4. We consider the
two orthogonal states |¢)1) and |¢9) with j = 1, m = +1 obtained from the coupling of the
angular momentum of six spin-1/2 particles as described by the diagrams below [23]:

+1 +1

1

Y1) = : |p2) = boog 2 - (11

my ma ms my ms me my ma ms o ms me

These two states are simultaneous eigenstates of the observables (,S_"l +§2)2 and (51 +§2+§3)2.
As a result, when restricted to G-invariant observables of the first three spins, they have
vanishing G-local entropy Sga(|11)) = 0 and Sga(|12)) = 0. On the other hand, because
of the entanglement in the rotational degrees of freedom, we have that the K-local entropies
are Sk a(|t1)) = 0 and non-vanishing Sk 4(|1)2)) # 0. Moreover, in the superposition (|¢1) +
[9)2))/V/2 we have that Sga is larger than Sk 4, which shows that the relation between the
two is non-trivial.

The three ingredients (i)—(ii)—(iii) outlined above are related to a substantial body of lit-
erature. The notion of Page curve for random states without constraints was first introduced



in [1] motivated by the information puzzle in black hole evaporation [24-26]. In the case of
abelian constraints such as number conservation [2], the notions of K-local and G-local sub-
systems coincide, and the Page curve with abelian constraints is studied in [4-12]. In the case
of non-abelian symmetry SU(2), the Page curve of K-local subsystems is studied in [21, 27].
The operational notion of entanglement entropy associated with a subalgebra of observables is
discussed in [28-31|. In particular, the geometric entanglement entropy in quantum field the-
ory [32-34] is best understood in terms of local subalgebras of observables [35-39]. The notion
of G-local subalgebras of observables invariant under a group of non-abelian transformations
appears in lattice gauge theory [40-43| and in loop quantum gravity [44-46]. The accessible
entanglement entropy in the presence of symmetries and superselections rules is discussed in
[47-53]. The notion of symmetry-resolved entanglement was introduced in [13-15] and stud-
ied for abelian symmetry in [54-70] and [71-83], (see [84] for a review). To date, the study
of symmetry-resolved entanglement entropy for non-abelian groups has remained restricted
to vacuum states that are assumed to be invariant under the action of the group, such as the
j = 0 sector in the decomposition (8) for the group SU(2) [14, 85-87], or the |0,0) vacuum
that is invariant under Virasoro symmetry in a conformal field theory [88]. On the other hand,
the case of excited states with symmetry group SU(2) has been studied recently in [19-21]
where non-commuting conserved charges are shown to lead to new phenomena [27, 89-91] in
the context of eigenstate thermalization [92-94| and quantum many-body scars |95, 96].

The paper is organized as follows: In Sec. 2 we describe how to define a subsystem
operationally in terms of a subalgebra of observables, and we determine the main expression
for the typical entanglement entropy in complete generality. Then, in Sec. 3, we introduce a
non-abelian symmetry group, and we derive the decomposition (7)—(8) for general group G,
without any requirement of locality. In Sec. 4, we discuss locality and introduce the notion of
G-local observables in many-body systems using the definition (6). The application to many-
body spin systems with SU(2) symmetry is discussed in Sec. 5, where we derive the exact
formulas used in Fig. 3 (see also App. A). In Sec. 6, we derive the large system asymptotics
of the SU(2) symmetry-resolved typical entropy (see also App. B). To conclude, in Sec. 7, we
summarize our results and illustrate applications.

2 Subsystems from subalgebras and typical entropy

We consider an isolated quantum system with Hilbert space H of finite dimension D =
dimH < oco. Pure states of the system, 1)) € H, can be understood as vectors in C” and
observables O as D x D hermitian matrices. The algebra of observables of the system,

A= L(H) ~ Mp(C), (12)

is the set L£(H) of linear operators on H or equivalently the algebra Mp(C) of matrices on
cP.

In general, a Von Neumann algebra on CP” is an algebra of matrices that is closed under
(1) hermitian conjugation, (ii) addition, (iii) multiplication, and (iv) contains all C multiples
of the identity operator. In particular, the algebra A of observables of the system is a Von
Neumann algebra [29, 97].! Here we are interested in Von Neumann subalgebras of A. We

"While observables of the system are represented by hermitian matrices, linear combinations are assumed
to be over C and therefore the Von Neumann algebra of observables contains also anti-hermitian matrices and,
more importantly, unitary transformations. We note also that here we have assumed that the Hilbert space



say that a subalgebra is generated by the set of hermitian matrices K; (with i = 1,...,n) if
it can be obtained by their closure under (i)—(iv), which we denote by

CIK;]={M e Mp(C)|M = al+Y bKi+ > c;;KiK;+...}, (13)
i ij
with coefficients a,b;,¢;; ... in C. The notion of commutant will play a central role. The
commutant of a set of matrices is defined as

{Kl,,Kn}/E{MEMD(C)‘MKI—KZMZO, ZZl,,TL} (14)

There are two useful results that we will use multiple times: the first relates the the double
commutant of a set of matrices to the algebra they generate, { K1, ..., K,}' = C[Kq,...,Ky];
the second result relates the intersection of commutants to the union of the sets of generators:

ClK;]'nC[H;) = C[K;, Hj]'. (15)

Note that the commutant of a Von Neumann algebra As C A is also a Von Neumann algebra
(As)’ C A, and the double commutant coincides with the algebra itself, (As)” = As.

2.1 Hilbert space decomposition adapted to a subalgebra of observables

Given our physical system, we define a subsystem S operationally, in terms of a set of ob-
servables {O1, Oy, ...} that we have access to or that we can probe with measuring devices
available to us. These observables generate a Von Neumann algebra As on H,

.AS:(C[Ol,OQ,...], (16)

that is a subalgebra of the algebra of observables A of the system, As C A. The two notions
of commutant and center allow us to decompose the Hilbert space H in sectors adapted to
the subalgebra of observables Ag.”

We start with the notion of commutant. We denote by S the complement of the subsystem
S and define it in terms of the subalgebra of observables that commute with Ag, i.e., the
commutant of Ag in A,

As=(As) ={M e A|[M,N] =0, YN € As}. (17)

Next, we consider the center Zs of the subalgebra. Note that in general there are observables
R1, Ry, ... that can be measured both from S and from S, i.e. the subalgebra As can have a
non-trivial center Zg,

ZSZAsﬂAg = C[Rl,RQ,...]. (18)

These structures allow us to decompose the Hilbert space H as a direct sum of tensor prod-
ucts. The construction can be understood concretely in terms of an orthonormal basis of
‘H adapted to the subsystem S. We first consider the observables Ry, Rs,... in the center

of the system is finite-dimensional, and therefore in the definition of a Von Neumann algebra reduces to the
one of a matrix algebra [97], with no additional requirement about topological closure. For a discussion of
the infinite-dimensional case and the classification of Von Neumann algebras of observables in quantum field
theory, we refer to [35-37, 98].

*We refer to Ch. 11.8 in [29] for a pedagogical introduction, to [41-43] for applications to lattice systems, to
[99] for applications to information transport, and to [100, 101] for applications to Hilbert space fragmentation.



Zs. By definition, the center Zg is an abelian algebra and, therefore, we can diagonalize
these observables simultaneously. We denote by r the eigenvalues of the observables in the
center Zs. Then, we can select a maximal commuting set of observables in Ag with simulta-
neous eigenvalues «, and a maximal commuting set of observables in Ag with simultaneous
eigenvalues 5. As a result, we obtain an orthonormal basis of H,

o, B) = [r, ) |1, B) (19)
that is adapted to the subalgebra Ag. This basis gives a concrete meaning to the direct sum
decomposition

_ (r) (r)
H=P (H) onul). (20)

where |r, @) is an orthonormal basis of Hg), and |r, ) an orthonormal basis of #. Note

that when the center is trivial, i.e., Zs = {1}, this decomposition reduces to the familiar
tensor product structure H = H 4 ® Hp of a composite system.

We call d,- and b, the dimensions of the sectors appearing in the direct-sum decomposition
associated with a subalgebra Ag,

d,=dimHy . b =dm#HY,  D=dmH = Y, db,. (21)

These dimensions play a central role in the expression of the typical entropy of a subsystem.

2.2 Pure states restricted to a subalgebra and entanglement entropy

Using the decomposition (20), observables of the subsystem S take the direct-sum form

OcAscA = o0=FP 0 1?). (22)

It is useful to introduce a notion of Hilbert space Hs of the subsystem, defined as the direct
sum of the subsystem sectors:

Hs=PHY . (23)
The restriction of an operator O € Ag to the Hilbert space of the subsystem is given by
OcAsCA =  0s=@oY e LHs). (24)

We can write this map from O to Og concretely as
Tr(-Ig): L(MH) — L(Hs) (25)
O — Os= TI"(O HS)

where Tr is the trace over H and Trgs is the trace over Hs.? In the adapted basis |r, a, 3) € H
and |r, ) € Hg, the map Ig takes the form

IIs = ZZ (Z Ir, o, B)(r, O/,B|) ® |r, o) (r, . (26)
r o ad B

3Traces over the Hilbert spaces H, Hs and Hg) are defined as

T() =Y (rafl-lraB), Ts(-)=>. > (ral-lra), T()=> (ral-|ra).

raf

@

Similarly, one can define traces for 7-{,%) and for Hg =P, Hg) in term of the basis |r, §).

10



With these definitions, we can now write the restriction of a pure state [¢)) € H to the
subsystem S as a density matrix ps,

p=)W| = ps=Tr(plls), (27)
so that the expectation value of an observable on the subsystem S is given by
OeAsC A = (Y[O]Y)="Trs(Osps)- (28)

We note that the map p — ps is completely positive and trace preserving (CPTP) [16], as
can be seen by writing it in the operator sum form Tr(pIls) = Zr,@ Yr]thYrﬁ with Kraus
operators Y5 = > |r, o, B)(r, .

We are now ready to define the entanglement entropy S of the pure state |¢)) € H restricted
to a subalgebra of observables As C A = L(H): the entropy of the triple (|¢), A, As) equals
the von Neumann entropy Syn(ps) of the restricted state, i.e.,

S(l), A, As) = —Trs(pslogps)  with  pg = (¥[[s|e) . (29)

It is useful to express the entanglement entropy in the basis (19) adapted to a subalgebra As.
We introduce first the projector P(") = Zaﬁ |r, o, B)(r, a, 8] to the sector r of the Hilbert
space decomposition. Using this projector, we can define the probability p, that the pure
state is found to be in the sector r, together with the (normalized) projected state [1(")):

pr = (WP Z\ (r,, Bl) | (30)

")y = Pv r,a)r, 31
) \/W gﬁ:lﬁﬂ )7, B) - (31)

Any pure state |1)) € H can then be expressed in the basis adapted to the subalgebra of
observables Ag as
Zmzmva 7, 8) . (32)
The definition (27) of reduced density matrix takes then the direct sum form
ps= P oo, (33)
T

with pg) simply defined as the partial trace over ’Hg), ie.,

pg) _ Trg“) (|¢(T)><'(/)(T)|) _ Z (Z 7/)((17;)5 ¢(§T5)*) ‘r’ o/> <r7 Oé‘ . (34)
aa! B

Using the decomposition (33) and expanding Trs(pslogps) = >, Trg) (pr pg) log(p, pg))),
we can write the entanglement entropy as the sum of two terms,

S(1v), A, As) = Zprtr P log p) Zprlogpr, (35)

where the first term is the average over sectors of the entanglement entropy in each sector,
and the second piece is the Shannon entropy of the distribution over sectors.
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We summarize some useful properties of the entanglement entropy of a subsystem defined
in terms of a subalgebra:

Minimum — The entanglement entropy is non-negative and vanishes if and only if the
restriction of the state to the subalgebra is pure. For this to happen, the state has to belong
to a definite sector r and have a product form, i.e.,

S(l), Ads) =0 = 3r: [¢)= |nEslnX)s, (36)

with |r,§)s = >, &alr,a) and [r,x)s = > 5xplr,B). As a special case, if we don’t re-
strict the state to any subalgebra, then the entanglement entropy of a pure state vanishes,
S(!¢>,A, A) =0.

Maximum — We can determine the maximum entanglement entropy by varying the
Lagrangian L = — Zr Pr ZZ()\TZ log )\m‘) - ZT prlogpr + po (1 _ZT pr) +Zr Ky (1 _Zi /\ri)7
with probabilities p, and \.;, and Lagrange multipliers pg and p,.. At the stationary point,
we obtain the maximum entropy

Smax = log (>, min(d,, by)). (37)

The maximally-entangled state can be written as

Hlln d b min(dr,br) 1
Z\/Z , min(d,s b B ; (b ri)slr,i)s - (38)

Commutant Symmetry — Note that the entanglement entropy of a subsystem is sym-
metric under the exchange of the subsystem with its commutant, i.e.,

S(l), A, Ag) = S([4), A, As). (39)

This notion of commutant symmetry generalizes the familiar subsystem symmetry S4 = Sp
of the entanglement entropy of pure states in a tensor product Ha ® Hp.

2.3 Typical entanglement entropy: average and variance

Consider the ensemble of random pure states |1)) € H. Given a function of the state, f(|¢)),
we can define the average over the ensemble as

(F Y,y = /H du() f(|6)) = / dU f(Uo)). (40)

where du(v) is the uniform measure over the unit sphere in C” or, equivalently, dU is the
Haar measure over the unitary group U (D) that allows us to write a random state ) = U|vy)
in terms of a reference state |1)g) and a random unitary U. The function f can be a linear
function of |¢) (1|, such as the expectation value of a subsystem observable in Ag, or a
non-linear function as the entanglement entropy S(|1), A, As) of the state restricted to a
subalgebra of observables. We note that the result of this average can be expressed purely
in terms of the dimensions (21) of the sectors of the Hilbert space decomposition (20). For
instance, the average density matrix of a pure state and of its restriction to a subsystem § is

d,by 1()
D d,

p= Il = (o)=L, {ps )y =Trs((o)y,Tls) = (41)

12



which results in the von Neumann entropy of the average state

Son({ps)n) = —Trs((ps)nloglps)n) = 3, L2=log (£) - (42)

While in general, the average < f >7{ alone does not characterize the typical value of a function

f(|¥)) for a random state, computing its moments < fm >H allows us to characterize the prob-
ability distribution. We are interested in the probability P(S)dS that a random pure state
|1) has entropy S when restricted to the subalgebra As. When the dispersion around the
average is small, AS < (S), we can simply use the average entropy (S) to characterize the
entropy. In this case, we say that the typical entanglement entropy of a random pure state is

(S)-

In [2], the exact formulas for the average entanglement entropy (S) and its variance (AS)?
for a pure random state restricted to a subalgebra of observables corresponding to the Hilbert
space decomposition (20) were found to be:

<S> = <S(|¢>7~A7~A8)>H = ZQT@M (43)
@A) = (8- 157 = 55 (Dot rn) - (Low)), @

with the quantities o,, ¢, x» expressed in terms of the dimensions d,., b, D (21) given by
_dp b,

T bl 4
o ="p (45)
d,—1
U(D+1)—¥(b+1)— 5% d, < b,
Or = r (46)
b, +— d, d, > b, ,
d, — 1)(d, +2b, — 1
(dy +b,) W' (b, +1) = (D+1)¥' (D +1) _{ I ;r ), d, < by,
Xr = 4b7" (47)
b, +—— d, dy > by,

where I'(x) is the gamma function, ¥(z) = I''(x)/T'(z) is the digamma function and ¥'(z)
its derivative. This formula in terms of the dimensions (21) generalizes a seminal result of
Page [1]| that applies to the special case of an a priori factorization of the Hilbert space into
subsystems.

It is useful to determine bounds on the average entropy and its variance that do not rely on
any special choice of system and subsystem or on any asymptotic limit. We use the following
inequalities for the digamma function and its derivative:

log(x) + ﬁ < U(x+1) < log(z) + % , (48)
%_23;21+1 < V(+1) < ;-5 (49)

We start with the average (S). For any choice of non-trivial subsystem and for all r we
have b, < D =", dyby. Using (48) we can then put a tight bound on ¢,

D D)_lmin(di bi) < ¢ < logmin(D D)- (50)

logmin(2, 7) — 3 b d. b dr
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It follows that the average entropy is bounded from above and from below by
Z%(logmin(%,%) —%min(‘;—:,s—;)) < (S) < Z%legmin(g,g). (51)
T T

We note that, as min(‘z—:, Z—:) < 1, we have also the exact inequality

, (52)

Sl

[(8) = X2, % log min(£, 2) | <

which is useful for extracting the asymptotics of the average entropy in the limit of large
dimension D, up to terms of order one. We note also that, because of the min, the upper bound
is tighter than the entropy of the average (42), consistently with the inequality (Sin(ps)) <
Sun({ps)). Clearly, the average entropy is also smaller than the maximum entropy (37).%

We consider then the variance (AS)2. Here we use two (rather loose, but useful) inequal-
ities for the functions ¢, and x,

0<¢,<logD, 0<yxr<2. (53)

It is immediate then to show that the variance of the entanglement entropy is bounded from
above by a decreasing function of the dimension D,

2
(AS)? < (IOgDD)H_

(54)
This bound shows that, independently of the details of the system and of the subsystem,
the variance of the entropy vanishes in the large dimension of the Hilbert space limit, i.e.,
AS — 0 as D — oo. Therefore, if the average (S) is finite and non-vanishing in this limit,
then its value represents the typical entanglement entropy of a random pure state restricted
to the subsystem.

3 Non-abelian symmetry-resolved states and entropy

We consider a physical system with a symmetry group G that leaves the Hamiltonian of the
system invariant. Then the Hilbert space H of the system carries a (reducible) representation
U of the group that is unitary, and G-invariant observables O of the system—including the
Hamiltonian—satisfy

geG = U(g)OU(y)™ = 0. (55)

Symmetry-resolved states of the system are defined as pure states |¢)) € H that remain pure
when restricted to the subalgebra of G-invariant observables. In this section, we discuss
the definition of symmetry-resolved states and the computation of their typical entropy for
symmetry-resolved subsystems. Compared to the abelian case, we show that new features
arise for non-abelian symmetry groups. For concreteness, we focus on semisimple Lie groups
such as G = SU(2), i.e., continuous groups that do not have any abelian invariant subgroup
[3, 102, 103]. We then proceed to comment on the general case.

“In fact 3, 4= log min(b%, %) < log (3=, min(d,,b,)) because log is concave and (log-) < log(-).
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3.1 Symmetry-resolved decomposition of the Hilbert space

A compact Lie group G is defined by the Lie algebra of its generators T with real structure
constants f%,,
(7%, T% =1 f%,.T°. (56)

We say that the finite-dimensional Hilbert space H carries a unitary representation of the
group G if the generators T are realized as D x D Hermitian matrices that satisfy the
commutation relations (56), with D = dim #H. A group element with real parameters a, acts
on the Hilbert space as the unitary transformation U given by

U = el (57)

This representation of the group is, in general, reducible. It is useful to introduce the Cartan-
Killing metric n% = tr(7%r%) where 7 are the generators in the adjoint representation,
[T“]bc = —i .. Here we restrict attention to the case of real compact semisimple Lie groups,
for which the metric n? is positive definite’. We use this metric and its inverse 74, with
N nep = 6%, to raise and lower indices.

The symmetry generators T® generate a subalgebra Agym, of the algebra of observables
A = L(H) of the system,
Agym = C[T?]. (58)

The commutant of this subalgebra defines the algebra of G-invariant observables,
Ag = (Agym) = {M € A|[M,T%] =0}. (59)

Observables in Az commute with the generators T® and therefore satisfy the G-invariance
condition (55).

The rank of a semisimple Lie group G is the dimension rank(G) of any one of the Cartan
subalgebras of its Lie algebra. The number of linearly independent Casimir operators Qy is
exactly given by rank(G) [104, 105]. The Casimir operators are obtained by listing all the
completely-symmetric G-invariant tensors 7, ...q, of order p, and then contracting them with
the generators:

Qk = Tay-ays T4 ... T%®k) | kE=1,... rank(G). (60)

These operators generalize the familiar quadratic Casimir operator Q1 = 14, T%T? defined in
terms of the Cartan-Killing metric. They belong to the G-invariant subalgebra Ag as they
are invariants, and they belong to the algebra Agyn, as they are expressed in terms of the
generators. Therefore, they belong to the center Zgy,, of the algebra. In fact, for semisimple
Lie groups (that is, Lie groups that have no abelian subgroup), a much stronger result holds
[104, 105]: these R linearly independent Casimir operators generate the center,

Zsym = Asym NAg = (C[Qk] ) (61)

and characterize completely the irreducible representations of the group.

SNote that in this case, by rescaling the generators, the metric n”b can be brought to the Euclidean form
5%, Here, we use the standard tensorial notation, where we keep track of upper and lower indices, and
repeated indices are contracted. As usual, the symbols ) and "] stand for complete symmetrization or
anti-symmetrization of the tensor.
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Using the results of Sec. 2.1, and denoting collectively g the eigenvalues of the Casimir
operators, we obtain a symmetry-resolved decomposition of the Hilbert space:

"= EB (1 o HY), (62)

where Hggzn carries the irreducible representation (q) of the symmetry generarators, and H(C?)

is the space of G-invariant degrees of freedom of the system defined as

1D = TveH? 2 H) , (63)

Sym

where Invg denotes the G-invariant subspace in the tensor product and (g) is the conjugate
representation [102, 103].

The symmetry-resolved decomposition (62) is a decomposition of the Hilbert space H
into a direct sum of irreducible representations labeled by the quantum numbers ¢ that label
the eigenvalues of the Casimir operators Furthermore, each irreducible representation is a

(9)

tensor product of the sym factor H 1, that transforms under an irreducible representation

of the group, and the G-invariant Hllbert space ”HE;) of internal degrees of freedom defined

by (63). A generic state 1) in H can be expanded on the orthonormal basis adapted to this

decomposition:
Z\/izzdj ‘(b Sym‘Q7i>G7 (64)

where m in the basis |¢, m)sym denotes collectively the eigenvalues of the Cartan generators
of the group G, and i in the basis |q, i) labels the internal G-invariant degrees of freedom of
the system.

We give three examples of the symmetry-resolved Hilbert space for semisimple Lie groups:

G = SU(2) — This is the simplest non-trivial case illustrated in Sec. 1. The generators
are the spin operators J = (J%) with i = 1,2, 3, the structure constants are ¢/, the Cartan-
Killing metric ;;. The rank of the group is one, and therefore, the decomposition is in
terms of a single Casimir operator, the quadratic Casimir Q = d;, J*J* = J J2. As usual, the
eigenvalues of the Casimir operator are written as j(j + 1) with j = 0,1 5,1,... half-integer,
and the eigenvalues of the Cartan subalgebra operator J? are m = —j, .. —|— 7. The Hilbert
space decomposes as H = @j ( Y ®”H(])), with 7—[( ) of dimension dim H(J) =27+1and

sym sym

orthonormal basis |, m)sym. In Sec. 5 we discuss a concrete example of symmetry-resolved

spin system where the G-invariant Hilbert space of internal degrees of freedom H(Gj) is the
space of SU(2) intertwiners of a spin system, which can also be interpreted geometrically as
quantum polyhedra [106, 107].

G = SU(3) — Starting from the 3 x 3 Gell-Mann matrices A* (with a = 1,...,8) and
using the textbook normalization A%/2 of the generators in the fundamental representation
[102, 103], we can express the Cartan-Killing metric as n® = %tr()\“/\b) = %5‘“’, the structure
constants as f2¢ = —1 tr(AleAP X)) (which is completely antisymmetric when all indices are
raised), and the completely symmetric tensor d*¢ = %tr()\(a)\b)\c)). The rank of the group
is 2, and therefore, there are two linearly independent Casimir operators ()1 and (2. The
quadratic Casimir operator ()1 = %nabT“Tb has eigenvalues %(q2 +p%+qp+ 3¢+ 3p). The
cubic Casimir operator Q2 = édabc TeTPT* has eigenvalues 1—18(q —p)(g+2p+3)(p+2¢+3)
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sometimes called the anomaly coefficient. The quantum numbers ¢,p = 0,1, 2, ... label the
irreducible representations and the decomposition as a direct sum over the center is H =
D, (Hgyfg@?—[( ’p)) The dimension of the sym factor is dim ’Héym) = L(g+1)(p+1)(g+p+2).
G = SO(4) — The algebra of the group is the same as the algebra of SU(2)r x SU(2)r
with generators given by the spin operators J;, and Jg [3]. The group has rank 2, and
the two linearly independent Casimir operators can be taken as Q7 = J; L2 and Qr = T }%.
The half-integer quantum numbers j;, and jg label the irreducible representations, and the

(H(]LJR) ® H(]LJR))

sym

symmetry-resolved decomposition of the Hilbert space is H = @hdh

The dimension of the sym factor is dim ’Hg,z;m) =(2jL+1)(2jr +1).

In general, for the classical compact matrix groups A, = SU(n + 1), B, = SO(2n + 1)
and C, = Sp(2n) of rank n, the list of the n linearly independent Casimir operators is
given by Qk = Na,..a, T -+ - T with the invariant tensor 74, .q, = tr(T(“l . -T“k)) defined
using where 7¢
resentation instead, one could not distinguish the representation (gq,p) from its conjugate
(p,q) in SU(3), for instance. In the case D, = SO(2n), one can construct the invariant
tensors from the spinor representation or, equivalently, one can take the (n — 1) Casimir
operators of even order, (Qor with £ = 1,...,n — 1, together with the order-n Casimir in-
variant Q = €uvr.pnrn I - JHYn where JH are the generators. The Casimir operator
Q allows us to distinguish the two mirror representations of SO(2n). In the case of S0(4),
this construction reduces to the two quadratic invariants ) = J,,J* = 4 (JL + JR) and

in the fundamental representation [105]. If one took 7% in the adjoint rep-

Q= €uvpo JH JP7 =8 (J ) R) A similar construction applies to the exceptional Lie groups
Ga, Fy, FEg, E7, Eg, with the invariant tensors 7,,.. 4, built from the generators in an irre-
ducible representation that is non-degenerate.

Finally, let us comment on the abelian case using the compact Lie group U(1) or many
copies of it:

G=U(1)x---xU(1) — We note that the symmetry-resolved decomposition (62) becomes
trivial. In fact, in this case the structure constants f*. vanish because the generators 7%
commute, and therefore their algebra coincides with the center, Agym = Zsym = C[T?]. As
a result, we have a decomposition of the form H = &p,, H(Gm ) where the eigenvalues of the
commuting generators 7% (sometimes called charges or particle numbers) are collectively

(m)

denoted as m. The sym factor in the decomposition is trivial, dim Hsym = 1, and can be

(m)

reabsorbed into a phase in each sector H,

3.2 Symmetry-resolved states and subsystems

The symmetry-resolved decomposition of the Hilbert space (62) allows us to write G-invariant
observables as

Ocde = 0=P0% 0. (65)
q

Given a pure state [)) € H, we can write the restriction of the state to the G-invariant
observables as pg = (|Il|¢), where the map Il is defined concretely by (26). A symmetry-
resolved state is defined as a pure state that remains pure when restricted to the G-invariant
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subalgebra of observables Ag. As shown in Sec. 2, Eq. (36), this implies that it belongs to
an irreducible representation ¢ and has the product form:

[)  symmetry-resolved state in H — dq + |Y) =10, E)sym |¢, X) - (66)

In other words, symmetry-resolved states have no entanglement between internal G-invariant
degrees of freedom and sym degrees of freedom that change under transformations of the
group G.

A symmetry-resolved subsystem is defined by a set O1, Os, ... of G-invariant observables
that we have access to. The algebra Ags that they generate is

Acs = C[O)] C Ag with O, € Ag, l=1,...,L. (67)

We are interested in the restriction of a state 1) to this subalgebra, pgs = (¢¥|gs|w). To
build the map Ilgg, we follow the steps discussed in Sec. 2. First, we define the rest of the
system using the commutant algebra,

A@E (Ags)/ = {MecA|MO]=0, VO, € Ags} . (68)

Note that Axg also contains observables that are not G-invariant. The center of the subalge-
bra is generated by a set of commuting G-invariant observables R; in the intersection of the
two,

Zos = Agg N Ags = C[Ry]. (69)

By diagonalizing first the commuting observables R; and calling collectively their eigenvalues
r, we obtain the direct sum decomposition

H = EB (HUL @ HEL). (70)

This decomposition allows us to define the map Ilgs. As we are interested in the restriction of
a symmetry-resolved state to a symmetry-resolved subsystem, it is useful to have a decompo-
sition of the Hilbert space and an orthonormal basis that is adapted to both decompositions
(62) and (70). We show that this is possible in general with a concrete construction.

We introduce a decomposition adapted to symmetry-resolved states and symmetry-resolved
subsystems. Let us consider the algebra Agymgs generated by the symmetry generators T
and by the G-invariant observables O; that generate the subsystem,

-AsymG’S = C[Ta7 Ol} . (71)
The commutant of this algebra is®

Aoz = (Agymas) = C[T*, 0] = C[T*) nC[O)) (72)

= (Agym) N (Acs)’ = AcNAzg (73)

Note that, because of the presence of the symmetry generators 7% in Agymas, the algebra
A5 contains only the G-invariant observables in Azz. We can now define the center

ZsymGS = Asymgs N Ag§ = C[Qk; Rz‘] : (74>

5In the first line we used the relation (15) that applies to any set of observables H; and K.

18



Note that the center of the algebra Agymas is generated by the elements of the center R;
of the symmetry-resolved subsystem and by the Casimir operators @) of the group G. The
fact that the two commutes, [R;,Qx] = 0, follows immediately from the fact that R; are
G-invariant observables, i.e., [R;, 7% = 0, and the Casimir operators (60) are functions of
the symmetry generator. By diagonalizing simultaneously the commuting set {Qy, R;} with
eigenvalues denoted collectively by g and r, we obtain the decomposition

H=ED (’H(j)m o P H". @ ’H(gg))) . (75)
q I8

The decomposition comes with an orthonormal basis adapted simultaneously to symmetry-
resolved states and to the symmetry-resolved subsystems,

‘quaa’ﬁ> = |Qam>sym |T7a>GS |Qar’ﬁ>Gg' (76)

Note that the basis elements |r, a)gs of the symmetry-resolved system depend on the eigen-
values r of R; but not on the eigenvalues ¢ of the Casimirs Q. This feature can also be
understood by considering the two decompositions Hg) =], (Hg; ® ’H(qu)) and "H% =

@D, (Hizzn ® Hgg)), that relate the formulas (62), (70) and (75).

3.3 Symmetry-resolved entanglement entropy

The entanglement entropy of a symmetry-resolved state |1)) restricted to a symmetry-resolved
subsystem can be defined and computed using the tools introduced above. The symmetry-
resolved state can be first written in the basis adapted to the subsystem:

) = (D &mlamygn) (3o vor > X ades lar Bas) - (77)
m r a,B

with p,, the probability of finding the state in the sector is . The state belongs to a definite
sector ¢, it does not have entanglement between internal G-invariant degrees of freedom and
sym degrees of freedom, and, in general, can have entanglement between the G-invariant
degrees of freedom in the subsystem and its complement. The restriction to the subsystem
can be written as

pes = Wlasly) = Prepls  with  (pEh)aw = D XX (78)
r B8

The entanglement entropy S(|), A, Ags) can then be computed using (29), (35). Bounds on
the entanglement entropy can be written in terms of the dimensions of the sectors:

dp = dimHEY, by =dimH D Dy =dimHE = 3, diby, . (79)

In particular a symmetry-resolved state W(q)) in the sector ¢ has entanglement entropy
bounded from above by

0 < S([P9), A, Ags) < log (Y min(dy, b)) - (80)

Note that here, the sector Hé}q,zn is simply an ancilla, and the entropy is independent of &,,.
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A random symmetry-resolved state with fixed ¢ can be defined starting from a reference
state of the symmetry-resolved form |q, {)sym |¢, X)G, and acting on it with a random unitary

of the form ®q(Us(}?1)n ® Uéq)), where U'? and Uéq) are Haar-measure distributed on H'?

sym sym
and Hg) respectively. The average entanglement entropy and its variance are then given by
the expressions (43) and (44), with the dimensions d, and b, given above.

4 Locality, many-body systems and G-local entanglement

In a lattice many-body system, there is a built-in notion of locality associated with the NV
bodies, or particles, at the sites of the lattice. We assume that the Hilbert space at each site
n is a copy of a finite-dimensional Hilbert space Hy ~ C¢ that carries a unitary (reducible)
representation of a compact Lie group G. Therefore, the kinematical Hilbert space Hy of the
system is the tensor product of the Hilbert spaces at sites [18, 108]:

HN = Hi® - Q@ Hq . (81)
N——_———
N
Calling T% the d-dimensional (reducible) representation of the generators of the group G at

each site n, we have that the generator of global transformation for the group G acting on
‘Hn is simply given by the sum

N
T =) Ty (82)
n=1

We can then use the results of Sec. 3, and in particular (62)—(63), to decompose the Hilbert
space in symmetry-resolved sectors

Hy =@, HY = @, (M @ 1) (33)

sym
where the quantum number ¢ labels the irreducible representations of the group G, i.e., the
eigenvalues of the Casimir operators for a semisimple Lie group. The representation space

%égzn is the one already described in Sec. 3.1 and the invariant space is

HY =Tve(H) 0 Ha® - @ Hy), (84)
—_—
N

where ¢ is the conjugate representation. In this section, we discuss how the new ingredient
of locality associated with the many-body system allows us to define the distinct notions of
K-local and G-local observables illustrated in the introduction in Fig. (1),(2),(3).

4.1 K-local decomposition of the Hilbert space

Let us consider a subset n € A of the nodes of the many-body lattice, for instance, the ones
defining a local region A of the lattice and excluding its complement B [108]|. This subsystem
corresponds to the standard tensor-product decomposition

Hy=Ha®Hp, with Hi=QHs, Hp=QHa. (85)

neA neB

This decomposition is associated with a K-local subalgebra of observables. Let us define first
the kinematical algebra of observables Ax = L(Hy). The K-local subalgebra in A is

Axa={0 € Ak |O=04®1p with O4q € L(HA)}. (86)
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Clearly we have that the K-local subalgebra in B coincides with the commutant of A, i.e.,
Axp = (Axa)’, and that the center is trivial Ax 4 N Axp = 1.
We note that the operator (82) that generates global unitary transformations for the group
G takes the form
T =Ti1lg + 1,715, (87)

which is additive over the subsystems A and B. The operator T'} given by

Tielg = > TY € Aga, (88)
neA

and generates unitary transformations for the group G in A.”

4.2 G-local decomposition and symmetry-resolution

G-invariant observables O¢g of the many-body system belong to the algebra Ag defined in
(59). G-local observables in the subsystem A are observables that are both G-invariant and
belong to the subsystem A. They are, therefore, elements of the intersection of the two

algebras,
Aga = AxaNAg. (89)

We can similarly define G-local observables in B,
Acs = AxkpNAc . (90)

Note that in general, for a non-abelian group, the two subalgebras are not the commutant of
each other, Agp # (Aga)’. In fact, using Ag = (Asym)’ and the intersection formula (15),
we find

(Aga) = (AkaNAg) = ((AKB)’ N (Asym)/)' =C[la®0p, Ti®15]. (91)
We can now determine the center of the subalgebra,
Zaa = Acan (Aca) =C[QY, ... Q™) (92)
which is generated by the Casimir operators in the subsystem A,
fo) = Nayay T:l - T:p(k) , k=1,...,rank(G), (93)
with the symmetric tensors Nay-—ay) defined in (60). Denoting collectively g4 the eigenvalues

of the subsystem Casimir operators in A, and using the results of Sec. 3.2, we obtain a

decomposition of the Hilbert space sector ’Hg\q,) in G-local subsystems:

HY = 1D o @ (ne e ml), (94)
qa
where the factors are defined as
HIY =Inve(HI) @ HA) . HEZY = Twve(HD, @ 1) @ Hp) . (95)

"Note that we are using the same notation for the generator acting on the Hilbert space of a single site
T; € L(Hq) and for the generator acting on a single site of the many-body Hilbert space, Ty = 14 Q -+ ®
T/ - Q1g € LHa® - @ Ha).
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This decomposition provides us with an orthonormal basis of ’H(q) adapted to the subalgebra
Aga. Tt is then immediate to compute the entanglement entropy SG A of a state 1) restricted
to the G-local subalgebra in A,

Sga = S(|¢), A, Aga) - (96)

It is interesting to compare the properties of the G-local entanglement entropy Sga to the
ones of the familiar K-local entanglement entropy Sk 4,

Sxa=5(Y), A Aka) . (97)

In general, the two entropies do not coincide because the G-local subalgebra can be understood
as a coarse-graining of the K-local one [29], i.e., Aga C Aga. They both probe local
properties of the many-body system and can be understood as functions of the number of
bodies N4 in the subsystem A. However, there is a crucial difference between the two.
Commutant symmetry (39) implies that Ska(|)) = Skr(|)), but in general Sga(|y)) #
Sap(|1)) because Agp # (Aga)’

Bringing together the results of Sec. 2, Sec. 3, and the decomposition (94), we obtain the
exact formulas for the typical G-local symmetry-resolved entanglement entropy that apply to
a compact Lie group G. For a random symmetry-resolved state |w(Q)) with total charge ¢, the
total symmetry-resolved entanglement entropy has average value

dgab dy, — 1
D S (R e e e I
994
QA| ququqA
dg,b boa, — 1
D I (R e IEC
qa
qal dgy>bgqy
where the dimensions of the sectors are defined as
gy = HEY . bggy =dimHIGY D =dimHI = Y, dgubygs - (100)

Note that the formula takes into account the fact that, in the sum over subsystem charges
ga, the dimensions of the subsystem sectors can satisfy either dy, < byq, or dg, > byq,-

Following the definitions in table 10, we can also decompose the total symmetry-resolved
entanglement entropy into different components. The average symmetry-resolved entangle-
ment entropy at fixed subsystem charge, (Sg2)>q, i.e., the entanglement entropy of a random
symmetry-resolved state \1/1(‘7)> projected to the sector with subsystem charge g4, is given by
the standard Page formula |1, 2]

dy, — 1
e d Sb‘]QA7

2bgq, " (101)
bggs ¢ dg, dgs > bgqy -

<S(qA)> _ \I’(dQAbquA + 1) - ‘lj(bqqA + 1) -

The average over the subsystem sectors g4, weighted with the probability

_ dgabgqa
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of the state \w(‘?’)> being found in each sector, is given by the configurational entropy

(Sloont)y | — Z 0q, (S92, (103)

The average Shannon entropy of the probability distribution (102) defines the number entropy
Séﬁm q= Z QQA U(D +1) = U(dg,bgq, + 1)) (104)

Finally, the total symmetry-resolved entanglement entropy can be written as the sum

conf num
(Saa)q = (ST + (SGu™)y, . (105)

4.3 U(1) symmetry-resolved entanglement

In the case of an abelian symmetry group there are significant simplifications that we illustrate
here with the example of G = U(1) and charge conservation [4-12].

We consider a lattice many-body system with nodes carrying a copy of the two-dimensional
Hilbert space Ho = C? of a spin-1/2 particle, and transforming under a reducible representa-
tion of the group U(1), i.e.,

Hy=How-0Hy  with Ho= @ HY =span(|l/2, £1/2)).  (106)
—_——
N m/=+1/2

The generator of the U(1) symmetry at each site is the spin operator S? = ¢*/2, and the
generator of global U(1) transformations is

N
=> 57, (107)
n=1

which generates global rotations that preserve the direction of the axis z. The Hilbert space
of the system decomposes as a direct sum over irreducible representations of the group U(1)
labeled by the quantum number m, the eigenvalue of J? or the total charge,

+N/2 +N/2
Hy = P HILeHI)) = H HY (108)
m=—N/2 m=—N/2

(m)

We note that, as the group is abelian, the sym factor ?{Sym is trivial, it has dimension

dimH#™ =1 and the pure phase e™?

sym associated to each irreducible representation m can

be reabsorbed in the U(1)-invariant part of the state in H(Gm). Moreover, as for U(1) the

conjugate representation is simply m = —m, the invariant Hilbert space is given by

HO =tve(H 2 oHy) = D MV e-onui™. (109)
mi,...,my==1/2

mi+-+my=m

To define a G-local subsystem with N4 bodies, we define the generator of U(1) transformations

in A,
Ji=Y s, (110)
neA
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with eigenvalues m 4. The decomposition in G-local subsystems is then given by

HY =@ UG o uG™) = D MY e G, (111)

ma ma,mp
ma+mp=m

where we used the relation Hé;ﬁ;‘f) ® Hg;f ) = Hé;::+m3 ) that holds only in the abelian case,

together with the definitions

HIA = Tnve (T @ Ha) (112)

sym

HEE" = Inve(H 1 @ 1M @ Hp) = ve(HL 0™ @ Hp) = HEE ™. (113)

sym sym sym
(m)

Note that, in the abelian case, for a symmetry-resolved state |w(m)> € Hy ', the G-local and
the K-local entropy coincide,

G=U(1) = Sea(lv"™)) = Swa(|'™)), (114)
and the commutant symmetry (39) implies the subsystem symmetry
G=U(1) = Sep(|v™))=Saa(lv™)). (115)

Applying the general formulas (98)—(105) to the abelian Lie group G = U(1), we see that
the total symmetry-resolved entanglement entropy in the sector of charge m has the average
value

_ i s b dny — 1
(Sca)m = > 5 (\II(D ) = Wb, +1) = G ) (116)
mA| dmASbmmA

dmAbmmA bmmA -1
+ > A <\11(D +1) — U(dp, +1) — Mm> . (117)

mA‘ dmA>bmmA

where the dimensions of the sectors are given by

. (m) N

D, =dimH,- "' = 118
= (7,) )

. (ma) Ny
dm, =dimH = 119
" imHg 4 <1\;A +mA> (119)

. (myma) N — Ny

bmm, = dimHgp Y= <N—2NA +m—mA> (120)

Note that the formula takes into account the fact that, in the sum over subsystem charges
g4, the dimensions of the subsystem sectors can satisfy either d,, < by, OF dpyy > by, -

Following the definitions in table 10, we can also decompose the total symmetry-resolved
entanglement entropy into different components. The average symmetry-resolved entangle-
ment entropy at fixed subsystem charge, <S(G721A))m, i.e., the entanglement entropy of a random
symmetry-resolved state |w(m)> projected to the sector with subsystem charge ma, is given
by the standard Page formula [1, 2]

dm, — 1
(m4) \I’(dmAbmmA +1) _\I/(bmmA"i_l)_T dmA < bmmA7
(S )m = s (121)

bm, < dm, Ay > bymy -
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The average over the subsystem sectors m 4, weighted with the probability

Oma = L"‘gmm“‘ (122)

of the state \w(m)) being found in each sector, is given by the configurational entropy
f
(S =" oma (SEH Y - (123)
ma
The average Shannon entropy of the probability distribution (102) defines the number entropy

(S =3 oms (\I/(D 1) — U(dum, by + 1)) (124)

Finally, the total symmetry-resolved entanglement entropy can be written as the sum

conf num
<SGA>m = <S(GA )>m + <Sé',4 )>m- (125)

To compare to the literature on the thermodynamic limit [4-8| and on equipartition of
entanglement [15], we introduce intensive quantities and study the behavior of subsystem
entropy in the limit N — oo at fixed intensive properties. Specifically, we define the subsystem
fraction f, the system U(1) charge density s, and the subsystem charge density ¢ as follows:

Ny 2m _ 2mag

fzi SZW, —4NA 9 (126>

N i

and we restrict here to f < 1/2. At the leading order in N, the symmetry-resolved entangle-
ment entropy at fixed system and subsystem charge reduces to

(SU), = log dm, +O(1) = FNB(E) — %logN +oq) (127)

where we used the property (48) that allows us to write the digamma function ¥(z) as a
logarithm at the leading order, and we have defined the function 5(t) as:

B(t):—lgtlog(1;t>—1;tlog<1;t) . (128)

This result corresponds exactly to the one found in [6].® We then compute the configurational
entropy, number entropy, and total symmetry-resolved entropy in the thermodynamic limit.
In this limit, the probability g,,, (122) is approximated by a discrete Gaussian probability
with mean m4 = N f§ and variance 0'3_1 =N %. In terms of intensive quantities, this
translates into a continuous probability density function o(t) with mean ¢ = s and variance
o = 1f_7Nf We evaluate the configurational entropy at leading order in N using saddle-point
techniques. This is equivalent to computing the symmetry-resolved entanglement entropy at

fixed system and subsystem charge (127) at the mean t = ¢ = s:

(S530)m = INB(s) — 3 loa N +0(1) (129)

8A mnote about conventions. In [6], the U(1) charges are defined as positive quantities. To compare the
formulas, one can use the relations M =m + N/2 and Q@ = ma + Na/2.
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The computation of the number entropy is straightforward. The Shannon entropy of a discrete
Gaussian probability is simply given by %log(27mi) + % where o 4 is the variance. Hence, the
number entropy is:

1 mf(l— 1 1
(Shmm)y | — 210g(Nf( 5 f)) +5+0(1) = JlogN+0(1) . (130)
We note that when we sum the configurational entropy and the number entropy to obtain the
total symmetry-resolved entanglement entropy, the logarithmic contributions cancel, resulting
in the formula

(Sga)m = [NB(s) +0O(1) , (131)
with no logarithmic corrections.

Finally, we comment on the equipartition (or lack of equipartition) of entanglement en-
tropy in the thermodynamic limit, as discussed in [15] and [6]. By equipartition of entangle-

ment, one means that the entropy <S(GTZA)>m is independent of m 4 in some limit. As we found

that <SgZA)>m ~ fNB(t) with t = 2m4 /N4, we conclude that there is no equipartition of
entanglement entropy, as the leading order in N depends explicitly on the subsystem charge
my, as already found in [6]. Furthermore, following the argument in [6], we emphasize the
importance of the order of limits. If m,4 is fixed before taking the limit N — oo, using the
expansion B(t) = log2 — $t2 + O(t*), we obtain instead (ngf‘))m ~ fNlog2. This result
matches that of [15], where the leading order is independent of m 4 and the equipartition of
entanglement entropy is restored.

5 SU(2) symmetry-resolved entanglement in a spin system

We consider a system consisting of N spin—% particles. Each particle has Hilbert space
H(1/2) ~ €2, and the Hilbert space of the system comes with a built-in tensor product
structure,
Hy = HYD @ . onP/? . (132)
N

The spin operators S, = (5%, 5%, S7) generate SU(2) rotations of each particle, satisfy the
algebra o -
1S5 ,57,] =16 €75 SE, n,n =1,...,N, (133)
and can be represented in terms of Pauli matrices & as 5’,1 =1Lh®...® g ® ... 1y. We also
introduce the total spin operator j,
N
J=Y S, (134)
n=1
which generates SU(2) rotations of the full system, i.c., [J¢, S4] = i€, Sk, As usual, we write

the eigenvalues of J? as j(7 +1). There is a minimum and a maximum spin of the system,

which depends on the number N of particles:
N even = jumin =0, jmax =%, Jj integer, (135)
N odd = jmin=132, jmax =%, j half-integer. (136)
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Following the logic discussed in Sec. 3, we can decompose the Hilbert space Hy of the system
into a direct sum of SU(2) symmetry-resolved sectors. This decomposition allows us to define
symmetry-resolved states. Moreover, using the techniques of Sec. 4, we can introduce a notion
of G-local subsystem for the non-abelian group G = SU(2).

5.1 Symmetry-resolved decomposition of the Hilbert space

We start with the algebra of observables of the system, which we call the kinematical algebra
Ag to distinguish it from the group-invariant algebra Ag discussed later. The kinematical
algebra of observables of the system is generated by the spin operators S?,

Ag = L(Hy)=C[S,], with n=1,...,N, (137)

where L(Hn) ~ My (C) is the set of linear operators on Hy, and C[S}] denotes the alge-
bra generated by S¢ as defined in (13). The subalgebra generated by the SU(2) symmetry
generators J' is

Agym = C[J']. (138)

We can introduce then the commutant (Asym)’, which defines the algebra Ag of group-
invariant observables,

—

Ag = (Agm) = {M € Ag | [M,J]=0} = C[S,-S,]. (139)

This is the algebra of observables that commute with the symmetry generators J* or, equiv-
alently, that are invariant under rotations:

OcA; <+ UOU'=0 with U=el®, (140)

The center of the subalgebra is generated by the Casimir operator J 2

=,

Zoym = Asym N Ag = C[J?]. (141)

The symmetry-resolved decomposition of the Hilbert space is then given by a direct sum over
the eigenvalues of the elements in the center,

Jmax . .
Hy = @ M. ond), (142)
J=Jmin

that is a sum over the irreducible representations j, with each j-sector consisting of a tensor
product of the Hilbert spaces for rotational symmetry degrees of freedom and for internal
(rotationally invariant) degrees of freedom. The rotational-symmetry degrees of freedom
span a Hilbert space of dimension dim Hg,)m = 27+ 1, with an orthonormal basis given by the
spin-j states

jym) € HY)

sym ?

(143)

where m = —j,...,+j are the eigenvalues of J*. The internal degrees of freedom can be
understood as the SU(2)-invariant tensors in the tensor product of N spin—% representations
and one spin-j representation, which form the intertwiner space

HY = v (HD & HOD ... @ H2). (144)
N
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Note that we have used Eq. (84) with the conjugate representation j = j for the group SU(2).
An orthonormal basis of this space is given by the recoupling basis 23],

]’\,’1 ]{72 o
|jak17"'>k]\/—2> = m (145)
N spin 1/2
The quantum numbers k1, ..., ky_2 label the eigenvalues k. (k,+1) of the recoupling operators

K2. These operators form a maximal set of commuting observables defined in terms of the
operators

T
K.=>8,, r=1,...,N—2 (146)
n=1

which are the generator of SU(2) rotations of the first  spins.
The dimension of the Hilbert space Hg) of the internal degrees of freedom can be com-
puted using the general formula for the dimension of SU(2) intertwiner space between the

representations ji, ..., Jjr, (see App. A for a detailed derivation):
j 25+ 1 N
J+ 5+ 1 \3+1J
where (Z) = ﬁlk)' is the binomial coefficient. The sum of the dimensions of symmetry-

resolved sectors matches the dimension 2V of the Hilbert space of N spin—% particles, i.e.,
dimHy = Y;(2j +1)D; = 2V

Symmetry-resolved states are states of N spin—% particles that transform in a spin-j rep-

resentation of the total spin and have no entanglement between its rotational and its internal
degrees of freedom, i.e., states of the form:

W}> = |ja§>sym |.77 X>G € HN , (148>
with
5, Esym = 3 Em |dsm) € HY | (149)
’jv X>G = Z Cky,...kn_o |.77 kl? LR k;Nf2> € H(GJ) s (150)
ki, kN_2
ie.,
|17Z)> = Z gm Cky,...kn_o |.77 ’I?’L> |Ja kl? LR kN—2> . (151)

m,ki,....kn—2

5.2 Symmetry-resolved subsystems: K-local vs G-local observables

A system of N-particles often comes with a built-in notion of locality. For instance, the
particles might be distributed at the nodes of a lattice, therefore inducing a notion of first-
neighbors and regions. Local observables of the system can then be expressed in terms of the
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spin operators S, of a subset of spins belonging to the region. The kinematical algebra of
observables A is generated by the complete set of spin operators (137), while the subalgebra
of observables in a region A is generated by the N4 spin operators in the region,

Aga=C[S.], with a=1,...,Na. (152)

We call A 4 the K-local subalgebra of observables for the region A. Note that this subalgebra
induces the standard decomposition of the Hilbert space as a tensor product Hy = HaA QHp
over the region A and its complement B. In fact one finds that the commutant of Ag 4 is
generated by the observables in the complementary region B, with Ny + Np = N and

Akp = (Aka) =C[S]] , with  b=Ns+1,...,Ns+ Npg. (153)

Moreover, note that the center of the subalgebra is trivial, Ax 4 N Axp = 1, which results in
the familiar tensor product structure with no direct sum.

Observables that are invariant under the group G = SU(2) form the algebra Ag, (139).
To identify a local subalgebra of G-invariant observables we take the intersection with Agk 4,

Aga=AcNAga = C[S,-Sy],  with  a,d’=1,...,Na. (154)

We call Aga the G-local subalgebra of observables for the region A. Note that this subalgebra
is generated by the scalar products S, - Sy of spins in A. The commutant of Ag4 in Ag is

Azz = (Aga) = (Ac N Aga) = ((Agym) N (AkB)')’ (155)
_ (CT TSy = Ol 8] = [ 18] (15

where we have used the intersection formula (15). Note that Az is not a subalgebra of Ax p
as it contains also the total symmetry generator J*. Note also that Az7 is not the same as
Agp. As we have highlighted in the last equality above, it is useful also to introduce the
operator L’ that measures the total spin of the particles in A,

=% 3., (157)

and generates rotations of the spins in A. Note that [I_;Q, J¥ = 0 because J! generates global
rotations and L? is rotationally invariant. Therefore, the center of the subalgebra is non-trivial

Zga = Aga N Agg = C[L7], (158)

and is generated by the Casimir operator L2 of A. We denote its eigenvalues £(¢ + 1) with

Ny even = Loin =0, loax = %, ¢ integer, (159)
Ny odd = lyin=73, lmax = %, ¢ half-integer. (160)

Using the results of Sec. 3 on subsystems from subalgebras, we find the decomposition

Lmax
Hy = 4@ (1, @ H). (161)
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This decomposition is useful for computing the reduction of a generic pure state of the system
to the G—local subalgebra. We are interested in the reduction of a special class of states—
symmetry-resolved states—and it is useful to introduce a decomposition adapted to them.

We prepare a symmetry-resolved state |¢) = |7,&)sym |J, X)¢ and we are interested in
measurements of G-local observables in A. In order to build a basis adapted to both the
decomposition associated with Agym = C[J?] and Aga = C[S, - Su/], we consider the algebra
generated by the union of the generating sets,

AsymG’A - C[Jza §a : ga’] . (162)

Note that, using (15), this algebra can also be written in terms of the intersection of commu-
tants,

-AsymGA = ((Asym)/ N (-AGA),)/ . (163)

To build the decomposition, we need its commutant and center. The commutant of Asymaa
in .AK is

(Asymca) = (Asym) N (Aga)’ = Ag N Agz (164)

—

=C[S, - Sy]nC[J, LV, S]] = C[T2, L% Sy - Sy]. (165)
The center of Agymaa is then non-trivial,
ZsymGA = AsymGA N (AsymG’A)/ = (C[j27 EQ} . (166)

Note that the observables J2 and L2 commute,” which is always the case for the center as it
is an abelian algebra by definition. Simultaneously diagonalizing the observables J 2 and L?,
we find the decomposition of the Hilbert space as a sum over j and /¢

Jmax lmax

=D @ (M e endy). (167)

J=Jmin {=Lmin

which can be reorganized as

jmax . . . émax )
= D HY  with MY -u0 e P (HEhend)), a6
J=Jmin L=Lmin

which provides a derivation of the expression (8) in the introduction. The Hilbert spaces
appearing in (168) are defined by

HEY =T (HO @ HV P @ o H1/)) (169)
Na
HOD — oy, (HD) @ HO @ 1O g .. o q1/D) ) (170)
Np

9"I‘he fact that the commutator [J2, L2] = 0 vanishes can be quickly shown by noticing that [J%, L?] = 0
as J® generates rotations of the full system and L? is a scalar.
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Their dimensions can be computed using the general formula for the dimension of SU(2)
intertwiner space (see App. A for a detailed derivation):

20 +1 Ny
dy= dimHY), = —— 171
¢ = dl ]\gA+£+1<A§A+E>’ ( )

(172)

N — Ny ) MNa 5 < N — Ny >
Bfagj—e) NNayjippi\BFatyit+e)
If we compare the decomposition (142) with (168), we obtain the decomposition of the Hilbert
space of G-invariant degrees of freedom at fixed total angular momentum,

bje = dlm”HU = (

bmax '
HY = P HE oY) . (173)
£:€min

with the adapted orthonormal basis [23|

kl ]ﬂ‘z
Cka)li by = 1T . (174)
Ny spin 1/2 Np spin 1/2
which coincides with (145), |j, k) with k, equal to k, for r = 1,..., Ny — 2, equal to £ for
r = N4 —1, and equal to hy for r = N4,...,Na+ Np — 2. From this decomposition, we also
derive the relation between the dimensions dy, bjy and Dj,
Dj = % ,debj. (175)

We can now compute the density matrix pga of a symmetry-resolved state 1) reduced to
Aca. Following the general construction described in Sec. 3, the generic symmetry-resolved
state in this basis is:

= 15,€) Z\/> Z Xk o 1€, ka)|ds €s o) - (176)
k?ayhb
The density matrix of the symmetry—resolved state reduced to Ag4 is

paa =B pepe, (177)
¢

where
Z Z Xka hka’ hb 14, ka) (L, k{z| . (178)
kayk h
This is the expression used in the next section to compute the G-local entanglement entropy
Sga-
We conclude this section with a few observations. By direct comparison of the decompo-
sition (161) and (167), we see that the decomposition of the complement of the G A-Hilbert
space is not the GB-Hilbert space as

Q) () G0
Hey =D Hogm @ Hap ) - (179)

Moreover, differently from what happens in the abelian case discussed in Sec. 4.3, we note
that here states in ”H(J 9 are eigenstates of the total angular momentum J 2 and of the angular

momentum of A, i.e., L2 , but they are not in an eigenstate of the angular momentum of B,
Le, Jé =02 S3)2, unless J2 = 0 in which case Jg = L2
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5.3 G-local entanglement entropy of symmetry-resolved states

Given a symmetry-resolved state, i.e., a state of the form (176), we can compute its density
matrix reduced to the G-local subalgebra of observables Ag4 using the techniques of the
previous section. The G-local entanglement entropy is then given by the general formula
(20),

Saa = S(|¥), Aa, Aga) = —tr(paalog paa) (180)

= = petr(pelogpr) — > pelogpr, (181)
z ¢

where py is the reduced density matrix in the sector £ and p; the probability of the sector, as
defined in (177). We give a few examples to illustrate how Sg4 is computed and its differences
from Sk 4:

N =2, j = 0 — This is the singled state |s) of two spin-1/2 particles,

It =1
= % (182)

As K-local subsystem with N4 = 1, we can take the first particle with the algebra of observ-
ables Ax 4 = C[S1]. As usual [16], the associated entanglement entropy is Sk a(]s)) = log2.
On the other hand, if we consider the algebra of G-local observables of the first particle we
find that it is trivial as there is no rotational invariant observable besides 512 = %(% + 1)1,

ie., Aga = {1} and Sga(]s)) = 0.

|5)

N =2, j =1 — This is the Hilbert space of the triplet state |t,,),

1) m = +1,
1) m=—1.

The K-local subsystem with N4 = 1 has entanglement entropy Sk a(|t+)) = 0 and Sk a(|to)) =
log 2. On the other hand, the G-local entanglement entropy Sga(|tm)) = 0 vanishes again as
the subalgebra Aga = {1} is trivial.

N =4, j = 0 — The recoupling of N = 4 spin-1/2 particles into a scalar (j = 0) defines a
two-dimensional Hilbert space spanned by the two orthogonal states

o) = Is)als)B (184)
) = > EL ) a ltm)s, (185)
m=0,%1

where we have denoted A = (1,2) and B = (3,4) the coupling of the four particles. The
K-local and the G-local entanglement entropies of the subsystem A are

Ska(lo)) =0, Saa(lvo)) =

(186)
Sra(lY1)) =log3,  Sca(ltr)) =
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Note that the K-local entropy measures the entanglement in the magnetic degrees of freedom
m, which results in the log3 above. On the other hand, the G-local entanglement entropy
for each of the two states vanishes as they are eigenstates of (§1 + §2)2, which is the only
non-trivial observable in Aga = C[S] - S5]. In fact, using the basis (174), we see that [¢)1) is
factorized. To show a non-trivial G-local entropy, we consider the superposition

) = /1= plo) + e |¥) (187)

for which we can easily compute the reduced density matrices

pra=1=p)|s)sl+p D Fltm)tal, (188)
m=0,£1
paa = (1=p)[0)(0] + p[1){1], (189)

where the states |0) and |1) are the eigenstates with ¢ = 0,1 of the G-local observable
L? = (S + S2)%. It follows that the entanglement entropies for the K-local and the G-
local subalgebras are

Ska(l$)) = —(1 = p)log(l — p) — plog(p/3), (190)
Sca(|¥)) = —(1 —p)log(l —p) —plogp. (191)

In this simple case, the G-local entanglement entropy is purely due to the Shannon entropy
of the sector, i.e., the last term in (181), because the subalgebra coincides with the center,

Acga=Aap = Z.

N =4, j =1, m =+1 — The recoupling of N = 4 spin-1/2 particles into a vector (j = 1)
defines the Hilbert space ”Hfll) = Hg,zn ® H(Gl) of dimension 3 x 3. We consider a (m = +1)
symmetry-resolved state

) = V1 =plm) + Vpe' ) (192)

given by the superposition of the two orthogonal basis states with m = +1

) =ls)alte)s,  Im) =5 (It)alto)s — lto)alt+)s), (193)

where |s) and [t,,) are the singlet state and the triplet state (with the magnetic number
m = 0,+1) obtained by coupling two spin-1/2 particles. The K-local density matrix for the
two spins in A, defined as usual as pxa = Trp|) (Y], is

prca = (1= p)ls)(s| + 2 (Jto) (ts] + [to) (to]) — /252 (e7|s) (ko] + et} (s]) . (194)

The non-vanishing eigenvalues of pg 4 are {§,1—25}. Therefore, K-local entanglement entropy
is

Ska(l¢)) = —Flog§ — (1 —§)log(1 - 5). (195)

On the other hand, if we have only access to the rotational invariant observable of the particles
in subsystem A = (1,2), that is only the observable S} - Sa, then the accessible entropy is
given by the probability of outcomes {p,1 — p},

Sca(l¥)) = —plogp — (1 —p)log(l —p). (196)
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We note that, for % < p < 1, we have that the G-local entropy is smaller than the K-
local entropy, Sga(|v)) < Ska(]¥)), while for 0 < p < % the G-local entropy is larger
Saa(|Y)) > Ska(ly)). We note also another difference compared to the abelian case (1)
where the reduced density matrix is shown to be black diagonal. From (194), we see that the
density matrix pg 4 is not block diagonal as it has non-vanishing matrix elements |s)(to| that
connect blocks with different ¢. This is a generic feature of SU(2)-symmetry-resolved states.

N =6,57 =1, m = +1 — As a last example, we illustrate the case considered in the
introduction in Fig. 3. The Hilbert space ”H(l) = 7—[(1) ® Hg) has dimension 3 x 9. We
consider the subsystem of the first Ny = 3 partlcles The G-local entanglement entropy is
associated to the restriction of the state to the subalgebra Aga = C[Sl 5'2, 51 5'3, Sg 5'3]
which now is a non-commutative algebra and therefore allows intertwiner entanglement, i.e.,
the first term in (181). The associated Hilbert space decomposition is

HY = P H oHLY). (197)

=3
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We consider the symmetry-resolved state with m = +1 described in Fig. 3(b),

) = L(hin) + [¢2). (198)

given by the superposition of the two orthonormal [¢);) and [|¢9) introduced in (11). As
shown in Fig. 3(b) for p = 1/2, the G local entropy of this state is Sga(|1)) = log2 while
the K-local entropy is Ska(|1)) = —2log2 — 2log 2. This example allows us to comment
on the symmetry under the exchange of A Wlth B. Clearly Ska(|Y)) = Skp(]®)). On the
other hand, we note that the restriction to the subalgebra Aqp = C[§4 . 55, §4 . 56, §5 . 5’}5]
is associated with Hilbert space decomposition

H(G}) _ @ (’H( B) ®7_[(1 JB)) : (199)

|
IJB=73,

(SIS

and Sgp(|Y)) = 0 because [¢)) is an eigenstate of (S5 4 Sg)2 = 0 and (S; + S5 + Sg)? =

%(% + 1). This example shows concretely that, in the non-abelian case, the commutant

symmetry (39) allows an asymmetry under subsystem exchange in the G-local entanglement

entropy, Sap (1Y) # Saa(|v)).

5.4 Typical G-local entanglement entropy: exact formulas

We combine the results of Sec. 2.3 on the typical entanglement entropy of a subsystem defined
in terms of a subalgebra of observables, together with the results of Sec. 3.3 on symmetry-
resolved entanglement entropy, to derive the exact formulas for the typical G-local entangle-
ment entropy for the group G = SU(2).
@) g3)
The average entanglement entropy for a random symmetry-resolved state in Hy’ = Hsym®

Hg), restricted to a G-local subsystem of N4 spin-1/2 particles is given by the formula (43),
specialized to the SU(2) case:

émax

(Saa)i = > o, (200)
g Zmln
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where g, and ¢y are given in terms of the dimensions dy, bjs, D; defined in (147), (171), (172).

The first quantity is

dgbje
D; ’

or = (201)

and the second is

. —1 bj—
Yy = ‘IJ(Dj—}-l)—\IJ(InaX(dg,bjg)+1)—m1n(dszﬂl’ JQZdzl)' (202)

The variance (ASga)? = (S%44); — <SGA>j2- can be written as

(ASga)? = D1+1( ‘fmix o0 (W5 +xe) — ( fo 0 W)Q) (203)

=—%£min £=Liin

where oy and @y are given above and xy is defined as
xe = (d¢ +bje) V' (max(dg, bje) +1) — (Dj +1) ¥'(D; + 1)+ (204)

_ (min(dy, bje) = 1)(de + bje + max(de, bje) — 1)
4 max(d?, b?e) .

(205)

The formulas for average (200) and the variance (203) of the symmetry-resolved entangle-
ment entropy of a random state are exact and can be computed from the expressions of the
dimensions of the Hilbert spaces dy, bj,, and D;.

In Fig. 3(a), we show the average and variance compared to the statistical distribution
of a sample of symmetry-resolved random states with N = 6, j = 1, m = +1 restricted to
Ny = 3.

In Fig. 4(a), we show the exact average and variance for N = 10 and different values of
Jj as a function of the subsystem size Ny, i.e., the Page curve [1, 2| for a symmetry-resolved
system. Note the asymmetry under exchange Ny — N — N4, due to the asymmetry in the
dimensions d; and bj, in (171)—(172), which is a generic feature of non-abelian symmetry-
resolved entanglement (see Sec. 4.2).

As discussed in (101)—(105), one can also decompose the total symmetry-resolved entan-

glement entropy (Sga); in a configurational <ngnf)> ; and a number contribution (Sglzm)) j-

6 Large NN asymptotics of the SU(2) typical entropy

In a lattice many-body system, it is useful to introduce intensive quantities that allow us to
take a thermodynamic limit N — oo and study the behavior of the subsystem entropy as a
function of the fraction of the lattice. In this section we study the SU(2) symmetry-resolved
entanglement entropy in this limit.

6.1 Fixed spin density

The symmetry-resolved entanglement entropy (200) depends on the system size N, the total
spin j, and the subsystem size N4. Moreover, the expression contains a sum over the sub-
system spin £. We introduce intensive quantities representing the subsystem fraction f, the
system spin density s, and the subsystem spin density ¢:

Na 27 20
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Figure 4: (a) Page curve for the SU(2) symmetry-resolved entanglement entropy in a system consisting
of N = 10 spins. The average entanglement entropy (Sga); and its dispersion (ASga); are computed
using the exact formulas (200)—(203) and reported as a function of the number of spins N in the
subsystem. The Page curve with j = 1 has the largest peak entropy. The curves with j = 2, j = 0,
j =3 and j = 4 follow. The maximum spin j = 5 has Sga = 0. The ordering of the curves
reflects the dimension of the Hilbert spaces Dj. For Ny =1, the G-local subsystem is trivial, dp =1,
and the entropy Sga = 0 vanishes. The Page curve is generally not symmetric under the exchange
Na < N — Ny, except in the special case j = 0 where this exchange symmetry is present. (b) Leading
order of the symmetry-resolved entanglement entropy in the thermodynamic limit. At this order, the
entanglement entropy is symmetric under exchange f < 1 — f. We plot the Page curve for spin
densities s =0, s = 0.4, s = 0.6, s =0.8, s = 0.9, s = 0.95, s = 0.99, and s = 1, which corresponds
to curves from the top to the bottom.

The thermodynamic limit is defined as the limit N — oo while keeping the intensive quantities
f and s fixed. We compute the average entropy (200) and its variance (203) in this limit up
to terms of order one, O(1).

First, we derive the asymptotic expressions of the dimensions dy, bj,, and D; in the
thermodynamic limit. We use the asymptotic expansion of the binomial coefficients for n — oo
with A fixed,

n 218"V sy 1 3+ )2 _2
=4/ ——2>e" l1-———+0 207
<g(1+A)> ™ on1—e T o) (207)
where the function [(s) is defined by
1—s 1—s 1+s 1+s
= - 1 - 1 2
B(s) ) 0g< 5 ) 5 og( 5 > (208)
and its derivatives are
1 1+s 1
/ _ 1" _ =
Bls)=—5bog(1—) . B')=—1—7 (209)

The approximation (207) holds for A = O(1) and is useful for deriving the large- N asymptotics
of the dimensions at fixed 0 < s < 1. This approximation is invalid in the extremal cases
J = Jmin and j = jmax defined in (135), and we will deal with them separately in the next
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section. The asymptotic form of the dimensions in terms of intensive quantities are

Dj _ 2s 2 |5”(3)’ eNﬁ(s) <1 + - I 12— 5(9 — 3)(3 — 8) + O(N—2)> ’ (210>

1+s mN 2N s(1— s2)
ot 2080w 1 1249 1)(3 1) B )
de = 1+¢ 7TfN ¢ | * 12fN t(l _ tZ) + O(N ) ) (211)
2‘5”( )| (1— f)Nﬁ( )( 1 3+ (1 2 L
bi¢ =\| —————— ¢ 1-—- " + O(N )) . (212)
’ 7TN(l—f) RI- N1 ()

Note that, in the asymptotic formula for bj;s, the second term in the exact expression (172) is
exponentially small, and therefore it does not contribute to the asymptotics for 0 < s < 1 and
large N. On the other hand, this approximation is invalid for s = 0, that is, when j = junin
which is not compatible with the scaling assumed in (206), and will be treated separately in
the next section. In the thermodynamic limit, the sum over the spin ¢ becomes an integral
over the spin density >, — fol f %dt and the probability distribution (201) is given by a
continuous probability distribution

oft)dt = 220t i Nt = ()(1+Ql—(t)+O(N_2)>eNUﬁ(tH(l_f)ﬂ(iff)_ﬂ(s))dt, (213)

D; N
where
s—ft
N 2 (s + 1 18" 18" (=)
alt) = f+ O (214)
2\ mf(1—f)N s(t+1 \B (s)]
1 12— 49— )(3 - 1 +(E? 112- 50— 53—
01(t) = — 5 - - 5 . (215)
12f t(1—t?) 12 (lt) 12 s(1—s?)
The limit of function ¢, (202) is given by the lower bound (50),
D; D, . b;
o(t) = logmm(b—, =) - %mm(%, d%) : (216)
and the average entanglement entropy at fixed s is given by the integral
1
(Saa). = [ e, (217)
0

We evaluate the integral over ¢ using the Laplace approximation for large N (see App. B). The
integral is concentrated at the critical point ¢ = s defined as the maximum of the exponent
of (213). If f < %, at the critical point the dimension bj, is exponentially larger than d;.
Therefore, we can ignore the second term in (216) as it is exponentially small. Similarly, at
the critical point, the min in the logarithm in (216) selects the ratio D;/bje, which allows us
to write

P(t) = N (3(5) = (1= HB(ER)) + §log( 7y ) + os(=4T) +ov) . (218)

At half-system size, f = 1/2, extra care is necessary because of a discontinuity in the integral.
The dimensions satisfy the inequalities bj, > dy for ¢ < s, but b;; < dy for ¢ > s. The
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logarithm in (216) is discontinuous at the critical point ¢ = s, and we have to resort to
a Laplace approximation that allows for discontinuities (see App. B). There are additional
contributions at order O(v/N) and at order O(1). Note that, at f = 1/2, the second term
in (216) is not exponentially small, but detailed analysis shows that it is of order O(1/v/N)
and therefore does not contribute to the thermodynamic limit. Summarizing, the average
entanglement entropy for f < 1/2 is:

<SGA>SZ B(S)fN—W\ﬁ(S +f+logf(lif)+(l 26 )10g(1+s)

(219)
— (1—f—%5fé)%log(%)—i—O(Nﬁ) for f<3,
and for f>1/2
(Sga)s = B(s)(1— [N + A=0Ho8l | (1 p)l=sjog(LEs) LO(N"2)  for f> 5. (220)

Note that the leading order O(N) and the subleading order O(v/N) are symmetric under
exchange of the subsystem with its complement. However, the order O(1) term is not sym-
metric, f </ (1 — f). The leading order and its dependence on the spin density s via the
function 5(s) (208) is displayed in Fig. 4(b).

Using the same technique, we find that the variance is:

(8SGA)? = VF(F (1= 1) = by ) U2 (10 La)2 N3 =N36) (11 O(N ). (221)

We note that the variance is exponentially small in N. Moreover, at the order considered,
the variance is invariant under the symmetry f <> (1 — f).

6.2 Extremal cases: jJnax and Jmin

In the extremal case of maximum spin, j = jmax = N/2, the Hilbert space H(Gj"‘a") contains
only one state and the dimension (147) is Dj, . = 1. Moreover, the composition of angular
momenta constrains the spin of the subsystem A to be maximal, i.e., £ = fpax, and the
dimensions (171) and (172) of the factors are dg,, . =1, bj,.. .. = 1. Therefore, the unique
symmetry-resolved state with j = jmax is factorized, as the exact formula of the average and
variance of the entanglement entropy confirm:

(SGA) jmax =0, (ASGA) =0. (222)

]max

The other extremal case, j = jmin, is non trivial. Let us assume that N is even so that
Jmin = 0. In this case, the relevant asymptotic formula for the binomial coefficient is

(n" ): 2 gniog2 =% (1 4 O(n V) (223)

§+$ nm

that is valid for z = O(y/n) and n — 00.'9 In the sum (200), we first assume £ = O(v/N),
motivated by the fact that it corresponds to the subsystem with the largest dimension. We

"Note that here we cannot use (207) where A = O(1)
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then check this hypothesis a posteriori. In this limit, the dimensions of the Hilbert spaces are

\/>N3/2 Nlog2 (1 4+ O(N7Y)), (224)

de:\[r(fﬁig/z V8 Y (14 O(N ) (225)

Note that, for j = 0, the dimensions by and d; are mapped into each other by sending
f <> 1—f. This is an exact property of (171) and (172) which in the asymptotic limit results
into the expression

2 4/ o 2
bor = 2 J(A=HNlog2 ;2a=pw (1 - O(N~ D)) . 296
‘” \/;((1—]")]\[)3/2 ¢ ¢ (1+0W™) (226)

It is useful to introduce the rescaled variable

u:1/ﬁﬁ, (227)

which simplifies the calculation of the integral. The probability distribution (201) in the
thermodynamic limit becomes the continuous distribution

o(u)du = \j}ruz e ¥’ (1+O0(NN"h)du. (228)

The sum over the spin £ becomes an integral over the positive real line in the thermodynamic
limit. It is worth noticing that (228) is independent of the system’s parameters N and f at
the leading order and is normalized at all orders. The calculation of the average entropy is
straightforward. If f < %, the dimension by, is exponentially larger than dy, therefore (216)

is just given by the logarithmic term. If f = %, then byy = dy and the second term in (216)

contributes a —% correction. Therefore,

1 1 1
o(u) = fN log2—§ logN—§ log f—§ log 2+log(1—f)+u2f—logu—%(5f 1 +O(N1Y . (229)
2
We obtain the average entanglement entropy by performing the integral
o0
(Sady= | o) du, (230)
0
keeping all terms up to O(1). Summarizing, the average entanglement entropy for f < % is

(Saa), = leog2—%logN - %logf + log(1 — f)

+ (- Plog2+3f—1-% -4, oW 1y (231)

The average entropy for f > 1/2 can be obtained via the exact symmetry f <> (1 — f) that
applies to the case of j = 0. The calculation for the variance (203) is similar, and we find

(ASea)? = ZE(FGF -1+ — 1416, ) N2 e Ve (1L O(NTY) L (282)

for f < 1/2, and the formula for f > 1/2 can again be obtained via the exact symmetry
f + (1 — f) that applies to the case of j = 0.
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Furthermore, we comment on the equipartition (or lack of equipartition) of entanglement
entropy in the thermodynamic limit for the non-abelian symmetry SU(2), generalizing the
discussion in [15] and [6] for the U(1) case. By equipartition of entanglement, one means that
the entropy <Sg1)4> ; is independent of ¢ in some limit. For generic spin j (Sec. 6.1), we found
in (218) that at the leading order at fixed subsystem charge ¢, the entanglement entropy is

(Seh)i ~ N (B(s) — (1= f) B(5=4)) with s = 2j/N and t = 2/N4. Therefore, we conclude
that there is no equipartition of entanglement entropy, as the leading order in N depends
explicitly on the subsystem charge ¢. This result extends the observation of [6] of lack of
equipartition in the thermodynamic limit to the non-abelian case. Furthermore, following the
argument in [6], we emphasize the importance of the order of limits. If £ is fixed before taking
the limit N — oo, using the expansion B(%J;f) = ﬁ(ﬁ) - ﬁ’(ﬁ)% + O(t?), we obtain
instead <ng)4>j ~N (B(s)—(1—f) B(ﬁ)) This result matches the behavior found [15] for
the U(1) case, with the leading order independent of ¢ and the equipartition of entanglement
entropy restored.

Interestingly, in the j = 0 case, using (227) and (229), we find that at the leading order

the entanglement entropy at fixed subsystem charge £ is (ng)@o ~ fNlog2. As this quantity
is independent of the subsystem charge, we conclude that in this case, there is equipartition
of entanglement for all £.

6.3 Comparison of G-local and K-local asymptotics

The asymptotics of the average K-local entanglement entropy was studied in [21|. The system
considered is the same as the one described here in Sec. 5.1, with the additional assumption of
vanishing magnetization, m = 0, to select symmetry-resolved states. Using a combination of
analytical and numerical methods, asymptotic formulas for the thermodynamic limit N — oo
at fixed f and s were studied. We compare these results for the ones obtained here in Sec. 6.1—
6.2 for the G-local entanglement entropy of the same symmetry-resolved states.

For maximal spin jmax = N/2, i.e., for the case s = 1, the Hilbert space takes the form
H%max) — Hi;rrr:x) ® H(szrzax) ® Hgga)cyemax) , (233)
i.e., in the decomposition (168) there is a single allowed value of ¢, and the dimensions are
dim?—[gfj{a") =1, dim?—[(ég“x’(ma") =1, and dim?—[é;';l‘fx) = N 4+ 1. As a result, the average
G-local entropy necessarily vanishes (222) because any symmetry-resolved state in this sector

has zero entanglement between G-local degrees of freedom. On the other hand, the K-local

entanglement entropy also measures the entanglement in magnetic degrees of freedom m4 at

(] max)
sym

an average entropy that scales as % log N. The comparison of the two different scalings found
in [21] and in Sec. 6.2 is shown in the table:

fixed m =my +mpin H , which are not G-local. This K-local entanglement results in

J = Jmax N \/N ds1 log N 1 0,1
f’ 2 f7 2
(SGA) junas 0 0 0 0 0 (234)
(SKA) jmax;m=0 | O 0 : 1 log w 0

For minimum spin, j = 0 (assuming N even), i.e., for the case s = 0, the leading order
O(N) of the K-local and G-local average entropies coincide. There is again a difference
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at order O(log N) and at order O(1) (first computed in [27] for the K-local entropy). A
comparison of the contributions found in [21| and in Sec. 6.2 is shown in the table:

j=0 N \/Néfé log N 1 (5f7%
(Sca)y | flog2 0 —% | aga(f) | -2 (235)
(Ska)y || flog2 0 0 |aka(f) | —3
where
3f4 2log(l — <1/2,
axealf) = 5f +35log(1—f) f<1 (236)
fe— (1) f>1/2,
3f4+log(l—f)—11 1 flog(2)—1- 2 <1/2
aealf) = 5f +1log(1—f) —5log f+ (5 — f)log(2) ; f<1/2, (237)

f«— Q-1 f>1/2.
We note the symmetry f <> (1 — f), which is an exact symmetry for j = 0.
For spin j of order O(N), i.e., fixed spin density s = 25 /N with 0 < s < 1, the asymptotics
of the K-local average entropy studied in [21] and the G-local average entropy derived in

Sec. 6.1 agree at order O(N) and O(v/N). A difference again arises at order O(log N) and
O(1), as summarized in the table:

0<s<1 N \/Nafl log N 1 851
1) ’2
(Saa)s | B6)f | —Z0= | 0 | baa(fs) | caals) (238)
<SKA>s,m=O B(S)f _% % bKA(fv 5) 0

where 3(s), 8/(s), 8" (s) are given by (208)—(209), and

f+log1 f 1= 2f(1 $) 1og (143 2532 1 wef( )
g(1ts) +1log = + 3 log f<1/2,

bica(f, s) . (239)

f+—(1- f>1/2,
b f+log 1-f) (1 - f) 2 log(12) —l—log(lz—fs) f<1/2, 210)
GA

U=f)toal 4 (1 — f)lslog(Ls) F>1/2,
caa(f,s) = 375" log(155) — 3 log () - (241)

We note that the asymmetry of the G-local average entropy under subsystem exchange,
f /4 (1—f), discussed in Sec. 5.4 and Sec. 6.1 arises only at order O(1), as shown explicitly
n (240).

Additionally, we observe that in all the cases considered here, we find that the average
K-local entropy studied in [21] and the average G-local entropy derived here satisfy:

(SkaA) — (Sga) = %logN +0(1). (242)
The difference can be attributed to the entanglement in the magnetic degrees of freedom

probed by K-local observables, as discussed in (234).
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7 Discussion

This paper introduces a mathematical framework for symmetry-resolved entanglement with
a non-abelian symmetry group G. The framework relies on the notion of subsystem defined
operationally in terms of a subalgebra of observables (Sec. 2). In the presence of a non-abelian
symmetry, symmetry-resolved observables that are G-invariant determine symmetry-resolved
states that can be prepared and measured by these observables, together with a decomposition
of the Hilbert space that generalizes the familiar notions of direct sum over abelian charges
and of tensor product over independent subsystems (Sec. 3). The framework is general and
does not require a built-in notion of locality or the choice of a Hamiltonian. Once we introduce
a notion of locality, a distinction between K-local and G-local observables arises: kinematical
observables in a many-body system are naturally local but, in general, are not invariant
under transformations of the group G. On the other hand, invariant observables are generally
non-local. G-local observables are both local and G-invariant. In various physical settings,
they are the only accessible observables defining a symmetry-resolved subsystem. Symmetry-
resolved entanglement entropy is defined here as the entropy Sg 4 of symmetry-resolved states
restricted to a symmetry-resolved subsystem (Sec. 4). To illustrate this general framework,
we considered the example of a system invariant under the group G = SU(2), computed the
exact average entanglement entropy and its variance for random symmetry-resolved states
(Sec. 5) and studied its Page curve in the thermodynamic limit (Sec. 6).

In the case of an abelian symmetry, such as the group G = U(1), the construction pre-
sented here reduces to known results [4-8] because the relation (111) significantly simplifies
the symmetry-resolved decomposition. In particular, in the analysis of symmetry-resolved
entanglement [13-15], the block-diagonal form of the reduced density matrix with U(1) sym-
metry plays a key role. In fact, the notion of entanglement asymmetry associated with a
projected density matrix has been proposed as a measure of symmetry breaking [64]. In the
non-abelian case, the block-diagonal form (78) arises once one identifies the generalization
(75) of symmetry-resolved subsystems. The relevant expressions for the SU(2) case are (177)
and (168), which are non-trivial for excited states with j # 0. It would be interesting to
use this formulation to extend the analysis of entanglement asymmetry as a probe of SU(2)
symmetry breaking [64].

The Page curve was first introduced in [1] as a measure of the typical entanglement entropy
of a random pure state without any constraints. The distribution of the typical entropy in the
presence of an additive constraint (corresponding to an abelian symmetry) was introduced in
[2], where an exact formula for the average and the variance is given. In this paper, we derived
exact formulas for the average and variance of the distribution of the entanglement entropy of
random pure states with non-abelian symmetry group G, (43)—(44)—(79). When the results of
[2] for an abelian symmetry are applied to the thermodynamic limit of a many-body system,
the average over the distribution reproduces a volume law V' ~ N for the entanglement entropy
[4-8]. Moreover, a v/V correction arises at half-system size because of the abelian constraint.
This correction was first identified analytically and observed numerically in [5], then explained
in terms of energy conservation in [109] and derived from number conservation in [4]. A global
non-abelian symmetry, such as SU(2), also results in a leading-order volume-law entanglement
entropy, together with a square-root-volume correction at half-system size, as first found in
[21] and derived in Sec. 6 from the asymptotics of the exact formulas for the typical entropy
(See (238) for a comparison). The coefficient (208) of the volume-law scaling depends on the
spin density j/V, which can be generalized to the densities g;/V for the non-abelian charges,
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Figure 5: Quantum polyhedra provide a concrete example of SU(2) symmetry-resolved states that can
be probed only using G-local observables that measure their mtrmszc geometry. FEach spin corresponds
to a quantum plane of fized area, and the SU(2) invariance in the coupling of angular momenta
corresponds to the closure of the faces of the polyhedron [106, 107].

i.e., the rank(G) Casimir operators of a general compact semisimple Lie group G. Moreover,
at order O(1) in the thermodynamic limit, an asymmetry under subsystem exchange arises,
f </ (1= f), where f = V4/V is the subsystem-volume fraction. This is a new feature of
non-abelian symmetry-resolved entanglement that we discuss in Sec. 4.2 for a general group
G, and illustrate in (198) for a small system and in (240) for a many-body system in the
thermodynamic limit. While for a global symmetry, this phenomenon is subleading in the
thermodynamic limit, it would be interesting to investigate its consequences in the case of a
local symmetry and its impact on the estimate of the Page time in black hole evaporation
[24-26, 110-112].

The results of this paper are general and do not depend on the choice of a specific Hamilto-
nian. They depend only on the structure of the Hilbert space and on the representation of the
symmetry group G. This group can be understood as a symmetry of the dynamics, such as the
Hamiltonian (2) discussed in the introduction as a motivation. Entanglement in eigenstates
of a specific quantum-chaotic Hamiltonian with abelian symmetry group G = U(1) is studied
in [9, 10] for the spin-1/2 X X Z chain and in [11, 12] for the X X Z model and the mixed-field
Ising model with a constrained energy window. Remarkably, they show that the distribution of
the entanglement entropy of mid-spectrum energy eigenstates, computed numerically, agrees
with the analytical distribution found in [2]. We conjecture that the distribution P(Sga)
with average and variance (43)—(44)—(79) found in this paper (See Fig. 3(a)) matches the
distribution of the entanglement entropy of energy eigenstates of quantum-chaotic Hamilto-
nians with non-abelian symmetry group G, restricted to G-local subsystems. It would be
interesting to test this conjecture numerically, extending the state-of-the-art exact diagonal-
ization of [9-12| to quantum-chaotic Hamiltonians with a non-abelian symmetry, such as the
random Heisenberg model (2) and the Heisenberg model on a lattice with local interactions
[18], as done in [20, 21| for SU(2). This conjecture is of direct relevance to recent develop-
ments in non-abelian eigenstate thermalization [19-21], thermodynamics with noncommuting
conserved charges [27, 89-91], and quantum many-body scars [95, 96]. It would also be inter-
esting to extend our framework to the analysis of quantum systems near criticality, random
systems where the entanglement entropy behaves effectively as in critical systems [113], the
case of WZW models and SU(2);, symmetry |14, 85-87] and to the case of Virasoro symmetry
in a conformal field theory [88|, going beyond the special case of the vacuum state.
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Another new phenomenon that arises in the non-abelian case is the distinction (89) be-
tween K-local and G-local subsystems. The notion of G-local observables plays an effective
role in systems with a gapped Hamiltonian and selection rules that restrict the accessible
observables to multiplets in the energy spectrum (See Fig. 1). G-local observables also play
a fundamental role in systems with an intrinsic symmetry that constrains the accessible ob-
servables [47-52], as it is the case for quantum reference frames where one adopts an intrinsic
perspective [114-119]. Another example where G-local observables play a central role is the
case of the quantum geometry of a polyhedron [106, 107]. The G-local observables S, - gb
described in Fig. 1 measure the angle between the faces of the quantum polyhedron, shown
in Fig. 5 for different sectors of spin j.

It would be interesting to derive also the exact formulas for the average and the variance
of the probability distribution P(Sk4) for K-local observables (See Fig. 3). In [21], the
asymptotics of the average was computed for a spin system using a combination of analytical
and numerical techniques, and in (242) we observed that the averages of Sk 4 and Sg4 differ
at order log-volume in the thermodynamic limit.

The framework introduced in this paper applies both to groups G that act globally on
the system—a rigid symmetry—and to groups G*¥ that act locally at the N nodes of a
lattice, i.e., a lattice gauge symmetry [41-43|. In this case, we expect that the new features of
non-abelian symmetry-resolved entanglement play a central role, and it would be interesting
to explore their effect on the Page curve in lattice gauge theory [120] and spin-network states
in loop quantum gravity [44-46, 121-123].

In this paper, we assumed a finite-dimensional Hilbert space, but the results presented
apply directly to each symmetry-resolved sector that is a finite-dimensional subspace of a
Hilbert space that can be infinite-dimensional. It would be interesting to extend the analysis
presented here to quantum field theory [35-39] where, in a finite volume and at fixed energy,
the microcanonical sectors of the Hilbert space have finite dimension and the Page curve has
been argued to reproduce black-body thermodynamics [2]. Finally, the Page curve was initially
introduced as a tool to identify the non-perturbative time scales of black hole evaporation
[25, 26]. It would be interesting to apply the methods introduced in this paper to compute
the Page curve for the entanglement entropy of the subalgebra of gravitational news [124],
symmetry-resolved with respect to the asymptotic symmetries of a black hole at fixed mass
and spin.
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A Dimension of SU(2) intertwiner spaces

In this section we give a derivation of the dimension of the Hilbert spaces Hg%, ’Hgé), and
’H(G]) based on the calculation of the dimension of the SU(2) invariant spaces
v(j1, ... jr) = dimInve(HU) @ - @ HUL)) | (243)

These invariant spaces, also known as intertwiners, are well studied in loop quantum gravity
[44, 45], where they are the fundamental building blocks for describing quantum geometries
[106, 107]. Using techniques typical of intertwiner calculations [23|, we write the projector to
intertwiner space

P:HW . @HI) s Tnvg(HO) @ ... 0 HOD) (244)

via group averaging

P— DU (g)®---® DUL)(g) dg, (245)
SU(2)
where D) (9)™ s are Wigner matrices for the representation with spin j and dg is the Haar
measure for the group SU(2). The dimension of the SU(2)-invariant space can then be
computed as the trace of the identity in this space or, equivalently, the trace of the projector
TrP, i.e., v is given by the integral

v(j1, .-y dL) = / X (g) - x1)(g) dg, (246)
SU(2)

where x9)(g) = TrDU)(g) is the character of the representation with spin j. We compute
the integral using the class-angle parametrization g = hel®”*h~! of a group element, which

results in the character yU )(g) = W expressed as a function of the class angle . The
2

Haar measure for class functions ¢(g) = f(6) reduces to [dg = 2 [;”(sin6)? do.

This paper uses the dimension v with N spin-1/2 and one spin-j. After a few manipula-
tions with elementary trigonometric identities, we find
2N 2
v(L,.. 1) = / (sin 0) (cos 0)" (sin (2] + 1) 0) 0. (247)
T Jo
Using the residue theorem, we evaluate the integral (247) as a contour integral on the unit
circle of the complex plane. The only contribution to the integral comes from the pole in the
origin

N|—

v(bioo s hd) = —IResico (L (2 = 2) (o — 254 (24 2)7) (248)

We expand the binomial (2 + Z)N = ZkN:O (ZZ) 22k=N and read the residue from the coefficient
of % If N + 27 is odd, the integral vanishes. If N + 2j is even, we find

, 27 +1 ( N >
1 1
V(s5,...,5,7) = - - 249
(2 2 ) ];f ] 1 J;/ j ( )

This is the expression also found, for instance, in [20, 21| and derived via combinatorial
methods.
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Using the intertwiner methods discussed above, we can now compute the dimension v with
N — N4 spin-1/2, one spin-j, and one spin-¢ which appears in the formula for the non-abelian
symmetry-resolved entanglement entropy. We find

oN—-Na+1 2w
v, 3,50 = 7T/0 (cos )N ~N4 (sin(25 + 1)0) (sin(2¢ + 1)6) O (250)
—( o )— - ( N ) (251)

We note that this formula reduces to the expression (249) for £ =0 or j = 0.

To summarize, we have

D; = dimHY =v(L,... 1), (252)
dy= dimHY, = v(L,... 10, (253)
b= dimHIE = v(d ... 1 50). (254)

B Laplace approximation and discontinuities

In this section, we review the asymptotic expansion of integrals using the Laplace method
[125] and extend this method to the presence of discontinuities. We derive an asymptotic
expansion for IV > 1 of integrals of the form

I—/ h(z)eN9@) dg (255)
K

where K C R and h(z) and g(x) are two real-valued functions defined on K such that the
integral is well defined for large enough N. We first assume that the functions h and g¢
are smooth on K. Then, we present the formula for the case with h continuous but with
a discontinuous first derivative at a point. We assume that the function g has a global
maximum at xg in K where the gradient vanishes, ¢'(z9) = 0, and the function also vanishes
at the maximum g(xg) = 0. The integral is approximated asymptotically by

I = h(zo) —Nﬁm (14—(;\;—1—0(;)) , (256)
where
oy = 1 h"(z0) 1 g"" (zo)h(x0) n 1g" (zo)h (z0) 5 g"(x0)*h(x0) (257)

2 h(w0)g"(x0)  8h(wo)g"(w0)? ~ 2 h(x0)g"(x0)? 24 h(xo)g" (w0)*
The approximation (256) relies on three main observations.
1. Only the immediate neighborhood of zy contributes to the integral.

2. We expand the function g(x) around zp, and we approximate the exponential part of the

N 1
integrand with a narrow Gaussian e~ 29 (z0)(@=20)* ' This confirms the first assumption.
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3. We expand the remaining part of the integrand around zy and extend the integral to
the whole real line.

The integrals of terms of the expansion with the Gaussian (z( is a maximum, so ¢g”(xg) < 0)
are given by

oo " 0 p Odd7
M — / (z — xo)? er(m_mhdx _ 1 - (258)
— 00 vV 27'['(p — 1)” (—W) p even.

=

If we are interested in the leading order or (256), expanding the integrand up to order O(1)
and combining with Mj is sufficient

h(0)M© = h(zo) | /—N;f(xo) . (259)

However, to compute the next-to-leading order (257), we have to expand the integrand up to
order O(x — x¢)%. The relevant terms are

" (2) — _11h%(x0) [/ or
h (iUO)M = ”(:):8) Ng”(xo) )

N2y
N (i ////( )h( ) 1 ///( )h/( )) M(4) _ 1 (19""(=0) 1 g (o)l (o) T
219" (¥0) o) + 57 (xo) o = N \8970)? T 2h)g @) ) \ T Ne' @)

1 1" 2
2 2 6) __ 15 x 27
N? 59" (w0 *hlao) M® = N T V T Ng o) -

Collecting them together, we obtain (257).

In the derivations in Sec. 6, we need to compute integrals of the form (255) with a function
h that is not continuous in xg. For simplicity, we will assume that g(x) is still smooth in .
We follow the same strategy, expanding the integrand around zg and separating the integrals
in x < xg and x > xg. The split Gaussian integrals are such that

oo ! //(w ) X0 AII('/I) )
/ (x — )P A B G O [ (—1)7’/ (x — xo)? eV (emw0)® g , (260)
o —0o0
and
1 E

- o0 e L/2r(B5h)! (—%) p odd,
MP — / (z — z0)P NG (w—w0)? . — ) 2 (557) Ng"(z0) . (261)

o $Ver(p— 1! (—W) p even.

The leading order of the Laplace approximation is similar to the one found earlier,

~ Tn x+ ™
(h@a) + h(:ng)) MO = M) ;— ez \/ _Ng?/(xo) . (262)

Here, we denote with h(z7) the right/left limit of the function h in xg. If h is continuous in
xo, the formula (262) reduces to (259). The next-to-leading order term is

N /x— o /x—i- _
(W (z5) — W(aF)) B1D = W(xzq) . W (g )\/%Ng,,(lxo) : (263)
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which is, in general, non-vanishing if the first derivative of h is discontinuous in xg. The
calculation for the next-to-next-leading order term is similar. To summarize, if the function
h is discontinuous at the maximum z( of g, the Laplace approximation for the integral (255)
is

_ hlxg) + hiag) 2m Cip G (1
I= 5 N vt tels) | (264)
where
~ R (xy) — B (xg) 2
Cljo = 0 02, /- , 265
1/2 h(zg) + h(zg) Nmg"(z0) (265)
and

h(zq) + h(zg)
where we denote by Cy(z) the expression (257) computed (as a limit) in zF. Therefore, a
discontinuity results in a O(1/ VN ) correction in the asymptotic expansion.
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