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Abstract

We present the finite-size scaling theory of one-dimensional quantum critical systems in
the presence of boundaries. While the finite-size spectrum in the conformal limit, namely
of a conformal field theory with conformally invariant boundary conditions, is related to
the dimensions of boundary operators by Cardy, the actual spectra of lattice models are
affected by both bulk and boundary perturbations and contain non-universal boundary
energies. We obtain a general expression of the finite-size energy levels in the presence of
bulk and boundary perturbations. In particular, a generic boundary perturbation related
to the energy-momentum tensor gives rise to a renormalization of the effective system
size. We verify our field-theory formulation by comparing the results with the exact
solution of the critical transverse-field Ising chain and with accurate numerical results on
the critical three-state Potts chain obtained by Density-Matrix Renormalization Group.
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1 Introduction

Unraveling the complexities of strongly correlated quantum many-body systems represents a
formidable yet critical goal in physics. Unlike free theories, these strongly correlated models
often defy exact solvability, posing significant challenges to theoretical understanding. Con-
sequently, we often rely on numerical simulations, focusing particularly on low-energy states
that are pivotal for comprehending the essence of these strong correlations.

Simulating infinitely large systems, however, is an impractical endeavor, even though the
true critical behavior of these systems becomes apparent only in the thermodynamic limit. As
a result, finite-size scaling theory emerges as an indispensable tool for extrapolating results to
the thermodynamic limit. Among the numerical methods available, the infinite density matrix
renormalization group (iDMRG) [1,2] stands out for its capability to simulate infinite systems
with considerable accuracy, especially in finitely-correlated systems. Nonetheless, iDMRG en-
counters limitations near criticality due to the finite correlation length ξ(χ) associated with
the finite bond dimension χ. Significant numerical errors can arise if the model’s inherent
correlation length exceeds ξ(χ).

To address this issue, finite-entanglement scaling, in which ξ(χ) instead of the system size
L is used as a scaling variable has been proposed [3–9]. However, the detailed understanding
of its scaling properties remains an open question. Conversely, traditional DMRG effectively
simulates finite systems, accurately capturing critical systems as long as L < ξ(χ), and thus
offers a route to obtain reliable insights into the thermodynamic limit by the finite-size scaling
of data for the moderate system size L < ξ(χ) which are free from the error due to the finite
bond dimension χ.

When the critical point is described by a conformal field theory (CFT) in 1+1 dimensions,
the finite-size scaling is particularly powerful, thanks to the ingenious use of conformal map-
ping between the infinite system and a finite strip initiated by Cardy [10, 11]. The energy
spectrum of CFT on a finite strip with the periodic boundary conditions (PBC) is related to
the scaling dimension of bulk operators in the CFT and that with the open boundary condi-
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tions (OBC) is to the scaling dimension of boundary operators in the boundary conformal field
theory (BCFT) [12].

An actual finite-size lattice model, however, is not an exact realization of the CFT even at
the critical point. The effective field theory for such a system is given by the CFT with various
irrelevant perturbations. A precise analysis of the finite-size spectrum requires a consideration
of such perturbations. This is particularly important when there is a marginally irrelevant
perturbation that causes notorious logarithmic corrections. For the PBC, such a program has
been successfully implemented. Even with the exact diagonalization, which can handle very
small systems, the finite-size scaling based on the CFT has led to a very precise determination
of the critical point [13–17]. It has also been applied to larger system sizes using density-
matrix renormalization group (DMRG) [18–20] and tensor-network renormalization (TNR)
schemes [8,21].

However, such a systematic study of the finite-size spectrum beyond the exact BCFT is
lacking for OBC and thus would be a powerful tool for the numerical study of boundary crit-
ical phenomena. Meanwhile, in the presence of the boundaries, the analysis becomes more
complicated due to the bulk and boundary perturbations. Moreover, as we will discuss later in
detail, there are additional difficulties due to the renormalization of the effective system size,
which is also referred to as an extrapolation length in Refs. [22–24].

In this paper, despite the inherent difficulties, we construct a systematic theory for the
finite-size scaling of energy spectra in one-dimensional quantum systems with boundaries. Our
approach incorporates the effects of bulk and boundary perturbations within the framework of
BCFT. A critical aspect of our analysis is the use of the effective system size L, which surprisingly
often differs from the number of lattice sites N . Nevertheless, it is the renormalized system size
L that yields accurate predictions of finite-size effects. To validate our theoretical framework,
we compare our predictions with numerical simulations of the quantum transverse-field Ising
(TF-Ising) and three-state Potts models.

We note that, although BCFT has been studied in various topics [25–28], a detailed sys-
tematic study of the finite-size spectrum in the general context is lacking. For the TF-Ising
model, there exist some articles that relate finite-size corrections to conformal perturbation
theory instead of the boundary one [29–32]. Although they provide correct universal ratios,
we will show that such results are only correct for specific operators. Working in the context
of BCFT is indispensable for generic perturbation in other models.

This paper is structured as follows. In Section 2, we summarize the main results of this
paper and validate them through applications to the TF Ising and three-state Potts models,
focusing on finite-size corrections under various conformal invariance boundary conditions. In
Section 3, we establish a framework for analyzing the finite-size effects of bulk and boundary
perturbations on the energy spectrum of a CFT on an open segment. To relate this Hamiltonian
with the real lattice model, two key ingredients are highlighted in Section 4. We conclude this
paper by discussing the possible future directions based on this work in Section 5.

We leave some detailed derivations in the Appendix. Appendix A and C review the Kramers-
Wanier and Kramers-Wanier-like duality in the TF-Ising and three-state Potts models, respec-
tively. We derive the ground-state energy for the TF-Ising model with a small boundary mag-
netic field in Appendix B. Operator product expansion (OPE) coefficients in the M(6,5) mini-
mal model used in this paper are provided in Appendix D, offering valuable insights for related
research areas. Our numerical calculations were performed using ITensor library [33].

2 Summary of the main results and their applications

Here, we present the main results of the paper.
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2.1 Boundary CFT spectrum with bulk and boundary perturbations

2.1.1 General aspect

We are interested in studying the finite-size effects on the energy spectrum of lattice models.
In the vicinity of criticality, this spectrum can be well approximated by the Hamiltonian of
continuous field theory. In this context, the universal properties in the thermodynamic limit
and finite-size effects are represented by the scale-invariant CFT Hamiltonian HCFT

αβ
and its

perturbations, respectively. To elaborate, we consider the spectrum of a CFT on a finite open
segment with bulk and boundary perturbations. Specifically, we examine the Hamiltonian:

Heff
αβ(L) = HCFT

αβ +
∑

i

gi

∫ L

0

dvΦi(v) +
∑

j

g L
j Ψ

αα
j (0) +
∑

j

gR
j Ψ
ββ
j (L) , (1)

where the system is defined on the open interval L with the conformally invariant boundary
conditions α and β at each end. Φi is a bulk operator of CFT, and Ψααj and Ψββj are boundary
operators of CFT living on α and β boundaries, respectively.

Ψααj (x)Ψ
αα
j (y)∼

1

|y − x |2h j
+ · · · , y > x , (2)

Φi(x)Φi(y)∼
1

(z1 − z2)2hi (z̄1 − z̄2)2h̄i
+ · · · . (3)

These operators are normalized properly by the short-distance correlation functions as bulk
and boundary operators, respectively. In the conformal limit (g j = g L

j = gR
j = 0), each energy

eigenstate with the given conformally invariant boundary conditions α and β corresponds to
a boundary operator ψαβn . When α ̸= β , it is a boundary-condition changing operator. The
ground-state energy generally has the bulk contribution determined by the bulk energy density
e0 and the boundary energies Eα,β as

e0 L +Eα +Eβ , (4)

which is non-universal. The universal part of the energy eigenvalue Eαβn in the conformal
limit, after subtracting the non-universal bulk and boundary energies, is determined by the
boundary scaling dimension hn of the boundary operator ψαβn , as (π/L)

�

hn −
c

24

�

.
We then consider the perturbative expansion of the energy eigenvalue as

Eαβn ∼
π

L

�

hn −
c

24

�

+
�

δEαβn

�(1)
boundary +
�

δEαβn

�(1)
bulk +
�

δEαβn

�(2)
boundary + · · · , (5)

up to the first order in the bulk perturbation gi and the second order in the boundary per-
turbation g L,R

j . We note that the bulk perturbation gi is independent of the boundaries and
the same perturbation leads to finite-size correction of the energy spectrum for the periodic
boundary condition. Therefore, we can determine the bulk perturbation gi from the energy
spectrum for the periodic boundary condition to evaluate its effect on the energy spectrum on
a system with boundaries. This is useful for extracting the effect of boundary perturbations
from the energy spectrum, as we will demonstrate in Sec. 2.3.2.

We find the perturbative corrections as follows:

�

δEαβn

�(1)
boundary =
∑

j

g L
j

�π

L

�h j
Cααβn jn +
∑

j

gR
j

�π

L

�h j
Cαββn jn , (6)
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where h j is the boundary scaling dimension of Ψααj and Cαβγi jk are the boundary OPE coeffi-
cients [34]:

Ψ
αβ

k (x1)Ψ
βγ

l (x2) =
∑

l

Cαβγklm (x1 − x2)
hm−hk−hlΨαγm (x2), x1 > x2 . (7)

And:

�

δEαβn

�(1)
bulk =
∑

i

gi

�π

L

�∆i−1
¨

∫ π/2

0

dθ ei∆iθ
∑

p

αBp
i Cβααnpn F i ī,nn

p (1− exp(2iθ ))

+

∫ π

π/2

dθ ei∆iθ
∑

p

βBp
i Cββαnpn F i ī,nn

p (1− exp(2iθ ))

«

, (8)

where ∆i is the total bulk scaling dimension of Φi (in this paper, we denote the total scaling
dimension, namely the sum of the conformal dimensions of the holomorphic and antiholomor-
phic parts of the bulk field, by∆i), F is the conformal block [35] and αB j

i is the bulk-boundary
OPE coefficient [34,36]:

Φi(z) =
∑

j

αB j
i |z − z̄|h j−hi−h̄iΨααj (x) , (9)

for the boundary condition α imposed on the real axis. For the ground state n = 0 with
diagonal boundary condition α, this can be explicitly evaluated as

�

δEαα0

�(1)
bulk ∼
∑

i

gi

�π

L

�∆i−1
αB1i

p
πΓ (1/2−∆i/2)
2∆iΓ (1−∆i/2)

+ const. , (10)

where the (possibly UV divergent) constant can be absorbed by the non-universal boundary
energy.

The second-order correction to the ground-state energy for the identical boundary condi-
tion α imposed at both ends is

�

δEαβ0

�(2)

boundary
=
∑

j

�

δEαβ0

�(2)

g L
j ,gR

j

, (11)

where

�

δEαβ0

�(2)

g L
j ,gR

j

∼ −
�π

L

�2h j−1
�

�

g L
j

2 + gR
j

2
� Γ (1/2− h j)Γ (h j)

22h j
p
π

+
2gR

j g L
j

h j
2F1(h j; 2h j; 1+ h j;−1)

�

(12)

+ const.
�

g L
j

2 + gR
j

2
�

,

for h j ̸=
1
2 , and

�

δEαβ0

�(2)

g L
j ,gR

j

∼ −
�

�

g L
j

2 + gR
j

2
�

�

const.+ log
L
a

�

+ 2gR
j g L

j
π

2

�

, (13)

for h j = 1/2, where a is the lattice spacing. The (possibly UV divergent) constant terms

proportional to g L
j

2+gR
j

2 can be again absorbed as non-universal boundary energy corrections.
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2.1.2 Energy-momentum tensor perturbations

Any CFT has the boundary operator of scaling dimension 2, which can be identified with the
(holomorphic part of) the energy-momentum tensor T . For the boundary perturbation T , the
first-order correction to the energy eigenvalues is proportional to

g L,R
T

�π

L

�2
, (14)

since hT = 2. However, this correction can be absorbed by renormalizing the system size at
least in the first order in g L,R

T , since

1
L +δL

∼
1
L
−
δL
L2
+O(

1
L3
) . (15)

Thus, as long as we use the appropriate effective length for a lattice model, we do not have to
consider this perturbation explicitly.

For a lattice model, this suggests that effective system size L is not generally identical to
the naive system size Na of the lattice model, where N is the number of sites and a is the
lattice constant. Instead, we have

L = Na+ (δL)L + (δL)R , (16)

where (δL)L,R are the non-universal corrections of order of a, determined by the boundary
conditions on each end of the lattice model.

The CFT can also have a bulk perturbation:

gT

∫

dx
�

T (x) + T̄ (x)
�

. (17)

However, this term is proportional to the Hamiltonian of the CFT, and thus the perturbation
can be absorbed by renormalizing the “spin-wave velocity”. Therefore, we do not have to
consider such a perturbation explicitly.

On the other hand, the perturbation:

gT2

∫

dx
�

T2(x) + T̄2(x)
�

, (18)

which has the conformal dimension (4,0) and (0, 4), is generally present [37]. Although it
is a renormalization group-irrelevant perturbation, it does have nontrivial effects on energy
levels:

(δEn)
(1)
T2 = 2πg

π3

L3

�

� c
24

�2
+

11c
1440

+ A(h, r)
�

, (19)

where h is the conformal dimension of the primary field corresponding to the state n, and r is
the level of the descendant, i.e.,

r =
n
∑

i=1

ki if |n〉= L(H)
−k1

L(H)
−k2
· · · L(H)

−kn
|h〉 (1≤ k1 ≤ · · · ≤ kn) , (20)

where {L(H)
n } are the Virasoro operators in the upper half plane as defined in (75). A(h, r) are

calculated by Reinicke [37]:

A(0, r) =
�

11
30
+

c
12

�

r
�

2r2 − 3
�

(r ̸= 1) , (21)

A(h, r) = (h+ r)
��

h−
1
6
−

c
12

�

+
r(2h+ r)(5h+ 1)
(h+ 1)(2h+ 1)

�

h ̸= 0 . (22)
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2.2 Application to the critical Ising model

We consider the standard quantum transverse-field Ising chain defined by the Hamiltonian:

H = −
N−1
∑

j=1

σz
jσ

z
j+1 −

N
∑

j=1

σx
j − ζLσ

z
1 − ζRσ

z
N . (23)

This model can be solved exactly by the Jordan-Wigner transformation. In the presence of
the (bulk) longitudinal field, the model is no longer exactly solvable. Nevertheless, the above
model with only the boundary longitudinal field can be solved exactly [38].

2.2.1 Free boundary (ζR = ζL = ζ= 0)

For ζR = ζL = 0, we can identify the boundary condition as the free boundary condition. The
exact ground-state energy for large N , expanded by powers of 1/N , reads

E0(free, free) = 2
�

1
2
−

1
π

�

−
4
π

N −
π

24N
+

π

48N2
+
− π96 −

7π3

23040

N3
+

π
192 +

7π3

15360

N4
+ · · · . (24)

The O(1/N2) term, as discussed in [39], can be eliminated by instead expanding (24) as

E0(free, free) = 2
�

1
2

�

−
4
π
(N + 1/2)−

π

24(N + 1/2)
−

7
23040

�

π

N + 1/2

�3

+ · · · , (25)

where the "speed of light" in the TF-Ising model is set to v = 2.
This suggests that the effective length L of the system in the field theory should be identified

with (N + 1/2)a, so that

E0(free, free) = 2
�

1
2

�

−
4
π

L −
πv
48L
−

7v
2× 23040

�π

L

�3
+ · · · . (26)

Namely, the corrections to the length for the free boundary (ζ= 0) is

(δL)free = +
1
4

a . (27)

By choosing the effective length in this way, the finite-size correction of O(1/L2), which cor-
responds to the boundary operator T , is eliminated in Eq. (24). Furthermore, the energy
eigenvalues of the first, second, and third excited states are obtained as

E1(free, free) = E0(free, free) +
πv
2L
−

v
192

�π

L

�3
+ · · · , (28)

E2(free, free) = E0(free, free) +
π3v
2L
−

9v
64

�π

L

�3
+ · · · , (29)

E3(free, free) = E0(free, free) +
π4v
2L
−

7v
48

�π

L

�3
+ · · · , (30)

The O(1/L) terms in the energy eigenvalues are well known to match the boundary CFT
spectrum of the Ising model for the free boundary conditions. E0 has the universal correction
to the ground-state energy −πvc/(24L) for the central charge c = 1/2 [40, 41]. The O(1/L)
terms in the excitation energies are generally given as πvh/L, where h is the scaling dimen-
sion of the corresponding boundary operator for the free boundary condition. For the above
lowest excited states, they are the primary field with the scaling dimension h = 1/2, its first
descendant with the scaling dimension h= 3/2, and the second descendant L−2 of the identity
operator with the scaling dimension h= 2.
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We can furthermore identify the O(1/L3) terms as the energy shift due to the bulk pertur-
bation T2 + T̄2. Evaluating Eq. (19) for the Ising model, we find the CFT prediction:

(δE0)
(1)
T2 = 〈0,0|HT2 |0,0〉= 2gT2 v

π4

L3

c(22+ 5c)
2880

, (31)

(δE1)
(1)
T2 − (δE0)

(1)
T2 = 〈1/2,0|HT2 |1/2,0〉 − 〈0,0|HT2 |0, 0〉= 2gT2 v

π4

L3

7
48

, (32)

(δE2)
(1)
T2 − (δE0)

(1)
T2 = 〈1/2,1|HT2 |1/2,1〉 − 〈0,0|HT2 |0, 0〉= 2gv

π4

L3

63
16

, (33)

(δE3)
(1)
T2 − (δE0)

(1)
T2 = 〈0,2|HT2 |0,2〉 − 〈0,0|HT2 |0, 0〉= 2gv

π4

L3

49
12

, (34)

Since the bulk perturbation should be independent of the boundary condition, we expect
that the coupling constant is identical between OBC and PBC:

gOBC
i = gPBC

i , (35)

as long as the same normalization is taken in both boundary conditions. From the finite-
size spectrum of the critical Ising model (23) with the PBC, we can extract the coupling con-
stant [37]

gT2 = −
1

56π
. (36)

Using the same coupling constant for Eqs. (31)–(34), we can exactly reproduce the results
of the lattice model. This confirms that the O(1/L3) corrections are indeed due to the bulk
T2 + T̄2 perturbation and the identity (35). Eq. (35) will be verified again in the three-state
Potts model, where we have the bulk X X̄ perturbation.

2.2.2 Fixed boundary conditions

A natural implementation of the fixed boundary condition for the Ising model (23) is to simply
restrict the spin at the end of the chain to ↑ (σz = +1) or ↓ (σz = −1). The energy spectrum
of the Ising model with such fixed boundary condition is particularly simple, thanks to the
Kramers-Wannier duality (Appendix A):

E0(N + 1,↑,↑) = E0(N + 1,↓,↓) = E0(N , free, free) , (37)

E0(N + 1,↑,↓) = E0(N + 1,↓,↑) = E1(N , free, free) . (38)

where the first parameter in the parentheses indicates total number of sites, including those
fixed ones. This suggests that in this implementation of the fixed boundary conditions, the
correction to the length for the fixed boundary conditions is

(δL)↑/↓ = −
1
4

a . (39)

It should be noted however that the correction to the effective length is non-universal, and is a
function of the boundary field ζ [38]. As is evident from the identities, the energy eigenvalues
under the fixed boundary conditions also has O(1/L3) corrections due to the bulk T2 + T̄2

perturbation.
Only restricting the spin at one end of the chain while leaving the other end free cor-

responds to the Brascamp-Kunz boundary condition [30, 42]. In that case, the ground-state
energy reads

E0(↑ / ↓, free) = 2
�

1
2

�

−
4
π

N −
π

12N
−

1
2880

�π

N

�3
+ · · · . (40)
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We notice that there is no O(1/N2) term, which can be understood as

L = Na+ (δL)↑/↓ + (δL)free = Na . (41)

And the O(1/L3) correction is again due to the T2 + T̄2 perturbation:

(δE0)
(1)
T2 = 〈1/16, 0|HT2 |1/16,0〉= 2gT2 v

π4

L3

�

−
7

1440

�

, (42)

where gT2 takes the same value as in Eq. (36). Therefore, for all the conformally invariant
boundary conditions, we may apply the same effective Hamiltonian:

Heff = HCFT −
1

56π

∫

dx
�

T2(x) + T̄2(x)
�

(43)

to obtain the leading order (LO) finite-size correction.

2.2.3 Boundary field perturbation to the free boundary

Following Ref. [38], we consider the small boundary field ζL = ±ζR = ζ in the scaling limit
L→∞ keeping

ζb = ζL1/2 (44)

constant. In this limit, the finite-size corrections to the energy spectrum are due to the bound-
ary field perturbations. Since the free boundary condition is invariant under the spin-flip parity,
the first-order correction in the boundary field vanishes. Thus, the leading finite-size correc-
tion is in the second order of the boundary fields. Since the boundary scaling dimension of
the boundary spin operator is 1/2, we use Eq. (13) to obtain

(δE0)
(2)
ζ
= −2vcσ

2ζ2
§

const.+ log
L
a
±
π

2

ª

, (45)

where − of the double sign corresponds to the parallel boundary field ζL = ζR = ζ and + to
the antiparallel boundary field ζL = −ζR = ζ. cσ is the non-universal renormalization factor
of the spin operator at the boundary site, which is defined by

〈σz
1(τ)σ

z
1(0)〉 ∼

cσ
2

vτ
(46)

in the limit of large τ.
On the other hand, in the scaling limit, from the exact solution of the Ising model with the

boundary fields we find (see Appendix B for the derivation)

E0(ζL = ζ,ζR = ±ζ) = E0(free, free)∓
v
2
ζ2 −

v
π

�

log 2− log
vλ
2L

�

ζ2 , (47)

where λ→ +0 is a UV cutoff. Indeed, this agrees with the perturbed CFT result (45), except
for the ambiguity in the constant. By the comparison of two formulae, we can also determine
the renormalization factor:

cσ
2 =

1
2π

, (48)

for the spin operator at the boundary site.
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2.3 Application to the three-state Potts model

Now let us apply our results to the quantum three-state Potts chain [43–45]:

H = −
∑

i

�

Mi +M†
i + R†

i Ri+1 + RiR
†
i+1

�

−
�

ζLR1 + ζ
∗
LR†

1

�

−
�

ζRRN + ζ
∗
RR†

N

�

, (49)

where:

M =





0 1 0
0 0 1
1 0 0



 ; R=





e2πi/3 0 0
0 e4πi/3 0
0 0 1



 . (50)

The boundary fields ζL,R are generally complex.
The numerical results on the three-state Potts model in the following were obtained by

DMRG of finite-size chains. We have used the DMRG function in ITensors library, which calcu-
lates the ground state in matrix-product-state form, with bond dimensions up to 400 to study
finite-size systems up to 300 sites. The first excited state is obtained as the lowest energy state
in the subspace orthogonal to the ground state. The numerical error in the energy is estimated
to be less than 1.4×10−4. While there are limitations of DMRG due to finite bond dimensions,
we are dealing with sufficiently small systems where the DMRG results are essentially exact.

2.3.1 Free boundary (ζR = ζL = ζ= 0)

For ζR = ζL = 0, we can identify the boundary condition as the free boundary condition. Using
the exact solution for the O(1) boundary energy [46], the ground-state energy for large N can
be written as

E0(free, free) =

�

−
4
3
−

2
p

3
p
π

�

N +
3
p

3
4
− 1+

πv
24N

c + · · · , (51)

where c = 4/5 is the central charge of the three-state Potts model and v = 3
p

3
2 . As in the case

of the Ising model, we should be able to eliminate the finite-size correction∝ 1/N2 by using
the appropriate effective length L = Na+ 2 (δL)free.

The three-state Potts model has 5 bulk operators which are RG-relevant. Among them, the
spin operators σ1,2σ̄1,2 with the scaling dimension ∆σ = 2/15 and ψ1,2ψ̄1,2 with the scaling
dimension ∆ψ = 4/3 are charged under the Z3 symmetry, and thus are forbidden if the Z3
symmetry is imposed on the bulk. The other relevant operator εε̄ with the scaling dimension
∆ε = 4/5 corresponds to the thermal perturbation; it is absent in the effective theory of the
critical Potts model, thanks to the fine-tuning to the critical point. Thus, the leading finite-size
correction due to bulk operators is induced by the operator X X̄ with the scaling dimension
14/5.

The effective field theory for the free boundary condition on both ends is given by

Heff = Hfree-free + γ

∫ L

0

dv X X̄ (0, v) + β2

∫ L

0

dv
�

T2(0, v) + T̄2(0, v)
�

+ · · · , (52)

where we adopt the standard normalization (3) of the bulk operators.
We note that the leading boundary perturbations on the free boundary condition areψ and

ψ̄ with the scaling dimension 2/3. However, they correspond to the boundary field breaking
the Z3 symmetry, and are absent in the lattice model with free boundaries preserving the Z3
symmetry. The next leading boundary perturbation is the boundary T perturbation with the
scaling dimension 2, which can be absorbed by renormalizing the system size as discussed

10
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Figure 1: Comparison between the numerical extracted δ
�

E free-free
0

�(1)
X X̄ for the three-

state Potts model and the theoretical prediction in (53). Error from (55) is indicated
by thickness.

in Sec. 4. The next leading boundary perturbation is the level-3 descendant of the identity
operator with the scaling dimension 3, which would give a O(L−3) correction which is smaller
than any of the corrections due to bulk perturbations discussed above.

Using Eq. (10), the leading order FSC to the ground state is thus given by

δ
�

E free-free
0

�(1)
X X̄ = γv
�π

L

�9/5
freeB1

X X̄

p
πΓ (−9/10)

214/5Γ (−2/5)
. (53)

The bulk-boundary OPE coefficient is known as [47]1

freeB1
X X̄
=

(ω)B1
(3,1)(3,1)

r

C1

(3,1)(3,1) (3,1)(3,1)

=

√

√ Sϵ
S1
=

√

√sin(2π/5)
sin(π/5)

. (54)

The coupling constant γ for the bulk perturbation X X̄ appearing in Eq. (52) was extracted
from the PBC spectrum in Ref. [37] as

γ= 0.009237(7). (55)

Using these values, Eq. (53) indeed agrees very well with the numerical results as shown in
Fig. 1.

The next order correction after the above O(L−9/5) due to the bulk X X̄ is expected to be
O(L−2) due to the boundary T operator, which can be absorbed by renormalizing the effective
system size as discussed in Sec. 2.1.2. After subtracting the predicted O(L−9/5) correction,
however, the numerically obtained ground-state energy does not show the generally expected
L−2 correction. This suggests that the length correction vanishes

(δL)free = 0 (56)

1Since we are using a different normalization from [47], our OPEs are also different. Such difference will be
shown explicitly as in (54).
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for the free boundary condition for the model (49). (Numerically, this holds up to | (δL)free |
< 0.02 and we expect that Eq. (56) is exact.) In the absence of the L−2 correction, the next
leading correction seems to be O(L−13/5), which is attributed to the second order perturbation
from the bulk X X̄ .

2.3.2 Fixed/Mixed boundary conditions

Similarly to the Ising model, the boundary magnetic field is a relevant perturbation to the free
boundary condition. However, in the three-state Potts model, the boundary magnetic field will
drive the boundary condition to qualitatively different ones, depending on its complex phase.
For real ζL,R > 0, the boundary magnetic favors the single state R = 1. Hence the induced
boundary condition is “fixed” to A (R = 1). Similarly, ζLR ∝ e±2πi/3 drives the boundary
condition to fixed to B or C (R = e±2πi/3). On the other hand, if ζL,R is real and negative, it
favors two states B and C equally, resulting in the “mixed” boundary condition of B and C.

As in the Ising case, we can naturally realize fixed/mixed boundary conditions by restrict-
ing the Hilbert space of boundary spin to a subspace with a proper subset of possible spin
directions. Once again, thanks to the explicit duality in the three-state Potts model [45], the
energy spectrum with fixed boundary conditions read

E0(N + 1,A, A) = E0(N + 1, B,B) = E0(N + 1, C,C) = E0(N ,ζL = 0,ζR = 0) , (57)

E0(N + 1,A, B) = E0(N + 1,A, C) = E0(N + 1,B, C) = . . .= E1(N , free, free) . (58)

In fact, the LO FSC to the ground state is indeed the same as Eq. (53):

δ
�

EA-A
0

�(1)
X X̄ = γv
�π

L

�9/5
AB1

X X̄

p
πΓ (−9/10)

214/5Γ (−2/5)
, (59)

since

AB1
X X̄
=

(1,2)B1
(3,1)(3,1)

r

C1

(3,1)(3,1) (3,1)(3,1)

=

√

√ Sϵ
S1
=

√

√sin(2π/5)
sin(π/5)

= freeB1
X X̄

. (60)

The duality relation (57) also implies

(δL)A,B,C = (δL)free −
1
2

a. (61)

This together with the numerical finding (56) implies

(δL)A,B,C = −
1
2

a, (62)

which is also verified by the direct numerical calculation as shown in Fig. 2.
To realize the mixed boundary conditions, we restrict the Hilbert space of the boundary

spin to a limited one. This is known as the "blob" boundary conditions [48]. For example, for
AB or BC boundary conditions, the local operators on the edges are replaced with projected
ones, such as

MAB =





0 0 0
0 0 1
0 0 0



 , MBC =





0 1 0
0 0 0
0 0 0



 .

RAB =





0 0 0
0 e4πi/3 0
0 0 1



 , RBC =





e2πi/3 0 0
0 e4πi/3 0
0 0 0



 .
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Figure 2: −(δL)A/N2 obtained from the first-order correction to the ground-state
energy for A-A boundary condition for the three-state Potts model. The numerical
fitting suggests (δL)A = −0.5 up to three digits.

For these boundary conditions, in addition to (52), the effective Hamiltonian also contains
irrelevant boundary perturbation from the X operator living on the mixed boundary condition:

Heff = HAB−B + g L
X X (AB)(AB)(0,0) + γ

∫ L

0

X X̄ (0, v)dv + · · · , (63)

where B is the boundary condition on the right end. (If B is also a mixed boundary condition,
there is also a correction proportional to the perturbation gR

X on the right.) Since the boundary
X operator has scaling dimension hX = 7/5, the first order perturbation, according to (6), due
to the boundary X perturbation to the mixed boundary condition on the left reads

δ
�

EAB−B
n

�(1)
X = g L

X v
�π

L

�7/5
C (AB)(AB)B

nX n , (64)

where B is the boundary condition on the right end. (If B is also a mixed boundary condition,
there is also a correction proportional to the perturbation gR

X on the right.)
For different pairs of boundary conditions involving the mixed boundary conditions, we

find different values of the O(L−7/5) corrections at various energy levels. In Fig. 3, we show
the estimated values of the coupling constant gX of the boundary perturbation X on the mixed
boundary conditions, obtained by fitting several O(L−7/5) FSC at different energy levels with
also different combinations of the boundary conditions. Since gX is intrinsic to the mixed
boundary condition on the lattice model, its value must be unique for different combinations.
In fact, all the different estimates are consistent with the unique value:

g L
X = gR

X = gX = 0.0195(3) . (65)

This serves as an evidence supporting the validity of our analysis.
Nevertheless, due to the fusion rule, Eq. (64) vanishes for certain combinations of bound-

ary conditions at some energy levels. For instance, let us consider the leading order FSC to
the ground-state energy when the same mixed boundary condition is applied on each end,
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Figure 3: Estimated coupling constant gX from the numerical data for several combi-
nations of boundary states involving the mixed boundary condition. Expected values
are labeled by their level of excitation and the combination of boundary conditions.
Data in this figure suggest that gX = 0.0195(3). Cases where a first-order perturba-
tion is prohibited by the fusion rule are not shown.

i.e., δ
�

EAB-AB
0

�

. With this diagonal boundary condition, the ground state corresponds to the

vacuum, and thereby the LHS of Eq. (64) is prohibited by the fusion rule as C (AB)(AB)B
1X1 = 0.

This leaves the leading order corrections to the ground-state energy to the next possible
order, O(1/L−9/5). This time, at this order, one encounters a combination of the 1st order one
due to the bulk X X̄ perturbation and the second order one due to the boundary X , both scale
as L−9/5. Following Eqs. (10) and (12), the leading order FSC reads

δ
�

EAB-AB
0

�

= δ
�

EAB-AB
0

�(1)
X X̄ +δ
�

EAB-AB
0

�(2)
X =
�π

L

�9/5 �
ABB1

X X̄

p
πΓ (−9/10)

214/5Γ (−2/5)
γ+

21
20

g2
X

�

, (66)

where

ABB1
X X̄
=

(3,3)/(3,4)B1
(3,1)(3,1)

r

C1

(3,1)(3,1) (3,1)(3,1)

= −
3−
p

5
2

√

√sin(2π/5)
sin(π/5)

. (67)

The next-to-leading order (NLO) correction to the ground-state energy is O(L−2) due to
the boundary T perturbation, which can be absorbed by renormalization of the system size as
discussed in Sec. 4. The numerical result (Fig. 4) suggests

(δL)AB,BC,CA = (δL)A,B,C = −
1
2

a . (68)

3 Boundary Conformal Perturbation Theory and finite-size correc-
tion

In this Section, we develop a general theory of FSC of energy levels of a CFT with OBC, in
the presence of both bulk and boundary perturbations. Although we will mainly focus on the
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Figure 4: −(δL)AB/N
2 obtained from the next leading-order correction to the

ground-state energy for AB-AB boundary condition. Error from the uncertainty in
gX is indicated by the thickness. The numerical fitting suggests (δL)AB = −0.5 as
well up to 3 digits.

irrelevant perturbation in this paper, the results in this section can also be used to discuss
relevant perturbation at the perturbative region.

3.1 Finite-size spectrum under PBC

Let us first briefly review the energy spectrum of a finite-length one-dimensional quantum
critical system described by a CFT under PBC [10,11]. If the effective field theory were exactly
given by a CFT, the finite-size effective quantum Hamiltonian and its spectrum read

HPBC =
2πv
N
(L0 + L̄0 −

c
12
) ,

En − ϵ0N =
2πv
N
(xn −

c
12
) , (69)

where N is the number of lattice sites, v is a characteristic velocity, Ln, L̄n are the Virasoro
modes, ϵ0 is the bulk energy per site, xn is the scaling dimension for n-th excited state and c
is the central charge. This indeed gives the exact asymptotic spectrum in the limit N →∞.

However, for a more precise description of the system with a finite N , we need to include
the perturbations to the CFT, which corresponds to the renormalization group (RG) fixed point.
The quantum Hamiltonian of the effective field theory, including the perturbations, read

H = HPBC +
∑

i

gi

∫

dxΦi(x) , (70)

where the integration is performed over the spatial direction, and the sum is performed on
all the local operators allowed by the symmetry of the Hamiltonian in the CFT. The coupling
constant gi grows under RG if the corresponding operator Φi is RG-relevant, namely if its
scaling dimension is smaller than the space-time dimension 2. At the critical point of the
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lattice model, all the relevant coupling constants gi should be tuned to zero. However, the
energy spectrum is still affected by the remaining irrelevant perturbations as

En(N) = ϵ0N +
2πv
N
(xn −

c
12
) +
∑

i

ai
nN−bi

n . (71)

The third term is called the finite-size correction (FSC). The coefficients ai
n and bi

n can be ex-
plained by the effective Hamiltonian (70). A detailed analysis of such irrelevant perturbations
can be found in [37]. We also refer the reader to [49] for a review of this topic.

3.2 Boundary conformal field theory: a review

Let us first review the spectrum of a CFT on an open strip of width L. Each side of the strip
is characterized by a conformally invariant boundary condition. This corresponds to the spec-
trum of a lattice model of N sites with open boundaries in the limit N →∞. While the length
L in field theory is determined by L ≈ N , there is a subtlety in the exact relation which we will
discuss later. We denote the temporal and spatial coordinates by x ∈ (−∞,∞) and y ∈ [0, L].
The boundary conditions α and β are now located at y = 0 and y = L. In this geometry, like
the usual cylinder geometry, we have the Hamiltonian for OBC:

Hαβ =

∫ L

0

(T (w) + T̄ (w̄))
dy
2π

, (72)

where w = x + i y2. We can map this infinite long strip onto the upper half of the complex
plane through a conformal mapping

z = exp
�πw

L

�

. (73)

In the following, we will mainly work with this geometry. The boundary conditions are now
located at different sides of the real axis. More specifically, we have α boundary condition on
Re(z)> 0 and β boundary condition on Re(z)< 0.

The conformal boundary condition implies that T (z) = T̄ (z̄) for Im(z) = 0. This condition
allows us to do the analytical continuation for T (z) to the lower half plane

T(z) :=
∑

n∈Z
L(H)

n z−n−2 =

�

T (z) for Im(z)≥ 0
T̄ (z̄) for Im(z)< 0

, (74)

where L(H)n is the Virasoro operator in the upper half plane:

L(H)
n :=

1
2πi

∫

C+

zn+1T (z)dz −
1

2πi

∫

C+

z̄n+1 T̄ (z̄)dz̄

=
1

2πi

∫

C
zn+1T(z)dz , (75)

the integration is performed only on the upper half semicircle C+ and L(H)n should satisfy the
Virasoro algebra. Note that in BCFT, we only have one copy of Virasoro algebra. Under the
conformal mapping, the Hamiltonian transforms as

Hαβ =
�π

L

� 1
2πi

∫

C

dz
z
(z2T(z)−

c
24
) =

π

L
(L(H)

0 −
c

24
). (76)

2For simplicity, when we are not referring to any particular lattice model, we set v = 1 in the field theory result.
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The eigenstates of the Hamiltonian are then those created by acting boundary operators on
the vacuum

�

�

�Ψ
αβ

k

¶

= lim
x→0
Ψ
αβ

k (x) |0〉
¬

Ψ
αβ

k

�

�

�= lim
x→∞

x2hk 〈0|Ψβαk (x) (77)

where Ψαβk is the boundary condition changing operator (or boundary operator in short) in-
serted on the real axis with β b.c. on the left-hand side and α b.c. on the right-hand side.
The lower label k denotes how it transforms under the Virasoro algebra. The vacuum |0〉 is
generally not an SL(2) invariant vacuum and should be labeled by boundary conditions. How-
ever, since we will not merge different pairs of boundary conditions by the Hamiltonian, the
omission of this label should not be ambiguous. The energy of each state is determined by its
conformal dimension hk:

Hαβ
�

�

�Ψ
αβ

k

¶

=
π

L
(hk −

c
24
)
�

�

�Ψ
αβ

k

¶

. (78)

3.3 Finite-size corrections from perturbation theory

To calculate the finite-size corrections, like the PBC case (70), we consider an effective Hamil-
tonian near the RG fixed point:

Heff
αβ (L) = HCFT

αβ +
∑

i

gi

∫ L

0

dvΦi(v) +
∑

j

g L
j Ψ

αα
j (0) +
∑

j

gR
j Ψ
ββ
j (L), (79)

where Ψααj and Ψββj are boundary operators living on α and β boundaries, respectively. Per-
forming the conformal mapping, we have

Heff
αβ(L) =

π

L
(L0 −

c
24
) +
∑

i

gi

�

L
π

�1−∆i
∫ π

0

dθ e−iθ siΦi(exp(iθ ))

+
∑

i

g L
j

�

L
π

�−hi

Ψααj (1) +
∑

i

gR
j

�

L
π

�−h j

Ψ
ββ
j (−1) . (80)

This allows us to calculate the finite-size corrections by perturbation theory. For example, for
a boundary perturbation located on the left-hand side, the first-order perturbation to the n-th
excited state is given by

δ (En)
(1)
j = g L

j

�π

L

�h j 


Ψαβn

�

�Ψααj (1)
�

�Ψαβn

�

= g L
j

�π

L

�h j
Cβααn jn . (81)

And the shift of the energy level in the first-order bulk perturbation is given as

δ (En)
(1)
i = gi

�π

L

�∆i−1
∫ π

0

dθ e−iθ si



Ψαβn

�

�Φi(exp(iθ ))
�

�Ψαβn

�

. (82)

Using the OPE coefficients, Eq. (82) can also be expressed as

δ (En)
(1)
i = gi

�π

L

�∆i−1
¨

∫ π/2

0

dθ ei∆iθ
∑

p

αBp
i Cβααnpn F i,nn

p (1− exp(2iθ ))

+

∫ π

π/2

dθ ei∆iθ
∑

p

βBp
i Cββαnpn F i,nn

p (1− exp(2iθ ))

«

. (83)

Note that we split the integral in Eq. (82) since we have different boundary conditions
located on the real axis. Unlike the PBC case, regardless of the boundary condition and the
state we are considering, Eq. (82) always survives since the identity channel p = 0 (identity
operator 1) contributes non-trivially.
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3.4 Finite-size corrections from bulk T

As a concrete example, let us consider the first-order perturbation from the bulk perturbation
T2 and T̄2. Note that they have conformal spin ±4 and thus are not Lorentz invariant. Nev-
ertheless, they can appear in the effective theory of a lattice model which does not have the
Lorentz invariance at the microscopic level. Here, we only consider the combination T2 + T̄2

since T2 − T̄2 does not respect the spatial inversion (parity) symmetry E(p) = E(−p) [37].
Such a term, however, is RG-irrelevant, thereby properly recovering the Lorentz invariance of
the system in the infra-red regimes as expected.

We also note that the Lorentz invariance-breaking marginal bulk perturbation T+ T̄ is also
allowed in lattice models. However, it just corresponds to the renormalization of the spin-wave
velocity (“speed of light”).

Under the PBC, such perturbation is known to result in the Leading Order (LO) correction
to the finite-size scaling (FSS) in the TF-Ising model and the Next-to-Leading Order (NLO)
corrections in the three-state Potts model. We consider the same perturbation, but this time
on a strip geometry:

HT2 = g

∫ L

0

(T2(w) + T̄2(w̄))dy

= 2πg
�π

L

�3
�

1
2πi

∫

C+

dz
z

∫

z

dz′(z2T (z)− c
24)(z

′2T (z′)− c
24)

2πi(z′ − z)

−
1

2πi

∫

C+

dz̄
z̄

∫

z̄

dz̄′(z̄2 T̄ (z̄)− c
24)(z̄

′2 T̄ (z̄′)− c
24)

2πi(z̄′ − z̄)

�

= 2πg
�π

L

�3
�

1
2πi

∫

C

dz
z

∫

z

dz′(z2T(z)− c
24)(z

′2T(z′)− c
24)

2πi(z′ − z)

�

= 2πg
�π

L

�3
�

2
∞
∑

n=1

L(H)
−n L(H)

n + L(H)2
0 −

c + 2
12

L(H)0 +
c(22+ 5c)

2880

�

, (84)

where we performed the conformal mapping as in Eq. (80) to obtain the 2nd line, and the
mode expansion ofT gave the last line [50]. Eq. (84) is diagonal with respect to the eigenstates
of the Virasoro operator L(H)0 . Furthermore, the eigenvalues (diagonal matrix elements) are
determined by the conformal dimension h and level of descendant of each Virasoro eigenstate,
as given in Eq. (19).

We find that the result is similar to the PBC case [37]; the result for the OBC is obtained
simply by substituting all the 2π

L by π
L and the sum of two copies of Virasoro algebra by the only

existing one on the upper half-plane. This is due to the conformal invariance of the boundary

T (z) = T̄ (z̄), (85)

when the boundary is the real axis. Thanks to this property, T̄ (z) on the upper half plane can
be identified with the analytic continuation of T (z) to the fictitious lower half-plane, which is
often referred to as the mirror image method. The calculations using the full complex plane
in Ref. [29,31,32] can be interpreted as the mirror image method, leading to the correct ratio
between the FSC of different energy levels. In fact, for each operator f [T](z) belonging to
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identity family, (84) can be generalized easily for perturbations like f [T] + f [T̄]

HOBC
f [T] = gOBC

∫ L

0

( f [T](w) + f [T̄](w̄))dy

= 2gOBC L

�

1
2πi

∫

C+
f
�

�π

L

�2 �

z2T (z)−
c

24

�

�

dz
z

−
1

2πi

∫

C+
f
�

�π

L

�2 �

z̄2T (z̄)−
c

24

�

�

dz̄
z̄

�

= 2gOBC L

�

1
2πi

∫

C
f
�

�π

L

�2 �

z2T(z)−
c

24

�

�

dz
z

�

=: Wf [2L, {L(H)
n }, gOBC] , (86)

where Wf is determined by f . On the other hand, in the PBC case,

HPBC
f [T] = gPBC

∫ L

0

( f [T](w) + f [T̄](w̄))dy

= gPBC L

�

1
2πi

∫

C
f

�

�

2π
L

�2 �

z2T (z)−
c

24

�

�

dz
z

+
1

2πi

∫

C
f

�

�

2π
L

�2 �

z̄2T (z̄)−
c

24

�

�

dz̄
z̄

�

=Wf [L, {Ln}, gPBC] +Wf [L, { L̄n}, gPBC] . (87)

Furthermore, we can also consider the T T̄ perturbation [37],

HT T̄ = g

∫ L

0

T (w)T̄ (w̄)dy

= 2πg

�

1
2πi

∫

C+

�π

L

�3 �

z2T(z)−
c

24

��

z∗2T(z∗)−
c

24

� dz
z

�

= g L
�π

L

�4
�

∑

n∈Z
L(H)

n L(H)
n −

c
12

L(H)
0 +
� c

24

�2
�

(88)

In evaluating the diagonal matrix element, the only non-vanishing term in the summation is
L(H)

0 L(H)
0 . Overall, we have

δ (En)
(1)
T T̄
=



∆, r
�

�HT T̄

�

�∆, r
�

= πg
π3

L3

�

∆+ r −
c

24

�2
. (89)

However, for more general bulk perturbations, the treatment of the boundary is more compli-
cated and generally depends on each conformally invariant boundary condition.

3.5 UV divergence and regularization

We close this section by considering some corrections that need regularisation of UV diver-
gence. There are two kinds of UV-divergence in general. One comes from the higher-order
perturbation, where we consider the contribution of two identical operators approaching each
other in the temporal direction. As the easiest example, let us calculate the second-order per-
turbation to the ground-state energy from a pair of boundary operators V = g L

ΨΨ(0)+ gR
ΨΨ(L).

For simplicity, we assume that Ψ is a primary operator with conformal dimension hΨ > 0, but
the result should be easily generalized to conformal descendants.
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For any excited state n, if this state is non-degenerated in the absence of the perturbation,
we have

δ
�

Eαβn

�(2)
Ψ
= −
∑

i ̸=n

〈n|V |i〉〈i|V |n〉

E(0)i − E(0)n

= −
∫ ∞

0

dτ

¨∞
∑

i=0

exp[−(E(0)i − E(0)n )τ] 〈n|V |i〉〈i|V |n〉

− 〈n|V |n〉2 − 2
∑

i<n

cosh[(E(0)n − E(0)i )τ]〈n|V |i〉〈i|V |n〉

«

. (90)

We will only consider the case where α= β . Then, for the ground state, which corresponds to
the identity operator, the second term in (90) vanishes by the fusion rule. The third term does
not exist since i ≥ 0 , so the second-order perturbation can be obtained simply from a 2-point
function,

δ
�

Eαα0

�(2)
Ψ
= −
∫ ∞

0

dτ〈0|V (0)V (τ)|0〉

= −
�π

L

�2hΨ
∫ ∞

0

dτ

(

g L
Ψ

2 + gR
Ψ

2

�

2sinh
�

πτ
2L

��2hΨ
+

2g L
Ψ gR
Ψ

�

2 cosh(πτ2L )
�2hΨ

)

. (91)

The first term is singular when hΨ ≥
1
2 . To regularise it, we introduce a UV-cutoff, namely the

lattice spacing a,
∫ ∞

a

dτ
�

2sinh(πτ2L )
�2hΨ

=
�

L
π

�

�

Γ (1/2− hΨ)Γ (hΨ)
22hΨ
p
π

+
�

L
πa

�2hΨ−1 � Γ (1/2− hΨ)
2Γ (3/2− hΨ)

+O(
a
L
)
�

�

.

(92)

We keep only the first term as a regularisation since it is independent of the UV cutoff. We
note that the only non-vanishing singularity in the thermodynamic limit b

L ≪ 1 comes from
the second term and can be organized into the boundary energy. When hΨ =

1
2 , we have log

correction:
∫ ∞

a

dτ
2 sinh(πτ2L )

=
�

L
π

�

h

2 log 2− log
�πa

L

�

+O(
a
L
)
i

. (93)

On the other hand, integration for the second term in (91) can be carried out directly for
hΨ > 0:

∫ ∞

0

dτ
�

2cosh
�

πτ
2L

��2hΨ
=
�

L
πhΨ

�

2F1(hΨ ; 2hΨ ; 1+ hΨ ;−1) . (94)

Overall, the regularised FSC is

δ
�

Eαα0

�(2)
Ψ
∼ −
�π

L

�2hΨ−1 ��
g L
Ψ

2 + gR
Ψ

2
�

�

Γ (1/2− hΨ)Γ (hΨ)
22hΨ
p
π

+ const.
�

+
2gR
Ψ g L
Ψ

hΨ
2F1(hΨ ; 2hΨ ; 1+ hΨ ;−1)

�

(95)

for hΨ >
1
2 , and

δ
�

Eαα0

�(2)
Ψ
= −
�π

L

�2hΨ−1 ��
g L
Ψ

2 + gR
Ψ

2
�

(const.+ log L) + g L
Ψ gR
Ψπ
�

(96)
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for hΨ =
1
2 . The UV divergent terms are independent of L and can be absorbed as non-universal

boundary energies. The finite constant 2 log 2 in Eq. (93) is additive to the logarithmic diver-
gent term log a which is non-universal. Thus there is no universal constant that is predictable
from field theory. On the other hand, log L term gives a universal FSC. This particular pattern
turns out to be crucial in describing the boundary RG flow of the TF-Ising model with boundary
fields discussed in Sec. 2.2.

The other kind of UV divergence comes from the spatial integral of a bulk operator, when
the bulk operator Φ is diagonal, namely if the holomorphic and antiholomorphic parts of Φ
are the same operators. In this case, the one-point function of Φ near the boundary generally
diverges as

〈Φ(z)〉α ∼
1

Imz∆Φ
, (97)

where ∆Φ is the total scaling dimension of Φ, since it can be mapped to a 2-point function of
holomorphic operators across the boundary. This can be also understood as the contribution
of the identity channel Ψαα0 = 1 in the expansion (9).

For simplicity, we will consider its first-order perturbation to the ground-state energy with
identical boundary condition α on each side. For a bulk field Φi transforms as i

⊗

ī, since
Cααα0p0 = δ0,p, the only contributing channel in (82) is the identity channel:

δ
�

Eαα0

�(1)
Φ
= g
�π

L

�∆Φ−1
∫ π

0

dθ 〈Φi(exp(iθ ))〉α

= g
�π

L

�∆Φ−1
αB1i

∫ π

0

dθ
(2sinθ )∆Φ

. (98)

This time, by introducing the same UV cutoff, we have

∫ π−πb
L

πb
L

dθ
(2 sinθ )∆Φ

=
p
πΓ (1/2−∆Φ/2)

2∆ΦΓ (1−∆Φ/2)
−
�

L
πb

�∆Φ−1 � Γ (1/2−∆Φ/2)
2∆ΦΓ (3/2−∆Φ/2)

+O(b2/L2)
�

,

(99)

where the first term is kept as a regularised value. We note that the second term can be again
organized into the boundary energy, like (92) and (93). So the regularised FSC is

δ
�

Eαα0

�(1)
Φ
= g
�π

L

�∆Φ−1
αB1i

p
πΓ (1/2−∆Φ/2)

2∆ΦΓ (1−∆Φ/2)
. (100)

4 Local shift of the system size and boundary energy

In this section, we examine two crucial ingredients in relating the spectrum of the lattice model
to the effective field theory: the effective system size and boundary energy.

As we have reviewed in Sec. 3, we can derive the finite-size scaling including subleading
corrections, based on the (B)CFT defined on a segment of a finite length L. Naively, the length
L is identified with Na in a lattice mode realization, where N is the number of sites in the
lattice model, and a is the lattice spacing. However, as we will demonstrate below, there is
generally an ambiguity of the order of the lattice spacing a in the identification; we need to
use the appropriate effective system size L for each concrete lattice realization.

Our ansatz is similar to the concept called extrapolation length τ0 which measures the
deviation of the actual boundary state |ψ〉 ∝ e−τ0H |B〉 from the boundary RG fixed point
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|B〉 [22] and describes how the field extrapolates to a boundary τo lattice spacing beyond the
edges of the system [23]. In the study of FSC, a similar method was carried out in Ref. [38,51]
to formally remove the O(1/N2) order FSC in the TF-Ising model.

This paper generalizes this concept further to all the 1+1d quantum spin chains at their
critical point with all conformally invariant boundary conditions. In Sec. 4.1, we introduce our
ansatz as an ambiguity of defining the system size in the continuum limit and briefly discuss
its significance when generalizing Cardy’s perturbation theory to the OBC case. Sec. 4.2 is
dedicated to reinterpreting the boundary energy in this new framework.

4.1 Local shift of the system size Lα/β

For an N -site quantum chain with open boundary conditions α and β , the energy spectrum
take the form of

Eαβn (N) = ϵα + ϵβ + ϵ0N +
πv
N
(xn −

c
24
) +
∑

i

ai
nN−bi

n , (101)

where ϵ0 is the energy per site and ϵα/β is the boundary energy. The remaining terms are
attributed to the perturbations in the effective Hamiltonian (80). To relate Eq. (80) and
Eq. (101), it seems tempting to set

L = N (102)

as in the PBC case. However, it is noticed that in the presence of the open boundaries, there
is O(1/N2) FSC in the TF-Ising model, and it can be absorbed into the fourth term in the
RHS of (101) formally by simply redefining an effective system size Leff ̸= N as motivated in
Ref. [38,51].

The physical motivation for such a redefinition can be interpreted as follows. Consider an
N -site quantum chain with PBC; the length of the system is naturally defined as the lattice
spacing a multiplied by N

L ∼ Na . (103)

In the continuum limit, since we do not need to attach the end of the space to anything, the
system size L should also follow Eq. (103). On the other hand, to define the continuum limit
of an open chain, there seems to be an ambiguity:

L
?∼ (N − 1)a . (104)

Since we need to attach the space to some boundary conditions. This time, we might have the
following form of the system size in the continuum limit

L ∼ (N + (δL)α + (δL)β)a , (105)

where Lα and Lβ are "local shifts of the system size" that are determined only by the specific
boundary conditions α and β applied on the ends of the spin chain, respectively. Apparently,
δL ∼ a. In this way, we claim that to match the lattice and BCFT spectrum, one needs to fix
the system size in BCFT to be

L = (N + (δL)α + (δL)β)a . (106)

So the energy spectrum (101) can be reorganized into

Eαβn (N) = Eα +Eβ + ϵ0(N + (δL)α + (δL)β) +
πv

N + (δL)α + (δL)β
(xn −

c
24
)

+
∑

i

a′in (N + (δL)α + (δL)β)
−b′in , (107)

22



SciPost Physics Submission

where Eα/β := ϵα/β−ϵ0(δL)α/β are called the redefined boundary energy and will be discussed
further in the next subsection. {a′in } and {b′in } are the coefficients and powers in expanding

Eαβn (N) as a series of N + (δL)α + (δL)β . Here, we remark that, unlike the PBC case, one
can only explain these coefficients through the perturbation theory if one chooses the correct
(δL)α/β . Otherwise, the set of the coefficients {a′in } and {b′in } will be a mixture of the Taylor
expansion of all preceding perturbations. This feature of the systems with open boundaries
will make applying Cardy’s perturbation theory significantly harder than the PBC case.

4.2 Redefinition of boundary energy Eα/β

Another consequence of renormalizing the system as in (107) is that part of the boundary
energy ϵα/β is merged into the bulk energy as

ϵα/β = Eα/β + ϵ0(δL)α/β . (108)

The remaining part Eα/β is the redefined boundary energy.
As we remarked in Sec. 3.5, in the presence of boundaries, the bulk and boundary irrelevant

perturbations give rise to UV divergent corrections which are independent of the system size L.
We can interpret such diverging constant corrections as renormalizations of the non-universal
boundary energy.

The discussion in Sec. 3.5 is extended to general n-th order perturbation theory as follows.
The n-th order perturbation is generally given by a 2n−1-fold integral of the n-point correlation
function, which scales as (length)−n∆. Although naively the system size L is the only length
scale of the problem, we also need to introduce the UV cutoff a, which is of the order of the
lattice spacing for a lattice model to regulate UV divergence.

The dimensional analysis and the physical argument suggest that a finite-size energy eigen-
value will have the n-th order corrections due to the bulk perturbation g as

δ (E)(n)g ∼ const.
1
L

� g
L∆−2

�n
+ const.

1
a

� g
a∆−2

�n
+ const.

L
a2

� g
a∆−2

�n
, (109)

where ∆ is the total scaling dimension of the bulk perturbation. The first term is the cutoff-
independent universal correction to the energy level. The term proportional to L leads to the
renormalization of the non-universal bulk energy density. On the other hand, the constant (L-
independent) term corresponds to the renormalization of the non-universal boundary energy.
We note that, under the periodic boundary condition, the constant term is absent as there is
no boundary energy.

Similarly, for a boundary perturbation g L = gR = gB, the n-th order corrections take the
form

δ (E)(n)gB ∼ const.
1
L

�

gB

Lh−1

�n

+ const.
1
a

�

gB

ah−1

�n

, (110)

where h is the scaling dimension of the boundary perturbation. Again, in addition to the
universal, cutoff-independent correction to the scaling, there is a divergent L-independent
contribution which can be absorbed by the renormalization of the non-universal boundary
energy.

As we have observed, the analysis of the energy spectrum becomes more complicated for
open boundary conditions compared to that for the periodic boundary conditions, owing to
the presence of both bulk and boundary perturbations and the non-universal boundary energy.
The non-universal boundary energy can be however removed by considering the energy dif-
ferences. On the other hand, the effective system size must be appropriately chosen in order
to minimize the corrections even when considering the energy differences.
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5 Discussion and future directions

In this paper, we first systematically investigated finite-size corrections to the spectrum of criti-
cal one-dimensional quantum systems in terms of BCFT with bulk and boundary perturbations.
The ubiquitous O(1/N2) FSC is attributed to the energy-momentum tensor perturbation at the
boundary, which can be eliminated by a shift of the effective system size. We have compared
our theoretical results with the exact solution and numerical data for the critical TF-Ising and
three-state Potts chains and found very good agreements. We confirmed that the bare coupling
constant of the bulk irrelevant perturbation remains the same regardless of the presence of the
open boundary. In the three-state Potts model, we found the first existing irrelevant boundary
perturbation X and evaluated its effect on the spectrum, together with the already known bulk
perturbation X X̄ .

When one adds a relevant boundary perturbation, the system might flow into another
BCFT fixed point with another conformally invariant boundary condition, under the RG flow.
This is called the boundary RG flow [52]. It can be achieved on the lattice by applying a
longitudinal magnetic field on the boundary for the Ising and three-state Potts model. In fact,
we confirmed the agreement between our perturbed BCFT result and the exact solution for
the critical Ising chain with boundary longitudinal magnetic fields, in the leading order of the
boundary field. It would be interesting to extend the analysis of the boundary RG flow to
higher orders, and also to non-perturbative level. This would be rather challenging since the
non-universal quantities such as the shift of the effective length δL and the boundary energy
E will also be renormalized in the boundary RG flow. We hope to develop a new formulation
to study the entire region of the boundary RG flow in the future, handling the non-universal
quantities appropriately.
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A Kramers-Wanier duality in TF-Ising model

Kramers-Wannier transformation can be implemented as a unitary transformation on an open
chain [53,54]. It maps the spin operators as

σx
j =

¨

σ̃z
j−1σ̃

z
j , j = 2, . . . , N

σ̃z
1, j = 1

,

σz
j =

N
∏

k= j

σ̃x
k . (111)

Applying this to the Ising chain (23) of N sites with no boundary fields (ζL = ζR = 0), we
obtain the dual Hamiltonian:

H = −
N−1
∑

j=1

σ̃z
j σ̃

z
j+1 −

N−1
∑

j=1

σ̃x
j − σ̃

z
1 . (112)

At the left end of the chain (site 1), it has a boundary longitudinal field ζL = 1. On the other
hand, at the right end of the chain (site N), there is neither a transverse field nor a longitudinal
field. As a consequence, σ̃z

N commutes with the Hamiltonian. We can consider each sector
σ̃z

N = ±1 separately [38]. The sector σ̃z
N = 1 is equivalent to the Ising chain (23) of N − 1

sites with the parallel boundary fields ζL = ζR = 1, whereas the sector σ̃z
N = −1 is equivalent

to the Ising chain (23) of N − 1 sites with the antiparallel boundary fields ζL = ζR = −1.
Noticing that having longitudinal field ζ = 1 (ζ = −1) is equivalent to having a extra

imaginary spin fixed to ↑ (↓) at the end, we obtain the exact identities (37) and (38).

B Ground-state energy with small boundary magnetic field

Following [38], the scaled momentum b satisfies

tan b =
1

2b
ζb

4 − b2

ζb
2

. (113)

At ζ= ζb = 0 (free boundary condition), the solutions are

b = 0 ,

b =
2n− 1

2
π (n= 1,2, . . .) . (114)

The ground-state energy is given by the sum of the zero-point energies as

EGS (ζb = 0) = −
1
2

∞
∑

n=1

ε

�

b =
2n− 1

2
π

�

= −
vπ
2

∞
∑

n=1

2n− 1
2L

. (115)
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This is evidently divergent, but we can regularize it by introducing the soft cutoff e−λϵ

EGS (ζb = 0) = −
πv
2

∞
∑

n=1

2n− 1
2L

e−λv(2n−1)/(2L)

= −
πv
2

e
λv
2L
�

eλv/L + 1
�

2L
�

eλv/L − 1
�2

∼ −
πv
2

�

L
λ2v2

+
1

24L
−

7λ2v2

1920L3
+O

�

�

1
L

�5
��

. (116)

The first term, which is divergent, is the non-universal bulk energy. In this expression, we do
not find the non-universal boundary energy because we have taken the continuum limit first.
The second term in the expansion is the universal Casimir energy. The universal part reads

EGS(ζb − 0)∼ −
πv
48L

, (117)

which agrees with the CFT result −πvc
24L with the Ising central charge c = 1/2.

For a finite but small ζb, the zero mode is now shifted to

b = ζb
2 +O(ζb

4) , (118)

and the non-zero modes take the form of

b =
(2n− 1)π

2
+

4
π(2n− 1)

ζb
2 +O
�

ζb
4
�

(n= 1, 2, . . .) . (119)

Therefore, the ground-state energy in the parallel/antiparallel field configurations are

EGS (ζb)∼ −
1
2

�

±ε
�

b = ζ2
b

�

+
∞
∑

n=1

ε

�

b =
(2n− 1)π

2
+

4
π(2n− 1)

ζ2
b

�

�

= EGS (ζb = 0)∓
v

2L
ζ2

b −
v

2L

∞
∑

n=1

4
π(2n− 1)

ζb
2

= EGS (ζb = 0)∓
v
2
ζ2 −

2v
π
ζ2
∞
∑

n=1

1
2n− 1

, (120)

where the double sign corresponds to parallel/antiparallel field configuration, respectively.
The second correction term to the ground-state energy is a logarithmically divergent series,
which can again be regularized with the same exponential soft cutoff:

∞
∑

n=1

1
2n− 1

=
∞
∑

n=1

lim
λ
L→0

exp
�

−λv(2n−1)
2L

�

2n− 1

= lim
λ
L→0

ArcTanh
�

e−
λv
2L

�

∼
1
2

�

log 2− log
λv
2L

�

+
1

24

�

λv
2L

�2

. (121)

Thus we obtain Eq. (47).

26



SciPost Physics Submission

C Duality in three-state Potts model

Following [45], the dual operators on an open chain are defined as

M j =

¨

R̃†
j−1R̃ j j = 2, . . . , N

tR̃†
1 j = 1

,

R j =
N
∏

k= j

M̃k . (122)

They satisfy
R̃ j M̃ j = e2πi/3M̃ jR̃ j , (123)

and dual operators on different sites commute as required.
The dual of the free boundary Hamiltonian (49) with ζL = ζR = 0 on an open chain reads

H̃ = −
N−1
∑

i=1

�

M̃i + M̃†
i

�

−
N−1
∑

i=1

�

R̃†
i R̃i+1 + R̃iR̃

†
i+1

�

−
�

R̃1 + R̃†
1

�

. (124)

Similarly to the Ising case, a longitudinal field ζL = 1 appears at the left end of the chain while
the transverse field is absent at the right end of the chain. Therefore, R̃N commutes with the
dual Hamiltonian and we can consider the 3 sectors R̃N = 1, e±2πi/3 separately. As in the case
of the Ising model, the longitudinal boundary field ζL = 1 is equivalent to fixing the end spin
to R= 1 on the chain with an extra site on the left. The sector R̃N = 1 gives the lowest energy
ground-state and is equivalent to imposing the fixed boundary condition A at both ends. The
sector R̃N = e±2πi/3 is equivalent to imposing the different fixed boundary conditions at each
end: AB or BC.

Therefore we find Eqs. (57) and (58).

D Some OPE coefficients in boundary M(6,5) minimal model

The OPE coefficients we used in the boundary M(6,5) minimal model are calculated by the
method introduced in Ref. [47], given in terms of the fusion matrices F (see e.g. [55]) and the
modular S matrix (see e.g. [44]). The fusion matrices are obtained in a recursive way intro-
duced in Ref. [56]. We collected those we used in this paper for other possible applications.
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