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Abstract

We consider adiabatic quantum pumping through a resonant level model, a
single-level quantum dot connected to two fermionic leads. Using the tools of
adiabatic expansion, we develop a self-contained thermodynamic description
of this model accounting for the variation of the energy level of the dot and
the tunnelling rates with the thermal baths. This enables us to study various
examples of pumping cycles computing the relevant thermodynamic quantities,
such as the entropy produced and the dissipated power. These quantities
are compared with the transport properties of the system, i.e. the pumped
charge and the charge noise. Among other results, we find that the entropy
production rate vanishes in the charge quantization limit while the dissipated
power is quantized in the same limit.
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1 Introduction

The laws of thermodynamics were mainly conceived in the 19th century at the peak of
the Industrial Revolution to describe the novel technologies that were being developed in
the period, such as steam engines. Classic thermodynamics applies to macroscopic sys-
tems while the recent development of nanoscale devices [1] and of quantum information
theory posed the problem of reconciling the concepts of thermodynamics with quantum
theory, which plays a fundamental role in describing these systems [2, 3]. Notable ex-
amples of quantum machines are adiabatic quantum pumps: these were first introduced
based on the adiabatic theorem by David Thouless in 1983 [4] in the context of isolated
quantum systems. A related version of quantum pumping in a transport setting ideal to
describe open quantum systems has subsequently been introduced by Piet Brouwer [5],
who was able to describe the charge pumped in a cycle pumping through an open, yet
non-interacting system, as a geometrical quantity written in terms of the instantaneous
scattering matrix of the system (without reference to a specific time dependence). Gen-
eralizations of this construction to interacting systems have been attempted [6–8]. For
specific settings, characterized by the fact that the conductance is zero along the entire
cycle, the charge pumped through a quantum dot can be quantized (with zero associated
charge noise [9]), a possibility that makes this physical phenomenon potentially interesting
for applications in various areas, such as metrology.

Looking at it as an engine, the operation of a quantum pump should be characterized
by standard thermodynamic quantities: the work done, the entropy produced and the heat
exchanged. A fresh thermodynamic view of quantum pumping opens up the possibility of
addressing qualitatively different questions. For example, is there a minimal work done
associated with charge quantization? Or can we find a connection between entropy produc-
tion and current noise? These issues relating transport to the thermodynamic properties
of a pumping cycle can be addressed only by developing a description of transport and
thermodynamics within the same formalism (cf. with [10] for classical pumps). In this
paper, we focus on this task by addressing adiabatic pumping through the simplest, yet
nontrivial system that displays all significant ingredients we are looking for (charge quan-
tization, noise): a resonant level coupled to two leads. We construct our thermodynamic
analysis building on the ideas of Bruch et.al. [11] (and other notable works [8,12–17]) who
addressed using the Keldysh technique the thermodynamics of a resonant level whose po-
sition is shifted as a function of time. We extend these results to describe quantum pumps
and their thermodynamics in terms of a systematic gradient expansion of non-equilibrium
Green functions and provide expressions for all relevant thermodynamic quantities char-
acterizing a pumping cycle. Computing thermodynamic quantities for a few examples of
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cycles we obtain among other things that charge quantization, which is of course attained
with zero charge noise, corresponds thermodynamically to zero entropy production (at
zero temperature) and a saturated work per cycle proportional to the speed with which
the quantity associated to the quantization limit is varied.

The structure of the paper is organized as follows: after introducing the model in
Sec.2 in Sec. 3 we compute transport properties, summarizing the derivation of Brouwer’s
formula and will introduce a novel way to perform the adiabatic expansion of the noise
of the current, showing that it is consistent with the available literature. In Sec. 4.1 and
4.2 we describe the equilibrium thermodynamics of the resonant level model and develop
an adiabatic expansion accounting for the variation of both the dot energy level and the
level-lead couplings over time. This will allow us to compute the thermodynamic quantities
integrated over a cycle in these two parameters and compare them with the results of the
transport properties. A thermodynamic tradition is learning by example: we will consider
specific thermodynamic cycles in Sec. 5.1-5.2. In these examples, we will compute the
relevant quantities averaged over a cycle, enabling us to compare them. This will make it
possible to show, among other results, that there is no entropy production (nor noise) for
cycles where the charge is quantized. In addition to that, we will show that the dissipated
power obeys a similar quantization rule, compared to the one followed by the pumped
charge.

2 The model

In the following, we will consider adiabatic quantum pumping through a specific system:
a time-dependent resonant level model consisting of a single energy level coupled to two
metallic leads. The leads act as fermionic reservoirs and are kept fixed at temperature T
and chemical potentials µL and µR (from now on assumed to be equal µL = µR = µ).
The Hamiltonian of the system consists of three different terms

H = HD +HV +HB, (1)

where HD is the Hamiltonian associated with the dot

HD = ϵd(t)d
†d, (2)

HB is associated with the leads

HB =
∑
ki

ϵkic
†
kicki, (3)

and HV to the leads-dot coupling

HV =
∑
i

H i
V =

∑
i

Vi(t)
∑
k

(d†cki + h.c.). (4)

Here d is the annihilation operator of the dot level, whilst cki is associated with an electron
with momentum k in the i = L,R lead, and Vi is the coupling between the dot and lead
i. Throughout this paper we will assume the leads to have a constant density of states
and an infinite bandwidth (wideband limit), implying that the decay rate Γi = 2π|Vi |2∑

k δ(ϵ − ϵki) does not depend on energy. In this case, the expression for the spectral
function of the dot is

A(ϵ) =
Γ

(ϵ− ϵd)2 + (Γ2 )
2
, (5)
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where Γ = ΓL + ΓR is the total decay rate.
Adiabatic quantum pumping requires at least two of the system parameters to be

varied periodically in time along a certain cycle [5]. We will therefore take both the
energy dot level ϵd(t) and the level-dot couplings Vi(t) to be time-dependent and driven
by an external agent. Below we will investigate the effect of this external driving on the
thermodynamics of the system.

In the following, we will be interested in connecting transport quantities to thermody-
namic ones. While the thermodynamics of a quantum pump will be discussed thoroughly
below, the study of transport through quantum pumps has been the subject of many
studies [5, 13–16, 18–20]. In particular, the two quantities of interest in transport are the
charge pumped in a cycle and its noise. Defining the stroboscopic times in terms of the
period T0 as Tn = nT0 we may define the operator describing the charge pumped in the
n-th period as

Q̂(n)
α =

∫ Tn

Tn−1

dt Îα(t) (6)

where Iα = −dNα/dt, with Nα =
∑

k c
†
k,αck,α, is the current flowing out of lead α. Clearly

the average change pumped in M cycles is Qα(M) = MQα where Qα = ⟨Q̂(n)
α ⟩ is the

charge pumped in cycle, independent on n in the stationary state.
Coming now to the noise it is evident that current-current correlations produce both

fluctuations in the charge pumped in a single cycle as well as correlations of charge pumped

in different cycles. The first is described by δQ
(n)
α = ⟨(Q(n)

α )2⟩−⟨(Q(n)
α )⟩2. In the following,

however, we will focus on a similar quantity that has the advantage of being similar to the
zero frequency component of the noise power spectrum, defined as

δQαα = lim
M→+∞

(δQα(M))2

M
(7)

where (δQαα(M))2 =
∑M

n,m=1(⟨Q
(n)
α Q

(m)
α ⟩ − ⟨Q(n)

α ⟩⟨Q(m)
α ⟩. Using the definition of the

operators we may rewrite the latter as

δQαα = lim
M→+∞

T0

TM

∫ TM

0
dt

∫ TM

0
dt′[⟨Iα(t)Iα(t′)⟩ − ⟨Iα(t)⟩⟨Iα(t′)⟩]. (8)

3 Pumped charge and its noise

As a warm-up to describe the physical problem we want to address and establish the
formalism that will later be used to discuss thermodynamic quantities let us use its most
important tool, the gradient expansion, to derive Brouwer’s formula for the charge pumped
in a cycle by a quantum pump as well as the expressions for its statistical fluctuations.
Brouwer’s formula will follow the steps reported in Ref. [8]. The current has the following
expression

⟨Ii⟩ = −⟨Ṅi⟩ = −i⟨[H,Ni]⟩ = i
∑
k

(Vi⟨c†kid⟩ − h.c). (9)

Using standard manipulations with the Keldyish technique one can show that the expres-
sion of the pumped current is [21]

⟨Iα(t)⟩ =
∫

dt1dt2
∑
β

[
Sαβ(t, t1)f(t1 − t2)S

†
βα(t2, t)− δ(t− t1)f(t1 − t2)δ(t2 − t)

]
, (10)
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where Sαβ(t, t
′) are the time-dependent S-matrices satisfying the unitarity condition∑

β

∫
dt1Sαβ(t, t1)S

†
αβ(t1, t

′) = δ(t− t′). (11)

These expressions can be further simplified in the adiabatic limit, that is when the
typical time of variation of system parameters is much longer than the typical time scale
of the electron dynamics. For a quantum pump this means to have a period T0 ≫ 1/Γi,av

where Γi,av = 1
T0

∫ T0

0 dtΓi(t). In order to perform a gradient expansion [22] on convolutions
of the form

C(t, t′) =

∫
dt1A(t, t1)B(t1, t

′), (12)

we express them in terms of the Wigner coordinates T = t+t′

2 and τ = t− t′ and perform
the Wigner-Fourier transform with respect to the coordinate τ , defined as

A(T, ω) =

∫
dτeiωτA(T + τ/2, T − τ/2). (13)

The Wigner transform of a convolution is not the product of Wigner transforms: instead,
we have, formally

C(T, ω) = A(T, ω)Ĝω,TB(T, ω), (14)

where

Ĝω,T = e
1
2i
(
←−
∂T
−→
∂ω−
←−
∂ω
−→
∂T ) =

∑
n

1

(2i)n
1

n!
(
←−
∂T
−→
∂ω −

←−
∂ω
−→
∂T )

n. (15)

Expanding the Wigner transform up to first order in the gradients we obtain

C(T, ω) = A(T, ω)B(T, ω) +
1

2i
(∂TA(T, ω)∂ωB(T, ω)− ∂ωA(ω, T )∂TB(T, ω)). (16)

This expansion can be now used to expand systematically Eq.10 to first order in the
gradients. The result is

⟨Iα⟩ =

∫
dω

2π
f(ω)

[∑
β

{
Sαβ(ω, T )S

†
βα(ω, T ) +

1

2i
(∂TSαβ∂ωS

†
βα − ∂ωSαβ∂TS

†
βα)

}
− 1

]

−
∑
β

∫
dω

4πi
(−f ′(ω))

[
∂TSαβS

†
βα − Sαβ∂TS

†
βα

]
. (17)

The first term of this sum vanishes due to the gradient expansion of the condition of
unitarity of the S-matrix Eq.11. Therefore we are left only with the last term. Considering
the charge pumped in a period T0

Qα =

∫ T0

0
dt⟨Iα⟩, (18)

and substituting the expression of the current yields

Qα = −
∑
β

∫
dω

4πi
(−f ′(ω))

∫ T0

0
dT

{
∂TSαβS

†
βα − Sαβ∂TS

†
βα

}
. (19)

The dependence on time of the S matrices in the previous expression is to be under-
stood as parametric in the two parameters (x1, x2) that define the pumping cycle, i.e.
Sαβ(t) = Sαβ(x1(t), x2(t)). We may therefore use Green’s theorem to transform the time
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integral above, which is just an integral over the pumping cycle (x1(t), x2(t)), into an
integral over the area enclosed by the pumping cycle itself. The result is

Qα =
∑
β

∫
dϵ

4π
f ′(ϵ)

[ ∫∫
A

dx1dx2
i

(∂x2Sαβ∂x1S
†
βα − ∂x1Sαβ∂x2S

†
βα)

]
. (20)

The scattering matrix entering this expression is the instantaneous scattering matrix
depending on the varied parameters in time x1, x2. For the resonant level model, where
the time-dependent parameters are the level position and the hybridization strength to
the leads, one has, therefore, the following expression (α, β = L,R)

S =

(
1− iΓLGR −i

√
ΓLΓRG

R

−i
√
ΓLΓRG

R 1− iΓRG
R

)
(21)

with

GR =
1

ϵ− ϵd + iΓ2
. (22)

A similar expansion can be derived to obtain the current noise. The expression we
obtain is analogous to those derived in Ref. [21], i.e. the noise can be separated into two
different terms

δQαα =
T0

Tm

∫ Tm

0
dtdt′

∫
dt1dt2f(t1 − t′)f̃(t′ − t2)[δ(t− t1)δ(t− t2)− S†αα(t1, t)Sαα(t, t2)]

+
T0

Tm

∫ Tm

0
dtdt′

∫
dt1dt2f(t

′ − t2)f̃(t1 − t′)[δ(t− t1)δ(t− t2)− S†αα(t1, t)Sαα(t, t2)]

+
T0

Tm

∫ Tm

0
dtdt′

∫
dt1dt2dt

′
1dt
′
2f(t1 − t′2)f̃(t

′
1 − t2) ∗∑

γδ

[S†αγ(t1, t)Sαδ(t, t2)S
†
δα(t

′
1, t
′)Sγα(t

′, t′2)− δ(t− t1)δ(t
′ − t′1)δ(t− t2)δ(t

′ − t′2)]

(23)

where f̃(t, t′) = δ(t− t′)− f(t, t′).
To perform the adiabatic expansion of both terms, we notice that they have the same
structure as a product of convolutions. Taking m→ +∞ and performing an expansion in
the gradients as done before for the current one obtains at zero order

δQ(0)
αα = −2

∫
dϵ

2π
(− 1

β

∂f

∂ϵ
)

∫ T0

0
dT

(
1− Sαα(ϵ, T )S

†
αα(ϵ, T )

)
. (24)

where 1/β is the inverse temperature. This is the average over a period of the instantaneous
equilibrium Johnson-Nyquist noise [23].

At first order in the gradients the only non-zero contribution is

δQ(1),th
αα =

∫ T0

0
dT

∫
dϵ

4πi
(− 1

β

∂2f

∂ϵ2
)
∑
β ̸=α

[
∂TSαβS

†
αβ − Sαβ∂TS

†
αβ

]

−
∫ T0

0
dT

∫
dϵ

4πi
(− 1

β

∂f

∂ϵ
)
∑
β

[
∂ϵSαβ∂TS

†
αβ − ∂TSαβ∂ϵS

†
αβ

]
.

(25)

this term, which obviously depends on the operation of the pump, is a first-order contri-
bution to thermal noise proportional to the temperature and vanishing at zero tempera-
ture [18,24].
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The gradient expansion performed above turns out to miss an important shot noise
term and is valid only when ℏΩ≪ kBT . The finite shot-noise contribution which survives
even at zero order was first computed in Ref. [18]. It arises from the emission/absorption
of quanta of energy from the scatterer. The expression of this zero-temperature shot noise
is

δQ(1),sh
αα =

∞∑
q=1

q

4π
C(sym)
αα,q (0) (26)

where

C(sym)
αα,q (E) =

Cαα,q(E) + Cαα,−q(−E)

2
(27)

Cαα,q(E) =
∑
γδ

[S∗αγ(E)Sαδ(E)]q[S
∗
αδ(E)Sαγ(E)]−q, (28)

which arises from the quartic term of eq. 23. The superscript []q identifies the Fourier
coefficients, defined as

[A]q =

∫ T0

0

dt

T0
eiqΩA. (29)

The derivation of the present shot noise term is described in Appendix E. Moreover, the
relevance of the various terms of the noise is discussed in more detail in the Appendix F.
In Section 5 we will analyze the noise obtained together with thermodynamic quantities
to gain further insight into the relationship between transport and thermodynamics.

4 Quantum pump as an engine

Now that the transport problem is described in its full generality, let us look at a quantum
pump as a thermodynamic engine. By varying the parameters (x1, x2) over a cycle it is
clear that we are performing a certain work on the system as well as dissipating heat
and generating entropy. The goal of this section will be to give concrete expressions to
these quantities for the specific problem of quantum pumping of a resonant level model.
Of course, as in the case of transport properties, we will have to proceed in steps, first
considering the quasi-static limit, and then proceeding to higher-order contributions in
the gradient expansion.

4.1 Quasistatic limit

Let us start developing this formalism in the limit of reversible and quasi-static transfor-
mations where we can work in the equilibrium gran-canonical framework at fixed temper-
ature β−1 and chemical potential µ. Evaluating the grand potential of the total system,
Ω = −1/β ln Ξ, where Ξ = Tr[e−β(H−µN)], in terms of the density of states ρ(ϵ) of the
total system one obtains

Ωtot = −
1

β

∫
dϵ

2π
ρ(ϵ) ln[1 + e−β(ϵ−µ)]. (30)

We are now interested in extracting the time-dependent part of this expression when
parameters are varied quasi-statically: for a resonant level model in which the time-
dependent parameters are ϵd(t),ΓL/R(t) this amounts, as shown in Appendix B, to the
replacement in Eq.(30) of the total density of states ρ(ϵ) with the instantaneous local
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spectral function of the dot At(ω) = A(ω, [ϵd(t),ΓL/R(t)]) = −2Im[Gr(ω, [ϵd(t),ΓL/R(t)])]
obtaining an instantaneous grand potential

Ωt = −
1

β

∫
dϵ

2π
At(ϵ) ln[1 + e−β(ϵ−µ)]. (31)

From this expression, we can derive the quasistatic thermodynamic functions N
(0)
t , S

(0)
t

and E
(0)
t , respectively particle number, entropy, energy [11] obtaining

N
(0)
t =

∫
dϵ

2π
At(ϵ)f(ϵ), (32)

S
(0)
t = kB

∫
dϵ

2π
At(ϵ)

[
− f ln f − (1− f) ln(1− f)

]
, (33)

E
(0)
t =

∫
dϵ

2π
ϵ At(ϵ)f(ϵ) (34)

Clearly, the derivatives of these quantities with respect to time are connected to the
reversible energy change Ė(1), the reversible power Ẇ (1), the heat exchange rate Q̇(1) and
the current Ṅ (1). In particular, using the relation ∂ΓA = −∂ϵRe(GR) the expression for
the reversible power Ẇ (1) = ϵ̇d∂ϵdΩ+

∑
i Γ̇i∂ΓiΩ can be written as

Ẇ (1) = ϵ̇d

∫
dϵ

2π
Af + Γ̇

∫
dϵ

2π
Re(GR)f. (35)

Similar calculations lead to the expression of the quasi-static heat exchange rate as

Q̇(1) = T
dS(0)

dt
= ϵ̇d

∫
dϵ

2π
(ϵ− µ)A∂ϵf + Γ̇

∫
dϵ

2π
(ϵ− µ)Re(GR)∂ϵf. (36)

The current out of the dot is

Ṅ (1) =
dN (0)

dt
= ϵ̇d

∫
dϵ

2π
A∂ϵf + Γ̇

∫
dϵ

2π
Re(GR)∂ϵf. (37)

Finally, the energy exchange rate

Ė(1) =
dE(0)

dt
= −ϵ̇d

∫
dϵ

2π
ϵ∂ϵAf − Γ̇

∫
dϵ

2π
ϵf∂ϵRe(GR). (38)

Notice that these quantities satisfy the first law of thermodynamics in the form

Ė(1) = Ẇ (1) + Q̇(1) + µṄ (1). (39)

4.2 Gradient expansion of thermodynamic quantities

Let us now come to the main results of this paper: a self-contained thermodynamic de-
scription of the operation of a quantum pump. Quantum pumping is not a quasi-static
phenomenon: the quasi-static contribution to the pumped current is just zero. It is intu-
itively appealing that the same will be true for certain thermodynamic quantities that are
expected to be intimately connected to the flow of a current, such as the heat dissipated
and the entropy produced. Therefore in order to address them we will have to extend
our analysis to account for corrections to the quasi-static limit using a gradient expan-
sion. Our goal will be for each generic quantity to express it as expansion in gradients as
O =

∑
iO(i), where O(i) contains the i-th time derivative. In order to do so we will first
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write O in terms of non-equilibrium Green’s functions (Appendix C) and then perform
their adiabatic expansion deriving the next-order corrections to the expressions obtained
in the previous section. The expansion we are going to derive is an expansion in gradients
precisely as the one obtained for the pumped charge and the noise, i.e. using as small
parameters ϵ̇d/Γ

2 and Γ̇i/Γ
2.

Let us start with the simplest quantity: the particle number in the resonant level. The
average number of particles is readily connected to a Green’s function using its definition,
N = ⟨d†d⟩ = −iG<(t, t). Therefore one can identify N (i) with the i-th order expansion
in the gradients of the lesser Green function (see Appendix C) which can be calculated
starting from the Keldysh equation

G< =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t
′). (40)

Performing a gradient expansion of this one readily obtains the zeroth order terms reported
above and

N (1) = − ϵ̇d
2

∫
dϵ

2π
∂ϵfA

2 − Γ̇

2

∫
dϵ

2π
∂ϵf

A2

Γ
(ϵ− ϵd). (41)

This result can be used to compute the second-order correction to the current out of the
dot

Ṅ (2) = − ϵ̇d
2

2

∫
dϵ

2π
∂2
ϵ fA

2 − Γ̇2

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
− ϵ̇dΓ̇

2

∫
dϵ

2π

[
∂ΓA

2 − A2

Γ
+

∂ϵA
2

Γ
(ϵ− ϵd)

]
∂ϵf −

ϵ̈d
2

∫
dϵ

2π
∂ϵfA

2 − Γ̈

2

∫
dϵ

2π
∂ϵf

A2

Γ
(ϵ− ϵd).

(42)

The argument becomes more involved if one wants to calculate the gradient expansion
of the entropy. For this sake one needs to substitute in the expression for the entropy intro-
duced the Fermi distribution f with the non-equilibrium distribution ϕ(ϵ, T ) [12] obtained
from the Wigner transform of the lesser Green’s function G<(ϵ, T ) = iA(ϵ, T )ϕ(ϵ, T )

S = kB

∫
dϵ

2π
A

[
− ϕ lnϕ− (1− ϕ) ln(1− ϕ)

]
. (43)

A gradient expansion of the lesser Green’s function (and a similar one for the retarded
one) results in a gradient expansion for the non-equilibrium distribution, hence for the
entropy. The results for ϕ are given in Appendix C. The resulting expansion to the first
order of the non-equilibrium distribution gives S(1)

S(1) = −kB ϵ̇d
2

∫
dϵ

2π

(
ϵ− µ

kBT

)
∂ϵfA

2 − kBΓ̇

2

∫
dϵ

2π

(
ϵ− µ

kBT

)
∂ϵf

A2

Γ
(ϵ− ϵd) (44)

and therefore the entropy production rate to the second order is

Ṡ(2) =
ϵ̇d

2

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf∂ϵA

2 − Γ̇2

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
+

− ϵ̇dΓ̇

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf

[
∂ΓA

2 − ∂ϵA
2

Γ
(ϵ− ϵd) +

A2

Γ

]
− ϵ̈d

2T

∫
dϵ

2π
(ϵ− µ)∂ϵfA

2

− Γ̈

2T

∫
dϵ

2π
(ϵ− µ)∂ϵf

A2

Γ
(ϵ− ϵd).

(45)

Coming to the internal energy, it can be verified that at zero order E(0) = ⟨HD⟩(0) +
1
2⟨HV ⟩(0) [12]. We may then identify an ”effective system” of Hamiltonian Heff = HD +

9
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1
2HV and an ”effective bath” HB + 1

2HV [11]. Therefore, at every order in a gradient
expansion, we have

E(i) = ⟨HD⟩(i) +
1

2
⟨HV ⟩(i). (46)

The expectation value for ⟨HV ⟩ is given in Appendix D. As for the internal energy we
compute the zeroth order in the gradients (quasi-static approximation) in Eq.(4.1) and
the rate of change to first order in Eq.(38). Let us now evaluate the first-order correction
of the energy

E(1) = − ϵ̇d
2

∫
dϵ

2π
ϵ∂ϵfA

2 − Γ̇

2

∫
dϵ

2π
ϵ∂ϵf

A2

Γ
(ϵ− ϵd), (47)

whose time derivative reads

Ė(2) =
ϵ̇d

2

2

∫
dϵ

2π
ϵ∂ϵf∂ϵA

2 − Γ̇2

2

∫
dϵ

2π
ϵ∂ϵf(ϵ− ϵd)∂Γ

(
A2

Γ

)
+

+
ϵ̇dΓ̇

2

∫
dϵ

2π

[
ϵ∂ϵf∂ΓA

2 + ϵ
∂ϵA

2

Γ
∂ϵf(ϵ− ϵd)

]
− ϵ̈d

2

∫
dϵ

2π
ϵ∂ϵfA

2

− Γ̈

2

∫
dϵ

2π
ϵ∂ϵf

A2

Γ
(ϵ− ϵd).

(48)

The expression for the energy agrees with the energy-resolved one [12]

E(i) =

∫
dϵ

2π
ϵA(ϵ, T )ϕ(i)(ϵ, T ). (49)

The power can be computed according to the definition. We can distinguish two
different contributions, relative to HD and HV . The first one is

Ẇ
(i)
D = ⟨∂HD

∂ϵd
⟩(i−1)ϵ̇d = ϵ̇dN

(i−1). (50)

Likewise for the components of the coupling

Ẇ
(i)
V =

∑
j

⟨∂HV

∂Vj
⟩(i−1)V̇j =

∑
j

V̇j(t)
∑
k

(⟨d†ckj⟩(i) + h.c.) =
∑
j

V̇j(t)

Vj(t)
⟨Hj

V ⟩
(i). (51)

Changing variable to Γj

Ẇ
(i)
V =

∑
j

Γ̇j

2Γj
⟨Hj

V ⟩
(i−1), (52)

so that
Ẇ (i) = Ẇ

(i)
V + Ẇ

(i)
D . (53)

The first order in the gradients of the power was computed in Eq. 35. We may now use
the expansion above to compute the second order correction as

Ẇ (2) =− ϵ̇d
2

2

∫
dϵ

2π
∂ϵfA

2 − Γ̇2

4

∫
dϵ

2π
∂ϵf∂ΓA+

ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf∂ϵA

+
∑
i

Γ̇2
i

2Γi

∫
dϵ

2π
f
∂ϵA

2
.

(54)

Note the presence of Γi at the denominator: this term causes a singularity at Γi = 0,
which appears only when multiple heat baths are present.

10
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The heat exchange rate Q cannot be calculated directly [25] since there are no physical
process accounting for dissipation and the Landauer-like picture of transport assumes that
dissipation processes take place far away from the system and do not affect its dynamics
[26]. The only way it can be derived is from the first law of thermodynamics. The latter
reads

Ė(i) = Ẇ (i) + Q̇(i) + µṄ (i). (55)

Then, the heat exchange has to be calculated inverting this relation

Q̇(i) = Ė(i) − Ẇ (i) − µṄ (i). (56)

Finally, the heat exchange flow reads

Q̇(2) = −
ϵ̇2d
2

∫
dϵ

2π
(ϵ− µ)∂2

ϵ fA
2 − Γ̇2

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)(ϵd − µ)∂Γ

(
A2

Γ

)
− Γ̇2

4

∫
dϵ

2π
∂2
ϵ f(ϵ− ϵd)∂ΓA−

∑
i

Γ̇2
i

2Γi

∫
dϵ

2π
f
∂ϵA

2

− ϵ̈d
2

∫
dϵ

2π
(ϵ− µ)∂ϵfA

2 − Γ̈

2

∫
dϵ

2π
(ϵ− µ)∂ϵf

A2

Γ
(ϵ− ϵd)

− ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf(ϵd − µ)

[
∂ΓA

2 − A2

Γ
+

∂ϵA2

Γ
(ϵ− ϵd)

]
+

ϵ̇dΓ̇

2

∫
dϵ

2π
∂ϵf(ϵ− ϵd)∂ΓA

2 − ϵ̇dΓ̇

4

∫
dϵ

2π
∂2
ϵ f(ϵ− ϵd)∂ϵA.

(57)

The results obtained for N and Ẇ are consistent with the ones found in [27].
A final comment on the adiabatic expansion we have just performed is that the entropy
production rate is not simply related only to the heat production, but there is a further
contribution which can be identified with the dissipated power. In particular this relation
holds

Ṡ(2) =
Q̇(2)

T
+

Ẇ (2)

T
. (58)

This is because in general, we have this expression

dS

dt
= Σ̇ +

Q̇
T
, (59)

where Σ̇ can be related to the entropy production of the universe and S is the entropy of
the system. In turn, the change of the entropy of the universe is given by the mismatch
between the corresponding reversible work rate and the work rate in an irreversible process,
called the unusable energy, i.e.

T Σ̇ = Ėun = Ẇrev − Ẇ , (60)

which up to second order corresponds to Ẇ (2) [28].

5 Quantum thermodynamics of various pumping cycles

It is now time to put all the pieces of the puzzle together and show how the formulas devel-
oped above can be used to gain insight into the physics of quantum pumping by combining
information on thermodynamic quantities as well as transport properties (pumped charge
and its noise). We will do so for various examples of cycles constructed for a resonant-level
model.
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Figure 1: The peristaltic cycle: the level initially empty at +ϵ0 coupled only to ΓL.
It is then lowered to −ϵ0 and filled with an electron from the left. Afterwards, the
coupling is switched to the right and the level is raised again to +ϵ0 and emptied
on the right. Finally, the coupling is reinstated to its initial value.

5.1 The peristaltic cycle

The simplest cycle one can think of is the ’peristaltic’ cycle which consists of four strokes
as shown in Fig.1: the level initially empty at +ϵ0 coupled only to ΓL. It is then lowered to
−ϵ0 and filled with an electron from the left. Afterwards, the coupling is switched to the
right and the level is raised again to +ϵ0 and emptied on the right. Finally, the coupling
is reinstated to its initial value.

We calculate the current, using Brouwer’s formula (Section 3). In the limit of low
temperature T , the pumped charge is

Q
(0)
L =

2

π

{
arctan(x) +

x

1 + x2

}
+O(T 2), (61)

where x = ϵ0
Γ/2 . In the limit x >> 1, the pumped charge is quantized, Q

(0)
L → 1.

The expectation is that the corresponding noise will tend to zero in the quantization
limit. We are interested in the zero-temperature limit, which enjoys contributions only
from the ’shot’ noise (Sec. 3). The zeroth order contribution to the current noise is just
thermal and vanishes in this limit

δQ
(0)
LL = 0. (62)

We evaluate the first-order term in the gradients, containing the relevant shot noise
contribution. The result of this calculation gives a current noise which tends to zero in
the quantization limit

lim
ϵ→0

lim
x→∞

δQLL(x, ϵ) = 0, (63)

where ϵ = δ/Γ (see e.g. Fig 2).
Let us now proceed with the comparison with thermodynamic quantities by integrat-

ing the previously calculated ones over a cycle. Clearly, integrating over a cycle quantities
expanded up to the first order will give a quantity independent of the cycle parametriza-
tion, hence geometric. In the present case, however, the integrals are all vanishing, as one
can see from the one of the power expanded to first order

Ẇ (1) =
∂Ω

∂ϵd
ϵ̇d +

∂Ω

∂Γ
Γ̇, (64)
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Figure 2: The first order of the noise integrated over the peristaltic cycle in
the zero-temperature limit. In this case, we have set vϵd = |ϵ̇d| and vδΓ = | ˙δΓ|
to 1. Since the sum of Eq. 26 cannot be carried out to infinity numerically,
we chose a value of qmax as an upper limit to that sum. The latter value was
chosen to guarantee convergence and was set to qmax = 10000. We can see that,
regardless of the values of vϵd and vδΓ, the second order of the noise vanishes in
the quantization limit.

which using Green’s theorem can be expressed as

W
(0)
cycle =

∫ T0

0
dtẆ (1) =

∫∫
A
dϵddΓ

[
− ∂2Ω

∂ϵd∂Γ
+

∂2Ω

∂Γ∂ϵd

]
= 0. (65)

Similar reasoning can be applied for integrals of all other rates at first order. We can
point out that this is a trivial consequence of the absence of any chemical potential or
temperature difference.

In contrast, second-order rates integrated over a cycle will not be geometric quantities
and will depend on the specific parameterization. In the following, we will consider a
linear parameterization so that the rates ϵ̇d and ˙δΓ are constants along the four strokes.
In this case, as for the current noise, we will have to work with a regularized cycle where
δΓ ∈ [−Γ + δ,Γ− δ]. The work per cycle is

W
(1)
cycle = −vϵd

∫ ϵ2

ϵ1

dϵd

∫
dϵ

2π
∂ϵfA

2 +
vδΓ
2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ2 − δΓ2

∫
dϵ

2π
f
∂ϵA

2
. (66)

Performing the integration over ϵd one obtains in the limit T → 0

W
(1)
cycle = vϵd∆W (1)

ϵd
+ vδΓ∆W

(1)
δΓ , (67)

where vϵd = |ϵ̇d|, vδΓ = | ˙δΓ|, and the coefficients are

∆W (1)
ϵd

=
2

πΓ

{
arctanx+

x

1 + x2

}
, (68)

and

∆W
(1)
δΓ =

1

Γ
arctanh

[
1− ϵ

]
1

π

1

x2 + 1
, (69)

in terms of the dimensionless variables x = ϵ0
Γ/2 and ϵ = δ

Γ . Comparing this result with
the one obtained for the charge pumped over a cycle, we obtain the following direct
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Figure 3: The current integrated over a cycle for the left lead w.r.t. the adimen-
sional parameter x. It is clear that in the limit x → ∞ the quantity displays a
quantization to 1.

relationship ∆W
(1)
ϵd =

vϵd
Γ Q

(0)
L . The contribution proportional to vδΓ is shown in Fig. 4

and it is vanishing in the limit x→∞. Therefore in the limit of charge quantization

W
(1)
cycle =

vϵd
Γ

, (70)

signalling the presence of a quantization rule for the work rate.
Let us now compute in the same way the entropy produced over a cycle

S
(1)
cycle =

vϵd
T

∫ ϵ2

ϵ1

dϵd

∫
dϵ

2π
(ϵ− µ)∂ϵf∂ϵA

2. (71)

Performing the integrations the result up to the first order in the temperature is

S
(1)
cycle = vϵd∆S(1)

ϵd
, (72)

where

∆S(1)
ϵd

=
πTk2B

3

128

Γ3

x

(1 + x2)3
+O(T 3). (73)

Comparing this expression with the expression of the work, we observe that while in the
limit x → ∞ the work saturates to the value

vϵd
Γ , the entropy production tends to zero

(Fig. 5).
For completeness, we report here also the result for the remaining quantities

Q(1)
cycle = −vϵd

∫ ϵ2

ϵ1

dϵd

∫
dϵ

2π
(ϵ− µ)∂2

ϵ fA
2 − vδΓ

2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ2 − δΓ2

∫
dϵ

2π
f
∂ϵA

2
(74)

E
(1)
cycle = vϵd

∫ ϵ2

ϵ1

dϵd

∫
dϵ

2π
ϵ∂ϵf∂ϵA

2 (75)

N
(1)
cycle = −vϵd

∫ ϵ2

ϵ1

dϵd

∫
dϵ

2π
∂2
ϵ fA

2. (76)

Performing the integrations one obtains that in the limit x → ∞ and T → 0 N
(1)
cycle = 0,

S
(1)
cycle = 0 and Q(1)

cycle = −W
(1)
cycle. These conditions define a Non-Equilibrium Steady State

(NESS) (see for example [29]).
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Figure 4: ∆W
(1)
ϵd Γ and ∆W

(1)
δΓ Γ. The contribution proportional to vϵd tends to

1 for x→∞, following the direct relation with the pumped charge. In contrast,
the contribution proportional to vδΓ tends to zero in the same limit.

Figure 5: The leading order in temperature of the entropy vs. the adimensional
parameter x. From this figure, it is evident that the quantity tends to zero in the
quantization limit.
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Figure 6: The charge pumped from left to right. It is negative because the current
flows from left to right. The current displays charge quantization in the large x
limit.

Figure 7: The first order of the noise of the current δQLL. The current noise
tends to 0 as x→∞ as expected, following the quantization requirement.

5.2 Other examples of cycles

In our analysis of the peristaltic cycle we found that in the limit of quantization, the work
per cycle saturates to a value determined by the rate of change of the energy level vϵd . In
contrast, the entropy produced per cycle goes to zero (as the noise). The purpose of this
section will be to explore other examples of a cycle and study the possibility that these
qualitative results could apply to more general situations.

Let us consider a modification of the peristaltic cycle in which the couplings are modi-
fied one by one and not together: the level is lowered from ϵd = ϵ0 to −ϵ0, while connected
mainly to the right lead with ΓR = Γ0 and ΓL = δ (ϵ = δ/Γ0 ≪ 1). The role of the two
couplings is then inverted by first raising ΓL to Γ0 and then decreasing ΓR to δ. It is now
the turn of the level to be raised from −ϵ0 to ϵ0. Then the ΓR and ΓL are exchanged again
with the inverse of the above process. The results for the pumped charge are portrayed in
Fig. 92. It displays indeed charge quantization in the large x = ϵ0/Γ limit.

The current noise can be safely computed for this cycle and the results for the two
coefficients which govern the dependence on vϵd and vΓ are in Fig. 7. As we can see both
the coefficients tend to ϵ = δ

Γ as x→∞. Therefore limϵ→0 limx→∞ δQαα(x, ϵ) = 0.

Let us now turn to the work per cycle which has the following expression

W
(1)
cycle = vϵd∆W (1)

ϵd
+ vΓ∆W

(1)
Γ , (77)

16



SciPost Physics Submission

Figure 8: The two components of the dissipated power proportional to vϵd and
vΓ for ϵ = 0.001. The work displays a quantization to

vϵd
Γ0

in the limit x→∞, as
the first component is saturated to 1, while the second vanishes in this limit.

where

∆W (1)
ϵd

=
2

Γ0π

{
arctan(x) +

x

1 + x2

}
(78)

and

∆W
(1)
Γ =

1

πΓ0

1

(x2 + 1)

{
− 2x arccot

[
x

ϵ− 2

]
− 2x arccot

[
x

ϵ+ 2

]
+ 2 log

[
1− ϵ

ϵ

]
+ log

[
ϵ2 + x2 + 2ϵx+ 1

ϵ2 + x2 − 2ϵx+ 4

]}
+

2

πΓ0

(
2− ϵ

x2 + (2− ϵ)2
− 1 + ϵ

x2 + (1 + ϵ)2

) (79)

displays a quantization of
W

(1)
cycleΓ0

vϵd
→ 1 in the large x limit (see Fig. 8). This appears to

be in agreement with what is stated for the peristaltic cycle.
Finally, let us focus on the entropy whose first non-zero order reads

S
(1)
cycle = vΓ∆S

(1)
Γ + vϵd∆S(1)

ϵd
+O(T 3). (80)

where

∆S
(1)
Γ =

π

12

1

Γ3
(k2BT )

[
2

(4x2 + 1)2
− 16

(x2 + 1)2

]
(81)

and

∆S(1)
ϵd

=
π

3
(k2BT )

1

Γ3

32x

(1 + x2)3
(82)

The two coefficients are in Fig. 9. We can see that also in this case, the entropy tends
to zero in the charge quantization limit. All the other quantities do not add any relevant

physical information: as before since S
(1)
cycle = 0, Q(1)

cycle = −W
(1)
cycle all the external work is

converted into dissipated heat.
Our previous example shows that the main results pertaining to the peristaltic cycle,

i.e. work quantization in the limit of quantized charge, no entropy production and zero
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Figure 9: The second order in temperature of the entropy for vΓ = vϵd = 1.We
see that both the coefficients vanish in the quantization limit.

Figure 10: The diagram of the cycle with fractional charge quantization.

noise, pertain also to similar cycles.
Let us now focus on another cycle whose peculiarity is to have a maximal pumped charge
equal to half an electron charge: the triangular cycle introduced in [30]. In this cycle, at
the beginning, the dot is weakly coupled with strength δ to both leads. Then, it is loaded
by coupling to the left lead up to Γ0 ≫ δ. The next step is to shift the coupling from
the left to the right reservoir. Finally, the dot is discharged while returning to the initial
state. The energy level of the dot is maintained constant ϵd = ϵ0 and only the couplings
are varied ( see Fig. 10). In this example, we have half an electron per period. This means
that the current noise has to be finite. The fact that the charge transport is on average
equal to 1/2 per cycle, means that half of the times one charge is transported and the
other half none. The charge pumped per cycle is plotted in Fig. 11 and is given by the
expression

Q
(1)
R =

2

π

∫
I(C)

dXLdXR
X

[1 +X2]2
=

1

π

[
arctan[X0]−

X0

1 +X2
0

]
, (83)

where I(C) is the triangular contour in Fig. 10. In terms of X = Γ
2ϵ0

and X0 = Γ0
2ϵ0

. It is
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Figure 11: The charge pumped w.r.t the adimensional parameter X0, displaying
the fractional quantization to the value 1

2 .

Figure 12: The noise with respect to X0. In this case, we observe a finite noise
in the quantization limit. The limiting value is 1

4 .

evident that
lim

X0→∞
Q

(1)
R = 1/2. (84)

The adiabatic current noise in Fig. 12 is finite in the quantization limit, due to the
non-integer charge. In this case, the most relevant contribution is from the hypotenuse of
the process, where both the couplings are varied and the energy level is half occupied on
average. The value reached by the charge noise is

lim
X0→∞

δQ
(1)
RR =

1

2
(1− 1

2
) =

1

4
. (85)

The work done per cycle (Fig. 13) is

W
(1)
cycle = vΓ∆W

(1)
Γ + vδΓ∆W

(1)
δΓ

(86)

where

∆W
(1)
Γ =

1

ϵ0π

[
X0

1 +X2
0

+ arctan[X0]−
δ

1 + δ2
− arctan[δ]

]
(87)

and

∆W
(1)
δΓ =

1

Γ
arctanh

[
1− δ

]
1

π

2X0

X2
0 + 1

, (88)
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Figure 13: The two components of the work with respect to X0. The figure shows

how in the limit X0 →∞ the work tends to the value W
(1)
cycle →

1
2
vΓ
ϵ0

Figure 14: The entropy with respect to X0.

with δ = η
Γ0
. We have, in the quantization limit

W
(1)
cycleϵ0

vΓ
→ 1

2
. (89)

The entropy integrated over a cycle (fig. 14) reads

S
(1)
cycle = vΓ∆S

(1)
Γ (90)

∆S
(1)
Γ =

1

ϵ30

π

12
k2BT

2X0

(1 +X2
0 )

2
. (91)

Likewise, the entropy in the quantization limit tends to zero.

The results for the two processes we have considered up to now indicate that, when the
design of the cycle allows us to define a limiting condition which entails a quantized charge
pumped, there are some conclusions we can draw regarding the other quantities relevant
to our purposes. In particular, the out-of-equilibrium work performed on the system
obeys a similar quantization relation. The entropy integrated over the cycle vanishes in
the considered limit. Likewise, the charge noise disappears, as the charge pumped is
quantized.
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6 Conclusion and Outlook

In this paper, we have studied the problem of characterizing thermodynamically adiabatic
pumping through a single energy-level quantum dot coupled to two leads. We established
a systematic scheme based on a gradient expansion to calculate all the relevant transport
and thermodynamic quantities.
For a resonant level model, focusing on specific cycles and comparing transport to ther-
modynamic quantities we have shown that whenever a quantized charge is attained one
expects, together with zero charge noise, zero entropy production and a saturated work
per cycle proportional to the speed with which the quantity associated to the quantization
limit is varied.
The methods developed here could in principle be generalized to other time-dependent
transport problems, such as transport through multilevel dots or even interacting sys-
tems [7, 31]. Another interesting direction of future related research is to study quantum
stochastic thermodynamic quantities (for example the work distribution) and how fluctu-
ation theorems can apply to these thermodynamic cycles.
The results we obtained are relative to a specific model, but nonetheless offer insight into
the phenomenon of adiabatic pumping and its thermodynamical implications, which can
be relevant in other contexts (for example Thouless pumps).
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A Derivation of Eq.10

Starting from the expression of the current and using the lesser Green functionG<
d,ki(t

′, t) =

i⟨c†ki(t)d(t
′)⟩ we can write

⟨Ii⟩ = 2Re

{∑
k

ViG
<
d,ki(t, t)

}
. (92)

It is straightforward to see that, whenever the leads are non-interacting, the lesser Green’s
function entering the definition of the current has the expression [22]

G<
d,kα(t, t

′) =

∫
dt1

[
g<kα(t, t1)[Vα]

∗GA(t1, t
′) + grkα(t, t1)[Vα]

∗G<(t1, t
′)

]
. (93)

Performing now the summation over k as in Eq. 92 using g<k,α(ϵ) = 2πiδ(ϵ − ϵk)f(ϵ) and

grk,α(ϵ) = 1/(ϵ − ϵk + i0+), where f(ϵ) = 1/(exp[β(ϵ − µ)] + 1) is the Fermi function, we
have ∑

k

G<
kα(t, t

′) =

∫
dt1

[
2πν0if(t− t1)[Vα]

∗GA(t1, t
′)− πν0i[Vα]

∗G<(t1, t
′)

]
, (94)

where ν0 =
∑

k δ(ϵ − ϵkα) is the constant density of states and f(t) is the (properly
regularized) Fourier transform of the Fermi distribution. Therefore the expectation value
of the current operator can be written as

⟨Iα⟩ = 2Re

[
i

∫
dt1f(t− t1)T

a
αα(t1, t

′)− i

2
T<
αα(t, t)

]
, (95)

in terms of the generalized, time-dependent transmission matrices

TR,A,≷
αβ (t, t′) = 2πν0

∑
k

[Vα(t)]
∗GR,A,≷(t, t′)Vβ(t

′). (96)

A further simplification of Eq. 95 is obtained by expressing of T<
αα in terms of retarded

and advanced quantities using

G<(t, t′) =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t), (97)

with
Σ<(t, t′) = 2πν0i

∑
α

Vα(t)f(t− t′)[Vα(t
′)]∗. (98)

Then we have

T<
αα(t, t) =

∑
β

∫
dt1dt2T

R
αβ(t, t1)f(t1 − t2)T

A
βα(t2, t). (99)

Substituting this expression into the current we obtain

⟨Iα⟩ = i

∫
dt1[f(t− t1)T

R
αα(t1, t)− TA

αα(t, t1)f(t1 − t)]

+
∑
β

∫
dt1dt2T

R
αβ(t, t1)f(t1 − t2)T

A
βα(t2, t).

(100)

Finally introducing the time-dependent scattering matrices defined as Sαβ = δαβδ(t− t′)+
iTR

αβ(t, t
′) we arrive at Eq.10.
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B The density of states

The density of states is given as the trace of the spectral function of the system over all
the single-particle states n

ρ(ϵ) =
∑
n

Ann(ϵ) (101)

and we remind that Ann = −2ImGR
nn in terms of the retarded Green function. In the

basis of uncoupled dot and leads electron states we can decompose the density of states
in terms of the dot and leads contributions

ρ(ϵ) = Add(ϵ) +
∑
ki

Akk,i(ϵ). (102)

To calculate Akk,i we write the Dyson equation for the retarded Green function of the
leads

GR
kk,i(ϵ) = gRki(ϵ) + (gRki(ϵ))

2V 2
i (t)G

R
dd(ϵ). (103)

Since ΣR
ki = |Vi(t)|2gRki(ϵ), where gRki(ϵ) is the free lead green function, we define σi(ϵ) =∑

k Σ
R
ki one can rewrite the above density of states in terms of the retarded self-energy as

ρ(ϵ) = Add(ϵ)

(
1− d

dϵ
Re(σi(ϵ))

)
+ 2Re(GR

dd(ϵ))
d

dϵ
Im(σi(ϵ)) + νi(ϵ), (104)

where νi(ϵ) = −2
∑

k Im(gRki(ϵ)) .
In our case, it follows from the definition that

σi = −
i

2
Γi. (105)

As a consequence, the terms that depend on the derivatives of the self-energy vanish.
Furthermore, the free density of states of the leads depends neither on ϵd nor on Γi so
that we can cast it aside. What we are left with is simply the density of states of the dot
alone Add, which we indicate as A in the course of the article.

C The expansion of the equations of motion

In the following, we derive the gradient expansion of different Green functions.

• We start with the gradient expansion of the equation of motion for the retarded
Green function of the dot

δ(t− t′) =

∫
dt1G

R(t, t1)[i∂t1δ(t1 − t′)− ϵd(t1)δ(t1 − t′)− ΣR(t1 − t′)], (106)

with the retarded self-energy ΣR(t, t′) =
∑

ki |Vi(t)|2gRki(t, t′) We switch to theWigner
transform, defined as

G(ϵ, t) =

∫
dτG(t1, t2)e

iϵτ , (107)

where t = t1+t2
2 and τ = t1 − t2. We recall that for a convolution, the Wigner

transform is ∫
dt′C(t1, t

′)D(t′, t2) =

∫
dϵ

2π
e−iϵτC(ϵ, τ) ∗D(ϵ, τ). (108)
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where C(ϵ, τ) ∗ D(ϵ, τ) = C(ϵ, τ)Exp[ i2(
←−
∂ϵ
−→
∂t −

←−
∂t
−→
∂ϵ)]D(ϵ, τ). Therefore, up to the

first order we have

1 = GR(ϵ, τ)

[
ϵ− ϵd +

i

2
Γ

]
+

i

2

[
∂ϵG

R(ϵ, τ)(−ϵ̇d(t) +
i

2
Γ̇)− ∂tG

R(ϵ, t)

]
. (109)

Therefore, up to the first order in the velocities, for the retarded and advanced Green
functions we have GR(ϵ, t) = (ϵ− ϵd(t)+ iΓ(t)2 )−1 and GA(ϵ, t) = (ϵ− ϵd(t)− iΓ(t)2 )−1.

• The lesser component of the Green function is given by

G< =

∫
dt1dt2G

R(t, t1)Σ
<(t1, t2)G

A(t2, t
′). (110)

The zero order is
G<(0)(ϵ, t) = GRΣ<GA = iAf. (111)

As we already know, the part dependent on ϵ̇d yields a contribution −i ϵ̇d2 ∂ϵfA
2.

Now, let’s work out the different contributions to the part which is dependent on Γ̇

1)
i

2

(
∂ϵG

R∂tΣ
<GA −GR∂tΣ

<∂ϵG
A

)
=

i

2
(iΓ̇f)(∂ϵG

RGA −GR∂ϵG
A)

= − i

2
Γ̇f

A2

Γ

(112)

2)
i

2

(
− ∂tG

R∂ϵΣ
<GA +GR∂ϵΣ

<∂tG
A

)
=

i

2
Γ̇(iΓ∂ϵf)

i

2
([GR]2GA +GR[GA]2) = − i

2
Γ̇∂ϵf

A2

Γ
(ϵ− ϵd(t))

(113)

3)
i

2

(
∂ϵG

RΣ<∂tG
A − ∂tG

RΣ<∂ϵG
A

)
=

i

2
Γ̇(iΓf)

i

2

(
∂ϵG

R[GA]2 + [GR]2∂ϵG
A

)
=

i

2
Γ̇f

A2

Γ

(114)

where we used the following relations: ∂ϵG
RGA − GR∂ϵG

A = iA
2

Γ , ∂tG
R/A =

−ϵ̇d∂ϵGR/A + Γ̇(∓ i
2)[G

R/A]2, Re(GR) = ϵ−ϵd
Γ A and [GR]2[GA]2 = (AΓ )

2.
Overall, we obtain

G<(ϵ, t) = iAf − i
ϵ̇d
2
∂ϵfA

2 − i
Γ̇

2
∂ϵf

A2

Γ
(ϵ− ϵd) (115)

As a consequence, we can identify a non-equilibrium distribution function

ϕ = f − ϵ̇d
2
∂ϵfA−

Γ̇

2
∂ϵf

A

Γ
(ϵ− ϵd). (116)
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D Calculation of the expectation value of the coupling term

Now, let us derive the expression of ⟨HV ⟩ up to the first order from the expansion of the
mixed Green function. To calculate ⟨HV ⟩ we write

⟨HV ⟩ =
∑
i

Vi(t)
∑
k

[
⟨d†cki⟩+ ⟨c†kid⟩

]
=

∑
i

⟨H i
V ⟩. (117)

Where we define H i
V = Vi(t)

∑
k

[
d†cki + c†kid

]
. It reads

⟨H i
V ⟩ = 2Vi(t)

∑
k

Im

[
G<

d,ki(t, t)

]
, (118)

with G<
d,ki = i⟨c†ki(t

′)d(t)⟩, for which the property G<
d,ki(t, t) = −

(
G<

ki,d(t, t)
)∗

holds. Now,
the equation of motion for the mixed Green function leads to

⟨H i
V ⟩ =2Vi(t)

∑
k

Im

(∫
dt′[GR(t, t′)g<ki(t

′, t) +G<(t, t′)gAki(t
′, t)]

)
= 2Im

(∫
dt′[GR(t, t′)Σ<

i (t
′, t) +G<(t, t′)ΣA

i (t
′, t)]

) (119)

Moving to the Wigner transform

⟨H i
V ⟩ = 2Im

(∫
dϵ

2π
[GR(ϵ, t) ∗ Σ<

i (ϵ, t) +G<(ϵ, t) ∗ ΣA
i (ϵ, t)]

)
. (120)

The second term G<(ϵ, t) ∗ ΣA
i (ϵ, t) = G<(ϵ, t) ∗ ( i2Γi) dose not contribute. In fact, the

zero-order term is real and to the next order we can apply this type of argument∫
dϵ

2π
Im

(
i

2
∂ϵG

<(ϵ, t)
i

2
Γ̇i

)
=

Γ̇i

4

∫
dϵ

2π

∂ϵG
<(ϵ, t)

i
=

Γ̇i

8π

[
∂ϵG

<(ϵ, t)

i

]+∞
−∞

= 0. (121)

Up to the first order in the velocity, the gradient expansion yields

⟨H i
V ⟩ = 2Im

(∫
dϵ

2π

[
GR(ϵ, t)if(ϵ)Γi −

i

2
∂tG

R(ϵ, t)i∂ϵfΓi +
i

2
∂ϵG

R(ϵ, t)if(ϵ)Γ̇i

])
. (122)

The gradient expansion of the whole interaction term therefore reads:

⟨HV ⟩ = 2Im

(∫
dϵ

2π

[
GR(ϵ, t)if(ϵ)Γ− i

2
∂tG

R(ϵ, t)i∂ϵfΓ +
i

2
∂ϵG

R(ϵ, t)if(ϵ)Γ̇

])
. (123)

E Derivation of the shot noise term in the first order of the
adiabatic expansion

To derive the ”shot” noise term in the first order of the adiabatic expansion of the current
fluctuations, which is not present in the gradient expansion of the latter quantity, we link
up with the approach employed in [18], namely the adiabatic expansion of the Floquet
scattering matrix. Furthermore, we show that this approach yields the same results for
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the adiabatic expansion of all the other thermodynamics and transport quantities we have
considered in the article.
The definition of the two-times scattering matrix relates the outgoing states to the ongoing
ones

b̂α(t) =
∑
β

∫ ∞
−∞

dt1Sαβ(t, t1)âβ(t1). (124)

If we perform the Fourier transform of this expression, what we obtain is

b̂α(ϵ) =
∑
β

∫ ∞
−∞

dω

2π
Sαβ(ϵ, ϵ+ ω)âβ(ϵ+ ω), (125)

adopting the ingoing energy ϵ as a reference. But we have to note that the scattering
matrix elements are periodic in their arguments S(t, t′) = S(t, t′ + T0). So, it’s more
appropriate to use a Fourier series expansion

b̂α(ϵ) =
∑
β

∞∑
n=−∞

SF
αβ(ϵ, ϵn)âβ(ϵn), (126)

where ϵn = ϵ + nΩ, and Ω = 2π
T0
. The matrix SF (ϵ, ϵn) is dubbed ”Floquet scattering

matrix” and described in a series of articles, most prominently [13].
The definition of the current noise is

δIαα(t, t
′) = ⟨∆Îα(t)∆Îα(t

′)⟩ (127)

and ∆Iα(t) = Iα(t)− ⟨Iα(t)⟩. It can be rewritten as

δÎαα(t, t
′) = ⟨Îα(t)Îα(t′)⟩ − ⟨Îα(t)⟩⟨Îα(t′)⟩. (128)

The current operator, in turn, reads

Îα(t) = b̂†α(t)b̂α(t)− â†α(t)âα(t). (129)

In the Fourier transform, the noise of the current turns into

δIαα(t, t
′) =

∫
dEdE′dE′′dE′′′

(2π)4
ei(E−E

′)tei(E
′′−E′′′)t′

[
⟨(b̂†α(E)b̂α(E

′)− â†α(E)âα(E
′))

(b̂†α(E
′′)b̂α(E

′′′)− â†α(E
′′)âα(E

′′′))⟩ − (⟨b̂†α(E)b̂α(E
′)⟩ − ⟨â†α(E)âα(E

′)⟩)

(⟨b̂†α(E′′)b̂α(E′′′)⟩ − ⟨â†α(E′′)âα(E′′′)⟩)
]
.

(130)

We consider the charge-pumped fluctuations, which are defined as

δQαα =

∫ T0

0
dT

∫ ∞
−∞

dτδ(T +
τ

2
, T − τ

2
). (131)

In the latter, we employ the Wick theorem and cancel the disconnected averages, then
insert Eq. 126. The expression is further simplified by employing the representation of
the delta function δ(α) =

∫∞
−∞ dteiαt. We obtain all the expressions of [18]

δQαα = δQth
αα + δQsh

αα (132)
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δQth
αα = 2T0

∫
dϵ

2π
f(ϵ)f̃(ϵ)

∑
n

(1− |SF
αα(ϵn, ϵ)|2) (133)

and

δQsh
αα = T0

∫
dϵ

(2π)2

∑
γδ

∑
n

∑
m

∑
p

(f(ϵn)− f(ϵm))2

2
(SF∗

αγ (ϵ, ϵn)S
F
αδ(ϵ, ϵm)

SF∗
αδ (ϵp, ϵm)SF

αγ(ϵp, ϵn))

(134)

The Floquet scattering matrix has the following adiabatic expansion

SF (En, E) = Sn(E) +
nΩ

2

∂

∂ϵ
Sn(E) + ΩAn +O(Ω2), (135)

with Sn(E) the n-th Fourier coefficient of the scattering matrix defined as

Sn(E) =

∫ T0

0

dt

T0
einΩtS(E) (136)

and An is the first order correction of the quantity. By substituting the expansion, one
obtains the zero and first-order thermal noise

δQ0,th
αα = 2kBT

∫ ∞
−∞

dϵ

2π

(
− df

dϵ

)[
T0 −

∫ T0

0
dT |Sαα(E)|2

]
(137)

and

δQ1,th
αα = kBT

∫ ∞
−∞

dϵ

4πi

∫ T0

0
dT

(
− df

dϵ

)∑
β ̸=α

dIαα
dE

(138)

where dIαα
dE is the spectrally resolved current, with its definition

dIαα
dE

=

(
∂S∗αα
∂t

Sαα −
∂Sαα

∂t
S∗αα

)
. (139)

These two expressions can correspond with the ones obtained from the gradient expansion.
The shot noise term has different expressions according to the regime in which we consider
it. In the zero temperature limit kBT ≪ Ω and kBT ≪ Γ−1. In the zero temperature limit,
the difference (f(En) − f(Em))2 ≃ θ(Em − µ) − θ(En − µ). Taking the other scattering
matrix elements in the zero order

δQ1,sh
αα =

∞∑
q=1

qΩ

8π2
C(sym)
αα (µ). (140)

In the high-temperature limit, instead, we can formally write the difference as (f(En) −

f(Em))2 ≃
(
− df

dϵ

)
|n−m|Ω. Then this ”high-temperature shot noise” reads

δQ2,sh
αα =

∫ ∞
−∞

dϵ

8π2

(
df

dϵ

)2 ∞∑
q=1

(qΩ)2C(sym)
αα (E) (141)

Note that this belongs to the second order in the adiabatic expansion. This expression can
be understood by rewriting it in terms of the derivatives and compared with the gradient
expansion. In fact, we have that ∑

q

qΩ[A]q =
1

i
∂tA(ϵ). (142)
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Then

δQ(2,sh)
αα = −

∫ T0

0
dT

∫
dϵ

16π
(∂ϵf(ϵ))

2

{
2
∑
β

[
∂2
TSαβS

†
αβ + Sαβ∂

2
TS
†
αβ − 2∂TSαβ∂TS

†
αβ

]

− 2
∑
γδ

(∂TSαδS
†
αδ − Sαδ∂TS

†
αδ)(∂TSαγS

†
αγ − Sαγ∂TS

†
αγ)

}
.

(143)

The relevance of all these terms is discussed in the next section of the Appendix.
Using this formalism of the Floquet scattering matrix, now we show how to derive the
expansion of all the quantities we have analyzed in the main article. In terms of the
operators, the current reads [13]

Iα(t) =

∫
dEdE′

(2π)2
ei(E−E

′)t(b̂†α(E)b̂α(E
′)− â†α(E)âα(E

′)). (144)

The charge pumped is the integral over t of this quantity. After substituting the definition
of the Floquet scattering matrix, we have the following expression

Qα = T0

∫
dE

2π

∑
β

∑
n

(|SF
αβ(E,En)|2f(En)− f(E)). (145)

When shifting the energy variables E → E − nΩ

Q(1)
α = T0

∫
dE

2π

∑
β

∑
n

|SF
αβ(En, E)|2(f(E)− f(En)). (146)

The difference of Fermi functions f(E)− f(En)→ nΩ

(
− df

dϵ

)
, formally assuming kBT ≫

Ω. However, one can demonstrate that this gives the correct result in the zero temperature
limit as well. Inserting eq. 135, one obtains the following expression

Q(1)
α = T0

∫
dE

2π

∑
β

∑
n

(
− df

dϵ

)
nΩ|Sn

αβ(E)|2 (147)

Using relation 142, we obtain our previous expression of the pumped charge

Q(1)
α =

∫ T0

0
dt

∫
dE

2π

∑
β

(
∂S∗αβ
∂t

Sαβ − S∗αβ
∂Sαβ

∂t

)
. (148)

The variation of the number of particles is obtained from the currents as Ṅ (i) =
∑

α I
(i)
α

Ṅ (1) =
∑
α

[
ϵ̇d

∫
dϵ

4πi

2iΓαA

Γ
+ Γ̇α

∫
dϵ

4πi
2iReGR

]
= ϵ̇d

∫
dϵ

2π
A+ Γ̇

∫
dϵ

2π
ReGR. (149)

Likewise for the heat current

IH,α =

∫ ∞
−∞

dE

2π

∑
n

(En − µ)
∑
β

|SF
αβ(En, E)|2(f(E)− f(En)) (150)

Employing the same reasoning as before, we write the first-order heat exchange as

I
(1)
H,α =

∫ ∞
−∞

dE

4πi
(E − µ)

(
∂S∗αβ
∂t

Sαβ − S∗αβ
∂Sαβ

∂t

)
(151)
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and
Q(1) =

∑
α

I
(1)
H,α. (152)

The energy current reads

IE,α =

∫ ∞
−∞

dE

2π
E
∑
β

∑
n

|SF
αβ(En, E)|2(f(E)− f(En)) (153)

and at first order

Ė(1) = ϵ̇d

∫ ∞
−∞

dE

2π
E(−∂ϵf)A+ Γ̇

∫ ∞
−∞

dE

2π
E(−∂ϵf)ReGR (154)

Finally, we introduce the entropy current with lead α, which has the following expression
[32]

IΣ = kB

∫
dEdE′

(2π)2
ei(E−E

′)t

[
log f(b̂†α(E)b̂α(E

′) + â†α(E)âα(E
′)) + log(1− f)(b̂α(E)b̂†α(E

′)

+ âα(E)â†α(E
′))

]
(155)

In terms of the Floquet scattering matrix, the latter reads

IΣ =

∫
dE

2π

(E − µ)

T

∑
n

(En − µ)
∑
β

|SF
αβ(En, E)|2(f(E)− f(En)) (156)

Repeating the analysis of the current, we end up with this expression

Ṡ(1) = ϵ̇d

∫ ∞
−∞

dE

2π

(E − µ)

T
(−∂ϵf)A+ Γ̇

∫ ∞
−∞

dE

2π

(E − µ)

T
(−∂ϵf)ReGR. (157)

The work rate Ẇ can be obtained by using the first law of thermodynamics. This analysis
can be extended to further orders and concludes that all our results coincide with the
gradient expansion method.

F Comparison between the leading order terms of noise in
the various regimes

As pointed out in [18], there are three different regimes in which the different leading
order terms of the noise are relevant. We have three relevant terms for our analysis. The
first is the first-order thermal noise arising from the thermal excitation of the scatterer,
corresponding to Eq. 25. It contains an energy scale proportional to kBT

ΩT0
Γ . The second

term is the shot noise term (Eq. 26), which contains an energy scale of ΩT0. The third
term is the second-order adiabatic shot noise in the high-temperature limit of Eq. 141
This term is, strictly speaking, singular in the zero-temperature limit and it contains an
energy scale of Ω2T0

kBT .
By examining the ratio of these terms, we determine the regimes in which each of these
terms is relevant. We can conclude that in the low-temperature regime KBT ≪ Ω, the
first-order ”shot” noise is prevalent. There is an intermediate temperature regime Ω ≪
kBT ≪

√
ΩΓ in which the high-temperature ”shot” noise is prevalent, while in the high-

temperature limit
√
ΩΓ≪ kBT .
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G The adiabaticity conditions

In this section, we analyze the conditions on the instantaneous velocity and acceleration
according to which the physical process we are considering can be adiabatic. Following the
method put forward by [33], we extend the adiabatic expansion of the charge pumped up
to the third order and require that the first order in the expansion of the charge current is
much bigger than the higher order corrections. The first-order instantaneous current can
be rewritten in the form

Q(1)
α =

1

T0

∫ T0

0
dt

∑
i

Aα,i(t)
dxi
dt

. (158)

This is the adiabatic term, which can be interpreted in a geometrical manner (Brouwer’s
formula). The second order has two contributions

Q(2)
α =

1

T0

∫ T0

0
dt

(∑
i

B
(1)
α,i(t)

d2xi
dt2

+
∑
i,j

B
(2)
α,i,j(t)

dxi
dt

dxj
dt

)
. (159)

Using integration by part, the second order correction becomes

Bα,i,j = B
(2)
α,i,j −

∂B
(1)
α,i(t)

∂xj
. (160)

Exactly in the same way, from the third order we can distinguish 2 different terms:

⟨I(3)α (t)⟩ = ⟨I(3v)α (t)⟩+ ⟨I(3a)α (t)⟩, (161)

⟨I(3v)α (t)⟩ =
∑
i,j,k

Cα,i,j,k(t)
dxi
dt

dxj
dt

dxk
dt

, (162)

⟨I(3a)α (t)⟩ =
∑
i,j

Dα,i,j(t)
d2xi
dt2

dxj
dt

. (163)

In order for the process to be adiabatic, we must require that the first order in the expan-
sion of the charge current is much bigger than the higher order corrections:

|⟨I(1)α (t)⟩| ≫ |⟨I(2)α (t)⟩|, |⟨I(3v)α (t)⟩|, |⟨I(3a)α (t)⟩|. (164)

We translate this condition in terms of the coefficients. In this way, we can rewrite the

adiabaticity condition for the second-order correction defining a velocity limit v
(2)
lim,α(t) for

which it must be true that
|v(t)| ≪ v

(2)
lim,α(t). (165)

The velocity limit can be defined as

v
(2)
lim,α(t) =

|Aα(t)|
|Bα(t)|

, (166)

Aα(t) =
∑
i

Aα,i(t)ṽi(t), (167)

Bα(t) =
∑
i,j

Bα,i,j(t)ṽi(t)ṽj(t), (168)
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Figure 15: The adimensional function f2(x, y0) with respect to the variable x, for
y0 = 1

where ṽi =
vi
|vi| . For the third order correction in similar way

v
(3)
lim,α(t) =

√
|Aα(t)|
|Cα(t)|

, (169)

Cα(t) =
∑
i,j,k

Cα,i,j,k(t)ṽi(t)ṽj(t)ṽk(t). (170)

So, in the end we must require that

v(t)≪ min[v
(2)
lim, v

(3)
lim, ...]. (171)

Now, let’s examine these conditions on our peristaltic cycle, for which x1 = ϵd and x2 = δΓ.
We can extract an energy scale 1

Γ2 and express in terms of the adimensional variables
x = ϵd/Γ and y0 = δΓ/Γ

|Aα,1| =
2

πΓ

1± y0
2

∣∣∣∣ 1

x2 + 1
+

2x2

(1 + x2)2
− 2

(1 + x2)2

∣∣∣∣. (172)

In the same way, we can compute Aα,2. The result is

|Aα,2| =
1

4πΓ

∣∣∣∣ x0
1 + x20

∣∣∣∣, (173)

in terms of x0 = ϵ0/Γ. The results of the second-order coefficients are

Bα,11(t) =
2

πΓ3

1± y0
2

∂ϵA
2. (174)

The resulting condition for the derivative of ϵd is

ϵ̇d
Γ2
≪ f2(x, y0), (175)

where f2 is an adimensional function which is in fig.15 .
Now, let’s analyze the third-order corrections for the velocity. One can obtain the

expression of the coefficient

Cα,111 =
1

2πΓ5

1± y0
2

{(
1

(x− i)6
+

1

(x+ i)6

)
+ i

2

1 + x2

(
− 1

(x− i)5
+

1

(x+ i)5

)
−i 2

(1 + x2)2

(
− 1

(x− i)3
+

1

(x+ i)3

)
− 8

(1 + x2)4

}
.

(176)

31



SciPost Physics Submission

Figure 16: The adimensional function f3(x, y0) with respect to the variable x, for
y0 = 1

Figure 17: The adimensional function g(x, y0) with respect to the variable x, for
y0 = 1

The coefficient Cα,222 is also equal to 0.

Therefore, we can express the condition v(t)≪ v
(3)
lim as

ϵ̇d
Γ2
≪ f3(x, y0), (177)

where f3(x, y0) is in 16. Finally, let’s consider the limits on acceleration. From the
adiabatic expansion, we can infer that the coefficient Dα11 is

Dα11 =
1

3π

1± y0

2

{(
1

(x− i)5
+

1

(x+ i)5

)
− i

2

1 + x2

(
1

(x+ i)4
− 1

(x− i)4

)
−i 34

(1 + x2)2

(
1

(x+ i)2
− 1

(x− i)2

)}
.

(178)

The resulting condition on the acceleration is

ϵ̈d
Γ3
≪ g(x, y0) (179)

g(x, y0) is in (fig.17). These results appear to justify the claim that the adiabatic expan-
sion is well-defined along the entire cycle, provided that the appropriate bounds on the
derivatives of the time-dependent quantities are respected. However, repeating the same
reasoning with the current noise and the thermodynamic rates would signal that there
are divergences when one of the couplings with the two baths is switched off: ΓL = 0 or
ΓR = 0.
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