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We systematically investigate the finite size scaling behavior of the Rényi entanglement entropy
(EE) of several representative 2d quantum many-body systems between a subregion and its comple-
ment, with smooth boundaries as well as boundaries with corners. In order to reveal the subleading
correction, we investigate the quantity “subtracted EE” Ss(l) = S(2l)−2S(l) for each model, which
is designed to cancel out the leading perimeter law. We find that (1) for a spin-1/2 model on a
2d square lattice whose ground state is the Neel order, the coefficient of the logarithmic correction
to the perimeter law is consistent with the prediction based on the Goldstone modes; (2) for the
(2 + 1)d O(3) Wilson-Fisher quantum critical point (QCP), realized with the bilayer antiferromag-
netic Heisenberg model, a logarithmic subleading correction exists when there is sharp corner of the
subregion, but for subregion with a smooth boundary our data suggests the absence of the logarith-
mic correction to the best of our efforts; (3) for the (2 + 1)d SU(2) J-Q2 and J-Q3 model for the
deconfined quantum critical point (DQCP), we find a logarithmic correction for the EE even with
smooth boundary.

I. INTRODUCTION

The (Rényi) entanglement entropy between a subre-
gion and its complement encodes universal information
of the infrared physics of gapless systems, and gapped
systems with topological order. The most well-known
example is the leading contribution to the entanglement
entropy for a (1+1)d conformal field theory (CFT), which
scales logarithmically with the size of the subregion. The
coefficient of the logarithmic scaling is proportional to the
central charge of the CFT [1, 2]. In higher-dimensional
CFTs, the EE is dominated by the leading non-universal
perimeter law scaling, and it is the subleading terms that
may encode the universal information [3, 4]. For exam-
ple, in (2 + 1)d when the boundary of a subregion A has
corners with angles αi, we expect

SA(l) = al − s ln
l

ϵ
+O(1/l), (1)

where ϵ is some short-distance cutoff, and the logarithmic
correction coefficient s is a sum of contribution from each
corner: s =

∑
i s(αi). While the complete form of the

function s(α) is not known analytically in general, it was
shown that for α close to π, s(α) ∼ σ(π − α)2 and σ
is proportional to the stress tensor central charge of the
CFT [4, 5]. Thus, in a CFT, the logarithmic correction
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is expected to vanish when there are no sharp corners i.e.
α = π.
The EE can also have a universal subleading contri-

bution in an ordered phase that spontaneously breaks a
continuous symmetry, i.e., its low energy physics is dom-
inated by the Goldstone modes [6, 7]. The Goldstone
modes also lead to a logarithmic subleading contribution
to the EE, but the logarithmic term receives a contri-
bution from both the corners and the smooth boundary,
which is a sharp contrast with a CFT.
We are most interested in extracting the subleading

contributions to SA. Specifically, we study the 2nd Rényi

entropy S
(2)
A obtained from QMC simulations of 2d spin

models. Recent algorithmic advances in QMC calcula-
tions of Rényi EE [8, 9] make it possible to study the
scaling behavior of EE over a sufficiently large subre-
gion [8–16]. In particular, the data quality has reached
the level that is needed for the purpose of extracting sub-
leading corrections to the “perimeter law” scaling. How-
ever, even with the advanced algorithm, since SA is al-
ways dominated by the leading perimeter law, it is still a
challenge to reliably extract the subleading contributions.
Direct fitting with the leading perimeter law can indeed
reveal some information about the subleading contribu-
tions with finite system size, but it usually takes enor-
mous effort for data analysis.
To overcome this complexity, in this work, we investi-

gate the following “subtracted EE” [17]:

Ss(l) = SA(2l)− 2SA(l), (2)

where SA(2l) and SA(l) are the EE for subregions A with
size 2l and l with exactly similar shapes. The advantage

mailto:zymeng@hku.hk
mailto:xucenke@ucsb.edu
mailto:m.cheng@yale.edu


2

of the subtracted EE Ss(l) is that the leading perimeter
law scaling is supposed to be canceled out, which exposes
the logarithmic correction (if exists) as the leading con-
tribution:

Ss(l) = s ln
l

ϵ
+O(1/l). (3)

We will show that the subtracted EE makes the sub-
leading logarithmic contribution much more explicit for
various cases considered in this work. We also compare
the results from the subtracted EE and those from direct
analysis, including the leading perimeter law scaling.

We will systematically study the scaling of EE in sev-
eral representative spin models. One of our main objec-
tives is to establish reliable and systematic methods to
extract subleading contributions, with the subtracted EE
as the main tool for data analysis, and examine finite-size
effects using both the new method based on subtracted
EE and the more traditional fitting method. We study
logarithmic corrections to EE (or its absence) in the Néel
order and the O(3) Wilson-Fisher QCP and find results
consistent with expectations from theory. For the Néel
order, we find a logarithmic correction whose coefficient
is consistent with the theoretical prediction; for the O(3)
Wilson-Fisher QCP, we find that there is indeed a log-
arithmic correction when the boundary of the subregion
A has sharp corners, and our data suggests that the log-
arithmic correction is absent for a smooth boundary cut,
to the best of our efforts. We then apply the method
to analyze EE in J-Q-type spin models, which realizes
the putative DQCP between the Néel and valence-bond
solid (VBS) orders [18, 19], and demonstrate that the EE
exhibits logarithmic corrections even when the boundary
of the entangling region is completely smooth without
any corners, which is in sharp contrast to the theoretical
expectation of a CFT. In addition, the coefficient of the
logarithmic correction s ≈ −0.23 in the J-Q3 model is
very close to the one extracted from a square region with
four corners without adding a pinning field [10], though
the analysis in Ref. [10] was obtained using direct fitting
to (1) instead of using the subtracted EE.

We note that the same “subtracted” quantity which
reveals the desired subleading contribution can be de-
vised for other quantities such as the “disorder opera-
tor,” where a subleading logarithmic contribution is also
expected at a (2 + 1)d CFT [20–27].

II. MODELS

The von Neumann and the Rényi entanglement en-
tropy are defined as follows. Let A be a subregion of the
system, and LA is the linear size of A, shown in Fig. 1.
The von Neumann entanglement entropy SvN

A is defined

as

SvN
A = −Tr ρA ln ρA, (4)

and the n-th Rényi entropy S
(n)
A is defined as

S
(n)
A =

1

1− n
lnTr ρnA, (5)

where the ρA is the reduced density matrix of the con-
cerned quantum many-body system ρA = TrĀ{e−βH}
where Ā is the complement of A. In all cases we are
interested in, the leading contribution of SA (both von
Neumann and Rényi) is proportional to the linear size
LA when LA is large. Since the purpose of this work is
to reliably extract the subleading correction to the EE,
the coefficient of the perimeter-law term, which depends
on microscopic details, is not of interest to us.

FIG. 1. Illustrations of the entanglement subregions.
The left panel shows an entanglement region A (red shaded
area) with smooth boundaries. The right one illustrates a
square entanglement region A (blue shaded area) with four
π/2 corners. The lattice is periodic in both dimensions.

We will analyze three different models whose sublead-
ing contribution to the EE is best manifested in the “sub-
tracted EE” Ss(l) defined in Eq. (2).
(1). A 2d spin-1/2 model on a square lattice with

antiferromagnetic nearest neighbor interaction and fer-
romagnetic 2nd neighbor interaction. The ground state
of this model is known to be the Néel order [9]
The Néel order of a SO(3) invariant system has two

Goldstone modes. A phase with Goldstone modes is ex-
pected to have the following scaling of the Renyi EE [7]:

SA(l) = al − (sG + scorner) ln l +O(1/l). (6)

Here, the logarithmic correction contains two distinct
contributions. sG is “topological”, in the sense that it is
independent of the shape of A and is fixed by the number
of Goldstone modes:

sG = −nG

2
. (7)

This contribution has been verified numerically in
Refs. [11, 28, 29] and examined carefully with large-S
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calculations [30]. The other term, scorner is similar to the
logarithmic corner correction in CFT, and it has been
verified numerically in Refs. [31–34]. Typically, sG is
much larger than scorner. Hence, the total subleading log-
arithmic correction has an opposite sign compared with
that of a CFT, which will be discussed next. In fact, to
the best of our knowledge, an ordered phase with Gold-
stone modes is the only well-established theory in (2+1)d
with a positive logarithmic subleading correction to the
perimeter scaling.

(2). The bilayer square lattice Heisenberg model,
which under increasing the interlayer Heisenberg cou-
pling, goes through a quantum phase transition described
by the (2 + 1)d O(3) Wilson-Fisher CFT [33, 35, 36].
For a (2 + 1)d CFT, it is important to distinguish en-

tanglement subregions with smooth boundaries and those
with sharp corners on the boundary [3, 37, 38]. When the
boundary is smooth (e.g., a circle in the continuum, or
the bipartition cut in Fig. 1 (a) on a torus), we expect
that

SA(l) = al − γ +O(1/l), (8)

where γ is a constant that depends on the geometric
shape of A. On the other hand, when the boundary has
corners whose opening angles are αi (e.g. four α = π

2 cor-
ners in Fig. 1 (b)), we expect the scaling in Eq. (1), and
the logarithmic correction coefficient takes the following
form

s =
∑
i

s(αi). (9)

Both γ and s(α) are universal quantities for the CFT. As
already mentioned in the Introduction, we have s(π) = 0,
so the logarithmic term is absent for a smooth boundary,
which is consistent with Eq. (8). For a unitary CFT, it
can be shown on the general ground that [39–41]

svN(α) ≥ 0, s(n)(α) ≥ 0. (10)

(3). The “J-Q2” and “J-Q3” model which are ex-
pected to realize the “deconfined quantum critical point”
(DQCP) between the Néel order and the valence bond
solid (VBS) order.

The DQCP separates the Néel order with spontaneous
symmetry breaking (SSB) of the SO(3) spin rotation
symmetry and the VBS order with SSB of the lattice C4

symmetry. DQCP was proposed as a potential generic
unconventional quantum phase transition as it is impos-
sible within the traditional Landau’s paradigm [42]. It
was found that a direct transition between the Neel and
VBS orders can be realized in a spin-1/2 system (the
J-Q model) on a square lattice [18]. As a primary exam-
ple of the non-Landau phase transitions, the DQCP has
been proposed to host a number of remarkable proper-
ties, including an emergent SO(5) symmetry [43–47], and

various non-perturbative dualities [48, 49], and has be-
come a fruitful confluence point between various numeri-
cal, analytical and experimental approaches to quantum
magnetism [18, 19, 42–82].

On the other hand, whether the DQCP is indeed
a generic continuous transition (rather than a first-
order transition) is a long-standing open problem. It is
found through extensive QMC simulations that the J-
Q model exhibits a direct Néel-VBS transition, which
appears to be continuous for the largest system size
available [18, 19, 71]. However, violations of scaling
have been observed in correlation functions, and the
extracted critical exponents drift significantly with sys-
tem size [44, 58, 59], casting doubts on the conventional
scaling [60] and the continuous nature of the transition.
More recently, applications of the non-perturbative con-
formal bootstrap method reveal serious tension between
the numerically measured critical exponents and rigor-
ous bounds imposed by conformal symmetry and uni-
tarity [83–85]. Namely, the observed exponents can not
possibly correspond to any unitary conformal field theory
with a SO(5) symmetry, while SO(5) singlet operators are
all irrelevant, as demanded by the proposal of DQCP.
To reconcile the numerical results with theory, a num-
ber of scenarios have been put forward, such as pseudo-
criticality [48, 86–88] and multi-criticality [70, 76, 89, 90].

Recently, the EE in J-Q-type models at the quantum
critical point has been studied using the advanced in-
cremental algorithm [10]. Subregions with sharp corners
were considered, and the logarithmic subleading correc-
tion was extracted from direct fitting to Eq. (1), without
using the subtracted EE considered in the current paper.
The coefficient was found to be negative, violating the
positivity constraint Eq. (10). However, to identify the
origin of the logarithmic correction, one needs to study
the full angle dependence of s. In this work, we will add
an important new piece of information that was missing
in the previous study, that is, s for α = π, i.e. when the
entangling subregion has a smooth boundary. We will
show that this case also exhibits a logarithmic correc-
tion, with the coefficient very close to the one found for
regions with corners. Hence, the logarithmic correction
found previously at the DQCP should mostly arise from
the smooth boundary rather than the corners.

III. NUMERICAL METHOD AND FITTING
SCHEMES

We implement the non-equilibrium incremental algo-
rithm [8–11] for the 2nd Rényi EE calculation in large-
scale QMC simulations for quantum spin system un-
der the framework of stochastic series expansion(SSE)
QMC [91, 92]. In our algorithm, we calculate the second

Rényi EE S
(2)
A = − lnTr ρ2A which can be re-expressed as
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− ln
Z

(2)
A

Z(2) where Z(2) is two independent replicas in SSE

QMC’s configuration space and Z
(2)
A is two replicas with

region A glued together for the boundary condition in
imaginary time. The ratio is related to the free energy
difference between the two systems represented by the

two partition functions by ∆F = − ln
Z

(2)
A

Z(2) . The non-
equilibrium incremental algorithm measures this quan-
tity by designing a non-equilibrium process from Z(2) to

Z
(2)
A and calculates the total work (W ) done during the

process. Although in general for a non-equilibrium pro-
cess, W ≥ ∆F , according to Jarzynski’s equality [93], the
two quantities can be related by ∆F = − ln

(〈
e−βW

〉)
where ⟨· · · ⟩ denotes the average over many independent
non-equilibrium processes. Furthermore, we also improve
the speed of this protocol by splitting the non-equilibrium
process into many smaller processes, each of which is con-
ducted by a separate CPU. Combining all these efforts,
we are able to measure the EE with very high precision
and large enough system sizes to analyze its sublead-
ing corrections to area law. More details of the imple-
mentation are given in our previous methodology refer-
ences [11]. We also note that the latest developments
of the algorithm have also enabled similar EE compu-
tations both in incremental SWAP operator [94] and in
interacting fermion systems [12–14, 16].

In the following, we present analysis of the 2nd Rényi

entropy S
(2)
A in three examples. The models are defined

on a square lattice of Lx × Ly with periodic boundary
conditions (Fig. 1). We will consider two types of subre-
gion A:

1. a square subregion of size Lx/2 × Ly/2 with four
corners,

2. a subregion of size Lx/2×Ly with a smooth bound-
ary.

We shall denote the linear size of the entangling sub-
region by l. We are interested in the logarithmic correc-
tions to the perimeter law scaling. The most important
improvement compared with previous studies is that, we
will investigate a new quantity dubbed “subtracted EE”

Ss(l) = S
(2)
A (2l) − 2S

(2)
A (l), and examine its scaling ver-

sus ln(l) and 1/l. The subtraction cancels out the leading
perimeter law term in the EE and explicitly reveals the
nature of the subleading term. If the EE data follows Eq.
(1), then we should have

Ss(l) = s ln l − c. (11)

As we shall see, the logarithmic subleading term, if it
does exist, will become evident from Ss(l).
While Ss(l) allows direct access to the subleading cor-

rections, we will also consider direct fitting to

S(2)(l) = al − s ln l + c, (12)

as in this way, we can make use of all the available data
points in the fitting. To expose the subleading correction,
we rewrite Eq. (12) as

S(2)(l)

l
= a+

c

l
+ s

ln(1/l)

l
, (13)

and plot S(2)(l)
l versus 1/l. In this way, the fitting func-

tion becomes y = sx lnx+ cx+ a, and now it is evident
that the logarithmic correction sx lnx, if it exists, would
dominate the cx term for small x.
Graphically, because d2y

dx2 = s
x , the function is strictly

convex/concave for positive/negative value of s, which
can be inferred from the plots. For a CFT with smooth
boundaries, as a log-correction is not expected, in the
ideal case we should observe that the slope of the curve
converges to c as x (or 1/l) approaches 0, without any
obvious convex/concave feature.
To evaluate the finite size corrections, we will take the

following strategies:

1. When we perform the curve-fitting on the data for
different system sizes, we keep the largest system
sizes fixed and progressively exclude the data for
smaller system sizes in the fitting process. We de-
note the smallest system size retained in the fitting
process as Lmin. We examine how s changes as
Lmin is increased and consider the last stable fit-
ted value of s (with largest Lmin and controllable
error bar) as the reference value with minimized
finite-size effects. This procedure is performed on

the curve fitting of both the S(2)(l)
l versus 1/l data

and the subtracted EE data.

2. We consider the possibility that the dominant sub-
leading term is not logarithmic, but a 1/l term from
pure finite size correction. That is, S(2) takes the
form

S(2)(l) = al + c+
b

l
, (14)

or in terms of the subtracted EE:

Ss(l) = −3b

2l
− c. (15)

In Sec. IVD, we will compare the quality of fitting
to the data between Eq. (11) and Eq. (15). The
quality of fitting is evaluated by chi-squared value
per degree of freedom χ2/k (where the total number
of degrees of freedom k equals the number of data
points minus the number of fitting parameters). If
Eq. (11) already has better performance than Eq.
(15), then it suggests that the log-correction better
fits the data than the 1/l-form finite-size correc-
tions. On the contrary, if Eq. (15) fits better to
the data, then it suggests that the logarithmic cor-
rection is actually absent.
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In all the models studied in this work, we find that, ex-
cept for the O(3) CFT with smooth boundaries, Eq. (11)
fits better than Eq. (15), according to their chi-squared
values. Most importantly, contrary to the O(3) CFT, we
find that at the DQCP with smooth boundary for both
the J-Q2 and J-Q3 models, there is a clear logarithmic
correction to the perimeter-law scaling, with the avail-
able system sizes. And the coefficient of the logarithmic
correction seems model-dependent, i.e. it is different be-
tween the J-Q2 and the J-Q3 model.

(a)

(b) (c)

FIG. 2. The second Rényi entropy versus boundary
length in the Néel order with smooth boundaries. (a)

S
(2)
A /l versus 1/l for different boundary lengths. The black

line is fitted from Eq. (12). The inset shows the fitted s with
respect to the smallest retained system size 1/Lmin in the
fitting process, and the red line denotes the expected results
of −s = NG

2
= 1. (b) The subtracted EE S

(2)
A (2l) − 2S

(2)
A (l)

versus ln(l) for different boundary length. The slope of the
fitted red line in (b) indicates the log-coefficient s. (c) The
fitted s from (b) with respect to the smallest retained system
size 1/Lmin in the fitting process.

IV. NUMERICAL RESULTS

A. The (2+1)d Néel phase

We compute the Rényi EE for a spin-1/2 model on a
square lattice with both antiferromagnetic nearest neigh-
bor interaction, as well as an extra 2nd neighbor ferro-
magnetic coupling, whose ground state is the Neel order.

(a)

(b)

(c) (d)

(2+1)d O(3)Néel Dimer product state

FIG. 3. 2nd-order Rényi entropy versus boundary
length at the (2+1)d O(3) QCP of bilayer Heisen-
berg model. (a) Illustration of the bilayer Heisenberg model,
which hosts the (2+1)d O(3) phase transition by tuning the
inter-layer coupling strength J⊥/J . (b) EE for both smooth
boundary and boundary with corners for different boundary
lengths. The black line is fitted from Eq. (12) directly. The
inset shows the fitted s with respect to the smallest retained
system size 1/Lmin in the fitting process. (c) The subtracted
EE Ss

A(l) versus ln l. The slope of the fitted red line in (c) van-
ishes at large l within error bars, indicating no log-corrections.
Also, the six data points in (c) fit better with a 1/l subleading
correction rather than a logarithmic correction, based on the
χ2/k value. (d) The fitted s from data in (c) with respect
to the smallest retained system size 1/Lmin in the fitting pro-
cess. The red line denotes the expected results for the smooth
boundary at QCPs, s = 0. The blue line indicates the previ-
ously determined log-coefficient with four π/2 corners at the
(2 + 1)d O(3) QCP.

The Hamiltonian is written as

H = J
∑
⟨i,j⟩

Si · Sj − J2
∑

⟨⟨i,j⟩⟩

Si · Sj , (16)

where ⟨i, j⟩ and ⟨⟨i, j⟩⟩ label the nearest-neighbor and
2nd neighbor bonds on the square lattice. For the stan-
dard Heisenberg model (J2 = 0), the Rényi EE suffers
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from a strong finite-size effect. However, adding a 2nd
neighbor FM coupling to the system is found to enhance
the Néel order and significantly reduces the finite size
effects in the EE data [9].

We thus perform the simulations at J = J2 = 1 on a
L/2×L torus with entangled subregion A chosen to be a
L/2×L/2 cylinder, and l = L. Our EE results shown in
Fig. 2 are obtained from system sizes of L = 8, 12, . . . , 56
and β = L. Since the ground state of the model sponta-
neously breaks the spin rotation symmetry with nG = 2
Goldstone modes and there are no sharp corners on the
entanglement boundary, according to Eq. (6) and (7),
we expect to obtain a subleading ln l correction to the
perimeter law with s = −1.
As shown in Fig. 2, we perform the fitting of both

S
(2)
A /l versus 1/l, as well as Ss(l) versus ln l. We grad-

ually exclude the data of smaller system sizes in the fit-
ting process. The fitting results are shown in the inset
of Fig. 2 (a) and Fig. 2(c), respectively, and we observe
that the fitted values of −s concerning the smallest sys-
tem size Lmin gradually converge to the expected value
of 1 within error bars for both fitting strategies.

Furthermore, by comparing the fitting of subtracted
EE with respect to ln l (Fig. 2(b) ) and 1/l (Fig. 5(a))
respectively, it is evident that the subtracted EE fits lin-
early with ln l rather than 1/l. Besides visual compari-
son, we will further examine the fitting quality of the two
cases according to their chi-squared values in Sec. IVD.

B. (2+1)d O(3) QCP in bilayer antiferromagnetic
Heisenberg model

The (2+1)d O(3) phase transition can be realized in
a bilayer Heisenberg model [33, 35, 36] defined on a bi-
layer square lattice with nearest-neighbor antiferromag-
netic intra-layer coupling J and inter-layer coupling J⊥,
as shown in Fig. 3 (a). The Hamiltonian is

H = J
∑
⟨i,j⟩

(Si,1 ·Sj,1+Si,2 ·Sj,2)+J⊥
∑
i

Si,1 ·Si,2, (17)

where ⟨i, j⟩ denote the nearest neighbor bonds. We
choose g = J⊥/J as the tuning parameter, and previous
studies have shown that the critical point gc = 2.5220(1)
separates the Néel ordered phase from the inter-layer
dimer product phase (i.e. the disordered phase), and
this transition belongs to the (2 + 1)d O(3) universality
class [23, 95].

In the simulation, we compute the 2nd Rényi EE at
gc on a L × L square lattice with system sizes L =
4, 8, 12, . . . , 56 and inverse temperature fixed at β = L.
Here, we consider both smooth cuts (i.e. regions with a
smooth boundary) and square cuts with corners, as illus-
trated in Fig. 1 (a) and (b). In both cases, the boundary
length of the entanglement region A is l = 2L. As shown

in Fig. 3 (b), there is a visible difference between the EE
scaling behavior for smooth and square cuts. The more
obvious convex curve for EE for the square cut suggests
a subleading logarithmic correction with a positive s.

The subtracted EE Ss(l) vs ln l is shown in Fig. 3 (c)
For the subregion with corners, Ss(l) scales relatively lin-
early in ln l, with a slope s ≈ 0.098 if all data points are
used in the fitting. In addition, the fitted s remains ap-
proximately unchanged within errorbars as one increases
Lmin, as shown both in the inset of Fig. 3(b) from direct
fitting, and Fig. 3(d) fitted from Ss vs ln l in Fig. 3 (c).

In contrast, for the subregion with a smooth boundary,
after the first few data points, Ss(l) appears to fluctuate
around a constant value, suggesting the absence of a log-
arithmic correction. Indeed, the fitted s shows significant
variations against changing Lmin, and for the largest al-
lowed Lmin we obtained s = 0 within error bars. In fact,

the behavior of S
(2)
A (l) with smooth boundary seems to

approach the behavior described by Eq. (8) with large l,
i.e. there is a constant term γ in addition to the perimeter
law, though the data points with large l have consider-
able error bars.

C. SU(2) DQCP with smooth boundary

This section presents the scaling behavior of the EE
with smooth boundaries at the Néel-to-VBS DQCP in
the spin-1/2 J-Q models. In Ref. [10], the scaling be-
havior of the 2nd Rényi entropy for a square region at
DQCP of the J-Q3 model with four π

2 corners has been
investigated. If the DQCP is indeed a unitary CFT, the
scaling form of the Rényi entropy with an entanglement
region A is expected to follow Eq. (12) and the coeffi-
cient s of the logarithmic correction arising from sharp
corners must be positive. In Ref. [10], s is found to be
negative if we try fitting the data with the form Eq. (12).
However, since Ref. [10] only analyzed data for angle π/2,
it is unclear whether the fitted s can be interpreted as
corner contributions. To clarify this issue, in this section,
we consider the Rényi EE at the DQCP for a subregion
with smooth boundaries.

We measure the 2nd Rényi EE S(2) in both the J-Q2

and J-Q3 model with the following Hamiltonians

HJ-Q2 = −J
∑
⟨ij⟩

Pi,j −Q
∑
⟨ijkl⟩

PijPkl,

HJ-Q3 = −J
∑
⟨ij⟩

Pi,j −Q
∑

⟨ijklmn⟩

PijPklPmn,
(18)

where Pij =
1
4 − Si · Sj is the two-spin singlet projector,

and the ground state of the Q term is a valance-bond-
solid (VBS) state, as shown in Fig. 4 (a). The Néel-to-
VBS phase transition occurs at Q/(J +Q) = 0.59864 for
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(a)

(b)

(c) (d)

Néel VBSDQCP

FIG. 4. The 2nd Rényi entropy versus boundary
length at the DQCP of the J-Q models with smooth
boundaries. (a) Lattice model with J , Q2 and Q3 terms.
A DQCP separates the Néel phase and VBS phase. (b) Scal-
ing of EE against boundary length l in both J-Q2 and J-Q3

models with smooth boundaries. The black line is the fitted
line of Eq. (12). The inset shows the fitted s concerning the
smallest retained system sizes in the fitting process. (c) shows

the subtracted EE S
(2)
A (2l) − 2S

(2)
A (l) versus ln l. The slope

of the fitted red line in (c) indicates the log-coefficient s. (d)
shows the fitted s from (c) concerning the smallest retained
system sizes.

the J-Q3 model [23], and at Q/(J + Q) = 0.961 for the
J-Q2 model [19].

We perform simulations on L× L square lattices with
sizes L = 8, 12, 16, . . . , 60 at the DQCPs of the J-Q mod-
els. The entangled subregion A is half of the torus, a
cylinder with smooth boundaries of length l = 2L. Fig. 4

(b) plots S
(2)
A /l against 1/l for both models, and the

curves are clearly concave, suggesting a negative s. The
subtracted EE Ss(l) exhibits linear scaling against ln l
as illustrated in Fig. 4 (c), in contrast with its apparent

non-linear behavior with 1/l as shown in Fig. 5 (c). The
fitted slope of Fig. 4 (c) with all available data points
is found to be s = −0.224(5) for the J-Q3 model and
s = −0.289(6) for the J-Q2 model, see Table. I. We have
also examined the effect of changing Lmin. As shown in
the inset of Fig. 4(b) and Fig. 4 (d), s for the DQCP
in the J-Q3 model seems stable against Lmin, while the
one for the J-Q2 model drifts slightly as Lmin increases.
Our results show that even for subregions without sharp
corners, within the available system size, the scaling of
Rényi EE at the Néel-to-VBS DQCP still has a logarith-
mic correction to the leading perimeter law scaling, with
a positive coefficient. It is also worth noting that the
J-Q2 and J-Q3 give different fitted values of s, suggest-
ing a model-dependent s for DQCP.

D. Quality of fitting analysis

(a) (b) (c)

FIG. 5. The fitting of the subtracted EE S
(2)
A (2l) −

2S
(2)
A (l) v.s. 1/l. (a) The subtracted EE of the Néel phase

for subregion A with a smooth boundary; (b) the O(3) QCP
with both smooth boundary and boundary with corners; (c)
the DQCP of the J-Q models with smooth boundary. The
fits in these three panels have lower quality compared to their
counterparts in Fig. 2 (b), Fig. 3 (c), and Fig. 4 (c), except for
the smooth boundary case of O(3) QCP, which fits better with
a 1/l subleading correction. The corresponding χ2/k values
are listed and compared with the ln l fittings in Table I.

Fitted s with
Lmin = 8

Fitted s with
Lmin = 16

χ2/k
ln l 1/l

Néel, smooth −0.982(3) −0.97(1) 0.31 481.9

O(3), smooth 0.056(7) −0.004(24) 2.38 1.30

O(3), corner 0.098(4) 0.088(18) 0.23 2.66

J-Q2, smooth −0.289(6) −0.35(2) 3.38 25.2

J-Q3, smooth −0.224(5) −0.24(2) 0.49 13.1

TABLE I. Obtained subleading coefficients and χ2/k
values. The second and third columns present the fitted log-
coefficient with Lmin = 8, 16, respectively. Error bars in the
parentheses represent the uncertainty in the last significant
digit, e.g., −0.004(24) means −0.004 ± 0.024. The last two
columns list the χ2/k values for the fitting of the subtracted
EE data with Lmin = 8, using Eq. (3) (ln l correction) and
Eq. (15)(1/l correction), respectively.
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In this section, we study the quality of the fitting. One
quantitative way of measuring the quality of the data
fitting to a model is through the χ2 value per degree
of freedom. Suppose we have data points (xi, yi), i =
1, 2, . . . , N fitted to a model y = f(x) with r fitting pa-
rameters, then χ2 is defined as

χ2 =

N∑
i=1

(f(xi)− yi)
2

σ2
i

, (19)

Here σi is the uncertainty of data yi. k = N − r is the
effective number of degrees of freedom. If the data were
indeed given by the fitting function with random errors,
then one expects that for sufficiently large k, χ2/k should
be close to 1. More precisely, χ2/k should be typically
distributed within the range [1 −

√
2/k, 1 +

√
2/k]. A

larger value of χ2/k suggests underfitting, and a smaller
value of χ2/k does not necessarily imply good fitting but
can also suggest overfitting or problematic uncertainties
in the data [96, 97]. For our problem, we always have k =
4 for the analysis of subtracted EE, so χ2/k is typically
distributed within [1− 1/

√
2, 1 + 1/

√
2] ≈ [0.3, 1.7] for a

good fit.
We compare the fitting of the subtracted EE with the

ln l form to that with a 1/l form to identify whether the
subleading correction we observe is truly logarithmic.We
fit the subtracted EE, Ss(l) with respect to linear func-
tions of ln l and 1/l, respectively, and compare their fit-
ting qualities. We list the obtained χ2/k values and the
fitted subleading coefficients in Table. I. We can see that
the case of the (2+1)d O(3) QCP with a smooth bound-
ary is an outlier, as it is the only case whose subtracted
EE data fits better with 1/l, i.e. Eq. (15).

V. DISCUSSIONS

In this work, we study subleading corrections to the EE
for several different models. We introduce the quantity
“subtracted EE,” which cancels out the leading perime-
ter law contribution and explicitly reveals the sublead-
ing correction. We demonstrate that the subtracted EE
gives the desired universal logarithmic correction in sev-
eral cases, including the Goldstone phase and the O(3)
CFT, where the subregion has sharp corners. We also
found that the subtracted EE at the DQCP scales lin-
early with ln l for the available system sizes.
Here, we discuss one possible explanation for the ob-

served ln l scaling at the DQCP. Since our numerical sim-
ulations are done on finite systems, it is important to
further understand finite-size corrections to the formula.
Theoretically, this question has been studied in the Gold-
stone phase, and the EE with finite-size corrections takes
the following form [7, 29]:

SA(L) = aL+
nG

2
ln
[(
ρs(L)L

)1/2(
I(L)L

)1/2]
+ c. (20)

Here ρs(L) and I(L) are the finite-size value of the spin
stiffness and the transverse spin susceptibility, respec-
tively. Following conventional finite-size scaling we can
expand ρs(L) = ρs + u

L + · · · and similarly I(L) =
I + v

L + · · · , and for L ≫ u
ρs
, v
I one recovers

SA(L) = aL+
nG

2
lnL+ c′ +O

( 1

L

)
. (21)

However, if ρs(L) and I(L) have unconventional finite-
size scaling behavior, e.g. ρs(L)L ∼ I(L)L ∼ Lx with
x ̸= 1, then the coefficient of the logarithmic correction
will instead becomes nG

2 x. This kind of unconventional
finite-size scaling has been indeed observed in the J-Q2

model [98] where both ρs(L)L and I(L)L scale as L0.285

at the DQCP. It would then give s = −0.285 (for nG = 2)
when L is big enough, which is close to the value found
in this work. It would be worth investigating this picture
further in the future, as well as other possible explana-
tions of the logarithmic correction.
In this paper, we have focused on the logarithmic

subleading corrections. For a real (2+1)d CFT with
a smooth boundary, the subleading correction to the
perimeter law is a constant γ, which depends on the geo-
metric shape of the global spatial manifold, as well as the
subregion. In the O(3) CFT example, we have already
discussed in Sec. IVB that for the smooth boundary case
our data analysis suggests that a logarithmic correction
is absent, and if we fit the data with Eq. (15) we find
γ ≈ −0.04 ± 0.01 with Lmin = 8 (see Fig. 5 (b)), and
γ ≈ −0.07 ± 0.03 with Lmin = 16, which is summarized
in Table. II. Note that this constant correction was found
to be γ ≈ 2.25 for the free O(3) scalar theory [99] on the
same geometric set-up, which differs significantly from
our numerical result, while it is usually expected that
the O(3) Wilson-Fisher fixed point is close to the free
boson fixed point. This obvious difference warrants fur-
ther theoretical and numerical analysis in the future.

Lmin = 8 Lmin = 12 Lmin = 16

Fitted γ,
O(3) smooth

-0.04(1) -0.04(2) -0.07(3)

TABLE II. Fitted γ in Eq. (8) using Eq. (15) at O(3)
QCP with smooth cut. The second, third, and fourth
columns present the fitted constant term γ with Lmin =
8, 12, 16, respectively.
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