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Abstract

We consider the field theory that defines a perfect incompressible 2D fluid. One
distinctive property of this system is that the quadratic action for fluctuations around
the ground state features neither mass nor gradient term. Quantum mechanically
this poses a technical puzzle, as it implies the Hilbert space of fluctuations is not a
Fock space and perturbation theory is useless. As we show, the proper treatment
must instead use that the configuration space is the area preserving Lie group SDiff.
Quantum mechanics on Lie groups is basically a group theory problem, but a harder
one in our case, since SDiff is infinite dimensional. Focusing on a fluid on the 2-torus
T 2, we could however exploit the well known result SDiff(T 2) ∼ SU(N) for N → ∞,
reducing for finite N to a tractable case. SU(N) offers a UV-regulation, but physical
quantities can be robustly defined in the continuum limit N → ∞. The main result of
our study is the existence of ungapped localized excitations, the vortons, satisfying a
dispersion ω ∝ k2 and carrying a vorticity dipole. The vortons are also characterized by
very distinctive derivative interactions whose structure is fixed by symmetry. Departing
from the original incompressible fluid, we constructed a class of field theories where
the vortons appear, right from the start, as the quanta of either bosonic or fermionic
local fields.
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1 Introduction

Symmetries play a central role in the characterization of the universality classes of
infinite systems. When non-linearly realized, or spontaneously broken, symmetries
play in some sense an even greater role. That is because of Goldstone theorem [1, 2] in
all its variants, classical or quantum and relativistic or non-relativistic, which controls
the occurrence of soft modes as well as the structure of their interactions. The latter,
in particular, are controlled by field derivatives in such a way that they are weak at
low momentum, while higher order effects are organized in a systematic derivative
expansion. Systems with spontaneously broken continuous symmetries thus ideally
implement the concept of Effective Field Theory (EFT) [3].

In its relativistic invariant incarnation, that is on backgrounds respecting the Poinca-
ré group, Goldstone theorem is particularly neat and powerful [4, 5]. The set of light
degrees of freedom is in one to one correspondence with the broken symmetry gen-
erators, while Lorentz invariance nails their dispersion relation to the light cone and
strongly constrains their interactions. The chiral Lagrangian of QCD mesons beauti-
fully concretizes the concept, with the added illustrative benefits stemming from the
presence of small breaking effects, (quark masses and the fine structure constant) and
from the relevance of topology [6].

The cases where relativistic invariance, boosts in particular, is also spontaneously
broken correspond instead to systems at finite density. Intuitively that is because
at finite density there exists a preferential inertial frame. Here the implications of
Goldstone theorem are less tight and consequently the zoology of options is much richer.
In particular the number of mandated soft degrees of freedom is not in correspondence
with the number of broken generators, and is actually normally smaller [7, 8]. Moreover
the latter are not necessarily spinless bosons, but they can have any helicity (see e.g.
[9]), and even be composed of two ungapped fermions, like it happens in Fermi liquids
[10]. Similarly the dispersion relation is not fixed and frequencies can range from
linear or quadratic in momentum to gapped, with the gap completely fixed by group
theory constraints [11, 12, 13, 14]. Nonetheless, beside this variety, the long wavelength
fluctuations of basic quantities like energy and charge density is always controlled by
ungapped modes. The fact that sound waves universally satisfy an ungapped dispersion
relation is just a simple consequence of their being associated with the spontaneous
breakdown of the Poincaré (or Galilei) symmetry.

One remarkable implication of what we just outlined is that finite density systems
can be classified according to patterns of spontaneous symmetry breaking [15]. Focus-
ing on systems at (virtually) zero temperature, the resulting universality classes should
expectedly be Quantum Field Theories whose low energy quanta correspond to the soft
hydrodynamic modes. Such universality classes should tell us what states of matter are
at all possible according to the broad principles of relativity and quantum mechanics.
Developing this knowledge may perhaps sound academic when aiming at systems that
can be concretely created in a laboratory, where besides the grand principles, a reality
just made of electrons and nuclei also matters. However if one considers the early
stages of the universe, of which we still know little, it seems sensible to entertain the
possibility for more exotic dynamics, and thus ask what properties could the cosmic
medium then have according to basic principles.

This paper is devoted to the perhaps most obvious finite density system, the perfect
fluid. Its characterization in terms of symmetries and its classical Lagrangian descrip-
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tion have been discussed multiple times in the literature (see for instance [16, 17, 18,
19]). However, the quantum description of the perfect fluid poses basic conceptual is-
sues, as was discussed in [20] without reaching any firm conclusion. Indeed one option
left open by that study is that the perfect fluid does not make sense as an Effective
Quantum Field Theory, that is as a closed quantum system at zero temperature. That
result would match the empirical observation that fluids transition to other phases, for
instance superfluid or solid phases, when cooled to sufficiently low temperature. But
another option could be that the perfect quantum fluid does make sense, though in a
very non-trivial manner, such that it is not immediate to identify a physical system
in its universality class. In this paper we shall reconsider the problem and explicitly
construct a quantum mechanical system that consistently realizes the dynamics of the
perfect fluid in two spacial dimensions. As we shall see, in accord with the second
option mentioned above, the result is quite non-trivial when comparing to the classical
field theory description given for instance in ref. [20]. Our construction, honestly, does
not address all the questions, but it provides concrete results and predictions, building
upon which further progress can hopefully be made. 1

We would now like to illustrate the difficulty posed by the quantum mechanical
treatment of the perfect fluid. To help make our point, we shall first review the
symmetry based characterization of the simplest finite density systems.

1.1 Superfluids and Solids

From a symmetry perspective, the simplest finite density system is undoubtedly the
(relativistic) superfluid. Besides the Poincaré group ISO(3, 1) generated by space-
time translations Pµ, Lorentz boosts Ki and rotations Ji, the corresponding system
is endowed with an internal U(1)Q symmetry (either compact or not) generated by a
charge Q. The superfluid state can then be abstractly characterized as a configuration
that realizes the spontaneous breaking ISO(3, 1) × U(1)Q → ISO(3) ×H ′ [22]. Here
ISO(3) is the euclidean group of rotations and translations in 3D while H ′ is a residual
time translation generated by H ′ = P0 − µQ. This pattern of symmetry breaking
dictates a single soft Goldstone mode. The long distance effective description can be
constructed by considering the theory of a single scalar field φ that shifts under U(1)Q:
φ(x) → φ(x) +α. The most general lowest derivative Lagrangian is given by the most
general function of the ISO(3, 1)× U(1)Q invariant X ≡ ∂µφ∂

µφ

L = F (X) . (1)

A superfluid state is then obtained by considering the solution φ = µt, which realizes
ISO(3, 1) × U(1)Q → ISO(3) × H ′, and by expanding around it: φ(x) = µt + π(x).
The equation of state is in one-to-one correspondence with the form of the function
F , as the latter controls the energy momentum tensor. However F also controls the
properties and the interactions of the fluctuation π. Therefore the equation of state
controls not only the dispersion relation of π but also the scattering amplitudes of
the π quanta at lowest order in the derivative expansion. In particular, the dispersion
relation has generically the form ω = csk, with 0 < cs < 1, while the interactions are

1A significant part of this paper, in particular sections 2-3 and 6, is based on results derived in a previous
abandoned project [21]. The broader picture we have now developed gives us sufficient confidence to present
all our results.
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controlled by derivatives. At the quantum level the low energy states of the system
are therefore given by a Fock space of weakly coupled quanta.

On the background solution φ = µt, time translations are non-linearly realized and
φ is in one-to-one correspondence with t. The scalar field of a superfluid can thus be
viewed as a clock. That directly connects the superfluid to the simplest incarnation
of inflation, where a slow rolling scalar field clocks the evolution of the universe. In
fact slow roll inflation can be viewed as a slightly deformed superfluid where the shift
symmetry φ(x) → φ(x) + α is explicitly broken by an approximately flat potential.

Another relevant simple example is provided by a homogeneous solid [18, 23]. Three
scalars ϕI (I = 1, 2, 3) now play the role of rulers in space. That is realized by assuming
the internal shift symmetry ϕI → ϕI + αI and a background configuration linear in
the spacial coordinates: ϕI = µIjx

j . Further assuming internal rotational symmetry

ϕI → RIJϕ
J , with RIJ ∈ SO(3), and taking a solution with µIj = µδIj , isotropy is

added to homogeneity. The internal symmetry in the latter case is the euclidean group
ISO(3) in ϕ-space and the solution operates the spontaneous breaking of Poincaré
×ISO(3) to a diagonal ISO(3)′. At the lowest derivative order an invariant action is
constructed through the bilinears XIJ = ∂µϕ

I∂µϕJ . Focusing on the special case of an
isotropic solid, the dependence is further limited to invariants of the internal SO(3),
which can be taken to be Ik ≡ TrXk for k = 1, 2, 3. The most general Lagrangian for
a relativistic homogeneous and isotropic solid can then be written as

L = F (I1, I2, I3) . (2)

The fluctuations around the background are described by a field πI(x) transforming as
a vector under the residual ISO(3)′: ϕI(x) = µxI+πI(x). At the quantum level the low
energy states of the system are again given by a Fock space of weakly coupled quanta.
One main difference with respect to the superfluid is that now phonons come in three
polarizations, one longitudinal and two transverse, with linear dispersion relations (and
in general different speeds of sound for the longitudinal and transverse modes).

1.2 The Fluid and its puzzling Quantum Mechanics

The natural next case to consider is the subject of this paper: the perfect fluid [18].
This can be viewed as a very special limit of the solid, where the internal symmetry
ISO(3) is extended to the full group of volume preserving diffeomorphisms SDiff

ϕI → f I(ϕ) ,

∣∣∣∣
∂f

∂ϕ

∣∣∣∣ ≡ det

(
∂f I

∂ϕJ

)
= 1 . (3)

At the lowest derivative order, the Lagrangian is now constrained to purely depend on
the determinant of XIJ = ∂µϕ

I∂µϕJ

L = F (X) , X ≡ det(XIJ) . (4)

Contact with the standard description of relativistic fluids (see for instance the treat-
ment in [24]) is then made by first defining the entropy current Jµ [19] via

Jµdx
µ ≡ ∗ 1

6
ϵIJK dϕ

I ∧ dϕJ ∧ dϕK . (5)
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Jµ is conserved (∂µJ
µ = 0) by construction, that is independently of the equations of

motion. One also has X = −JµJµ so that Jµ =
√
Xuµ, with uµ a unit norm 4-vector

(uµuµ = −1):
√
X and uµ have then the natural interpretation of respectively entropy

density and fluid 4-velocity. The latter interpretation is also consistent with the form
of the energy momentum tensor, which is indeed found to be that of a relativistic fluid
with 4-velocity uµ

Tµν = (p+ ρ)uµuν + p ηµν (6)

where energy density and pressure are respectively given by ρ = −F (X) and p =
F (X)− 2F ′(X)X 2. Finally one finds that the equations of motion dictated by eq. (4)
are precisely equivalent to energy momentum conservation ∂µT

µν = 0. Together with
the trivial equation ∂µJ

µ = 0 this shows the full equivalence of our system to a rela-
tivistic fluid in its ordinary description.

The effective field theoretic description of (relativistic) fluids offers an alternative
perspective on standard results and also a systematic methodology to address concrete
physics questions. For instance, Kelvin’s Theorem, which basically states the convec-
tive conservation of vorticity (see [18] for a relativistic discussion), here coincides with
Noether’s theorem for the local currents of the SDiff symmetry. Instances of appli-
cations include the study of the effects of global symmetries and of their anomalies
[19, 25], the systematic description of vortex-sound interactions [26], the computa-
tion of relativistic corrections to sound emission from turbulent flow [26] and also the
non-linear treatment of cosmological density perturbations [27].

All the concrete results so far have been obtained treating eq. (4) classically. It is
thus natural to ask where a quantum treatment would take us. In the case of solids and
superfluids, as we have mentioned, quantum mechanics leads us to the known grounds
of a weakly interacting QFT for the phonon quanta. However, as we shall now review,
this ordinary route is barred in the case of the fluid. This very fact is what makes the
issue of the quantized perfect fluid interesting: does it make sense? And if it does,
what is it?

The basic novelty of fluids, compared with the other finite density systems, is
appreciated by studying fluctuations around the homogeneous isotropic solution: ϕI =
xI + πI(x). Expanding eq. (4) at quadratic order, one finds a Lagrangian L(2) of the
form

L(2) ∝ π̇I π̇I − c2s(∂Iπ
I)2 ≡ (π̇)2 − c2s(∇ · π)2 (7)

where, given πI transforms as a vector field under the unbroken ISO(3), we used 3D
vector calculus notation. We can now decompose π into longitudinal and transverse
components, π = π⊥ + π∥, satisfying respectively ∇ · π⊥ = 0 and ∇ ∧ π∥ = 0. By
eq. (7) the corresponding waves then satisfy the dispersion relation

ω∥(k) = csk ω⊥(k) = 0 . (8)

This result expresses the well known fact that in a classical fluid only longitudinal waves
propagate with a finite sound speed. The degenerate dispersion relation of transverse
modes corresponds to the existence of non propagating stationary vortex configura-
tions. An example of that is a vortex flow with cylindrical symmetry and suitable

2ρ, p and entropy density
√
X are all in one-to-one correspondence, given ours is by construction a purely

mechanical system, where entropy cannot change. In fact, we could also simply drop the interpretation of√
X as the entropy density, and simply view our system as field theory constructed on symmetry principles.
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profile for ρ, p and the velocity in the angular direction vθ
3. The vanishing, for any

wave vector k, of the proper frequencies of transverse modes is also at the basis of the
phenomenon of turbulence. Indeed, given transverse motions do not have a frequency
gap growing with their wave vector, an external slow and long wavelength perturbation
can “resonantly” excite transverse modes with arbitrarily large wave vector.

The absence of a gradient term for π⊥ in eq. (7) is a direct consequence of the SDiff
symmetry. In fact this result holds to all orders in the fluctuation when expanding
around ϕI = xI . That is because time independent transverse modes4 π⊥(x, t) =
π⊥(x) correspond to the linearized action of SDiff on the background ϕI = xI . In
other words, π⊥(x) are just the Lie parameters of SDiff

ϕI = xI −→ f I(ϕ) = f I(x) ≡ xI + πI⊥ +O(π2⊥) . (9)

The Lagrangian is exactly invariant for any f ∈ SDiff, and thus order by order in the
Lie parameter π⊥. At lowest order this gives eq. (7).

The peculiarity of the fluid (e.g. turbulence) associated with ω⊥(k) = 0 becomes
even more dramatic if we want to treat it as a quantum field theory. That is because
ω⊥(k) = 0 implies that the set of transverse modes does not reduce to a system of
weakly coupled harmonic oscillators. In other words, the absence of any gradient or
potential contribution to the action of the transverse modes implies that the wave
functionals describing the ground state and the excited states are not localized in field
space. That is unlike what happens instead for fields with ordinary quadratic action.
The relation existing between the fluid and any other system with ordinary quadratic
action bears a close analogy with that existing between a free particle on the line, L =
mq̇2/2, and the harmonic oscillator L = mq̇2/2−mω2q2/2. While in the latter system
the energy eigenstates are localized in position space, the eigenstates of the free particle
are fully delocalized. Compactifying the line on a circle does not significantly change
the story: the eigenstates of the free particle are fully delocalized on the circle and their
properties cannot be described meaningfully by perturbing around a point in q space.
The resulting Hilbert spaces and spectrum are thus vastly different. In particular the
Hilbert space of the free particle is not a Fock space constructed from a vacuum |0⟩
by acting with creation operators. Similarly, in the case of the fluid, the Hilbert space
does not consist of a Fock space of weakly coupled transverse and longitudinal phonons.
Hence the question: what should we make quantum mechanically of such a bizarre field
theory?

To our knowledge, this question was studied twice in the recent literature [20, 28],
though it had already surfaced, in a different form, in the famous 1941 paper on
superfluids by Landau [29]. We believe none of these studies fully addressed it. The
approach of ref. [20] is to slightly deform the fluid into a soft (low shear) solid to
obtain a manageable system. That is done by adding to eq. (4) a small term breaking
SDiff down to ISO(3). Its main effect is the appearance of a small velocity c⊥ for the
transverse modes associated with a transverse gradient term (∇∧π)2 in the action. The
idea would be to construct the effective QFT at finite c⊥ and see what happens when
c⊥ → 0. However, by studying the scattering of the now propagating transverse quanta,
one finds, perhaps not unexpectedly, that the strength of their interaction grows like an

3In the limit of non-relativistic velocities F = ma simply dictates v2θ(r) = (r/ρ(r))dp(r)/dr.
4Throughout the paper we indicate the spacial coordinates in boldface, x, whenever we need to distinguish

them from the full space-time ones and whenever we need to emphasize they form a vector.
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inverse power of c⊥. As the interaction is derivative, that implies that the momentum
cut-off scale Λ, above which the system is out of any perturbative control, goes to zero
with a power of c⊥. The limitation of the approach of ref. [20] is then that it carves
out a controllable and weakly coupled QFT in the very long wavelength regime, while
the interesting fluid dynamics lies at finite wavelength. Ref. [28] proposed to remedy
this state of things by limiting observables to the set of SDiff invariant operators.
That seems sensible, also because, that set includes all the standard quantities ρ, p
and v. The idea is that these quantities, unlike the S-matrix for transverse modes,
will behave smoothly in the limit c⊥ → 0. This idea is inspired by the analogy with
2D σ-models, where the wild IR fluctuations in the field are projected out by gauging
the symmetry and admitting only invariants as observables. However, on the basis of
the discussion at the end of section 3, we think the case of the 2D σ-model and the
present one are quite different. In the former, the gauging of the global symmetry
eliminates only a small set of global degrees of freedom, while if properly carried out
in the present case, it would eliminate all the transverse modes, leading to a system
that is indistinguishable from a superfluid. Indeed the results of this paper, which we
believe are based on a proper quantization of the fluid, do not correspond to those of
ref. [28]. We will comment on the differences among the two approaches in section 5.1.
As concerns finally Landau, the view expressed in his paper [29] is that the transverse
modes are simply gapped at the cut-off of the theory and hence play no role in the
low energy EFT. Landau’s argument is not based on an explicit computation, but
on the expectation that variables described by a non-commuting algebra (SDiff) are
discretized in quantum mechanics, like it happens for angular momentum. Landau was
perhaps also guided in this deduction by the empirical observation that no light mode
of this sort is observed in superfluids.

1.3 The incompressible limit

According to our discussion, the transverse modes are at the heart of the difficulty,
while the longitudinal ones are secondary. To simplify the discussion and zoom on the
essential problem it does make sense to do away with the latter class of modes. That can
indeed be done by considering the dynamical regime of low velocities (v ≪ cs) where the
fluid behaves as incompressible, and sound waves are not emitted. As discussed in [20],
by integrating out the longitudinal fluctuation π∥, one obtains an effective Lagrangian
written as an expansion in time derivatives and suitable for the incompressible regime.
The Lagrangian is spacially non-local, but at low velocities, where retardation effects
are small, this does not pose any problem. One could also concretely define this regime
by compactifying space on a manifold (for instance a torus or a sphere) of size R and
by considering the limit of very low energies. The field π∥ decomposes into a tower of
Kaluza-Klein modes with frequency/energy gap ∼ cs/R, while the π⊥ modes remain
ungapped. At energies ≪ cs/R the longitudinal modes can be integrated out and
the resulting effective description corresponds to a slowly moving incompressible fluid
whose degrees of freedom coincide with the transverse modes. Notice that E ≪ cs/R
corresponds to time scales T ≫ R/cs and thus to velocities R/T ≪ cs, that is to
a slowly moving fluid. Notice also that, given cs < 1, the incompressible regime is
necessarily non-relativistic.

After eliminating the compressional mode, the dynamics is described by fields
ϕa(x, t) subject to the constraint det(∂ϕ/∂x) = 1. The dynamical variables consist
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then of the (time dependent) volume preserving maps between x-space and ϕ-space
ϕ : X → Φ, see also the discussion in section 3. The condition on the Jacobian ensures
that ϕa(x, t) is bijective, so it can be inverted, thus taking xI(ϕ, t) as dynamical vari-
ables on ϕ-space. The fluid velocity is then simply given by vI = ∂xI(ϕ, t)/∂t ≡ ẋI ,
while at lowest order in the time derivative expansion, see [20], the effective Lagrangian
resulting from eq. (4) reduces to the well known result

L = F (1− v2) = −F ′(1)v2 +O(v4) ≡ ρm
2
v2 +O(v4) ρm = ρ(1) + p(1) (10)

where we have used that ρ(X) + p(X) = −2F ′(x) to define the mass density ρm.
The dynamics of the incompressible fluid can be meaningfully studied by focusing on
the leading O(v2) term. In this paper we shall study the quantum mechanics of this
system. Notice that, even though the form of the Lagrangian appears simple, the
dynamics is non-trivial because the variables xI(ϕ, t) are constrained. As we shall
better discuss later in section 3, the xI(ϕ, t) (and equivalently ϕa(x, t)) are volume
preserving mappings between isomorphic spaces, X ∼ Φ, and can thus be viewed as
elements of SDiff on X. The incompressible fluid can be viewed as a σ-model with
base space SDiff. In fact this will be the basis of our approach.

Before proceeding to a technical study of eq. (10) it is useful to try and guess
what energy spectrum to expect. In the canonical approach, the first step is to derive
the canonical variables and their Hamiltonian. This task is not immediate, given our
variables are constrained. While a complete discussion will be given in the next section,
it is intuitively clear that the canonical momentum resulting from this procedure will
be proportional to the 3-momentum density ρmv. This implies that, when written
in terms of canonical variables, the Hamiltonian will be proportional to 1/ρm. Using
dimensional analysis we can then guess what to expect for the energy gap of modes
of momentum k. If k and ρm were the only parameters at hand we would conclude
the gap is proportional to k5/ρm. More generally for a fluid in D-spacial dimensions it
would be kD+2/ρm. On the other hand, the classical result ω(k)⊥ = 0 indicates that
for fluids the separation between UV and IR is not clear-cut. So we could consider the
possibility that the gap is also controlled by the UV cut-off length 1/Λ. In the extreme
case, we could expect the gap to only depend on ρm and Λ, in which case it would be
ΛD+2/ρm. If that were the case there would be nothing to talk about: no transverse
degree of freedom would survive in the low energy EFT, which would then only feature
the longitudinal modes, precisely like one observes in a superfluid at zero temperature.
This second option, with its consequences, is what Landau considers to be the correct
one in his 1941 paper. Focusing on the 2-dimensional case D = 2, we will show in this
paper that neither option appears to be the correct one. What we will find is that
there exist states with a sort of mixed dispersion relation ω(k) ∼ Λ2k2/ρm. We will
name vortons the corresponding quanta.

1.4 Outline

We here offer an overview of the content of the paper.
As we have seen, the incompressible fluid is a mechanical system whose dynamical

coordinates span the SDiff group manifold. If one leaves aside the fact that SDiff
is infinite dimensional, the incompressible fluid is but one instance in the vast class
of mechanical systems describing motion on a group manifold G. As the simple case
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G = SO(3) is just the ordinary mechanical rigid body, these systems generalize the
notion of rigid body. It seems fair, in order to attack our problem, to first appreciate
how this class of systems works, both classically and quantum mechanically. Section 2
is devoted to that, while in section 3 we shall formally adapt the results to the specific
case of a 2D fluid flowing on a square torus T 2 where the relevant group is SDiff(T 2).
The concrete implementation of the formalism of section 3 at the quantum mechanical
level requires to represent SDiff(T 2) on a Hilbert space, which is not an obvious task.
In section 4 we address this difficulty, by working on a finite dimensional surrogate of
SDiff(T 2). More precisely we make use of an old result establishing that SDiff(T 2)
equals a certain N → ∞ limit of SU(N). The truncation of SDiff(T 2) to SU(N),
besides allowing calculability through the well known construction of representations
of SU(N), also automatically introduces a UV regulator in the form of a spacial lattice.
Conceptually that is important in light of the discussion in the previous section: we
can now concretely study the effects of a UV-cut off on the dynamics, the spectrum in
particular. That is done in section 5, where we work out both kinematics and dynamics.
As concerns the spectrum, the basic result is that representations that can be written
as tensor products of adjoints are not gapped. The basic building blocks, corresponding
to the adjoint representation, satisfy a quadratic dispersion relation ω(k) ∼ Λ2k2/ρm
and can be viewed as quanta, which we name vortons, carrying a dipole of vorticity
proportional, but orthogonal, to their momentum. All the other representations, for
all that we could check, have energy gapped at the scale Λ4/ρm, in agreement with
Landau’s guess. Among these are vortex and antivortex states, which correspond to
respectively the fundamental and antifundamental representations. Our construction,
beside the vorton spectrum, predicts their interactions. In section 6 we illustrate how
this works by computing the simplest instance of 2 → 2 vorton scattering and discuss
the peculiar form of the result. There we also offer an alternative and purely field
theoretic path to the vorton spectrum and Lagrangian.

While we think our results are concrete progress, there are still unsolved aspects.
These concern in particular the multiplicity and the statistics of vortons. A summary
and an assessment of our results are finally presented in sections 7 and 8.

2 The General Rigid Body

2.1 Classical Rigid Body

The system we want to study can be viewed as a generalization of the quantum me-
chanical rigid body that describes the rotational modes of molecules. Classically each
configuration of the rigid body is fully specified by the SO(3) rotation that relates a
static laboratory frame to a frame that is fixed with respect to the body and rotating
with it. The space of configurations of the rigid body then coincides with the SO(3)
group manifold. Stated that way, the notion of rigid body is readily generalized to a
more abstract mechanical system whose configuration space is a general compact and
connected Lie group G [30, 31].

Systems whose configuration space is a whole Lie group can be viewed, in turn,
as a special sub-class of systems whose configuration space is a coset G/H, with H a
subgroup of G. The generalized rigid body then simply corresponds to a coset G/H
where H is the limiting subgroup consisting of just the identity element: H = {e}.
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As G/H implements a (partially) non-linear realization of the symmetry G, systems
with this configuration space are central in field theory to describe the low energy
dynamics of spontaneous symmetry breaking. The formalism to construct the most
general dynamics for such systems was first given in refs. [4, 5], but a more pedagogical
presentation can be found for instance in ref. [32]. The generalized rigid body is a
mechanical system, so it can be viewed as a field theory in 1 + 0 dimensional space
time. It is thus straightforward to adapt to it the methodology of the above references,
as we shall now do.

To begin, we can parametrize the configuration spaceG through any faithful unitary
matrix representation of its abstract elements g(π)

Ug(π) ≡ U(π) = eπAT
A
, A = 1, . . . , NG (11)

where NG is the dimension of G, TA = −T †
A are anti-hermitian matrices representing

a basis of its Lie algebra g and πA are dynamical Lie parameters 5. We shall assume
the normalization Tr (TAT †

B) = δAB and use a notation where indices are raised and
lowered by Hermitian conjugation and by matrix inversion.

G can be equivalently realized through its left action on U

GL : U(π) → UgU(π) ≡ U(fLg (π)) g ∈ G , (12)

which we label as GL, and through its right action

GR : U(π) → UU−1
g ≡ U(fRg (π)) g ∈ G , (13)

which we label as GR. The functions fLg and fRg offer then explicit realizations on the
the π coordinates of respectively GL and GR. The combined action of GL × GR is
then simply U → UgLUU

−1
gR

. We will assume GL is exact, while GR will in general be
explicitly broken.

According to the above definitions, we can also view U(π) as parametrizing the
coset GL ×GR/GD where GD is the diagonal G subgroup, acting on U(π) as

GD : U(π) → UgUUg
−1 g ∈ G , (14)

so that πA transforms linearly under GD.
We will use indices ā and a to label generators in the Lie Algebras of respectively GL

and GR, while A,B, . . . label the adjoint of GD, in particular the dynamical variables
πA. All these set of indices run from 1 to NG.

The main object to build the dynamics is the Cartan form [33]

Ω ≡ U−1dU = T afAa dπA , (15)

which by construction takes values in the Lie algebra. Notice that fAa ≡ fAa (π) are fully
determined by the structure constants and can be viewed as a π-dependent n-bein. By
construction Ω is a singlet of GL and an adjoint of GR.

Indicating the time derivative of U by U̇ , the angular velocity matrix U−1U̇ can be
written according to eq. (15) as

U−1U̇ = T afAa π̇A ≡ T ada . (16)

5In the field theoretic constructions the πA represent the soft modes dictated by Goldstone theorem.
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By the transformation properties of Ω the da’s are all GL singlets and form an adjoint
of GR. Considering the system classically, the most general GL-invariant two derivative
Lagrangian is then 6

L =
1

2
Iabdadb ≡

1

2
gABπ̇Aπ̇B (17)

where the parameters Iab = Iba are the entries of a generalized inertia tensor and

gAB(π) ≡ Iabf Aa f
B
b (18)

represents the most general GL-invariant metric on the G group manifold. Notice that
GR is not a symmetry for generic Iab, and, relatedly, gAB is not GR-invariant. Only
for Iab ∝ δab is GR a symmetry. It is useful to visualize this state of things by viewing
U(π) as a matrix describing the relative orientation of the static laboratory frame with
respect to the rotating body frame. In this view the action of GL and GR describe
changes of respectively laboratory and body frame. The former, GL, corresponds to
a symmetry, while the fate of the latter, GR, depends on the “shape” of the body via
the inertia tensor Iab.

The abstract group element g(π) admits, in particular, the adjoint representation,
whose elements can be written in terms of the generic representation U(π) via

∆b̄
a(π) ≡ Tr(T †

aU
−1T b̄U) . (19)

In other words, the matrix U(π) in eq. (11) coincides with ∆b̄
a(π) when the adjoint

representation for TA is chosen 7. Notice that ∆b̄
a is a real orthogonal matrix, whose

inverse (∆−1)a
b̄
≡ ∆ a

b̄
is simply given by the transposed: (∆−1)a

b̄
= ∆b̄

a. Indicating
the Lie parameters of GL and GR by respectively αL and αR, the action of GL ×GR
on ∆b̄

a is thus

∆b̄
a ⇒ ∆b̄

c̄(αL)∆
c̄
d(∆

−1(αR))
d
a ≡ ∆b̄

c̄(αL)∆
c̄
d∆

d
a (αR) . (20)

The system (see Fig. 1) can then conveniently be represented as a rigid body rotating
in the adjoint representation vector space, with ∆b̄

a the change of basis from the
laboratory frame (labelled by indices b̄) to the body frame (labelled by indices a). The
moment of inertia Iab is referred to the latter frame. The da measure the angular
velocity with respect to the same frame.

Considering abstract group elements g(αL) and g(αR), with αLb̄ and αRb infinites-
imal Lie parameters, the infinitesimal action of GL and GR on π is given by8

U(αL)U(π) ≃
(

1 + αLb̄T
b̄
)
U(π) ≃ U(π − αLb̄δ

b̄
Lπ) ⇒ δb̄LπA = −∆b̄

af
a
A (21)

U(π)U(αR)
−1 ≃ U(π)

(
1 − αRbT

b
)
≃ U(π − αRbδ

b
Rπ) ⇒ δbRπA = f bA (22)

6This is just the reduction to a mechanical system of the general result in ref. [32].
7The adjoint may or may not be a faithful representation. For the sake of the picture we offer in this

paragraph, we assume the adjoint is faithful, like for the mechanical rigid body, where G = SO(3) ∼
SU(2)/Z2, or, more generally, for SU(N)/ZN .

8Notice that δb̄LπA defined with a minus sign offers the proper representation of G on the space of functions
of π which reads g : A(π) → A(fLg−1(π)). The same comment applies to our definition of δbRπA.
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Figure 1: The configuration of the rigid body is described by the SO(3) mapping between a
still laboratory frame and a rotating body frame.

with f bA the inverse of f B
a , that is faAf

B
a = δBA and faCf

C
b = δba. The “Noether”

charges for GL and GR can then be written as

Lā ≡ ∂L
∂π̇A

× δāLπA = −Iabdb∆ā
a (23)

Ra ≡ ∂L
∂π̇A

× δaRπA = Iabdb . (24)

Although, for generic Iab, only the Lā are conserved, the Poisson brackets of Lā and
Ra realize nonetheless the Lie algebra of GL ×GR

{La, Lb} = fabcL
c {Ra, Rb} = fabcR

c {La, Rb} = 0 (25)

with the structure constants defined by [T a, T b] = fabcT
c. That follows because

∂L/∂π̇A ≡ pA is the canonical momentum and because δLπ, δRπ are infinitesimal
realizations of G. Eqs. (23,24) can also be written as (we recall ∆ a

b̄
≡ (∆−1)b̄a)

Ra = −∆ a
b̄ L

b̄ da = I−1
ab R

b . (26)

By the first equation, the right charges Ra, coincide, up to a sign, with the projection
of the left charges Lā on the axes of the rigid body. As the Lā are conserved, the time
dependence of the Ra is directly controlled by the time evolution of the orientation of
the body with respect to the La. Moreover, by eq. (17) and by the second identity in
eq. (26), the Hamiltonian takes the form (pA = ∂L/∂π̇A)

H =
1

2
gABp

ApB =
1

2
Iabdadb =

1

2
I−1
ab R

aRb gAB ≡ (g−1)AB . (27)

The Hamiltonian is a quadratic form in the components of the charges projected onto
the axes of the rigid body. By the conservation of Lā and by eq. (26), the time
evolution of the configuration coordinates ∆ a

b̄
can equivalently well be described by

the time evolution of Ra, which is in turn directly controlled by the Lie algebra

Ṙb = {H,Ra} = I−1
ac f

ab
dR

cRd ≡ −fabdΩaRd . (28)

Here, according to the sign choice in eqs. (23,24), we identified da with minus the
angular velocity: Ωa ≡ −da. For G = SO(3), eqs. (26,27,28) summarize the classic
results in the mechanics of the rigid body.
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The system we have been considering has NG pairs (πA, p
A) of canonical variables.

The structure of the Hamiltonian entails however a number of conservation laws, which
constrain the flow to lie on a submanifold of the phase space. The crucial property,
in that respect, is that H is purely a function of the right charges Ra. Then, while
for arbitrary Iab the GR symmetry may be fully broken, the GR Casimirs still have
vanishing Poisson brackets with H. Indeed, by eq. (26), the GR Casimirs coincide
with the GL ones. The number of Casimirs equals the dimension CG of the Cartan
subalgebra of G, so that, under time evolution, the Ra charges span a manifold of
dimension NG − CG. One basic result in the classification of Lie algebras is that
NG − CG is an even number (see e.g. [34]). That is simply because operators that
raise and lower the Cartan algebra eigenvalues come in pairs. Indeed by a result in
the theory of Poisson manifolds, known as the splitting theorem [35], the resulting
constrained flow of the Ra does correspond to a Hamiltonian flow in a phase space
consisting of (NG − CG)/2 pairs of canonical variables. For instance, in the case of
SO(3), fixing R2 = R2

1 + R2
2 + R2

3, one can explicitly check that by solving for R3 in
terms of R1,2. One then reduces to a system of one canonical pair (p, q), consisting of
functions of R1 and R2 (and of the constant Casimir R2).

2.2 Quantum Mechanical Rigid Body

The quantum mechanical rigid body is constructed starting from the results in the
previous section 9 . Indeed, see eq. (17), the system corresponds to a particle freely
moving on a manifold with metric gAB, whose quantization is straightforward. The
Hilbert space H consists of the space of square integrable functions ψ(π) on G. The
group action on H is represented by ψ(π) → ψ(fLg−1(π)) and ψ(π) → ψ(fRg−1(π)) for

respectively GL and GR. Given two wave functions ψ1(π) and ψ2(π), the scalar product
can then be defined by the unique (up to a constant) GL×GR invariant quadratic form

⟨ψ1| |ψ2⟩ ≡
∫
dµπ ψ1(π)

∗ψ2(π) (29)

with dµπ is the Haar measure on G, which by eq. (18) can be written as

dµπ ≡
√
det g√
det I

dNGπ = det (f) dNGπ ≡ f dNGπ (30)

Upon the identification pA = −i∂/∂πA ≡ −i∂A, the Hamiltonian operator is given by
the GL invariant 2-derivative quadratic form

⟨ψ1|H |ψ2⟩ ≡
1

2

∫
dµπ gAB ∂

Aψ1(π)
∗∂Bψ2(π) . (31)

We stress that, whileH is generally not GR invariant and depends on Iab via the inverse
metric gAB, the scalar product of eq. (29) does not depend of Iab and is invariant under
GL × GR. By the canonical identification Ra = δaRπA(−i∂A), the Hamiltonian can
equivalently be written as

⟨ψ1|H |ψ2⟩ ≡ 1

2

∫
dµπ I

−1
ab [Raψ1(π)]

∗[Rbψ2(π)] (32)

≡ 1

2

∫
dµπ I

−1
ab ψ1(π)[R

aRbψ2(π)] (33)

9This part, as well as the discussion on the gauging of the left symmetry in section 3, greatly benefitted
from sharp criticism by Ben Gripaios.

14



where in the second line we used the hermiticity of Ra which follows directly from the
GR invariance of the Haar measure.

An important result in group theory, the Peter-Weyl theorem, states that a complete
orthonormal basis {Ψ} for wave-functions on the manifold of a group G is given by the
entries of all possible irreducible representations of G

Ψr,αr,βr(π) ≡ Dr
αrβr(g(π)) (34)

with r the label for the irreps and αr , βr = 1, . . . , dr the indices of the entries, with dr
the dimensionality of the r-irrep. In other words, by a suitable normalization of the
measure, one has

⟨s, αsβs|r, αr, βr⟩ ≡
∫
dµπ Ψs,αs,βs(π)

∗Ψr,αr,βr(π) = δr,sδαs,αrδβs,βr , (35)

whereas any L2 function Ψ(π) on G can be uniquely decomposed as

Ψ(π) =
∑

r,αr,βr

cr,αr,βr Ψr,αr,βr(π) . (36)

The Hilbert space of the rigid body, decomposes then as a direct sum

H = ⊕rHr (37)

with Hr a subspace of dimensionality d2r generated by the Dr
αrβr

(g(π)) for αr, βr =
1, . . . , dr. The Hr subspaces are invariant under the action of GL ×GR as one has

Dr(g(π)) → Dr(g−1
L g(π)gR) = Dr(gL)

−1Dr(g(π))Dr(gR) . (38)

Hr thus hosts the (r, r) representation of GL ×GR. In particular, by eq. (38), GL and
GR act respectively on the αr and βr indices of the basis vectors |r, αr, βr⟩. Since the
Hamiltonian is purely written in terms of the GR generators, the subspaces Hr are also
invariant under the action of the Hamiltonian, which block decomposes as

H = ⊕rHr (39)

with Hr a matrix of dimension d2r × d2r . The spectrum of the system is then found by
diagonalizing each Hr block separately. As GL is a symmetry, the eigenvalues of Hr

on Hr = (r, r) are dr times degenerate. For sufficiently general Iab, GR is fully broken
and there are no further degeneracies, while in the limiting case Iab ∝ δab, GR is a
symmetry and the eigenvalues in Hr = (r, r) are fully degenerate and proportional to
the quadratic Casimir.

It is worth showing how the above general discussion incarnates in the case of the
ordinary rigid body for which G is taken to be either SU(2) or SO(3) = SU(2)/Z2

(see for comparison the discussion in ref. [36]) . For definiteness, let us consider SU(2)
first. Representing the generators by Pauli matrices, we can write

U = eiπAσ
A ≡ x0 + ixAσ

A ≡ xµΣ
µ (40)

where A = 1, . . . , 3 runs on the generators, while µ = 0, . . . , 3 and xµ = (x0, xA), Σ
µ =

(1, σA). The xµ satisfy the constraint xµxµ ≡ x2 = 1 and provide an embedding of the
SU(2) group manifold in R4 showing its diffeomorphic equivalence to S3. The above
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Figure 2: Sketch of the embedding of the fluid elements into physical space

2×2 matrix coincides withD1/2, the ℓ = 1/2 representation of SU(2). According to the
discussion around eq. (38), its entries, parametrized by the xµ, form a (1/2, 1/2) under
SU(2)L×SU(2)R, that is a vector of the locally isomorphic SO(4) ∼ SU(2)L×SU(2)R.
According to the Peter-Weyl theorem a complete basis of wave functions on SU(2) is
given by the set of all the entries of the Dℓ representations of SU(2) for all possible
half-integer ℓ. These transform as (ℓ, ℓ) under SU(2)L × SU(2)R and are equivalently
parametrized by trace-subtracting the monomials xµ1 . . . xµ2ℓ . As these are nothing
but the spherical harmonics on S3, for SU(2) the Peter-Weyl theorem boils down to a
rather standard result. The Hilbert space of the quantum rigid body thus decomposes
in irreducible invariant subspaces under SU(2)L×SU(2)R as ⊕ℓ(ℓ, ℓ). The (ℓ, ℓ) blocks
have dimensionality (2ℓ+1)2 and are invariant under time evolution as the Hamiltonian
is a polynomial (a quadratic one) in the SU(2)R generators Ra. The energy levels from
(ℓ, ℓ) have each 2ℓ+1 degeneracy, because of SU(2)L invariance. For a general inertia
tensor Iab, SU(2)R is fully broken and that is the only degeneracy. The case of SO(3)
is now simply obtained by noting that SO(3) = SU(2)/Z2 with Z2 : xµ → −xµ. The
complete set of eigenfunctions on SO(3) ∼ S3/Z2 is then given by the trace-subtracted
xµ1 . . . xµ2ℓ with integer ℓ. The resulting Hilbert space is ⊕ℓ(ℓ, ℓ) with integer ℓ.

3 The Perfect Fluid in 2D

3.1 Classical Fluid

The perfect incompressible fluid is formally constructed by considering two copies of
the same space: Φ, the space of fluid elements, and X, the physical space. The physical
configurations are given by the set of volume preserving diffeomorphisms Φ → X. Our
discussion could easily encompass spaces with any geometry, but to keep the notation
simple we focus on spaces with flat geometry, like R3 or the torus. Parametrizing Φ and
X respectively with coordinates ϕa and xI , the trajectories are given by the mappings
ϕa → xI(ϕ, t) subject to the condition dV (x) = dV (ϕ) for the volume elements, or
equivalently det(∂x/∂ϕ) ≡ |∂x/∂ϕ| = 1 for the Jacobian, see Fig. 2. As Φ and X
are identical spaces, each configuration ϕa → xI(ϕ, t) is an element of the volume
preserving diffeomorphism group SDiff(X) of X onto itself. This establishes a very
close analogy with the generalized rigid body, which we will now elucidate and then
exploit. A detailed discussion at the classical level is found in refs. [30, 37].

The invertibility of xI(ϕ, t) offers two alternative perspectives on the flow. The
Lagrangian perspective views the flow as the trajectory in X space of each point in Φ.
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The Eulerian perspective pictures the flow in terms of the time evolution of the fluid
velocity at any given point in X. The x’s and the ϕ are then respectively referred to
as the Eulerian and the Lagrangian coordinates, or, equivalently, the physical and the
comoving coordinates.

Given the configuration x(ϕ, t) and g ∈ SDiff(X), we can define, as previously, the
left and the right action as10

left action x(ϕ, t) → x(g−1(ϕ), t) (41)

right action x(ϕ, t) → g(x(ϕ, t)) (42)

An infinitesimal g ∈ SDiff(X) transformation is written as g(y) ≃ y+ f(y) with f I(y)
a vector field satisfying ∂If

I = 0. The corresponding infinitesimal variations are

left δLx
I = −fa(ϕ)∂axI (43)

right δRx
I = f I(x) (44)

To study the dynamics we will focus on the simplest possible situation of a 2D
fluid. It will also be convenient to compactify space on a square torus T 2 of radius r:
all coordinates (x1, x2 and ϕ1, ϕ2) then range between 0 and 2πr. Working on T 2, it
will also be useful to define (ϵ12 = −ϵ21 = 1, ϵIJϵKJ = δIK)

x̃I ≡ ϵIJx
J ∂̃I ≡ ϵIJ∂J ϕ̃a ≡ ϵabϕ

b ∂̃a ≡ ϵab∂b , (45)

by which the incompressibility condition |∂x∂ϕ | = 1 can be equivalently expressed as

∂̃ax̃I = ∂Iϕ
a , ∂̃I ϕ̃a = ∂ax

I . (46)

Indicating by vI(ϕ, t) = dxI(ϕ, t)/dt the velocity field, the Lagrangian in the incom-
pressible limit is simply [20] (from here on, we indicate the mass density ρm as ρ)

L =

∫
d2ϕ

ρ

2
v2 . (47)

Notice that incompressibility constrains vI to be divergence free:

∂I ẋ
I = ∂aẋ

I∂Iϕ
a = ∂aẋ

I ∂̃ax̃I =
1

2

d

dt

∣∣∣∂x
∂ϕ

∣∣∣ = 0 . (48)

Given xI(ϕ, t) are constrained variables, the Hamiltonian description and canonical
quantization are not immediately derived, at least at first sight. The standard approach
is offered by Dirac’s method, consisting in the replacement of the Poisson brackets
(and of their quantum counterparts) with suitable Dirac brackets. However, like in
eqs. (25,27,28), to describe the dynamics we won’t really need the variable xI(ϕ, t), but
just the R-charges, their commutation relations and the expression of the Hamiltonian.
All of that can be robustly derived bypassing Dirac’s procedure. The point is very
simple and general and can be made by considering a generic dynamical system with

10Notice that, in the case of the rigid body, the left action is on the laboratory frame while here it is on the
analogue of the rigid body frame, i.e. the fluid coordinates ϕ. Because of that, in the mathematics literature,
see [37], the naming of eqs. (41) and (42) is swapped. We chose to call left the action that corresponds to a
real symmetry.
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variables qα (with α discrete or continuous) subject to a set of constraints that do
not involve time derivatives (like for our xI(ϕ, t) or for the U matrices of the previous
section). The constraints can be solved, at least locally, in favor of a set of non
redundant parameters πA: qα ≡ qα(π). For the systems we are considering, the role of
the π is played by the Lie parameters of the group. Now, a symmetry transformation on
the non-redundant variables δπA will correspond to δqα = δπA(∂qα/∂πA). In particular
for a time translation we have

q̇α = π̇A
∂qα
∂πA

⇒ ∂q̇α
∂π̇A

=
∂qα
∂πA

. (49)

By this equation, the Lagrangian L(q, q̇), can be written in terms of πA and π̇A, while
the Hamiltonian and conserved global charges are equally well written in terms of either
the π’s or the q’s:

H =
∂L
∂π̇A

π̇A − L =
∂L
∂q̇α

∂q̇α
∂π̇A

π̇A − L =
∂L
∂q̇α

q̇α − L (50)

Q =
∂L
∂π̇A

δπA =
∂L
∂q̇α

∂qα
∂πA

δπA =
∂L
∂q̇α

δqα . (51)

By employing the left ends of the above two equations, the Poisson brackets (or com-
mutators) are then trivially determined by working with the unconstrained canonical
variables, πA and pA ≡ ∂L/∂π̇A. On the other hand, the right ends of the same
equations offer the charges in terms of the more manageable, but constrained, qα and
q̇α.

According to eqs. (43,44) the charges of SDiff(T 2)L × SDiff(T 2)R are then

Lf = −
∫
d2ϕ ρ ẋIfa∂ax

I (52)

Rf =

∫
d2ϕ ρ ẋIf I(x(ϕ)) =

∫
d2x ρ ẋIf I(x) (53)

where in the last equation we made use of the constraint
∣∣∂x
∂ϕ

∣∣ = 1 and switched to
Eulerian coordinates. By the discussion in the previous paragraph, these charges must
satisfy the algebra of the group11. To spare formulae, we can directly write the result
in terms of commutators in the quantum theory. They read

[Lf , Lh] = L[f,h] , [Rf , Rh] = R[f,h] , [Lf , Rh] = 0 (54)

where [f, h] is the vector field commutator

[f, h]J = i
(
hI∂If

J − f I∂Ih
J
)
. (55)

In full analogy with eq. (26) we can express the right charges Rf as a linear combination
of the left ones with coefficients that depend on the physical configuration x(ϕ, t).
Indeed one can first write the R charges as

Rf =

∫
d2ϕ ρ ẋIf I(x(ϕ)) =

∫
d2ϕ ρ ẋI∂ax

I∂Jϕ
afJ(x(ϕ)) ≡

∫
d2ϕ ρ ẋI f̂a∂ax

I , (56)

11The same result has been obtained by employing the Dirac bracket formalism [21].
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where f̂a ≡ fJ∂Jϕ
a can be viewed as a function of ϕ and t determined by the configu-

ration xI(ϕ, t). Secondly, using eq.(46) one can show that ∂af̂
a = 0. A comparison of

eqs. (52) and (56), then shows that the latter equation offers the R-charges as linear
combinations, with time dependent coefficients, of the L-charges. Eq. (56) is therefore
the analogue of eq. (26).

We can further elucidate the relation between Lf and Rf by writing the general
transverse vector fields in respectively ϕ and x coordinates as (L and R subscripts used
in an obvious way)

faL(ϕ) = fa0L − ∂̃afL(ϕ) , f IR(x) = f I0R − ∂̃IfR(x) , (57)

where fa0L, f
I
0R are just constants parametrizing rigid translations, while fL and fR

are single valued functions on T 2. By simple manipulations and using the identities of
eq. (46) we can then write the charges as

LfL =

∫
d2ϕ ρ

[
−ẋI∂axIfa0L + ϵJI∂J ẋ

IfL(ϕ)
]

(58)

RfR =

∫
d2x ρ

[
ẋIf I0R − ϵJI∂J ẋ

IfR(x)
]
. (59)

The two constants fa0L and the function fL(ϕ) label all the conserved charges. Among
the right charges only those associated with f I0R are exactly conserved, and these simply
correspond to the total momentum. Notice however that the R-charges, and the total
momentum in particular, are expressible as a time dependent linear combination of left
charges. A complete basis of the conserved charges can thus be equivalently labelled
by f I0R (total momentum) and fL(ϕ). Finally, it is interesting to choose a δ-function
basis for the Lie parameter functions: fL(ϕ, ϕ̄) = δ2(ϕ− ϕ̄) and fR(x, x̄) = δ2(x− x̄).
That choice defines local charges associated to the vorticity Ω ≡ ∂ ∧ v = ϵJI∂J ẋ

I .
More precisely, and in an obvious notation, we can write

L(ϕ, t) = ρΩ(x(ϕ, t), t) ≡ Ω̃(ϕ, t) , R(x, t) = −ρΩ(x, t) . (60)

The conservation of left charges L̇(ϕ, t) = 0 then implies

d

dt
Ω̃(ϕ, t) = 0 (61)

which in Eulerian coordinates reads

(∂t + vI∂I)Ω(x, t) = 0 . (62)

This last equation expresses the well known convective conservation of vorticity. It is
the fluid analogue of eq. (28). Even though vorticity is only convectively conserved,
eq. (62) together with ∂Iv

I = 0 implies that the quantities

Ck ≡
∫
d2x Ω(x)k (63)

are conserved. The Ck are nothing but the Casimirs of SDiff(T 2)R. In the Hamil-
tonian approach (see below) their conservation simply follows from the fact that the
Hamiltonian is a function of the R charges. That is again in full analogy with the case
of the rigid body.
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3.2 Quantum Mechanical Fluid

Precisely like for the rigid body, we can now write the Hamiltonian in terms of the
generators of SDiff(T 2)R. For that purpose it is useful to work in momentum space,
where a suitably normalized complete basis of infinitesimal SDiff(T 2)R transformations
is given by (see eq. (57))

f I0J = δIJr (64)

f In = −i ϵIJnJreinx/r ≡ −i ñIreinx/r . (65)

Here f I0J , for J = 1, 2, is the vector field associated with rigid translations, n ≡ (n1, n2)
is an integer valued wave vector and x ≡ (x1, x2) is the coordinate vector on T 2. From
here on we stick to boldface type to indicate 2-vectors. Indeed n ∈ Z2− (0, 0), as there
is no f In associated with n = 0. The corresponding charges RJ and Rn, according to
eq. (54), satisfy the algebra

[RJ , RI ] = 0 , [RJ , Rn] = nJRn , [Rn, Rm] = i(n ∧m)Rn+m . (66)

where (n ∧m) ≡ ϵIJnImJ . According to eq. (53) we can write explicitly

RJ = ρ r

∫
d2x ẋJ ≡ ρ r(2πr)2v̄J Rn = −iρ r

∫
d2x (ẋ∧n) einx/r ≡ −ρ r2Ωn .

(67)
RJ ≡ rPJ are proportional to the total momentum and to the zero mode of the
velocity v ≡ ẋ. The Rn are instead proportional to the Fourier modes of the vorticity,
Ω(x) ≡ ∂ ∧ v(x), which in turn are in one-to-one correspondence with the non-zero
modes of the velocity. Again Rn=0 = 0, corresponding to vorticity being a total
derivative with vanishing zero mode.

The velocity v(x)I is fully determined by its zero mode v̄I and by the vorticity
according to

vI = v̄I − ϵIJ
∂J
∆′ Ω (68)

where 1/∆′ is the inverse Laplacian on T 2, which is well defined on functions with
vanishing zero mode. From this result, the Hamiltonian can be written in terms of the
R charges as

H =
ρ

2

∫
d2xv2 =

ρ

2

∫
d2x

(
v̄2 − Ω

1

∆′Ω

)
=

1

2ρ

1

(2π)2r4


RJRJ +

∑

n̸=0

1

n2
R†

nRn


 .

(69)
By eqs. (66) and (67) the time evolution of the vorticity is then

Ω̇n ≡ i[H,Ωn] =
i

2

nJ
r

(v̄JΩn +Ωnv̄J)

+
1

2(2πr)2

∑

m ̸=0

n ∧m

m2

(
Ω†
mΩn+m +Ωn+mΩ†

m

)
. (70)

A Fourier transform to position space and use of eq. (68) finally give, as expected, the
quantum mechanical Euler equation

Ω̇(x) = −1

2

(
vJ(x)∂JΩ(x) + ∂JΩ(x)v

J(x)
)
. (71)
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Notice that, as eqs. (70) or (71) involve respectively infinite momentum sums or prod-
ucts of operators at coinciding points, we expect the need for a UV regulator at some
stage.

Now, in order to construct the quantum theory, in analogy with the case of the
rigid body, the first step would be to find the complete basis of the Hilbert space. As
the group manifold is now infinite dimensional we must deal with functionals rather
than just functions. Unfortunately we are not aware of an analogue of the Peter-Weyl
theorem for such case. One natural way to proceed would then be to find an infinite
sequence of finite groups that approximate SDiff(T 2) arbitrarily well. As we show in
the next section, that can indeed be done. Regardless of the details, such finite group
approximations of the perfect fluid will be nothing but special cases of the generalized
rigid body discussed in the previous section. The basis of the Hilbert space, see eq. (37),
will thus consist of d2r-dimensional (r, r) representations of the mutually commuting L
and R charges.

The (r, r) structure of the Hilbert space basis and the associated degeneracies invites
some considerations. As the eulerian flow configuration v(x, t) is fully specified by the
R charges, the corresponding states in the (r, r) block will have a perfect dr-degeneracy
associated with the action of the L algebra. Classically this corresponds to the fact
that the eulerian variables, v(x, t), determine the Lagrangian coordinates ϕa only up
to the action of (SDiff)L. On the other hand, if we were to consider v(x, t) as the
only physical variables, we could do away with the L algebra and have a Hilbert
space basis featuring just one copy of each r irrep of the R algebra. As the r blocks
have dimension dr, as opposed to the dimension d2r for the (r, r) blocks, the latter
construction would in practice reduce the number of dynamical degrees of freedom
by a factor of two. For instance, the entropy of each block would be ln dr instead of
2 ln dr. Indeed, as discussed at the end of section 2.1, a reduction by roughly a factor
of 2 in the number of degrees of freedom is also operated, at least for a group G of
large dimension dG ≫ 1, by projecting the motion of the rigid body on the space of
R charges subject to the Casimir constraints. In that case the resulting Hamiltonian
system consists of (dG − dC)/2 canonical pairs, which for a group of large dimension
is roughly half the original number dG of canonical pairs 12

With the above comments in mind, we can then face the degeneracy in two ways.
The first, A, is to accept it, implying there exist roughly twice as many dynamical
variables as accounted for by v(x, t). This doubling does not seem to cause any physical
inconsistency, besides the annoying feature that on eulerian variables the state will be
in general described by a density matrix, rather than by a pure state. For instance,
the state

∑
i |ψLi ⟩⊗ |ψRi ⟩ describes measurements of v(x, t) through the density matrix∑

ij ρij |ψRi ⟩⟨ψRj |, with ρij = ⟨ψLj |ψLi ⟩.
The second, B, is to take the eulerian variables v(x, t) as the only physical ones,

and view the degeneracy as unphysical. In this case we can further think of two
options. The standard first option, B1, is to simply gauge SDiff(T 2)L, i.e. the exact
symmetry responsible for the degeneracy. This just amounts to projecting on the
subspace with vanishing L charges. Unfortunately, as the states come in equivalent
representations (r, r) of the mutually commuting L and R charges, the only state
surviving this projection is the total singlet state, where all the R charges also vanish

12One should be careful when extending this naive counting to the limit where the group dimension
becomes infinite.
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and the flow is trivial: all the degrees of freedom are projected out and v(x, t) ≡ 0.
What we end up with is therefore a fluid without any transverse mode. If we view
our incompressible fluid as the EFT resulting upon integrating out the compressional
modes (along the lines explained in the Introduction), the only residual flow variables
would precisely be those compressional modes. The resulting system would then appear
indistinguishable from a superfluid [18].

The less standard second option, B2, is instead to construct a Hilbert space that
only represents the R-charges. In a sense this corresponds to renouncing the existence
of a group manifold configuration space. This is loosely similar to having a rotator
that is not an extended molecule, but just an internal spin degree of freedom 13. Very
much like in that case, however, there is now no clear rationale for which irreps of the
R-algebra to admit in the Hilbert space.

In the rest of the paper we will only consider the R algebra. Our results can then
be suitably interpreted according to either hypothesis A or hypothesis B2. We leave
the discrimination of these two options for future work, possibly considering concrete
physical systems. As shown in the rest of the paper, the dynamics that emerges from
our construction is structurally rich and new. In our mind this justifies setting aside,
for the moment, the degeneracy issue.

4 Finite Truncation of SDiff(T 2)

Our goal is now to parametrize the states and the dynamics by approximating SDiff(T 2)
by some finite-dimensional Lie group. As the hydrodynamic description is anyway ex-
pected to break down at short distance, it is natural to expect there exists a finite
dimensional construction that captures the long distance dynamics. In what follows
we present such a truncation and study the resulting finite system.

The long distance dynamics is intuitively captured by Rn with small enough |n|.
However, if we limited n to any finite range, the commutation relation in eq. (66) would
not close. The commutation relations must thus be modified for large enough |n|, say
|n| ∼> nUV . Indeed, as it was clarified in a series of papers [38, 39, 40] already in the 80’s,
the Lie algebra of SU(N) with N > O(n2UV ) offers such consistent finite truncation
of the SDiff(T 2) algebra.14 This realization was made in the attempt to quantize
the relativistic membrane, where a convenient partial gauge fixing happens to respect
invariance under time-independent area-preserving diffeomorphisms [41, 42, 43], in
close analogy with the fluid we are considering.15 The finite truncation is made manifest

13We thank Alberto Nicolis for this illuminating analogy.
14This construction extends to other 2D surfaces [41] such as the Klein bottle or the projective plane,

where the associated area-preserving transformation group is also viewed as the large N limit of a classical
finite-dimensional Lie group. In the end, as we shall explain, in the large N limit the actual global shape of
the 2D surface will not matter for the local fluid dynamics. We will thus content ourselves with T 2.

15We learned of the SDiff(T 2) ∼ SU(N → ∞) equivalence from George Savvidy, right at the beginning
of our study. Only later did we discover that its potential relevance in the study of 2D fluids had already
been considered several times in the literature. In particular, refs. [44, 45] applied it in a classical statistical
mechanics context in order to reduce to a finite set of variables. Another possible connection came directly
from the study of the membrane where the dynamics was formulated in terms of a perfect fluid [46], though
apparently one undergoing a pure gradient flow, which is not the case we are considering. More recently
the SU(N) rigid body and its relation with the perfect 2D fluid was investigated in the context of quantum
complexity in ref. [47]. Somehow all these other studies have, in the end, little concrete overlap with ours.
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for a particular choice of the generators of SU(N), which was introduced by ‘t Hooft
[48] and which we now describe. Assuming, for convenience, N is odd, consider the
two unitary N ×N matrices h and g

hαβ = δα+1,β , and gαβ = ωα δα,β . (72)

Here α and β take the N integer values running from −N−1
2 to N−1

2 , including 0 (N

is odd), while ω ≡ e
2π
N
i is a primitive N -th root of unity. We also define δα,β = 1 for

α = β mod N , so that h features 1’s at one step above the diagonal and at the lower
left corner. In matrix form we have

h =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0



, g =




ω−N−1
2 0 0 . . . 0

0 ω−N−3
2 0 . . . 0

0 0 ω−N−5
2 . . . 0

...
...

...
. . .

...

0 0 0 . . . ω
N−1

2



,

(73)
and, as one can easily check,

gN = hN = 1 , hg = ω gh . (74)

Multiplying different powers of h and g one can construct N2 unitary matrices, the
‘t Hooft matrices:

Jn ≡ ω
1
2
n1n2

gn
1
hn

2
, (75)

where the components of the 2-vector index n ≡ (n1, n2) take values in the same
range as the matrix indices: −N−1

2 ≤ nI ≤ N−1
2 . All these matrices are linearly

independent and traceless, apart from J(0,0), which is the identity matrix. The choice

of the numerical factor in front ensures that Jn
† = J−n. Therefore, the N

2−1 matrices
Jn+J−n and i(Jn−J−n) with n ̸= 0 form a complete set of traceless Hermitian N×N
matrices, i.e. a basis for the SU(N) algebra.

The commutator of two ‘t Hooft matrices reads

[Jn, Jm] = −2i sin
( π
N

(n ∧m)
)
Jn+m . (76)

Notice that Jn is periodic up to a sign when any entry of n is shifted by N , or more
precisely

J(n1+N,n2) = (−1)n2J(n1,n2) , J(n1,n2+N) = (−1)n1J(n1,n2) . (77)

Eq. (76) is then consistent also for nI +mI outside the domain [N−1
2 , N−1

2 ].

When |n| and |m| are smaller than
√
N , the sine in eq. (76) can be approximated

by its argument so that the result is proportional to that of SDiff(T 2), see eq. (66).
To match more precisely, we introduce a set of rescaled SU(N) generators

R̃n ≡ −N

2π
Jn , (78)

As we will have the opportunity to explain below, the main reason for that resides in the effective field theory
perspective underlying our approach. One main consequence of that, and a centerpiece of our construction,
is the necessity for a UV regulation of the Hamiltonian. It would however be interesting to go back and
investigate the possible relevance of our field theoretic construction to those previous studies.
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for which the commutation relation reads

[
R̃n, R̃m

]
= i

N

π
sin
( π
N

(n ∧m)
)
R̃n+m . (79)

Comparing to eq. (66) we see that the commutation relations of SU(N) and SDiff(T 2)
coincide for |n| ≪

√
N . The role of nUV is thus played by

√
N . For |n| ≪

√
N it is

thus natural to identify the SU(N) generators R̃n with the SDiff(T 2) generators Rn.
This provides an embedding of a truncated SDiff(T 2) algebra into the SU(N) algebra.
Notice that the set {R̃n} with |n| ∼<

√
N , which includes the truncated SDiff(T 2),

consists of ∼ O(N) generators. For large N this is but a tiny fraction of the N2 − 1
generators of SU(N). The fact that the commutation relations of eq. (66) and eq. (79)
approximately coincide only for a (small) subset of the generators cannot be overlooked,
and will be crucial in our construction of the effective Hamiltonian in the next section.
To our knowledge, this fact was not not emphasized and did not play a role in the
original literature discussing the finite truncation of SDiff, whether in the context of
classical fluid or in that of relativistic membranes.

The Rn actually span a subalgebra SDiff(T 2)′ ⊂ SDiff(T 2). The full algebra also
includes the two translation generators R1 and R2. Strictly speaking then, what we
have just shown is that SU(N) offers a truncation of the subalgebra SDiff(T 2)′. We
will comment in a moment on the fate of translations in the SU(N) modelling of the
fluid. The absence of the analogues of the RI represents at first sight an obstacle to
the proper description of the fluid long distance dynamics, see eq. (69). However we
will explain in what sense that is not the case. In the rest of the paper we will keep
indicating by SDiff(T 2) the Rn algebra, though it should be understood that we mean
indeed SDiff(T 2)′.

The coincidence of the SU(N) and SDiff(T 2) algebras for |n| ∼<
√
N , suggests

that the SU(N) quantum rigid body —a problem we have shown how to treat—
offers a UV completion of incompressible quantum-hydrodynamics on T 2. As the
Euler equation is local, we expect there should exist a local effective description that
reduces to hydrodynamics at long distance, while the short distance degrees of freedom
effectively decouple. Indeed, following these suggestions, we will make an appropriate
choice for the Hamiltonian of the SU(N) rigid body such that the low |n| degrees
of freedom satisfy a regulated form of the quantum Euler equation of eqs. (70) and
(71). It will therefore be natural to interpret the resulting long distance dynamics as
a quantum incompressible fluid. Moreover, as the quantum Euler equation coincides,
modulo commutators, with its classical counterpart, classical hydrodynamics should
also emerge in suitable “excited states”, where the semiclassical approximation applies
and where commutators can be neglected in first approximation.

Notice we here focused only on the R charges, replacing in practice the infinite
dimensional group SDiff(T 2)R with the finite dimensional SU(N)R. We will later
discuss the (possible) role of SDiff(T 2)L and SU(N)L.

To close this section and before studying the dynamics, we should discuss the change
in the “kinematics” entailed by the truncation SDiff(T 2) → SU(N). The generators
of SDiff(T 2), the Rn, are labelled by a discrete momentum n ∈ Z2 − (0, 0). The
infinity and discreteness of this set is the reflection of respectively the continuity and
the compactness of the manifold, T 2, upon which the fluid flows. For the SU(N)
generators R̃n, n takes instead N2−1 values, a finite number. Technically we can view
this finite set as Z2− (0, 0) modded by the shift n → n+Nm with m ∈ Z2. This set is
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just the discrete N ×N torus, with the origin (0, 0) removed. It is natural to interpret
also this n as a momentum variable 16. As the discrete N × N torus is dual to itself
under Fourier transform, the truncation to SU(N) is therefore equivalent to replacing
T 2 with an N ×N toroidal lattice. Matching the length of the latticized torus to that
(2πr) of the original one, fixes the lattice spacing a to equal 2πr

N . Correspondingly,
the Fourier label n corresponds to momentum p = n/r. As the SDiff(T 2) and SU(N)
algebra coincide for |n| ∼<

√
N , the momentum Λ ≡

√
N/r is naturally identified

with the UV cut-off of the fluid description. In position space this corresponds to a
breakdown of hydrodynamics at distances shorter than 17

2π/Λ = 2πr/
√
N ≡ a1 . (80)

The three relevant length scales then satisfy

a =
a1√
N
, 2πr = a1

√
N , ⇒ a21 = 2πr × a (81)

so that, for large N , a ≪ a1 ≪ 2πr. Moreover, taking the N → ∞ limit with the
physical UV cut-off a1 fixed, corresponds to taking the continuum limit a→ 0 and the
infinite volume limit 2πr → ∞ at the same time.

By the above discussion, the sites of the dual spacialN×N lattice can be parametrized
as x = aα with α an integer 2-vector. According to eq. (67) we can then define the
UV regulated spacial vorticy as

Ω̃(x) = − 1

(2π)2ρr4

∑

n

′
e−i

nx
r R̃n ≡ N

(2π)3ρr4

∑

n

′
ω−nαJn , (82)

where here and henceforth the prime indicates a sum running over the discrete N ×N
torus: −1

2(N − 1) ≤ nI ≤ 1
2(N − 1), with n = 0 excluded.

Since we have reduced space to a lattice, infinitesimal translations are no longer a
symmetry. This corresponds to our previous remark that no generator of the SU(N)
algebra at finite N plays the role of the two translation generators RJ = rPJ of
eq. (67). However, and somewhat expectedly, there exist instead two finite SU(N)
group elements corresponding to finite translations by one lattice site in each direction.
These are

T1 = h−1 and T2 = g . (83)

Acting on the vorticity operators, we have indeed

T1RnT
−1
1 = ω−n1

Rn ≡ e−i
n1

r
aRn T2RnT

−1
2 = ω−n2

Rn ≡ e−i
n2

r
aRn , (84)

showing that Rn transforms like an operator with momentum pI = nI

r under a trans-
lation of length a. 18

16We recall that the removal of (0, 0) is associated with the vanishing of the zero mode of the vorticity.
17In an ordinary fluid such scale would coincide with the mean free path of the particles that compose it.
18One could naively think of defining momentum operators by taking the logarithm of translations: P̃I ≡

i
a ln (TI). Such P̃I are however elements of the algebra, and can be expressed as linear combinations of Jn.

They thus do not satisfy the required commutation relations [P̃J , R̃n] = in
J

r R̃n necessary to interpret them
as momentum operators. That is not surprising, given on a lattice only discrete translations make sense.
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Figure 3: The N ×N finer lattice of size a is decomposed into
√
N ×

√
N coarser cells with

lattice size a1.

Note that elementary translations commute only up to a phase

T−1
2 T−1

1 T2 T1 = ω . (85)

T−1
2 T−1

1 T2 T1 is indeed the generator (i.e. the smallest element ̸= e) of the ZN center
of SU(N), which, in the fundamental representation, consists of the matrices ωn × 1,
for n = 0, . . . , N − 1. The center ZN is however trivially realized, and only in that
case, in representations that can be written as a tensor product of a multiple of N of
fundamentals or, equivalently, as a tensor product of adjoints. Therefore only in the
latter subset of representations are translations commuting. In particular, translations
do not commute in the fundamental representation, where eq. (85) is computed.

For states where ZN is non-trivially realized, the fluid appears to live on a non-
commutative torus. As we shall better see below, that is in full analogy with motion
in a homogeneous magnetic field. In fact, T−1

2 T−1
1 T2 T1 ∈ ZN implies that, at the

classical level, the truncation of SDiff(T 2) is actually the projective unitary group
PSU(N) = SU(N)/ZN , rather than the full SU(N). In PSU(N) two elementary
translations do commute. Quantum mechanically, however, the states of the system
can in principle transform in projective representations of PSU(N). These coincide
with ordinary representations of SU(N). The fluid states that transform in projective
representations of PSU(N) are fully analogous to the spinors of the rotation group. In
what follows we will indicate the symmetry group as SU(N), though what we mean
is, equivalently, PSU(N) with projective representations.

While translations TJ by one lattice site do not commute, eq. (85) also implies

that translations by
√
N spaces, T

√
N

J do commute, given ωN = 1. Of course in order
for this statement to make sense we should assume

√
N is also an integer, which we

will in the following. T
√
N

J represent translations over a distance
√
Na = a1, which

is precisely the length scale we have identified as the ultimate possible short distance
cut-off of hydrodynamics. Thus, over the length scales where hydrodynamics applies,
translations are realized in the standard commuting way. In view of the above, and
as illustrated in Fig. 3, we can picture our N ×N lattice as a coarse

√
N ×

√
N one,

with lattice size a1, where each cell consists in turn of N =
√
N ×

√
N smaller cells

with size a and belonging to the finer lattice. Hydrodynamics emerges only at lengths
larger than the site separation of the coarse lattice.

We are now ready to evaluate the consequences of the absence of the analogue of
RI ≡ rPI in the SU(N) regulated fluid. On physical grounds, we expect the fluid
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description to be valid only at distances larger than a finite cut-off length. According
to our discussion, this length should necessarily be larger or comparable to a1. But
as 2πr = a1

√
N , the N → ∞ limit, where ideally SU(N) → SDiff(T 2), also implies

r → ∞. The contribution of RI ≡ rPI to the Hamiltonian of eq. (69) is then

PIPI
2ρ(2πr)2

≡ PIPI
2Mtot

∼ 1

N
(86)

and vanishes for N → ∞ over states with finite total momentum. This is intuitively
obvious: this contribution corresponds to the rigid motion of the whole fluid. At
infinite volume the total mass of the fluid is infinite, so that the corresponding energy,
eq. (86), and velocity v̄I = PI/Mtot vanish for finite PI . We conclude that the only
price to pay for the replacement of SDiff(T 2) with SU(N) is that our variables won’t
describe configurations with finite global velocity v̄I . This is not a real problem as these
configurations can be recovered by performing a Lorentz (or Galilean) transformation.

5 Hilbert Space and Dynamics

By truncating SDiff(T 2) to SU(N), the quantum theory of a perfect fluid can be
canonically constructed as described in section 2.2. The basis of the Hilbert space
consists then of the states |r, αr, βr⟩, where r labels the complete set of irreducible
representation of SU(N), while αr = 1, . . . , dr and βr = 1, . . . , dr run on the dr basis
states of each r irrep. As SU(N)L and SU(N)R act respectively on αr and βr, the
SU(N)L labels αr are pure spectators in the computation of matrix elements of the
velocity operator v(x, t) and of the Hamiltonian, which purely depend on the generators
of SU(N)R. As discussed at the end of section 3, we could in principle do away
with SU(N)L and consider a Hilbert space where only SU(N)R is represented. In
so doing we would loose a path integral (or semiclassical) description of the system
and, correspondingly, there would be no obvious rule establishing which representation
r must appear in the Hilbert space. The dynamics of v(x, t) would however look the
same. As already anticipated, we will not need to commit to one or the other approach.
It will suffice to characterize the states purely by their SU(N)R quantum numbers. In
practice, that means we will consider states |r, βr⟩, βr = 1, . . . , dr with r some irrep of
SU(N).

In what follows we will study the physical properties of the basic SU(N) representa-
tions. Our analysis is not mathematically comprehensive, in that we did not explicitly
study or classify all the representations. However we believe it suffices to provide the
physical picture for arbitrary states. Section 5.1 focuses on the kinematic properties of
the states: by studying the vorticity matrix elements we will unveil their position space
features. The results obtained there will provide physical intuition for the analysis in
section 5.2, where we will introduce the Hamiltonian and study the spectrum.

5.1 Kinematics

We will here study the matrix elements of vorticity for some basic representations: the
singlet, the fundamental, the antifundamental and the adjoint.

Let us consider the singlet representation first. There is obviously nothing to com-
pute here: all the charges vanish and with them all the correlators of vorticity. The
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corresponding state, for any choice of a positive definite Hamiltonian quadratic in
the charges, is also obviously the ground state. This simply generalizes to SU(N)
the known result for the ordinary SO(3) rigid body, for which the ground state wave
function is a constant over the group manifold and all components of the angular mo-
mentum vanish. As we stated, here we are not considering the internal coordinates,
corresponding to the ϕa fluid element labels and associated with the left action of the
group: the ground state is just characterized by the vanishing of all the charges, hence
of all velocity correlators. This is to be contrasted with ref. [28] where, at low en-
ergy and momenta, various 2-, 3- and 4-point functions were computed on the vacuum
finding well defined and non-vanishing results.19

5.1.1 Fundamental and anti-fundamental representation

Consider now instead the more interesting case of the fundamental representation. We
can label the basis states |α⟩ by an integer α ∈ [−N−1

2 , N−1
2 ] and choose as generators

the ‘t Hooft matrices of eq. (75): ⟨α| Jn |β⟩ = (Jn)
α
β. In order to offer a position space

interpretation of the states, we must consider the action of the elementary translations
T1 and T2. By the results of the previous section we have

T1 |α⟩ = (h−1)βα |β⟩ = |α+ 1⟩ ; T2 |α⟩ = gβα |β⟩ = ωα |α⟩ . (87)

The basis states |α⟩ are eigenstates of momentum in direction 2 with eigenvalue p2 =
−α
r . At the same time, the first equation is compatible with these states being localized

at position x1 = αa in direction 1. In order to check that is indeed the case we consider
the expectation value of vorticity at position x = βa with β ∈ [−N−1

2 , N−1
2 ]2. We find

⟨α|Ω(x) |α⟩ =
N

(2π)3ρr4

∑

n

ω−nβ ⟨α| Jn |α⟩ (88)

=
N

(2π)3ρr4
(Nδβ1,α − 1) (89)

→ Λ2

2πρ

1

2πr

[
δ(x1 − αa)− 1

2πr

]
(90)

where in the last line we took the continuum limit. The result corresponds to a vortex
line localized at x1 = αa with a compensating homogeneous vorticity density ensuring
the vorticity integrates to zero over the full volume. We thus conclude that the basis
states |α⟩ are eigenstates of momentum in direction 2 with eigenvalue p2 = −α

r and
are at the same time localized at position x1 = αa in direction 1.

19To be more precise ref. [28] considers the fluid in the general compressible regime, where the longitudinal
mode is not decoupled. That makes the comparison less evident. On the other hand, the 2-point function
for the transverse modes is not expected to be affected by the presence of the longitudinal mode, so that the
non-vanishing result found in ref. [28] is in stark disagreement with our results. Now, as it turns out, the
transverse correlator is found to be local, corresponding to the absence of propagating vorticity modes. It
would then perhaps be interesting to see if this locality persists for all higher point functions including loop
corrections. If that were the case, one could try and interpret the results of ref. [28] as the correlators in the
singlet representation (where the vorticity dynamics is completely trivial) modulo local contact terms. We
have not tried pursuing that route, as it would in any case not tell us anything about the more interesting
dynamics of non-trivial representations.
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Alternatively, one can rotate to a basis of T1 eigenstates via a discrete Fourier
transform in α,

|α̃⟩ = 1√
N

∑

α

ωα·α̃ |α⟩ ≡ Oαα̃ |α⟩ . (91)

From their transformation under elementary translations,

T1 |α̃⟩ =
1√
N

∑

α

ωα·α̃ |α+ 1⟩ = ω−α̃ |α̃⟩ ; T2 |α̃⟩ =
1√
N

∑

α

ωα·(α̃+1) |α⟩ = |α̃+ 1⟩ ,

(92)

we conclude |α̃⟩ has momentum p1 = α̃
r and coordinate x2 = α̃ a.20 We thus see

that, in both bases, the coordinate in one direction plays the role of momentum in the
other. Therefore the states of the fundamental representation cannot be localised in
both directions, at least not up to a fundamental lattice size. From the point of view of
counting, that is obvious: the fundamental lattice hasN2 points, while the fundamental
has only N states. The non-commutativity of the two momentum components, and
the resulting non-commutativity of the two position components, is quite the same
encountered in the case of a particle with charge e moving in a homogeneous magnetic
field B 21. In that case, states can be localized in both x1 and x2 only over an area
∼ 2π/eB, which defines both the quantum unit of magnetic flux and the commuting
finite translations. Similarly, see section 4, in our case translations by

√
N fundamental

sites T
√
N

1 and T
√
N

2 commute, and can be simultaneously diagonalized. There must

therefore exists a basis of eigenstates of T
√
N

J , which correspond to states localized on
the coarse lattice cell of area (a

√
N)2 = a21. The counting of states also supports this

expectation, as the torus decomposes in precisely N coarse cells.
In order to construct the localized states, we split the fundamental representation

index α ∈ [−N−1
2 , N−1

2 ] according to α = α1

√
N + α2, where α1,2 ∈ [−

√
N−1
2 ,

√
N−1
2 ].

States with definite values of both momenta mod
√
N are then given by a Fourier

transform in α1:

|n⟩□ ≡ 1

N1/4

∼∑

α1

ω
√
Nα1n1− 1

2
n1n2

∣∣∣α1

√
N − n2

〉
. (93)

Notice that, unlike for the adjoint, here n ≡ (n1, n2) belongs to the coarse lattice

with the origin n = 0 included: n ∈ [−
√
N−1
2 ,

√
N−1
2 ]2. We have added a ∼ on

the summation symbol to account for that. In order to avoid confusion with the

20Indeed, given O gO−1 = h and OhO−1 = g−1, and also given
(
O2
)α
β
= δα−β is a reflection, the unitary

matrix O realises a π/2 rotation.
21What we are encountering here is more than an analogy. Indeed the relevance of SU(N) and, more

generally, of quantum modified volume preserving diffeomorphisms have been known for quite some time to
play a central role in the description of quantum Hall systems as well as of rotating superfluids (which in D =
2+1 are equivalently described by charged point particles in an external magnetic field). Refs. [49, 50, 51, 52]
represent a far from exhaustive list of relevant previous work. Part of our results are then not entirely new,
but, as far as we can see, the perspective (in particular the link between the quantum perfect fluid and the
rigid body) and the main results on the spectrum and the dynamics are new. We are now motivated to
better explore the link between our construction and previous ones, especially those concerning quantum
Hall systems [53]. That is also in order to understand if our results apply to systems that can be engineered
in the lab.
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N
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|α〉�

Figure 4: Representation of the localization of the different fundamental states whose trans-
formations under translations are described in eqs. (87,92,97).

momentum indices of the adjoint, which run instead on the fundamental lattice, we
have added the subscript □ to stress we are considering the fundamental. The |n⟩□
are eigenvectors of both translations T

√
N

J with eigenvalues ω−
√
N nJ = e−i

nJ
r
a1 and

provide an orthonormal basis:

〈
n′∣∣n⟩□ = δ

n′
1

n1 δ
n′
2

n2 . (94)

Notice that the extra phase factor ω− 1
2
n1n2 in eq. (93) was introduced so as to

ensure that O, defined in eq. (91), properly realises π/2 rotations:

〈
n′∣∣O |n⟩□ = δ

n′
1

−n2
δ
n′
2

n1 . (95)

The position eigenstates are now obtained by performing a Fourier transform mod
√
N

on both momentum labels:

|α⟩□ ≡ 1

N1/2

∼∑

n

ω−
√
N(α1n1+α2n2) |n⟩□ . (96)

Again α ≡ (α1, α2) are integer coordinates on the coarse lattice [−
√
N−1
2 ,

√
N−1
2 ]2,

corresponding to space coordinates x = αa1. These states have the same δ-function
normalization as in eq. (94). Moreover the action of translations indicates they are
localized on the coarse lattice at (α1, α2):

T
√
N

1 |(α1, α2)⟩□ = |(α1 + 1, α2)⟩□ ; T
√
N

2 |(α1, α2)⟩□ = |(α1, α2 + 1)⟩□ . (97)

Fig. (4) illustrates the position space localization properties of the different bases
of the fundamental representation. To confirm the interpretation of |α⟩□ as localized
states we again consider the expectation value of the vorticity. Without loss of gen-
erality we can focus on |α = 0⟩□. For the vorticity at x = βa we can then write (β
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labels operators in the adjoint and thus takes values on the fine lattice)

⟨α = 0|Ω(x) |α = 0⟩□ =
N

(2π)3ρr4

∑

n

′
ω−nβ ⟨α = 0| Jn |α = 0⟩□ (98)

=
N

(2π)3ρr4
[F (β, N)− 1]

→ Λ2

2πρ

[
δ2(x)− 1

(2πr)2

]
,

where F (β, N) is an expression involving multiple sums over trigonometric functions
and where in the last step we have taken the continuum limit22. The derivation of the
last step and its meaning are explained as follows. F (β, N) is easily seen to satisfy the
sum rule ∑

β

F (β, N) = N2 . (99)

Furthermore, by a numerical study 23, we could conclude that for large N its behaviour
is roughly

F (β, N) ∼ Nf(β/
√
N) (100)

with f(γ) = O(1) > 0 for |γ| ∼< O(1) and f(γ) → 0 rapidly for |γ| > O(1). On scales
larger than the coarse lattice cell we can thus approximate

F (β, N) ∼ N2δ2(β) = (Na)2δ2(x) = (2πr)2δ2(x) , (101)

from which the last line in eq. (98) follows. Fig. 5 shows the plot of F (β, N) for N = 81.
To sum up, the states of the fundamental representation can be viewed as vor-

tices localised on the cells of the coarse lattice, immersed in a compensating uni-
form background with negative vorticity. Expectedly, the localization area, equalling√
N ×

√
N = N fundamental lattice cells, is the same as for the |α⟩ states. The latter

are indeed fully localized on the fundamental lattice in one direction and fully delocal-
ized in the other, corresponding to 1×N = N fundamental cells. On the coarse lattice
we can thus picture a vortex as consisting of one quantum of vorticity ( Λ2

2πρ) on a single
cell superimposed to a compensating homogeneous background carrying −1/N of the
fundamental quantum on all the cells 24 .

The velocity field corresponding to eq. (98) is a circular flow around the location of
the vortex. For a vortex at located at (0, 0), the velocity at x in the range a1 ≪ |x| ≪
2πr is well approximated by

v =
Λ2

4π2ρ|x| =
1

ρa21|x|
(102)

22In the limit N → ∞ with Λ fixed we have r → ∞ so that the second term in square brackets should be
dropped. We kept it to maintain the information that the integral of Ω vanishes at any N .

23We explicitly computed F using Mathematica up to N = 152. There sure must exist tricks to com-
pute/estimate F analytically, but we think our numerical study is sufficient.

24Another system containing quantized vortices is the superfluid. For comparison, in a weakly coupled
non-relativistic BEC superfluid, the vorticity of a quantum vortex equals 2π

m where m is the mass of the

condensed boson. It matches our result Λ2

2πρ with m replaced by the mass of the elementary fluid cell ρa21.
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Figure 5: Numerical estimate of F (β,N) defining the vorticity expectation value of localized
fundamental states. We have N = 81, with a coarse lattice composed of 9× 9 fluid cells.

and vanishes exactly for either |x1| = πr or |x2| = πr as a result of the compensating
homogeneous negative vorticity. The maximal value ∼ 1

ρa31
is attained at the edge of

the fluid element cell, at |x| ∼ a1.
The vorticity expectation value matches the classical picture for the fluid flow

around a vortex, though these states are far from being semiclassical. One can see that
by calculating higher point vorticity correlators25. To make the point it is sufficient to
consider the simplest ones focusing on the |α⟩ states. For instance for ⟨α|Ω2(x) |α⟩, in
the continuum limit we find

⟨α|Ω2(x) |α⟩ = 2

(
Λ4

(2π)3ρ

)2

Π

(
x1 − αa

πr

)
(103)

where Π(t) is the periodic rectangle function defined by Π(t+2) = Π(t) and by Π(t) ≡
θ(t+1/2)θ(1/2− t) for t ∈ [−1, 1]. Comparing this result to eq. (88), we see how in the
large volume limit ⟨Ω(x)2⟩ ≫ (⟨Ω(x)⟩)2, indicating the fully quantum nature of the
flow in the single vortex states. In fact ⟨Ω(x)⟩ → 0 at infinite volume, while ⟨Ω(x)2⟩
is finite and purely determined by Λ and ρ through dimensional analysis. The value
of ⟨Ω(x)2⟩ is UV dominated at momenta ≫ Λ, which is the regime where our system
cannot be properly considered a fluid. A more proper observable to consider is then

25Curiously, the generating functionals Z[f(x);ψ] = ⟨ψ| ei
∑

m fmJm |ψ⟩ ≡ ⟨ψ| ei
∑

x f(x)J(x) |ψ⟩ that would
produce all the correlation functions of vorticity in states |ψ⟩ are matrix elements of an SU(N) operator as
a function of group parameters f(x). They are given by the SU(N) generalization of spherical harmonics.
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vorticity smeared over distances larger than the fluid cut-off. For instance considering

Ω̄(x, L) ≡ 1

(L+ 1)2

β1=L/2∑

β1=−L/2

β2=L/2∑

β2=−L/2

Ω(x+ aβ) , (104)

with L ∼>
√
N , one finds

⟨Ω̄2⟩ − (⟨Ω̄⟩)2
⟨Ω̄2⟩ = O(1) . (105)

This results shows the quantum nature of the flow even at physical scales.
Since every SU(N) representation can be constructed as a tensor product of fun-

damentals, every state of the quantum fluid can be viewed as a direct product of the
localized vortex states |α⟩□. This fact offers a direct physical picture for the general
representations. For instance, the states of the anti-fundamental representation can
be viewed as totally antisymmetric products of N − 1 vortices. Because of the total
antisymmetry, the constituent vortices have to be localised on N − 1 different coarse
lattice cells leaving a single unoccupied cell. As the vorticity is given by the sum of the
individual vorticities of the N − 1 vortices, it will result in one negative quantum of
vorticity at the ‘empty’ cell, superimposed to a homogeneous positive 1/N background.
That is minus the vorticity of the fundamental representation. Antifundamental states
thus correspond to elementary anti-vortices.

This last result can also be directly derived by considering that the generators J̄n in
the anti-fundamental are related to those in the fundamental by J̄n = −JTn . Defining
the action of parity on a vector as (v1, v2) = v → vP = (v1,−v2), by eqs. (74,75) we
have J̄n = −JnP . Using this result one can then define in the Hilbert space a parity
operator P satisfying

P 2 = 1 |αP ⟩□ = P |α⟩□ PΩ(x)P = −Ω(xP ) (106)

so that
⟨α|Ω(x) |α⟩□ = −⟨αP |Ω(xP ) |αP ⟩□ = −⟨α|Ω(x) |α⟩□ (107)

where in the last step we used that eq. (98) is invariant under x → xP . By applying
this results to tensor products of fundamentals or anti-fundamentals we conclude that
conjugated representations have equal and opposite vorticity expectation values.

5.1.2 Adjoint representation

As will become clear below, among all representations, a central role is played by the
self-conjugated ones, which can be written as tensor products of an equal number of
fundamentals and anti-fundamentals. The smallest non-trivial representation in this
class is the adjoint. Indeed, as all self-conjugated representations can be written as
tensor products of adjoints, the adjoint is a crucial building block.

In order to gain insight into the physical properties of the adjoint, it is useful to
view it alternatively either as the Lie algebra itself or as the tensor product □⊗□.

Let us consider the first perspective. We can label the N2 − 1 basis states by the
charges themselves: Jn → |n⟩. Choosing the normalization ⟨m|n⟩ = δm,n, the matrix
elements are then simply given by the structure constants:

⟨m| Jk |n⟩ = −2i sin
( π
N

(k ∧ n)
)
δm,k+n . (108)
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The basis states are also obviously eigenstates of translations with momentum n/r.
The adjoint representation renders clear what was somehow to be expected by replac-
ing SDiff(T 2) with SU(N): in general SDiff(T 2) is well approximated by SU(N) only
on a subset of a given representation of SU(N). In the case of the adjoint, the subset
is clearly given by the states |n⟩ with |n| ∼<

√
N . States labelled by |n| ∼>

√
N should

be then interpreted as spurious states describing physics in a domain outside the uni-
versality class of the quantum perfect fluid. It will however be useful to contemplate
for a moment the properties of these other states. One should also wonder about the
need for an analogue truncation on the states of □ and □̄. The study of the adjoint
will automatically address that question.

Consider now the second perspective: Adj ⊕ 1 = □ ⊗ □. Using the coarse lattice
basis of eq. (96) for □ and □ and applying standard group theory we can immediately
write

1 : |•⟩ =
1√
N

∑

α

|α⟩□ ⊗ |α⟩□ (109)

Adj : |n⟩ =
1√
N

∑

αβ

|α⟩□ ⊗ |β⟩□ ⟨α| Jn |β⟩□ . (110)

We picked here a specific basis for the adjoint, but in general its states are obtained
by contracting |α⟩□ ⊗ |β⟩□ with a traceless coefficient function fαβ:

∑
α f

α
α = 0.

According to eq. (109), we can picture the trivial configuration as a homogeneous
and maximally entangled superposition of states with a vortex and an antivortex placed
on each cell of the coarse lattice, so as to make vorticity vanish exactly. According to
eq. (110), states in the adjoint are instead given by traceless superpositions. Notice,
however, that in the infinite volume limit we can choose smooth traceless functions
f(α,β) that approximate the identity coefficient δα,β over any local but arbitrarily
large region. This hints that low momentum states belonging to the adjoint physically
approximate the vacuum configuration. As we shall see in the next subsection, that is
indeed the case when considering energy levels.

When considering, as we argued, that only for |n| ∼<
√
N do adjoint states |n⟩

represent a consistent truncation of SDiff(T 2), eq. (110) has even more dramatic con-
sequences. Indeed by the constraint |n| ∼<

√
N only O(N) of the N2 − 1 states in the

right-hand side of eq. (110) should be retained: if the vast majority of the states in
their tensor product are unphysical we are led to conclude that also □ and □ do not
represent a consistent truncation of SDiff(T 2) and should therefore be discarded. As
we shall now show, the study of the adjoint vorticity profile confirms this conclusion.

To study vorticity in the adjoint representation it is useful to consider wave pack-
ets. First of all it is worth appreciating that the standard definition of the position
eigenstates,

|x⟩ ≡ 1

Na

∑

n

′
ω−n·α |n⟩ x ≡ aα , (111)

leads in the N → ∞ limit to the expected normalization (again x ≡ aα and y ≡ aβ):

⟨x|y⟩ = 1

a2
δα,β − 1

(Na)2
→ δ2(x− y) . (112)

As forN → ∞ things work as expected, we can use standard intuition. A state localized
around the origin in position space and around momentum p ≡ m/r in momentum
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space, can then be constructed using a gaussian wave packet

|Ψ⟩ ≡
∑

n

′
ψ(n) |n⟩ ψ̂(n) =

c

η
√
2π
e
− (n−m)2

4η2 (113)

where c is a normalization coefficient which, given ⟨Ψ|Ψ⟩ = 1, tends to 1 when N → ∞.
For the state to be localized around m we also must impose η ∼< |m|. In position space
the state will be localized over ∼ N/η sites of the fine lattice. As we are interested
in localizations over distances ∼> a1 and ≪ r, we then further require 1 ≪ η ∼<

√
N .

Putting all these requests together, we then impose 1 ≪ η ∼< min(|m|,
√
N). Notice

finally that, for |m| ≪ N , the momenta that dominate the wave-packet consequently
satisfy 1 ≪ |n| ≪ N . This implies we can take the continuum limit both in position
and momentum space and safely approximate sums with integrals. For the vorticity
expectation value we then find

⟨Ψ|Ω(x) |Ψ⟩ ≃ Λ2

4π2ρσ2

[
e−

1
2σ2 (x+

πp̃

Λ2 )
2 − e−

1
2σ2 (x−

πp̃

Λ2 )
2
]

(114)

where σ = 2πr/η and, as before, p̃I = ϵIJpJ . This corresponds to a configuration with
a vortex and anti-vortex of unit vorticity Λ2/2πρ centered respectively at ∓πp̃/Λ2.
This result has crucial consequences on the physical interpretation of the states.

For |p| ∼> Λ the separation between vortex and antivortex is larger than the cut-off
length a1 = 1/Λ, which makes them individually resolvable within the hydrodynamic
description. On the other hand, as we argued, adjoint states with momentum |p| ∼>
Λ are outside the range where SDiff(T 2) is well approximated by SU(N) and must
therefore be discarded when zooming on the perfect fluid universality class. We should
then conclude that vortices and antivortices, that is □ and □, should also not be part of
the long distance description. Indeed the study of the dynamics in the next subsection
will offer an alternative motivation for discarding them: these states will turn out to
be gapped. Notice, finally, that the fact that vortices should be discarded on physical
grounds does not make the detailed discussion of their properties useless. Vortices are
still relevant as group theoretic building blocks.

Consider now instead the regime |p| ≪ Λ. Here vortex and antivortex are separated
by a distance smaller that the cut-off length a1 = 1/Λ and cannot be individually
resolved. The only resolvable feature of vorticity in this regime is its dipole

dI =

∫
d2 xxI ⟨Ψ|Ω(x) |Ψ⟩ = − p̃I

ρ
. (115)

Even this dipole vanishes for |p| → 0, which is possible when N → ∞. This confirms,
as argued above, that adjoint states approximate the trivial configuration as their
momentum goes to zero. It is also useful to write the vorticity expectation value in
terms of the position space wave function

ψ(x) ≡ ⟨x|Ψ⟩ ≃ 1√
2πσ2

e−
x2

4σ2+ip·x . (116)

Expanding eq. (114) at first order in p we can then write

⟨Ψ|Ω(x) |Ψ⟩ = i∂ψ ∧ ∂ψ∗

ρ
. (117)
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This last result purely relies on the SDiff algebra. To check that, it is instructive to
apply the results of section 3. All the elements in eq. (117) (the bra, the ket and the
operator) belong to the adjoint of SDiff. Thus each of them corresponds to a charge
Rf defined according to eq. (53) with f I ≡ −∂̃If . In particular |Ψ⟩ corresponds to
Rψ with ψI ≡ −∂̃Iψ, Ω(x) correspond to Rδx with δIx(y) = ∂̃Iy δ

2(y− x)/ρ and finally

⟨Ψ| corresponds to Rψ∗ = R†
ψ. The state |Φx⟩ ≡ Ω(x) |Ψ⟩ is then associated with the

adjoint element [Rδx , Rψ] and by eqs. (54) and (55) its wavefunction φx(y) is given by
(all y-derivatives)

[δx, ψ]
I(y) = −∂̃I(i∂̃Jψ(y)∂Jδ2(y − x)/ρ) ≡ −∂̃Iφx(y) (118)

We can then write

⟨Ψ|Ω(x) |Ψ⟩ = ⟨Ψ|Φx⟩ =
i

ρ

∫
d2yψ∗(y)∂yδ

2(y − x) ∧ ∂ψ(y) (119)

which upon integration by parts gives back eq. (117).
What is the main message of this study? We knew right at the beginning that only

a relatively tiny subset of the generators of SU(N) approximates the low momentum
generators of SDiff(T 2). Specifically that is roughly N out of ∼ N2 generators. In
view of that, when considering a generic representation of SU(N) we should similarly
have expected that only a small portion should be retained as a sensible realization
of the SDiff(T 2) algebra. We have now seen directly that is indeed the case. The
study of the adjoint indicates that states with resolvable vortices and anti-vortices, in
particular the fundamental and anti-fundamental, should be dismissed. The symmetric
and antisymmetric products of two fundamentals are also in the same class: in the
product state, vortices are either separated or overlapped to produce another vortex
with twice the vorticity. One can similarly argue as concerns the product of any number
< N of fundamentals. Following this indication, the only states we can retain must
consist of unresolvable vortex anti-vortex pairs and belong to representations that can
be written as tensor products of adjoints. This subclass of SU(N) representations
indeed corresponds to the Young tableaux whose number of boxes equals a multiple
of N , i.e. that can be written as a tensor product of a multiple of N fundamentals.
These trivially realize the ZN center of SU(N) and provide a faithful representation
of PSU(N) = SU(N)/ZN . In that sense our procedure should now more properly be
viewed as a truncation of SDiff(T 2) to PSU(N). The adjoint states with momentum
|p| ∼< Λ can now be viewed as the group theoretic building blocks of all physical
states. In momentum space these states are counted to be O(N). The wave packets
constructed in this section give, for σ ∼ a1, states localized on the coarse lattice and
a compatible counting. These building blocks carry a dipole of vorticity orthogonal to
their momentum, see eq. (115). The corresponding flow becomes thus indistinguishable
from the trivial one at zero momentum, as it is expected for the hydrodynamic modes
of a finite density system. All this indicates these states, which we will henceforth call
vortons, are also the basic quanta of the dynamics. The rest of the paper will confirm
that is indeed the case.

5.2 Hamiltonian and spectrum

We are finally ready to construct the dynamics of the SU(N) regulated quantum
fluid. The basic idea is that the dynamics of the SU(N) charges R̃n approximate the
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dynamics of the perfect fluid charges Rn in the low-momentum regime |n| ≲
√
N where

their commutation relations coincide. To realize this idea we start by considering a
Hamiltonian quadratic in the R̃n and satisfying translation invariance, which we can
write most generally as

H =
1

2ρ(2π)2r4

∑

n

′ F (n)

n2
R̃nR̃−n . (120)

F (n) is a regulator function which can be viewed as defining the moment of inertia
of the SU(N) rigid body: more precisely we have the inverse proportionality In,n ∝
n2/F (n). The equation of motion then takes the form (Ω̃n ≡ −R̃n/(ρr

2))

˙̃Ωn =
1

2(2πr)2

∑

m

′ F (m)

m2

N

π
sin
( π
N

(n ∧m)
) (

Ω̃−mΩ̃n+m + Ω̃n+mΩ̃−m

)
. (121)

This matches the long distance part of the Euler equation, eq. (70) at v̄I = 0, provided
F (m) = 1 for |m| ≲

√
N and F (m) → 0 for |m| ∼>

√
N . The second request guarantees

that the charges R̃m, with |m| ∼>
√
N decouple from the macroscopic dynamics. In the

rigid body analogy, this choice corresponds to assigning an infinite moment of inertia to
the UV modes. This separates our work from previous studies that have considered the
relation between the SU(N) rigid body and the perfect 2D fluid. We take an effective
field theory perspective and, as a consequence, we are drawn to this UV regulation of
the Hamiltonian. Moreover, even though at finite N rotational symmetry is broken
both microscopically, by the fine lattice, and globally, by the torus geometry, we would
like to preserve it in the limit N → ∞ with a1 fixed. This can be simply achieved by
choosing F (n) ≡ G(|n|). We will thus consider systems defined by a regulator function
F (n) satisfying

F (n) ≡ G(|n|) F (n) = 1 for |n| ≪
√
N F (n) → 0 for |n| ∼>

√
N
(122)

A possible choice is

F (n) =

(
N

n2 +N

)p
p > 0 . (123)

These requests define a family of UV completions of quantum hydrodynamics. We
shall also illustrate what changes by relaxing some of these constraints and show that
the crucial aspects of IR physics are shared by a broader class of Hamiltonians.

In order to make the scaling at large N explicit, it is convenient to rewrite the
Hamiltonian in terms of the canonically normalized SU(N) generators Jn. By eqs. (78)
and (80) we can then write

H =
Λ4

32π4ρ

∑

n

′ F (n)

n2
JnJ−n . (124)

The prefactor Λ4

ρ coincides, as indeed dictated by dimensional analysis, with Landau’s

guess [29, 54] for the gap of the transverse modes. Indicating by m = ρa21 the mass
of a fluid element, i.e. the mass in a coarse lattice cell, we can associate the energy
Λ4

4π2ρ
= Λ2/m to the motion of a fluid element with cut-off scale momentum.

Let us now study the spectrum of the Hamiltonian of eq. (124) focusing on the
simplest SU(N) representations. The very simplest one, the singlet, obviously has zero
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energy and provides the ground state of the system. Consider next the fundamental.
The generators, as discussed in subsection 5.1.1, are the ‘t Hooft matrices of eq. (75).
Since J−nJn = 1, the Hamiltonian is here proportional to the identity operator, all the
N states are degenerate: H |α⟩ = E□ |α⟩, with

E□ =
Λ4

32π4ρ

∑

n

′ F (n)

n2
≃ Λ4

16π3ρ
ln (

√
N) . (125)

Here, in the last step, we used that F (n) cuts off the logarithmic divergent sum,
roughly at |n| ∼

√
N . Of course while the log term is robust for large N , the finite

O(1) contributions depend on the detailed choice of F . In terms of the physical length
scales we can equivalently write

E□ =
Λ4

16π3ρ
ln (Λr) . (126)

We see that the overall scale of the energy matches the gap predicted by Landau.
However, the result is enhanced by a logarithmic factor that depends on the size of
the system. This result does not come unexpected, as we have already seen that the
fundamental representation describes localized vortices: a logarithmic dependence of
the energy on the total area is typical of vortex flows where the velocity falls off with
the inverse of the distance, see eq. (102). Indeed inserting eq. (102) in the classical
energy density ρv2/2 we find

Evortex ≃ 1

2
ρ

∫ 2πr

a1

d2xv2 ≃ Λ4

16π3ρ
ln (2πr/a1) . (127)

in perfect agreement with eq. (126).
As the sum in eq. (125) depends logarithmically on the number of modes over

which F (n) is approximately constant, the result does not change qualitatively when
a different choice for F (n) is made. We are of course excluding extreme choices like,
for instance, F (n) growing in the UV. For example, if one extends F (n) to be constant
for all n, the final answer will change by a factor of two. Note that, as the states
in the fundamental are exactly degenerate, the dynamics of this sector is trivial: any
superposition is also an energy eigenstate and all observables have time-independent
expectation values.

The above discussion carries out unchanged to the antifundamental, given its gen-
erators satisfy J̄n = −JTn . Thus we have again J̄−nJ̄n = 1 ∀n so that E□̄ = E□.
Moreover, since all other unitary irreducible representations can be obtained by con-
sidering tensor products of the defining representation, the same argument shows that
the energy spectra of any pair of conjugate representations coincide.

The fact that the fundamental representation is gapped at the energy cut off Λ4/ρ
matches our conclusion in section 5.1.2 that the fundamental of SU(N) should be
discarded when focusing on SDiff(T 2). The validity of the simple semiclassical estimate
of its energy in eq. (127) suggests that in fact all states with resolvable vortices will be
gapped. We recall that this class of states fully includes the representations that cannot
be written as the tensor product of the same number of □ and □̄. We do not have a
mathematical proof of that, but, as illustrated in the appendix, all the explicit cases we
studied numerically confirm this expectation. Again this matches our conclusion that
the only states that should be kept consist of non-resolvable vortex-antivortex pairs.
The smallest representation containing these is the adjoint. Somewhat expectedly, one
finds that its spectrum is indeed not gapped, as we now show.
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5.2.1 The spectrum of the adjoint: vorton states

As we already discussed, the adjoints states |n⟩ are labelled by the fine lattice wave
vectors while, as shown in eq. (108), the action of the charges is given by the structure
constant themselves. It is then straightforward to see that the Hamiltonian of eq. (124)
is diagonal in the {|n⟩} basis

⟨m|H |n⟩ = Enδm,n (128)

with eigenvalues given by

Em =
Λ4

8π4ρ

∑

n̸=0

F (n)
sin2

(
π
N (m ∧ n)

)

n2
. (129)

In contrast to the case of the fundamental representation, the spectrum now substan-
tially depends on the choice of F (n).

Let us consider first a sharp cut-off function satisfying eq. (122): F (n) = 1 for
|nI | < 1

2(
√
N−1) and F (n) = 0 for |nI | > 1

2(
√
N−1). We drop for ease of computation

the request F (n) = F (|n|). The behaviour of the sum in eq. (129) depends on whether
|m| is below or above

√
N (i.e. whether |p| is below or above the cut-off scale Λ).

For |m| ≪
√
N the sine has an argument smaller than O(1) and can be expanded in

powers of mI
√
N

= pI

Λ . In this regime the dispersion relation then reads

Em ≃ Λ4

8π4ρ

|nI |≤ 1
2
(
√
N−1)∑

n̸=0

π2

N2

(m ∧ n)2

n2
=

Λ2

16π2ρ

(
m2

r2

)
=

p2

4ρa21
, (130)

corresponding to the non-relativistic kinetic energy of a particle with mass M = 2ρa21.
That is twice the mass of a fluid element. Notice however that, given the sum in
eq. (130) diverges quadratically, the precise result strongly depends on the choice of
regulator.

To evaluate instead the energy for |m| ≫
√
N , we can choose mI = (0,m) with

m≫
√
N . At leading order in 1/N and 1/m we can then write

E(0,m) =
Λ4

8π4ρ

|nI |≤ 1
2
(
√
N−1)∑

n ̸=0

sin2
(
π
N mn1

)

n2
≃ Λ4

2π4ρ

1
2

√
N∑

n1,n2=1

sin2
(
π
N mn1

)

n2

≃ Λ4

4π3ρ

1
2

√
N∑

n1=1

sin2
(
π
N mn1

)

n1
≃ Λ4

8π3ρ

1
2

√
N∑

n1∼N
m

1

n1
≃ Λ4

8π3ρ
ln

(
m√
N

)
. (131)

Choosing an arbitrary orientation of the wave vector m one can also check that the
result is rotationally invariant up to corrections suppressed by inverse powers of N . In
the continuum/infinite volume limit, N → ∞ with a1 = 2π/Λ fixed, the energy of the
states in the adjoint representation is then given by

Eadj(p) ≃





p2

4ρa21
for p2 ≪ Λ2

π
ρa41

ln
(
p2

Λ2

)
for p2 ≫ Λ2

. (132)
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A few comments are here in order. Notice, first of all, that the N → ∞ limit with a1
fixed is well defined. The dependence on both the fundamental lattice length a and
torus radius r drop out. However, in addition to ρ, which fully defined the classical
theory, a new parameter, a1 = 2π/Λ, appears quantum mechanically. Secondly the
adjoint states are gapless, as intuitively befits the universal long distance quanta of
hydrodynamic vorticose motion. Indeed, the states encompassing the gapless region,
that is p < Λ and E ∝ p2, are precisely the vortons we previously identified. Somewhat
expectedly the states that approximate a representation of SDiff(T 2) within SU(N)
are the ungapped ones. The existence of vortons and their energy spectrum is the main
result of our study.

The long wavelength behaviour E ∝ p2 gives way to a logarithmic behaviour E ∝
log p at momenta of the order of the cut-off Λ. The velocity of the quanta at this
change of regime is of order

|∂E
∂p

| ∼ Λ

ρa21
=

2π

ρa31
≡ cv . (133)

It is instructive to compare this result to the dispersion relation of longitudinal
phonons. By zooming on incompressible flows, we have excluded the phonons from the
very beginning. However, in any fluid they do exist and have linear dispersion relation:
Eph(p) = csp. For small enough momenta, we then always have Eph(p) ≫ Eadj(p),
which justifies the decoupling of the longitudinal modes. The energies, however, become
comparable at momenta of order Λph = ρa21cs = Λ cs

cv
, which provides another limit of

applicability of our model. The simplest option, cs ∼ cv, then identifies Λ with the
very scale at which fluid compression cannot be neglected.

Consider now different choices for F . The quadratic and logarithmic divergence of
the relevant sums in respectively eqs. (130) and (131) are easily seen to determine what
happens for different choices satisfying eq. (122). For p≪ Λ the coefficient controlling
E ∝ p2 changes by O(1), while for p≫ Λ only the finite part of the leading logarithmic
contribution is modified.

More dramatic changes occur for regulators not respecting eq. (122), even though
these choices are not physically sensible. For instance, for F (n) ≡ 1 , ∀n, the energy

behaves logarithmically at all momenta: Eadj(p) ≃ Λ4

8π3ρ
ln (p r). Moreover the gap is

finite: the energy of the state with the softest possible momentum is Eadj(p = 1
r ) ≈

7 Λ4

(2π)4ρ
. One can also check that any function F (n) that shuts off between |n| ∼

√
N

and |n| ∼ N leads to a spectrum similar to eq. (132), but where the transition from
quadratic to logarithmic behaviour happens at a scale lower than Λ. In particular,
pushing the sharp cut-off to C

√
N instead of

√
N , with C > 1, we have that the

quadratic dispersion relation is only valid for states in the adjoint with p ≪ Λ2C−2.
In that sense, the choice of C = 1 maximises the number of charges whose equation
of motion eq. (121) matches the Euler equation, while extending the transition scale
between the quadratic and logarithmic behaviour.

The main message is that, for the physically sensible regulators eq. (122), the vorton
spectrum, while UV physics dependent, is robustly controlled by a quadratic dispersion
relation, as shown in eq. (132). For definiteness in what follows we will stick to the
choice F (n) = 1 for |nI | < 1

2(
√
N − 1) and F (n) = 0 for |nI | > 1

2(
√
N − 1).
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5.2.2 Multi-vorton states

With the results obtained so far, we can now show that tensor products of adjoints
are also ungapped. Again this matches what we argued in subsection 5.1.2, that only
the low momentum portion of these representations properly represents SDiff in the
N → ∞ limit.

To study the spectrum let us consider a tensor product of a number M of adjoints
|n1⟩⊗|n2⟩⊗· · ·⊗ |nM ⟩ ≡⊗M

j |nj⟩. The vorticity operator of the tensor product space

is Ωtot = ⊕M
j Ωj where

Ω1(x) = Ω(x)⊗ 1 ⊗ · · · ⊗ 1 , Ω2(x) = 1 ⊗ Ω(x)⊗ · · · ⊗ 1 , etc. . (134)

To study the energy on these states we can consider a wave packet

|{ψ}⟩ =
∑

n1...nM

(
M⊗

J

ψ̂j(nj) |nj⟩
)

(135)

and estimate ⟨{ψ}|H |{ψ}⟩. As we are aiming at the low energy limit, we will focus
on wave packets supported in the vorton region |p| = |n/r| ≪ Λ. The Hamiltonian
consists of a sum over pairs jk involving the bilinears products ΩjΩk. One can easily
see that the diagonal terms Ω1Ω1, . . . ΩMΩM give each the energy expectation Ej on
the corresponding adjoint state

Ej =
∑

n

|ψ̂j(n)|2En (136)

with En given by eq. (130). The sum of these contributions E1 + · · · + EM thus
corresponds to the energy ofM non-interacting vortons: as vortons are ungapped, this
energy can be made arbitrarily small (in the infinite volume limit) by picking individual
vorton wave functions ψj supported at softer and softer momenta.

Consider now instead the cross terms involving ΩiΩj , with i ̸= j, which can be
interpreted as giving the interaction energy between vortons. One finds that the con-
tribution of these terms is controlled by the products of vorticity expectation values
in eq. (117) of each separate vorton state. In terms of the position space wave packets
and already taking the continuum limit we have

⟨ψj |Ω(x) |ψj⟩ =
i∂ψj ∧ ∂ψ∗

j

ρ
≡ ∂IJ

I
j (137)

with

JIj =
1

2ρ

(
−iψ∗

j ∂̃
Iψj + i∂̃Iψ∗

jψj

)
. (138)

Unlike for the diagonal terms, one finds that the i ̸= j contributions are not quadrati-
cally UV divergent. For wave packets supported at momenta ≪ Λ, we can then remove
the regulator and use the long distance Hamiltonian of eq. (69). To estimate the energy
we can also directly work at infinite volume. The interaction energy is then given by

ρ

2

∑

i ̸=j

∫
Ωi

1

−∇2
Ωj =

ρ

2

∑

i ̸=j

∫
d2x d2y JKi (x)GKL(x− y)JLj (y) (139)

GKL(x− y) =
2

π

[
δKL − 2(x− y)K(x− y)L

|x− y|2
]

1

|x− y|2 (140)
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where in the last step we used the explicit expression of the 2D propagator −1/∇2,
then eq. (137) and finally we integrated by parts. The final expression corresponds
to the electrostatic interaction energy among a set of localized charge dipoles with
polarization densities −JIi . As GKL decreases like |x−y|−2, the interaction energy can
be made arbitrarily small by making the wave packets arbitrarily separated from one
another. In the limit of infinite reciprocal separation the only remaining contribution
is the diagonal one E1 + · · ·+ EM , corresponding to M non-interacting vortons.

The obvious corollary of this discussion is that multi-vorton states are also un-
gapped.

6 Vorton Interactions

Working directly at infinite volume, we have just shown that vortons behave like par-
ticles with interactions that vanish at infinite mutual separation. We can then think of
a scattering experiment, where, for instance, two originally infinitely separated vorton
waved packets are time evolved to within a finite distance where they interact. In this
section we will compute the scattering amplitude of such two-vorton process. We shall
arrive at that in three steps. The first is a detailed study of the two vorton state at
finite N . This step is in fact not strictly necessary, given we are in any case inter-
ested in scattering at infinite volume. However, we believe it naturally completes the
matrix model description of the fluid. The second step is the derivation of a vorton
field theory, which describes both the spectrum and the interactions of vortons in the
N → ∞ limit. This result summarizes our understanding of the universal long distance
dynamics of a perfect quantum fluid. As an application of the vorton field theory we
shall then compute the scattering amplitude.

6.1 Two vorton states

We want to consider representations that belong in the tensor product of two adjoints.
Using Young Tableaux such tensor product is seen to decompose into the direct sum
of seven irreducible representations:

...
⊗ ...

=


 ...

...
⊕ ...

⊕ ...
⊕ •




S

⊕


 ...

...
⊕ ...

⊕ ...




A

,

(141)
where the longest columns have N − 1 boxes and the bullet stands for the trivial
representation. The first four representations are symmetric under exchange of the
two adjoints and the latter three are antisymmetric. This decomposition is easy to
understand by representing adjoints states as traceless matrices fαβ, corresponding to
the traceless product of a vortex–anti-vortex pair, see eq. (110). The first two terms are
respectively symmetric and antisymmetric under exchange of any pair of constituent
vortices or constituent anti-vortices. They have dimensions of order 1

4N
4 each. They

are self-conjugated and thus invariant under interchanging the roles of vortices and
anti-vortices. Analogously, the first two terms among antisymmetric representations
have opposite symmetry properties under exchange of vortices and exchange of anti-
vortices. These two representations have also each dimensions of order 1

4N
4 and are
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conjugated to one another. Apart from these four large representations, one finds also
two adjoint representations and the singlet.

What we have just discussed is purely group theory. We must now view this result
from the standpoint of physics. In particular eq. (141) is at odds with the interpretation
of the adjoint states in the left hand side as particles in a Fock space: in the tensor
product of two particles we would find both single particle states, the adjoints, and
the vacuum, the singlet. Notice that, given the Hamiltonian only depends on the
SU(N) (or SDiff(T 2)) generators, the adjoints and the singlet on the right hand side
are dynamically indistinguishable from the same representations we already studied 26.
Indeed in the particular case of hypothesis A of section 3.2, the Peter-Weil theorem
implies that each representation (r, r) of SU(N)L×SU(N)R features only once, in such
a way that the adjoints and singlets on the right hand side of eq. (141) correspond to
states we already considered.

The above obstruction to a particle interpretation has however a rather simple
solution. If we fold the left hand side with vorton wave packets, i.e. localized at
momenta p ≪ Λ, and then take the N → ∞ limit, the overlap with the adjoints and
the singlet on the right hand side goes to zero. Furthermore, up to O(p2/Λ2) effects,
the overlap with the remaining four large representations, reduces in the same limit to
two combinations, the symmetric and antisymmetric one: |m,n⟩S/A = (|m⟩ ⊗ |n⟩ ±
|n⟩ ⊗ |m⟩)/

√
2. These corresponds to the two-particle subsector of a Fock space of

either bosonic or fermionic identical quanta. Let us see how this works in detail.
The adjoints in the right hand side of eq. (141) arise from tracing one constituent

vortex and one anti-vortex from different adjoints, while the vacuum corresponds to
tracing both. The states belonging to the two adjoints are then explicitly written as

|ℓ⟩S/A ∝
∑

m,n

′
(Jℓ)

α
β (J

∗
m) γα (J∗

n)
β
γ

(
|m⟩ ⊗ |n⟩ ± |n⟩ ⊗ |m⟩

)
. (142)

Tracing over the three J-matrices and normalizing the states we can write 27

|ℓ⟩S =

√
2

N

∑

m

′
cos
( π

2N
m ∧ ℓ

) ∣∣∣∣
1

2
(ℓ+m)

〉
⊗
∣∣∣∣
1

2
(ℓ−m)

〉
, (143)

|ℓ⟩A =

√
2

N

∑

m

′
i sin

( π

2N
m ∧ ℓ

) ∣∣∣∣
1

2
(ℓ+m)

〉
⊗
∣∣∣∣
1

2
(ℓ−m)

〉
. (144)

In the above equations the sums over m actually extend over the double fundamental
domain, that is −N + 1 ≤ mI ≤ N − 1, and only the m’s for which the arguments
of the kets are integer vectors should be retained. Moreover, the twisted periodicity
of eq. (77) should be applied to the kets, whenever their argument is outside the
fundamental domain.

The vacuum state corresponds to the symmetric zero-momentum state

|•⟩ = |ℓ = 0⟩S /
√
2 =

1

N

∑

m

′ |m⟩ ⊗ |−m⟩ = a2

N

∑

x

|x⟩ ⊗ |x⟩ , (145)

26It is interesting to contrast this situation with, for instance, the case of isospin in QCD: unlike SU(N)
here, isospin merely constrains the dynamics without fully determining it.

27In the normalization factor of |ℓ⟩S we have approximated
√
N2 − 2 → N .
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where in the last step we used the position eigenstates defined in eq. (111). The above
three equations all define largely entangled states of two vortons, the majority of which
have momenta above the fluid cut-off Λ. We thus expect their overlap with vorton wave
packets to be suppressed. Consider indeed a two vorton wave-packet |f1(x)⟩ ⊗ |f2(x)⟩
where f1 and f2 are localised on a distance L larger than the fluid cut-off length a1.
The overlap with the “small” representations subspace for such a state is approximately
given by

∑

ℓ,S,A

∣∣∣(⟨f1| ⊗ ⟨f2|) |ℓ⟩S/A
∣∣∣
2
≃
∑

x

|f1(x)|2|f2(x)|2 ∼
a2

L2
<
a2

a21
=

1

N
, (146)

and vanishes for N → ∞. A similar conclusion holds for the overlap with |•⟩. In the
continuum limit, we can thus neglect the overlap of |ℓ⟩S,A and |•⟩ with vorton wave
packets.

Consider now the four “big” representation in eq. (141). We can also explicitly
write them using projectors. For example, the projector on the symmetric-symmetric
states is

PSS ∝
∑

m1,m2,
n1,n2

′ |m1,m2⟩ ⟨n1,n2|
{(

(Jm1)
α1
β1

(Jm2)
α2
β2

(
J∗
n1

) β1
α1

(
J∗
n2

) β2
α2

+ (α1 ↔ α2)
)
+ (β1 ↔ β2)

}
, (147)

where we neglected the subtraction of trace terms that correspond to the singlet and the
adjoints, which we already established to be negligible. The other three projectors are
obtained by exchanging symmetrisations with anti-symmetrisations accordingly. Two
terms in eq. (147) contain a double trace of products of J-matrices. They give two
momentum conservation Kronecker symbols and correspond to the identity operator
on the symmetric or anti-symmetric subspaces, respectively

IS/A =
1

4

∑

m1,m2

′( |m1,m2⟩ ⟨m1,m2| ± |m1,m2⟩ ⟨m2,m1|
)
. (148)

The other two terms involve the single trace of a product of four J-matrices, which
produces only conservation of the total momentum. These terms are thus off-diagonal
in the individual vorton momentum labels. In respectively the symmetric and anti-
symmetric subspaces they correspond to the following operators (the same comments
we made below eq. (144) apply to these summations)

∆S =
1

2N

∑

ℓ,m,n

′
cos
( π

2N
m ∧ n

) ∣∣∣∣
1

2
(ℓ+ n),

1

2
(ℓ− n)

〉〈
1

2
(ℓ+m),

1

2
(ℓ−m)

∣∣∣∣ ,

(149)

∆A =
1

2N

∑

ℓ,m,n

′
sin
( π

2N
m ∧ n

) ∣∣∣∣
1

2
(ℓ+ n),

1

2
(ℓ− n)

〉〈
1

2
(ℓ+m),

1

2
(ℓ−m)

∣∣∣∣ ,

(150)

Using these elements, the full projectors can be written as

PSS = IS +∆S , PAA = IS −∆S , (151)

PAS = IA +∆A , PSA = IA −∆A . (152)

44



Very much as we did previously with the “small” representations, one can study the
matrix elements of ∆S and ∆A on vorton wave packets localised on a distance L larger
than the fluid cut-off length a1. In the same notation used previously we find

| ⟨f1| ⊗ ⟨f2|∆S,A |g1⟩ ⊗ |g2⟩ | ∼<
a21
L2

(153)

The overlap is not as suppressed as in eq. (146), but it still becomes negligible for
wave packets that are deeply in the vorton region L≫ a1. When projected on vorton
wave packets states the four “large” representations reduce in reality to just two repre-
sentations, corresponding to the symmetric and antisymmetric product of two vortons
|m,n⟩S/A = (|m⟩ ⊗ |n⟩ ± |n⟩ ⊗ |m⟩)/

√
2. As already anticipated, when considering

vorton wave packets, the content of the seven irreps in eq. (141) reduces to |m,n⟩S
and |m,n⟩A, corresponding to the two particle Fock-subspace for respectively a boson
and a fermion field.

One can go on and investigate the same questions for representations that can be
written as tensor products of more than two adjoints. We have not done the exercise,
but for a product of M adjoints |n1⟩ ⊗ · · · ⊗ |nM ⟩ we expect the irreducible subspaces
to correspond to Young tableaux withM boxes, modulo the subtraction of traces. The
simplest options, consisting of a row or a column of boxes, correspond respectively to
identical bosons or identical fermions. However, the more complex options correspond
to mixed statistics.

These results motivate the investigation of a field theoretic realization of vortons.

6.2 Vorton Field Theory

The results of the last two subsections indicate that it should be possible to bypass the
truncation of SDiff(T 2) to SU(N) and focus on a theory where the vortons are the
sole degrees of freedom. In order to achieve that, we need to go back to section 3 and
seek a different route to quantization. All we need is to find an explicit realization of
the algebra of R-charges, use it to write the Hamiltonian of eq. (69) and then study
the dynamics. The first step is easily taken, as any Lie algebra can be explicitly
realized by either bosonic or fermionic ladder operators through the Jordan-Schwinger
map [55, 56]. In practice this works as follows. Given any explicit representation

(TA)βα of the generators QA, one considers either bosonic or fermionic ladder operators
transforming in the same representation, that is either Φα or Ψα with commutation
relations

[Φα,Φ†
β] = δαβ , {Ψα,Ψ†

β} = δαβ . (154)

The operators QAb ≡ Φ†
βΦ

α(TA)βα = Φ†TAΦ and QAf ≡ Ψ†
βΨ

α(TA)βα = Ψ†TAΨ are
then both easily seen to represent the algebra.

In our case, a basis of the Lie algebra is given by the local charges R(x), whose
commutator is the Fourier transform of eq. (66)

[R(x), R(y)] = −i
∫
d2z R(z)∂zδ

2(z− x) ∧ ∂zδ
2(z− y) . (155)

We can then introduce ladder operators, either bosonic or fermionic, transforming in
the adjoint of SDiff, that is position space scalar fields Φ(x) or Ψ(x) satisfying

[Φ(x),Φ†(y)] = δ2(x− y) , {Ψ(x),Ψ†(y)} = δ2(x− y) . (156)
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Applying the above construction, one then finds that the R-algebra is equally well
represented as

Rb(x) = i∂Φ† ∧ ∂Φ or Rf (x) = i∂Ψ† ∧ ∂Ψ (157)

Of course also the sum Rb+Rf offers a representation. In the boson (fermion) case, the
Hilbert space is a Fock space constructed from a vacuum state |0⟩, satisfying Φ |0⟩ = 0
(Ψ |0⟩ = 0) by repeated action with Φ† (Ψ†). As we will now discuss, the particle
excitations of either Fock space offer specific incarnations of the vortons.

Focusing for definiteness on the bosonic case, the Hamiltonian is obtained by re-
placing Ω(x) = −Rb(x)/ρ in the Hamiltonian of eq. (69). Of course we should also
take into account the need for a UV regulation of the intermediate 1/∇2, as evidenced
by the study of the SU(N) truncation. Working directly in the infinity volume limit
(thus dropping the velocity zero mode v̄ → 0) we can write

H =
1

2ρ

∫
d2xRb

F (−∇2/Λ2)

−∇2
Rb = (158)

=
1

2ρ

∫
d2xd2y[i∂Φ† ∧ ∂Φ](x)GΛ(x− y)[i∂Φ† ∧ ∂Φ](y)

where, as previously, F (τ) is a UV regulator function satisfying F → 0 for τ → ∞ and
F → 1 for τ ∼< 1. The UV regulated Green’s function GΛ(x−y) is still logarithmically
IR divergent. However, as already discussed in section 5.2.2, Rb is a total derivative,
and the divergent piece drops out. More precisely we can write

Rb(x) = ∂IJ
I JI =

i

2

(
Φ†∂̃IΦ− ∂̃IΦ†Φ

)
(159)

so that we can express the Hamiltonian as

H =
1

2ρ

∫
d2xd2yJK(x)GΛ

KL(x− y)JL(y) (160)

where the long distance behaviour of GΛ
KL is given by eq. (140), while at coinciding

points its quadratic divergence is regulated to

GΛ
KL(0) =

[
Λ2

8π

∫
dxF (x)

]
δKL ≡ c

Λ2

8π
δKL (161)

To study the dynamics it is further convenient to write the Hamiltonian in normal
ordered form. A straightforward computation then gives

H =
1

2ρ

{
c
Λ2

8π

∫
d2x∂Φ†∂Φ+

∫
d2xd2y : JK(x)GΛ

KL(x− y)JL(y) :

}
. (162)

This results makes the dynamics manifest. The degrees of freedom are bosonic vortons
with a dispersion relation set by the term quadratic in the field: Ep = (cΛ2/16πρ)p2,
which nicely matches the result in section 5.2.1. The second term in the Hamiltonian,
vanishes on single vorton states, and represents a dipolar interaction among vorton
pairs. Also for this term one can check that the matrix elements perfectly match
the SU(N) model matrix elements among symmetric bi-adjoints |m,n⟩S = (|m⟩ ⊗
|n⟩ + |n⟩ ⊗ |m⟩)/

√
2 at low momentum (p ≪ Λ). This is not surprising given the
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Figure 6: Born level Feynman diagrams relevant for the vorton scattering.

computation is fully controlled by the algebra of the R-charges. Furthermore, as one
can immediately appreciate, eq. (162) makes a specific prediction for the structure of
the vorton scattering amplitude. In fact, at Born level the regulator can be dropped,
and the amplitude is fully determined by one parameter, ρ, with a specific dependence
on the external momenta. We will present this computation in the next subsection.

The above discussion goes through basically unchanged for the case of fermionic
vortons: the result amounts to replacing Φ → Ψ in eqs. (159) and (162), while the
matrix elements now match those for the anti-symmetric bi-adjoint |m,n⟩A = (|m⟩ ⊗
|n⟩− |n⟩⊗ |m⟩)/

√
2 in the SU(N) model. Similarly in a realization with both a boson

and a fermion, the Hamiltonian would consist, at the quadratic level, of the sum of
the bosonic and fermionic kinetic term, while the current appearing in the interaction
would be the sum of the bosonic and fermionic currents. That would make specific
predictions for the scattering amplitudes bb→ bb, ff → ff and bf → bf . Notice that
individual vorton number is preserved, so that processes like bb→ ff do not occur.

6.3 Vorton scattering

We are now ready to apply our results to compute the simplest instance of vorton
S-matrix: 2 → 2 scattering. As stressed in the previous section, the matrix elements
in the vorton field theory match those of the SU(N) model in the low energy limit.
To perform computations we can thus work directly in the field theory. Writing the
S-matrix as S = 1 + iM, the reduced 2 → 2 scattering amplitude M is defined by

⟨k1,k2|M |q1,q2⟩ = (2π)3δ(Ek1+Ek2−Eq1−Eq2)δ
2(k1+k2−q1−q2)M(k1,k2,q1,q2)

(163)
In the Born approximation, M is directly given by the matrix elements of the interac-
tion Hamiltonian. The corresponding Feynman diagrams for the three cases of interest
bb, ff and bf are shown in Fig. 6. As also evidenced by the figure, the basic building
block is the bf amplitude, which has the structure of a t-channel amplitude.

Defining

Mt(k1,k2,q1,q2) =
1

ρ

(k1 ∧ q2)(k2 ∧ q1)

(q1 − k1)2
, (164)

we then have

Mbf (k1,k2,q1,q2) = 2Mt(k1,k2,q1,q2) (165)

Mbb(k1,k2,q1,q2) = Mt(k1,k2,q1,q2) +Mt(k2,k1,q1,q2) ≡ Mt +Mu

Mff (k1,k2,q1,q2) = Mt(k1,k2,q1,q2)−Mt(k2,k1,q1,q2) ≡ Mt −Mu
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where, in an obvious notation, we defined a u-channel amplitude Mu obtained by ex-
changing k1 ↔ k2 in Mt. Notice that all these amplitudes vanish when any of the
external momenta vanish. Like for the vanishing of the vorton energy at zero momen-
tum, this can be intuitively understood by the fact that, at zero momentum, adjoint
states becomes locally indistinguishable from the singlet. While eq. (164) makes this
property manifest, it is also useful to implement energy and momentum conservation
and write it in terms of unconstrained kinematic variables. In particular, momentum
conservation allows to write q1/2 = 1

2(P±Q) and k1/2 = 1
2(P ± K), while energy

conservation corresponds to K2 = Q2. Substituting in eq. (165) and taking into ac-
count that crossing now corresponds to K → −K, we can write (no need to show
Mbf = (Mbb +Mff )/2, whose expression is too long)

Mbb =
1

4ρ

{
Q2 −P2

}
, (166)

Mff =
1

4ρ

{
(Q2 −P2)(P ·Q)(P ·K) + (Q2 +P2)(P ∧Q)(P ∧K)

P2Q2

}
(167)

=
1

4ρ

{
(Q2 −P2) cosα cosβ + (Q2 +P2) sinα sinβ

}
. (168)

Where α (β) is the angle between P and Q (K). The dependence of the amplitudes on
the total momentum P makes evident, as it was to be expected, the absence of Galilean
invariance. The vorton dispersion relation Ek ∼ k2 only accidentally complies with
Galilean symmetry. Notice also that, even though the interaction Hamiltonian is non-
local, the bosonic amplitude Mbb is polynomial in the momenta. That is not the case
for the fermionic one Mff , whose singularity at zero momentum perfectly reflects the
non-locality of the Hamiltonian. There must of course exist a change of variables that
makes the locality of the Born level bosonic 2 → 2 amplitude manifest. We have not
investigated that, but it would be interesting to do so and see if all the bosonic tree
level amplitudes are made local that way.

Another property of Mbb is its independence of the angular variables: in terms of
partial waves for Q (and K) it is a pure s-wave. This result follows from the quadratic
dependence on the momenta and from Bose symmetry, which dictates invariance of
Mbb under the independent sign flip of Q and K. These properties constrain Mbb

to be a linear function of P2 and Q2. In fact Mbb has the additional property of
vanishing for |P| = |Q|, that is for incoming, and outgoing, orthogonal momenta:
q1 · q2 = k1 · k2 = 0. A pair of bosonic vortons thus has the peculiarity of not
diffusing when crossing at 90 degrees. The fermionic amplitude Mff does not share
this property, though it has other zeroes. In particular it vanishes for (α, β) equal to
either (π/2, 0) or (0, π/2). In terms of momenta, this means that in the scattering
of two vortons with the same energy, i.e. |k1| = |k2|, the final state momenta q1

and q2 cannot be parallel. Similarly for parallel initial state momenta, the two final
state vortons cannot have the same energy. Of course these properties follow from the
dipolar nature of the vorton-vorton interaction, see eq. (162), and from the relation
between dipole and momentum, see eq. (159).

The Born level is a good approximation as long as the coupling is weak. A natural
measure of coupling strength is provided by the scattering phases. These are readily
read off the S-matrix on states labelled by energy, momentum and angular momentum,
where the latter is just the the quantum number canonically conjugated to the angles
α, or β. One finds that, given the vorton mass µ = c(8πρ/Λ2), the scattering phases
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scale likeMµ ∼ k2/Λ2. This result also simply follows from dimensional analysis, given
that M has dimension [k2/ρ] = 1/[mass] and given that the vorton mass is the only
mass parameter we can use to normalize the amplitude so as to make it dimensionless.
A quick study of the 1-loop corrections also shows that the loop expansion is controlled
by k2/Λ2. We conclude that the coupling strength is ∼ k2/Λ2 so that the system is
strongly coupled at the cut-off, i.e. for k ∼ Λ, but weakly coupled at all lower momenta.
Notice that, even though the interaction Hamiltonian, when written in terms of the
canonical field Φ, purely depends on the classical parameter ρ, it should not come as
a surprise that the interaction strength is instead controlled by the cut-off Λ. That is
because the existence of asymptotic states and of an S-matrix is guaranteed precisely
by the existence of the UV cut-off Λ. That makes it more intuitively clear that the
strength of the interaction is in the end controlled by k2/Λ2.

6.4 Effective Field Theory approach

The results of the last two sections compel us to try and investigate vorton QFT from
the modern effective field theory (EFT) standpoint. In this section we will make a
brief foray into that, focusing on the bosonic vorton QFT. The need for a deeper study
will emerge. We leave that to future work [53].

The idea is to formulate vorton QFT in the path integral approach on the basis of
symmetry principles and by working order by order in the derivative expansion. Notice
however that the use of spacial locality as a constitutive principle will be limited, given
vortons are endowed with long range dipolar interactions.

In the path integral approach, the first step is to write the classical Lagrangian
corresponding to the Hamiltonian of eq. (158). Adding an auxiliary field A(x, t) such
Lagrangian can be written as

L = iΦ†Φ̇ +
1

ρ

[
i(∂Φ† ∧ ∂Φ)A+

1

2
∂A

1

F (−∂2/Λ2)
∂A

]
(169)

where F (τ) is the same regulator function defined in eq. (158). By the above La-
grangian, Φ and Φ† are canonically conjugated variables, and moreover one can easily
see that by eliminating the auxiliary field A one gets back the Hamiltonian pf eq. (158).
Notice that the Lagrangian is non-local only at distance scales ∼ 1/Λ, and because
of the non-trivial regulator function F . On the other hand, the exchange of A pro-
duces a specific long-distance non-locality in H. As, by hypothesis, F (τ) is regular
around τ = 0, it’s low momentum expansion defines a subset of the higher derivative
corrections to the leading long-distance dynamics.

The above Lagrangian is invariant under two sets of continuous transformations.
The first is given by

A(x, t) → A(x, t) + α(t) (170)

for any α(t). While the invariance of the quadratic term is obvious, that of the term
linear in A is proven by noticing that ∂Φ†∧∂Φ is a total derivative and by integrating
by parts. Notice that this symmetry forbids Ȧ2, thus making A an auxiliary field. The
second set of transformations consists of volume preserving mappings in (Φ†,Φ) space,
that is transformations that preserve the two form dΦ† ∧ dΦ. As Φ(x) and Φ†(x) are
canonically conjugated, these correspond to canonical transformations that do not mix
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variables at different space points. At the infinitesimal level, such transformations can
be written in terms of the Poisson bracket with a generating function F

δΦ = ∂Φ†F(Φ†,Φ) δΦ† = −∂ΦF(Φ†,Φ) (171)

with F† = −F in order to satisfy the consistency condition δΦ† = (δΦ)†. The vorticity
∂Φ† ∧ ∂Φ is easily seen to be exactly invariant, while for the kinetic term one finds
exact invariance up to a time derivative28

δ(iΦ†Φ̇) = −i∂ΦFΦ̇ + iΦ† d

dt
(∂Φ†F) = i

d

dt

(
−F +Φ†∂Φ†F

)
. (172)

The vast majority of choices for F leads to non-linear transformations, but the subset

F = iαΦ†Φ+βΦ†2−β∗Φ2 (with real α) leads to a linearly realized SL(2, R) subgroup

δΦ = iαΦ+ 2βΦ† δΦ† = −iαΦ† + 2β∗Φ . (173)

The constant shift Φ → Φ + c, Φ† → Φ + c∗, is obviously also a symmetry, generated
by F = cΦ† − c∗Φ.

While we arrived at eq. (169) following the thread of our SU(N) rigid body con-
struction, the symmetries we have just identified offer an alternative route. One can
indeed convince oneself that eq. (169) with F (−∂2/Λ2) → 1 is the lowest order local
action, counting powers of fields and derivatives, that is compatible with eqs. (170)
and (172). This result places vorton field theory in the standard framework of effective
field theory, according to which the dynamics of systems is constructed on the basis of
symmetries and of an expansion in powers of fields and derivatives.

Notice that, in particular, the symmetries forbid a pure gradient term ∂Φ†∂Φ in
the quadratic action. Because of that, the solutions of the linearized classical equations
of motion29 satisfy a trivial dispersion relation ωk = 0 for any k. Thus they do not
propagate.

We just outlined the situation when treating Φ and Φ† as classical variables. As
symmetries underlie the structure of eq. (169), it matters to investigate their fate in the
quantum mechanical treatment. In particular, for non-linear symmetries the concern
is the path integral measure, or equivalently the UV regulator 30. In many standard
examples of effective field theories based on symmetries and derivative expansion, like
the pion Lagrangian of QCD, dimensional regularization offers the most convenient ap-
proach, as it generally respects all the symmetries. An exception is represented by the
symmetries that rely on the dimensionality of space-time, like chiral symmetry. Unfor-
tunately vorton field theory appears to belong in this class, given the symmetries and
the Lagrangian are based on the 2-dimensional Levi-Civita tensor ϵIJ . Moreover di-
mensional regularization eliminates all power divergences (or, better, consistently hides

28This result is the field theoretic version of the invariance of
∫
pq̇ under canonical transformations in

analytical mechanics. It can also be quickly understood by noticing that the kinetic term involves the
integral along the time line of the 1-form K = Φ†dΦ, whose external derivative is just the volume 2-form:
dK = dΦ† ∧ dΦ. As the latter is invariant under volume preserving transformations, the variation δK must
be closed, dδK = 0. Since the topology of Φ-space is trivial, the variation is actually exact δK = dG, for
some G, and therefore the action is invariant up to boundary terms.

29That is solutions for which Φ is small enough that the quartic term can be neglected.
30In the canonical approach that role is played by operator ordering and by the associated possible UV

divergences.
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them in the definition of composite operators) but in the vorton system a quadratic
divergence saturated at the UV cut-off scale Λ crucially generates a gradient kinetic
term, see eq. (162), which makes quanta propagate, bringing asymptotic states into
existence. How should we then proceed in our case? Indeed we already know of one op-
tion, which is precisely where we started from: UV-regulate by truncating SDiff(T 2) to
SU(N). Space is consequently latticized and the vorton field Φ reduced to the discrete
set of the N2−1 components of the SU(N) adjoint. The procedure would then amount
to repeating the steps we followed in section 6.2 but working with SU(N) rather than
directly with SDiff(T 2). We could then proceed either by path integral or by canonical
quantization and study the quantum mechanical fate of the analogue of eq. (171) in the
SU(N) model. In the canonical approach, the main effect of quantization is that the
ordering of Φ and Φ† matters when considering a generic generating function F . One
can however easily see that for the case of harmonic generator F = f(Φ)−f(Φ)† there
is no ordering problem given there is no operator product involving both Φ and Φ†.
This subclass of transformations can then straightforwardly be adapted to the SU(N)
regulated theory. We leave the study of the general case to future work.

Another fact of the quantum theory is that symmetries can be spontaneously bro-
ken. More precisely, symmetries that act linearly on the classical fields may end up
being non-linearly realized in the quantum theory. In our case the linear symme-
try subgroup SL(2, R) is indeed spontaneously broken to U(1) in the Fock vacuum.
Specifically, the transformations associated with β in eq. (173) are broken, while phase
rotations Φ → eiαΦ stay unbroken. An order parameter of the breaking is for instance
given by the local operator ΦΦ†, given one has

⟨0| δβ(Φ2)(x) |0⟩ = ⟨0| 2ΦΦ†(x) |0⟩ > 0 . (174)

Indeed the expectation value in the last expression is UV divergent and formally equal
to 2δ2(0). When considering UV regulated quantities, like for instance the Hamil-
tonian, the relevant equation would entail a UV smeared composite operator of the
form

⟨0| δβ
[∫

d2y f(y)Φ(x+ y/2)Φ(x− y/2)

]
|0⟩ = (175)

= 2 ⟨0|
∫
d2y f(y)Φ(x+ y/2)Φ†(x− y/2) |0⟩ = 2f(0) . (176)

For a regulator function f(y) that integrates to unity and is localized over the fluid
cut-off length, we have f(0) ∼ Λ2/4π. Notice that SL(2, R) forbids the addition of
an arbitrary gradient term ∂Φ†∂Φ in eq. (162). Therefore the term that appears after
normal ordering and its effects on the spectrum must be controlled by the spontaneous
breaking of SL(2, R). A remarkable aspect here is that spontaneous symmetry breaking
leads to the appearance of effects that depend on UV physics. It would definitely be
interesting to study in detail the regulated Ward identities (for instance using the
SU(N) truncation) and explore the role of single and double vorton states in the light
of Goldstone theorem. We leave this study to future work.

7 Summary

As this is a long and winding paper, we shall here offer a detailed summary.
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The initial object of our study has been a dynamical system whose configuration
space is SDiff(T 2), the group of area preserving mappings of the 2-torus T 2 onto
itself. In practice, given two sets of coordinates ϕa, a = 1, 2, and xI , I = 1, 2 both
parametrizing T 2, the dynamical variables are given by the time-dependent mappings
ϕ→ x(ϕ, t) subject to the constraint det(∂ϕ/∂x) = 1. With the velocity vI = ẋI(ϕ, t)
and the Lagrangian of eq. (47), the system classically defines the incompressible perfect
2D fluid. The ϕ’s and the x’s, correspond to respectively the Lagrangian and the
Eulerian descriptions of the flow. The goal has been to study the system quantum
mechanically.

Our system belongs to the general class of mechanical systems whose configuration
space is a Lie group G [30, 31]. This class generalizes the notion of rigid body, given
the case G = SO(3) coincides with the ordinary rigid body of mechanics. At least
when G is finite dimensional, once the irreducible representations of G are known, the
steps to derive the quantum description are clear. The first step is dictated by the
Peter-Weyl theorem, which establishes that the collection of entries Dr

αrβr
(g(π)) of all

irreducible representations offers a complete orthonormal basis of functions on G (see
the discussion around eq. (34)). Each irrep r of dimension dr then corresponds to
a Hilbert subspace of dimension d2r . The action of G on each index of Dr

αrβr
(g(π))

realizes a doubling GL × GR of G, with respect to which the subspace transforms
like (r, r). This doubling already exists classically. Moreover even though only GL is
exact in general, GR is crucial to describe the dynamics. Indeed the Hamiltonian is a
quadratic form in the generators of GR (see eq. (69)). The second step in the solution
of the quantum theory, is the diagonalization of the Hamiltonian in each separate
(r, r) block. Each block then gives dr generally distinguished eigenvalues, with each
eigenvalue dr-degenerate because of GL.

The extension of the above construction to the fluid entails a technical difficulty
and a conceptual conundrum. The technical difficulty is that SDiff(T 2) is an infinite
Lie group for which we do not possess ready made explicit irreducible representations.
We dealt with this issue by using that SDiff(T 2) = limN→∞ SU(N). Working at finite
N , we then identified a physically sensible way to take the N → ∞ limit.

The conceptual conundrum is tied to the very existence of dual coordinates ϕ (La-
grangian) and x (Eulerian), with SDiff(T 2)L and SDiffR(T

2) acting respectively on the
first and on the second. The position space velocity v(x, t), and more precisely its vor-
ticity ∇∧v, coincides with the SDiff(T 2)R generators and is consequently SDiff(T 2)L
invariant. As discussed in section 3, this implies that there exist twice as many local
degrees of freedom than we can measure with v(x, t) and associated with the internal
variables ϕ. Classically this seems irrelevant, as each ϕ configuration lives a life of its
own, but not so when considering quantum superpositions: measurements of v(x, t) are
then generally described by a density matrix. We considered two alternative attitudes
towards this fact (labelled A and B2). The first is just to accept it. The second is to
do away with SDiff(T 2)L and to only represent the SDiff(T 2)R generators ∇∧v(x, t).
The latter choice is equivalent to giving up the group manifold configuration space we
started with. Our impression is that this second option is more likely to be concretely
realized in a laboratory.

As the energy spectrum and the position space dynamics are determined by the
SDiffR(T

2) algebra, the above two options only differ in the eigenvalue degeneracy. The
study of their dynamics thus technically coincide. Using the truncation SDiffR(T

2) →
SU(N), we pursued that study starting in section 4. A crucial consequence of the
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truncation is the reduction of T 2 to an N × N lattice. The N2 values of the now
discretized vorticity on each lattice site provide the N2 − 1 generators of SU(N) (the
apparent mismatch of N2 and N2−1 is accounted for by the vanishing of the vorticity
zero mode on T 2). However, the discretized vorticity algebra (≡ SU(N)) approximates
SDiff(T 2) only at wavelengths ≫

√
Na, with a the fundamental lattice length. This

led us to identify Λ = 1/
√
Na with the fundamental cut-off of the fluid effective theory

and to construct a suitably regulated Hamiltonian (see eq. (120)).
Armed with our construction, the study of the spectrum reduced to computing,

irrep by irrep, the eigenvalues of a quadratic form in the SU(N) generators. A detailed
study of the fundamental and the adjoint representations allowed us to draw a general
picture. Our results are neatly stated in the limit where N → ∞ with Λ fixed, in which
the lattice becomes a continuum and the volume of T 2 goes to infinity like N/Λ2. We
found that fundamental □ and antifundamental □̄ are fully degenerate and gapped at
ω□ ∼ Λ4/ρ. This result, which is fully dictated by dimensional analysis when taking
Λ and the mass density ρ as the sole inputs, coincides with Landau’s estimate for
the gap of the transverse hydrodynamic modes. Landau then concluded that the only
ungapped mode of quantum hydrodynamics is the longitudinal one, in compliance with
the observed properties of superfluids at zero temperature. Our finding however differs
from Landau’s when considering the states in the adjoint representation. These are not
degenerate and satisfy an ungapped dispersion relation that at low momentum takes
the quadratic form ω(k) = cΛ2k2/ρ. That is the main result of our paper.

The absence of a gap in the adjoint can be qualitatively understood on the basis
of group theory and locality. As we show, the N basis states of □ can be chosen to
correspond to single vortices localized on each of the N sites of the coarse grained√
N ×

√
N lattice, see Fig. 3. Analogously, the antifundamental □̄ has a basis of

localized anti-vortices. Now, □⊗□̄ = Adj⊕1 and locality imply that the adjoint states
are locally indistinguishable from the trivial representation 1 when their momentum
is sent to zero. By continuity, in this limit their energy must then also vanish like it
vanishes for 1. This argument can easily be extended to prove the gaplessness of any
representation that can be written as a tensor product of an equal number of □ and
□̄. That is precisely the subset that trivially realizes the ZN center of SU(N) and
which can equivalently be written as tensor products of adjoints. Indeed, as we prove
in section 5.2.2, the low end of the energy spectrum for the tensor product of q adjoints
has the form E = ω(k1)+ · · ·+ω(kq) compatible with q quanta that are weakly coupled
at long distance and have the same dispersion relation as the adjoint. We named these
quanta vortons.

As it is implicit from Adj ∈ □⊗ □̄, the vortons are a vortex-antivortex pair. More
precisely, for momentum p they correspond to a pair separated by a distance πp̃/Λ2

(see eq. (114)). In the low momentum regime p ≪ Λ, they can be viewed as point-
like objects, given they carry a vorticity dipole smaller than the cut-off length 1/Λ.
Instead, for p ∼> Λ, the dipole length exceeds 1/Λ and the components of the pair can be
resolved within the effective theory. In this regime, their dispersion relation also shifts
to ω ∼ (Λ4/ρ) log p/Λ which suits expectations for a macroscopic vortex antivortex
configuration. Indeed the high momentum (p ∼> Λ) adjoint states correspond to SU(N)
generators that do not properly approximate the SDiff(T 2) algebra. In view of that, we
concluded that only vortons with momentum p ∼< Λ should be considered a universal
consequence of SDiff(T 2), while the p ∼> Λ modes should be discarded as a spurious
feature of the truncation. Moreover, as the latter modes feature well separated vortices,

53



we also inferred that □, □̄ and all the states involving well separated vortices should
be discarded. In particular this implies that irreps that do not feature vortons should
be fully discarded.

That conclusion also fits well our general expectation that states that do not purely
involve vortons are gapped. While we did not provide a general mathematical proof,
that expectation is based on the analytical and numerical study of various non trivial
irreps (see the Appendix) and on the absence of any obvious reason for these states to be
ungapped. A deeper perspective would undoubtedly be gained by exploring in which
way the gapless vortons are mandated by Goldstone theorem [53] 31. The relevant
symmetries would either be SDiffL in the original 2D fluid or the transformation of
eq. (171) in vorton QFT. We left that study to future work and focused on the study
of multi-vorton states.

Our construction, besides implying vortons behave as free particles when infinitely
separated, also completely fixes the structure of their interaction up to a proportionality
constant. In section 6 we investigated the most basic implications. For that purpose we
made specific choices for the structure (≡ irrep content) of the Hilbert space. Notice
the (r, r) blocks of the original perfect fluid system imply (for N → ∞) an infinite
number of vorton flavors, given every flux configuration is in turn degenerate under the
action of SDiffL. That is another perspective on the bizarre nature of this system. We
thus considered it more plausible to realize SDiffR only. Furthermore, motivated by the
particle nature of vortons, we realized SDiffR through ladder field operators that create
and destroy vortons. We provided two examples based on respectively bosonic and
fermionic vortons. Within this set up, see section 6.3, we studied 2 → 2 scattering at
Born level. The amplitude dependence on the kinematical variables is completely fixed
by the algebra, with distinctive features that would unmistakably identify these systems
experimentally. For instance the scattering amplitude for identical bosons vanishes
when the incoming momenta are mutually orthogonal. In the scattering of identical
fermions, instead, one finds that two collinear vortons with different energies won’t
scatter into two vortons with identical energies. All these amplitudes are quadratic in
the overall momentum and vanish in the soft limit as it suits hydrodynamic modes.
We also found that the Born approximation breaks down for momenta of order Λ, at
which the vortons are therefore strongly coupled. Remarkably, in spite of this fact, our
construction is technically consistent also at momenta above Λ, only its interpretation
as a fluid becomes untenable.

8 Outlook

We can force ourselves to a synthesis by considering three questions:
Did we solve our original problem? What did we learn? Where do we go from here?

The answer to the first question is: yes, at least in 2D, there exists a consistent
quantum mechanical perfect fluid. This affirmative answer however comes with a quali-
fication that brings us to the second question. In our original incompressible fluid, each
velocity/vorticity configuration has an internal infinite degeneracy associated with the
action of SDiffL on the Lagrangian coordinates of the fluid. We regard this property
as suspect. Interestingly, however, we could construct a variety of systems that do not

31We thank Alberto Nicolis for rightly pressuring us on this.
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possess the internal infinite degeneracy and yet are endowed with a local vorticity satis-
fying the quantum mechanical Euler’s equation (eq. (71)) of ordinary fluids. We aided
ourselves in the construction of these systems with a regulation SDiff(T 2) → SU(N),
but in the end our results do not depend structurally on the details of the regula-
tion. Our main result is that all these systems feature ungapped quanta, the vortons,
whose flow configuration is a vorticity dipole and whose interactions are fully fixed.
We thus labelled vorton QFT the simplest and perhaps most plausible incarnations.
The vortons sharply distinguish our systems from superfluids, where all modes carrying
vorticity are gapped.

The obvious goal at this point is to try and find out if vorton QFT can be realized
experimentally. A first issue to investigate towards that goal concerns the robustness
of the symmetries at the basis of vorton QFT. A preliminary study was undertaken
in section 6.4, though a more thorough study is warranted. In particular one should
understand the occurrence on the ungapped vortons according to the finite density
analogue of Goldstone’s theorem. In parallel, it also seems mandatory to explore the
relation between vorton QFT and the quantum Hall system, where occupied Landau
levels do behave like a sort of incompressible fluid. An even simpler but related system
to consider is 2D electrodynamics in a constant magnetic field, which is dually equiva-
lent to a 2D superfluid. As charged particles are dual to vortices, particle-antiparticle
bound states seem the natural candidates to reproduce the dynamics of vortons. Indeed
a preliminary study [53] indicates that is the case, but only up to contact interaction
terms and up to the obvious constant gap in energy associated with the rest mass of
particle and antiparticle. These facts further motivate the study of the robustness of
the symmetries that constrain vorton QFT.

If the above program ends up consolidating vorton QFT, it will then be interesting
to consider further properties of its dynamics. One particularly interesting issue is the
semiclassical limit of the flow, which should arise for sufficiently large vorton density.
One is easily convinced that the critical request is that the flow velocity collectively
generated by the vortons is larger than their individual velocity. A simple estimate
shows this requires vorton densities ≫ Λ2. It would be interesting to study quantum
effects by expanding around such semiclassical flows. In fact that brings to mind the
possible use of our insights in the effective description of fluids, like those occurring in
finite temperature QFT, that do not correspond to QFTs around a vacuum (see e.g.
[57]). At this stage we have no concrete idea to offer, but a fresh look at those systems
with our results in mind may teach us something. The extension of our analysis to 3D
fluids is also in our mind, even though it appears a long shot at this moment.

In the end, we have as many questions as when we started. Luckily they are
different.
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A Energy spectrum beyond fundamental states

Obtaining an analytic formula for the spectrum of representations beyond the fun-
damental and the adjoint is a challenging task. However, there are still interesting
features of the spectrum that one can derive for an arbitrary representation. In what
follows we discuss two such results: the N -fold degeneracy associated with most of the
energy eigenstates and the statistics of the energy eigenvalues. The latter will allow us
to put a lower bound on the number of vortices in a gapless state. At the end of the
section we describe the results of the numerical diagonalisation of the Hamiltonian on
two-vortex states.

A.1 N-fold degeneracy of the states

The first interesting feature of the spectrum is that for most SU(N) representations
all energy eigenstates are N -fold degenerate, as we have seen for the fundamental. To
see this, let us consider the products of n fundamental states, the n-vortex states.
The basis states |α1, . . . , αn⟩ ≡ |α1⟩ ⊗ · · · ⊗ |αn⟩ are eigenstates of the elementary
translations T2 of eq. (87) with eigenvalues ω

∑
i αi ≡ e−ip2a. The second component

of the momentum p2 = −1
r (
∑

i αi mod N) is periodic and takes N different integer
values in units of 1

r , which we chose to be in the range −1
2(N − 1) ≤ p2 r ≤ 1

2(N − 1).
The space of all n-vortex states can be split into N subspaces of fixed p2 value. Since
the Hamiltonian of eq. (124) commutes with T2 it does not mix the subspaces with
different values of p2 and takes a block-diagonal form:

〈
p′2, µ

′∣∣H |p2, µ⟩ = δ
p′2
p2 H

(p2)
µ′,µ . (177)

Here the µ label distinguishes among the states with fixed p2. The other translation
acts on the basis states as T1 |α1, . . . , αn⟩ = |α1 + 1 mod N, . . . , αn + 1 mod N⟩ and
maps each fixed p2 subspace to another one with p2 reduced by n mod N in units of
1
r . If n and N do not have any non-trivial common divisors then shifting by n mod N
runs all N different values of p2. The Hamiltonian also commutes with T1, which means
that all N blocks in the Hamiltonian are identical and do not depend on the value of
p2. This introduces an N -fold degeneracy of energy eigenstates that is labeled by p2.
If the greatest common divisor of n and N is larger than one, then the N p2 blocks in
the Hamiltonian are split into gcd(n,N) equal subsets connected by the action of T1.
The degeneracy of such states is smaller and is given by N

gcd(n,N) .
32

We have seen before that for the fundamental representation, one-vortex, this de-
generacy fixes the spectrum completely. For two-vortex states, the degeneracy is also
N , since we take N to be odd. Then the space of N2 two-vortex states splits in N
subspaces of N states each, which can be further reduced to (N − 1)/2 antisymmetric
and (N +1)/2 symmetric states. We shall discuss the results of numerical diagonalisa-
tion of the Hamiltonian on the two-vortex states at the end of this section. Since the

32In the magnetic field analogy the n-vortex state behaves like a particle of charge n that lives in a magnetic
field. The flux per plaquette Φ = 2πn/Ne is such that T1T2 = e−ieΦT2T1, which holds for the translations
acting on the n-vortex states. Making the parallel with the quantum Hall literature [58] we have Φ = n

NΦ0,
with Φ0 the fundamental flux. If n and N share a common divisor we have to consider N/ gcd(n,N) instead
of N , such that the spectrum admits an N/ gcd(n,N) degeneracy. The basis states are eigenstates of T2
with − 1

2 (N − 1) ≤ p2 r ≤ 1
2 (N − 1) and are eigenstates of T

N/ gcd(n,N)
1 such that p1 is confined to take one

of gcd(n,N) values. This defines the magnetic Brillouin zone.
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adjoint states are made of N fundamental vortices, we expect no large N degeneracy
in the energy eigenvalues given gcd(N,N) = N . This matches the absence of large
degeneracies observed in the analytic expression of the spectrum in eq. (129). The
same is true for any other representation in the tensor product of any multiple of N
fundamentals, for which no degeneracy is required by translational invariance.

A.2 Statistics of the energy eigenvalues

More information on the spectrum can be obtained from the statistics of energy eigen-
values. Indeed, it is easy to obtain a mean energy over all n-vortex states. Starting
from the eq. (124), and using the same regulator as in eq. (130), the Hamiltonian on
these states takes the form

⟨α1, . . . , αn|H |β1, . . . , βn⟩

=
Λ4

32π4ρ

|nI |≤ 1
2
(
√
N−1)∑

n̸=0

1

m2


n δα1

β1
· · · δαn

βn
+

n∑

i ̸=j
(J†

m)αi
βi
(Jm)

αj

βj

no i,j︷ ︸︸ ︷
δα1
β1

· · · δαn
βn


 . (178)

Since the Jm matrices are traceless only the first term contributes to the trace of the
Hamiltonian over all n-vortices states:

∑

α1,...,αn

⟨α1, . . . , αn|H |α1, . . . , αn⟩ = Nn n
Λ4

32π4ρ

|nI |≤ 1
2
(
√
N−1)∑

n̸=0

1

m2
= Nn nE□ . (179)

Since there are Nn n-vortex states the mean energy is n times the energy of a single
vortex and is thus growing logarithmically with N in the continuum limit. In order
to place bounds on the energy eigenvalues, we have to further look into the maximal
deviation from the mean, hoping this way to identify the gapped representations. In
order to implement such bounds let us consider traces of higher powers of the Hamil-
tonian or, rather, of higher powers of the deviation of the Hamiltonian from its mean
δH = H − nE□1. The latter is simply given by the second term in eq. (178). The
quadratic dispersion of the energy eigenvalues is given by

δH2 ≡ N−n
∑

α1,...,αn
β1,...,βn

⟨α1, . . . , αn| δH |β1, . . . , βn⟩ ⟨β1, . . . , βn| δH |α1, . . . , αn⟩

= N−n
(

Λ4

32π4ρ

)2 ∑

α1,...,αn
β1,...,βn

√
N∑

n,m ̸=0

1

m2 n2

n∑

i ̸=j
i′ ̸=j′

(J†
m)αi

βi
(Jm)

αj

βj
(J†

n)
βi′
αi′ (Jn)

βj′
αj′

no i,j︷ ︸︸ ︷
δα1
β1

· · · δαn
βn

no i′,j′︷ ︸︸ ︷
δβ1α1

· · · δβnαn

= 2n(n− 1)

(
Λ4

32π4ρ

)2
√
N∑

m ̸=0

1

m4
, (180)

where we have used a shorthand to indicate the endpoints of the sum over n. After
taking the traces only the terms with i = i′, j = j′ or i = j′, j = i′ survive and all give
equal contributions proportional to a momentum conservation δ(m + n) or δ(m − n)
respectively. The remaining momentum sum is converging and does not depend on N
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in the continuum limit. The fact that energy dispersion remains finite while the mean
is growing with N is not enough to prove the absence of the gapless modes since the
total number of eigenvalues is growing as Nn, which is much faster than the mean.
Eq. (180) only implies a conservative bound on the maximal deviation of the energy
eigenvalues from the mean, δH2

max ≤ Nn δH2, or

δHmax

H
≤ const ·

√
n− 1

n

Nn/2

lnN
. (181)

Since the ratio on the right hand side is growing with N we cannot constrain the
smallest energy eigenvalue at large N . The inequality is saturated if just one of the
Nn eigenvalues deviates maximally from the mean while the rest are exactly equal
to the mean, which is not expected to represent the actual spectrum. The N -fold
degeneracy discussed in the previous section would soften the bound slightly, replacing
Nn/2 → N (n−1)/2 if the spectrum were precisely N times degenerate as it is for n = 2.

In order to obtain a useful constraint one should consider the trace of higher powers
of δH. The maximal deviation of the eigenvalues from the mean can be constrained as
δHk

max ≤ Nn δHk, and choosing k ≳ n lnN should be enough to counter the growth
in the dimension of the n-vortex subspace. For a general k we propose a very crude
estimate of δHk. Starting from eq. (178), we see that every term in the momentum sum
in δH is in turn a sum of n(n − 1) terms corresponding to the choice of two different
indices out of n. After taking the trace over δHk, we end up with a product of at
least one and at most k momentum conserving δ-symbols. For instance at k = 3 we
expect momentum conservation contributions δ(m1 +m2)δ(m1 −m3)δ(m2 −m3) or
δ(m1+m2+m3). Since every momentum label is included in at least one momentum
conservation δ, the momentum sums will converge at large momenta with a result
independent of N in the large N limit. The momentum sums can thus grow at most
as constk with the constant independent of both N and n. We can therefore place a
conservative upper bound on the trace of δHk as

δHk ≤
(

Λ4

32π4ρ

)k
constk n2k . (182)

It leads to the following constraint on the maximal relative deviation of the energy
eigenvalues from the mean:

δHmax

H
≤ const · n N

n/k

lnN
−−−→
k→∞

const
n

lnN
. (183)

The right hand side monotonically decreases as k grows. Since the bound is valid for
any k we can optimise it by taking the limit of large k, or k

n lnN → ∞ to be precise. The
latter bound implies that the maximal relative deviation from the mean energy for the
states with a fixed number of vortices n is vanishing in the continuum limit and there
could not be any gapless states unless the number of vortices grows as well, at least as
n ≳ lnN . In particular, no states with a finite number of vortices can be gapless in
the continuum limit. Unfortunately, the bound is not strong enough to imply that the
number of elementary vortices in a gapless state should be at least N .
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A.3 Numerical diagonalisation: two-vortex and vortex-
anti-vortex states

To confirm our theoretical prediction on the gapped nature of the 2-vortex spectrum,
we here numerically diagonalise the Hamiltonian at fixed N . For the 2-vortex state,
the N fold degeneracy actually reduces the problem to a diagonalisation of a simple
N × N matrix, as opposed to N2 × N2. In particular we can focus on states at a
fixed momentum value p2 and diagonalise the Hamiltonian in this subspace: given
all subspaces with fixed p2 have identical spectrum, this will suffice. In practice we
considered the states |α,−α⟩ that correspond to p2 = 0. The numerical results are
displayed in Fig. 7 where we plot the distribution of the eigenvalues for N = 912. The
eigenvalues are concentrated around H̄ = 2E□, that is twice the energy of a single
fundamental vortex. This agrees with the result in eq. (179) for the mean energy of a
2-vortex state. There is a sharp fall off of the eigenvalue density at some finite value
below 2E□, which hints at the fact that there are no gapless states in the large N limit.
This matches our expectation.

The numerical results can be well understood if we model the 2-vortex state using
a Coulomb interaction between vortices localized on a single fluid cell. The energy of
a state with one vortex located at the origin and another at the position x is written
as E = 2E□ + Eint(x). The interaction energy is associated with the second term
of eq. (178) and depends only on the relative separation between the vortices. This
translation invariance is identified with the aforementioned N -fold degeneracy in the
2-vortex spectrum. The configurations with nearby vortices will correspond to the
highest energy. The maximum energy, E = 4E□, is reached for superposed vortices
which act as a single vortex with twice the vorticity. At larger separation, the energy
the vortex pair decreases, while the number of allowed configurations goes up. That
explains the fall-off towards large energies of the energy eigenvalue density observed
in Fig. 7. For very large separations the picture changes as the number of available
states decreases again. Namely the points on the torus with πr ≤ |x| ≤

√
2πr are

found only in the corners of the square |xI | ≤ πr. The minimal energy corresponds
to the maximal possible vortex separation |x| =

√
2πr. The corresponding interaction

energy, even if negative, does not feature a logarithmic enhancement and thus cannot
compensate for the free part 2E□. In the continuum limit the gap of the 2-vortex
states is logarithmically large. More precisely the majority of the states has energy
just below 2E□ and corresponds to vortices separated by large distances |x| ∼ r.

The same logic can be used to explain the spectrum of adjoint states of eq. (129)
represented here in Fig. 8. Indeed, an adjoint state is a product of a fundamental and
anti-fundamental state, i.e., a vortex–anti-vortex pair. Given that the vorticity field
of an anti-vortex is negative, the interaction energy is now precisely the opposite of
the 2-vortex case. The interpretation is now different however, as the naive Coulomb
model predicts an N fold degeneracy that is not present in the adjoint spectrum. In
particular the adjoint state energy of eq. (129) depends on m, defined on the finer
lattice, whereas the Coulomb model for the two vortex state assumed localization over
the coarser lattice. The naive model, however, can explain the main features of the
adjoint states spectrum. The minimum energy is zero and it is attained when the
vortex and anti-vortex are on top of each other. The corresponding configuration has
vanishing vorticity and is just the vacuum state. The rest of the N2 − 1 states belong
to the adjoint representation and their energy spectrum has a gap that vanishes in
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Numerical diagonalisation
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Figure 7: Energy eigenvalue distribution functions of two-vortex states for N = 912 obtained
by exact numerical diagonalisation. Energy is measured in the units of single vortex energy.
The N fold degeneracy of the spectrum is not represented.

the continuum limit. The low lying modes with the quadratic dispersion relation of
eq. (132) correspond to the tail of the interaction energy distribution function. The
peak is centered slightly above 2E□ and corresponds to adjoint modes associated with
large momenta and an energy with a logarithmic momentum dependence.

Numerical diagonalisation
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Figure 8: Energy eigenvalue distribution function of adjoint states forN = 252 from eq. (129).
Energy is measured in the units of single vortex energy. The absence of N fold degeneracy
in the spectrum implies that it is more expensive to compute than for the two vortex state.
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