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Abstract

We investigate the correlation properties in the steady state of driven-dissipative
interacting bosonic systems in the quantum regime, as for example non-linear
photonic cavities. Specifically, we consider the Bose-Hubbard model on a peri-
odic chain and with spatially homogeneous one-body loss and pump within the
Markovian approximation. The steady state corresponds to an infinite tem-
perature state at finite chemical potential with diagonal spatial correlations.
Nonetheless, we observe a nontrivial behaviour of the space-time two-point
correlation function in the steady state, obtained by exact diagonalisation.
In particular, we find that the decay width of the propagator is not only
renormalised at increasing interactions, as it is the case of a single non-linear
resonator, but also at increasing hopping strength. We then compute the full
spectral function, finding that it contains both a dispersive free-particle like
dispersion at low energy and a doublon branch at energy corresponding to the
on-site interactions. We compare with the corresponding calculation for the
ground state of a closed quantum system and show that the driven-dissipative
nature – determining both the steady state and the dynamical evolution –
changes the low-lying part of the spectrum, where noticeably, the dispersion
is quadratic instead of linear at small wavevectors.
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1 Introduction

Closed quantum systems under a unitary time evolution have been largely studied in the
last two decades, with particular impetus after the experimental reach of the strongly in-
teracting regime both in three-dimensional optical lattices, as well as in lower-dimensional
setups [1–4]. One-dimensional interacting quantum systems have attracted much atten-
tion since a wealth of theoretical techniques are available, including in particular exact
solutions by Bethe Ansatz for homogeneous systems with contact interactions for bosonic
or fermionic gases, or mixtures thereof [5–9], and for trapped systems in the limit of
infinitely repulsive interactions [10–14]. While lattice fermions are integrable [15], lat-
tice bosons are not, except for the case of the hard-core bosons (see e.g. [16–18]), and
the Bose-Hubbard model for two particles [19, 20]. A manifold of attempts to effectively
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describe non-integrable or ‘weakly’ non-integrable systems have been put forward, such
as the generalised Gibbs ensemble [21], generalised hydrodynamics [22, 23], macroscopic
fluctuation theory [24], and these fields are under active investigation.

While all these studies concern closed quantum systems, in several experimental situ-
ations quantum systems are subjected to external pump and/or losses, or put in contact
with some type of bath. Examples of bosonic open systems are Josephson junction ar-
rays [25], superconducting microwave circuits [26], polariton chains [27], atoms or ions in
optical cavities [28, 29], optomechanical systems [30], and lossy quantum gases [31–41].
In contrast to the equilibrium case, much less is known for interacting open quantum
systems, and several questions arise, ranging from the properties of the steady state and
its phase diagram to its coherence, its excitations and its dynamical properties. It is also
very interesting to investigate which properties known for unitary systems are still present
in open quantum systems, and under which conditions or parameters.

A way to model an open system is to describe it as a subsystem embedded in a larger
system acting as a bath and with which it interacts. If one requires the time evolution
of the subsystem to be completely-positive and trace-preserving (CPTP map), this evolu-
tion has to be of the Lindblad form [42], and described by a Markovian quantum master
equation. This evolution follows the composition law for universal dynamical maps which
is the quantum analogue to the classical differential Chapman-Kolmogorov equation [43].
Despite its simplicity, the Lindblad master equation suffices to display rich physical be-
haviour, as it has been demonstrated for the case of the steady state of interacting driven-
dissipative bosons [44,45]. Quadratic Lindbladians, meaning Lindbladians with quadratic
Hamiltonian and linear jump operators in the bosonic (fermionic) creation and annihi-
lation operators, are known to be exactly solvable by the method of third quantisation,
presented by Prosen [46] and Prosen and Seligman [47]. Within the Keldysh formalism
these systems correspond to a quadratic action. Also instances of quasi-free Lindbladians
for fermions and bosons with quadratic hermitean jump operators have been solved [48,49].
Recently, the connection between both formalisms and the phase-space formulation has
been pioneered [50]. Non-quadratic Lindbladians require in most cases a numerical solu-
tion. We refer to [51] for a comparative analysis of the state-of-art numerical methods,
specifically tailored for non-equal time correlation functions. This method was used to
obtain the second-order correlation function g(2) [52].

An especially important quantity to characterise a quantum system is its two-point
correlation function, corresponding to first-order correlations g(1), see e.g. [53]. At equal
times, it contains information about the spatial coherence and the presence of (quasi)off-
diagonal long-range order, i.e. the existence of Bose-Einstein condensation according to the
Penrose Onsager criterion [54]. Its Fourier transform yields the momentum distribution
function, giving information on the velocity of the quantum particles in a given quantum
state. The full space-time correlation function describes the evolution of the quantum
system when removing or adding a particle to it. In space-time, it allows one to study the
spread of correlations, and to test the Lieb-Robinson bound [55], and its generalisation to
open quantum systems [56]. Its Fourier transform in frequency-wavevector space provides
the spectral function, whose poles give the dispersion of single-particle excitations. The
spectral function is also needed to describe the transport properties among two reservoirs
across a quantum channel within linear response [57].

In this work, we study the two-point correlation function of an interacting bosonic open
quantum system described by the Bose-Hubbard model subjected to incoherent drive and
losses. At non-zero interactions, similarly to its closed-system counterpart, this model is
not integrable. We choose the case of spatially uniform pump and losses, where the non-
equilibrium steady-state (NESS) density matrix is known exactly [58], and it is closely
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Figure 1: Sketch of the Bose-Hubbard model with periodic boundary conditions,
nearest-neighbour hopping amplitude J and on-site interaction strength U , cou-
pled to spatially homogeneous Markovian baths with pump rate γp and loss rate
γl. The illustrated couplings apply to all sites.

related to an infinite-temperature state at fixed chemical potential, independently of the
interaction strength. Despite the steady state taking a simple form, we find that the
two-point correlation function shows a non-trivial dependence on the interaction strength,
displaying in particular typical temporal oscillations with frequency related to the inter-
action strength as well as an interaction-dependent exponential decay. We compare these
results to the exactly known non-interacting limit as well as to the strongly interacting
limit where the dynamics of the different sites decouples and can be described using the
exact results for the dissipative Kerr resonator [59]. We then proceed in obtaining the full
spectral function, where in particular we find a doublon-like branch at excitation energy
U as well as a cosine-like excitation branch in the single-particle-hole sector. The features
of the spectral function are a clear signature of the non-equilibrium nature of the quantum
system, further supported by a Keldysh action analysis, and by the comparison with the
closed-quantum system spectral function [60].

The paper is organised as follows. We start by presenting the model and the character-
isation of the non-equilibrium steady state in Sec. 2, which includes the Lindblad equation
in Sec. 2.1 and the Keldysh action in Sec. 2.3. We first provide our predictions for the
particle density as a function of time in Sec. 3. We then proceed to present our results for
the space-time correlations in Sec. 4, where we display the time-resolved correlations and
analyse their decay. The spectral function is shown in Sec. 5. Finally, Sec. 6 presents our
concluding remarks.

2 Model and observables

2.1 Lindblad equation

We consider a lattice of L sites occupied by bosonic particles with on-site repulsive in-
teractions, where each site is homogeneously coupled to a bath allowing for one-body
losses and pump. The corresponding unitary evolution is described by the Bose-Hubbard
Hamiltonian:

H =
L∑
i=1

[
− J

(
b†ibi+1 + h.c.

)
+

U

2
b†ib

†
ibibi

]
, (1)

where J is the hopping amplitude and U the interaction strength. The bosonic operators
bi and b†i fulfill the usual commutation relations [bi, b

†
j ] = δij , [bi, bj ] = 0 = [b†i , b

†
j ], and we

take periodic boundary conditions, i.e. we set L+ l ≡ l.
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The full temporal evolution is described by the Lindblad – Gorini-Kossakowski-Sudarsahan
equation for the system density matrix ρ [42, 61]:

∂tρ = L[ρ] = −i[H, ρ] + γl

L∑
i=1

(
biρb

†
i −

1

2
{b†ibi, ρ}

)
+ γp

L∑
i=1

(
b†iρbi −

1

2
{bib†i , ρ}

)
. (2)

The master equation (2) can be obtained from a microscopic model where the system is
weakly coupled to a bath, under the assumption that time scales of system and bath are
well separated and that the correlations built in the bath do not affect the system (see
e.g. [43] for a detailed derivation).

2.2 Correlation functions

The two-point correlation function of interest in this work is the retarded Green’s function

GR
jℓ(t, t

′) = −iθ(t− t′)
〈
[bj(t), b

†
ℓ(t

′)]
〉
, (3)

where ⟨...⟩ indicates the trace weighted with the respective density matrix, θ(t) is the

Heavyside step function, and bj(t) (b
†
j(t)) is the bosonic annihilation (creation) field oper-

ator in the Heisenberg picture, time-evolved according to Lindbladian dynamics1 (in the
open case), or Hamiltonian one (in the closed case).

In order to obtain the retarded Green’s function for the non-equilibrium steady state
(NESS) of the driven-dissipative system, we evaluate unequal time correlation functions,
such as 〈

b†j(t)b0

〉(L)
NESS

≡ Tr
{
b†je

Lt
[
b0ρNESS

]}
. (4)

It will be useful to compare it with the correlation function obtained following a unitary
evolution starting from the same NESS density matrix:〈

b†j(t)b0

〉(H)

NESS
≡ Tr

{
eiHt b†je

−iHt b0ρNESS

}
. (5)

For a closed system the corresponding correlation function evaluated on the ground state
|Ψ0⟩ reads 〈

b†j(t)b0

〉
GS

≡ ⟨Ψ0|eiHt b†je
−iHt b0|Ψ0⟩. (6)

We finally consider the spectral function, whose poles provide the excitation branches of
the system, and which is defined as

A(ω, k) = − 1

π
ImGR(ω, k) (7)

for a homogeneous system, and with the Fourier conventions

f(p, ω) =
∑
j∈Z

∫ ∞

−∞
dt fj(t) e

ipje−iωt;

fj(t) =
1

L

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dω

2π
f(p, ω) e−ipjeiωt . (8)

1In the case of open quantum systems, a way of defining the time evolution of an operator A is given
by the adjoint superoperator L̄, according to A(t) = eL̄t[A] where L̄[A] = +i[H,A] + γl

∑L
i=1

(
b†iAbi −

1
2
{b†i bi, A}

)
+ γp

∑L
i=1

(
biAb†i − 1

2
{bib†i , A}

)
. Notice that Tr

{
A(t)ρ(0)

}
= Tr

{
Aρ(t)

}
.
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2.3 Keldysh field theory

It is useful to formulate the model in terms of the Keldysh formalism, following the deriva-
tion of [45]. Starting from the Lindblad equation (2), and expanding the system density
matrix onto two coherent-state bases for each space-time point identified by the fields
Ψ+

j (t) (Ψ
−
j (t)) for upper (lower) time contours, one obtains the time evolution of the den-

sity matrix in terms of a path integral. Following the usual notations, the Keldysh action
in the rotated basis (Ψcj(t),Ψqj(t)) =

1√
2
(Ψ+

j (t) + Ψ−
j (t),Ψ

+
j (t)−Ψ−

j (t)) reads

S =

∫
dt
∑
j

[
Ψc

∗
j i

(
∂t −

γl − γp
2

)
Ψqj +Ψq

∗
j i

(
∂t +

γl − γp
2

)
Ψcj + i(γl + γp)|Ψqj |

2

+ J
(
Ψc

∗
j+1Ψqj +Ψq

∗
j+1Ψcj +Ψc

∗
jΨqj+1 +Ψq

∗
jΨcj+1

)
− U

2

(
(Ψc

2
j +Ψq

2
j )Ψc

∗
jΨq

∗
j + (Ψc

∗
j
2 +Ψq

∗
j
2)ΨcjΨqj

)]
. (9)

In the same notation, the retarded Green’s function (3) reads

GR
jℓ(t, t

′) = −i
〈
Ψcj(t)Ψ

∗
qℓ(t

′)
〉
c
. (10)

The saddle-point approximation in the path integral with the action (9) allows one
to study the existence and stability of a condensate. For a static homogeneous field
solution, if γp < γl, the imaginary part of the Keldysh potential has a global minimum
for Ψcj = Ψqj = 0, which implies that the system is in the symmetric phase without
breaking of the U(1) symmetry. Hence, there is no finite order parameter. As we shall
see below, this is in agreement with the exact NESS solution, which rather corresponds to
an infinite-temperature state for the bosons. Notice that this is at variance with the case
where both one- and two-body losses are present, where a U(1) symmetry-broken phase
emerges for γp > γl and a (quasi-)condensate forms at weak interactions [62].

Expanding the action around this solution to second order in the fluctuations, we
obtain the inverse of the retarded sector of the propagator as

[GR
0 ]

−1
ml (t

′, t) ≡

(
δ2S

δΨ∗
qm(t′)δΨcl(t)

δ2S
δΨ∗

qm(t′)δΨ∗
cl(t)

δ2S
δΨqm(t′)δΨcl(t)

δ2S
δΨqm(t′)δΨ∗

cl(t)

)∣∣∣∣∣
Ψc=Ψq=0

=

(
(i∂t + iκ0)δm,l + J(δm,l+1 + δm,l−1) 0

0 −(i∂t + iκ0)δm,l + J(δm,l+1 + δm,l−1)

)
× δ(t− t′) , (11)

where we defined
κ0 = (γl − γp)/2, (12)

and where the 0 index indicates that this is the ‘bare’ propagator, obtained within the
quadratic (non-interacting) approximation. In order to calculate the excitation branches
Ω(k) in this approximation, we search for the solutions implicitly given by [45,63]

[GR
0 ]

−1(k,Ω(k))

(
Ψc

Ψ∗
c

)
= 0 . (13)

By Fourier transforming Eq. (11), we find

Ω±(k) = −iκ0 ∓ 2J cos(k) . (14)
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This approach allows us to identify κ0 with the decay rate at weak interactions corre-
sponding to the broadening of the spectral line, as well as the excitation dispersion Ω+,
corresponding to the free-particle dispersion in a lattice. Inverting the matrix (11) in
Fourier space and selecting the relevant element (10), we obtain the retarded Green’s
function

GR
0 (k, ω) =

1

ω + 2J cos k + iκ0
, (15)

which has poles for ω = Ω+(k). Notice that the second branch Ω−(k) has zero spectral
weight in this approximation. Hence, in the open system under investigation, there is
no ghost branch predicted at quadratic order in the fluctuations, due to the absence
of a quasi Bose-Einstein condensate. To include the effect of interactions, we turn to
numerical simulations in Secs. 4 and 5 below. Prior to this, we present the steady-state
density matrix.

3 Exact properties of the non-equilibrium steady state

3.1 Steady state density matrix

It has been shown in Ref. [58] that the ansatz

ρNESS =
1

N

∞∑
N=0

zN1N , z =
γp
γl

, (16)

is a NESS of the Lindblad equation (2) for z < 1. Notice that this state corresponds to an
infinite-temperature grand-canonical partition function with fugacity z. The normalisation
N in Eq. (16) is given by

N =
∞∑

N=0

DB
L,NzN , DB

L,N = Tr 1N =

((
L
N

))
≡
(
L− 1 +N

N

)
, (17)

where we used the fact that the dimension of the Hilbert space for N bosons in a system
of length L is given by the number of L-tuples of total length N . This is mathematically
equivalent to the ‘star and bar’ problem of identifying in how many ways one can place
L− 1 bars (separating sites) between N stars (occupied sites). The normalisation can be
further simplified to N = (1 − z)−L. A generalised formula for the normalisation in a
truncated Hilbert space can be found in Appendix B.

We remark that, in this idealised model, there is no high-energy cutoff on the pump
intensity. We refer to Ref. [58] for a model with frequency dependent effective jump
operators. The infinite dimensional Hilbert space of the model as written above renders
the Hamiltonian unbounded. We point out that in the numerical calculations, we have to
introduce a cutoff for the local occupation, which gives an upper bound for the Hamiltonian
and ensures that the time evolution is a CPT map as well as the existence of a NESS [43].
We have generalised the solution (16) for ρNESS to the case of driven-dissipative free
fermions and hard-core bosons on the lattice. The results are given in Appendix C.

3.2 Equal-time correlations in the steady state

The simple form of the steady state solution (16) allows one to exactly calculate the equal-
time correlation functions of the bosonic field operators in the NESS. We here present the
solution for the one-body density matrix ⟨b†ibj⟩ and for the variance of the local particle
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occupation number VAR(ni), as they give insights in the occupation of the system and
fluctuations around it. The higher moments can be easily obtained following the same
method. The equal-time correlation function in the NESS is given by

⟨b†ibj⟩NESS = Tr{b†ibjρNESS}

= (1− z)L
∞∑

N=0

zN
′∑

{mr}r=1,...,L

⟨{mr}|b†ibj |{mr}⟩ , (18)

where we inserted a complete basis in the Fock space |{mr}⟩ for N particles on L sites,

with b†rbr|{mr}⟩ = mr|{mr}⟩, and where
∑′

{mr}r=1,...,L
runs over the sets {mr} such that∑

r mr = N . We note that, due to the diagonal form of ρNESS, the matrix elements

⟨{mr}|b†ibj |{mr}⟩ are non-vanishing only if i = j. After some combinatorial manipulations
(see analogous derivation in Appendix A.3), we find that

⟨b†ibj⟩NESS = δij
z

1− z
, (19)

where one must assume that z < 1, i.e. γl > γp. The loss rate must be larger than the pump

rate, in agreement with the Keldysh analysis of Sec. 2.3. Note that since ⟨b(†)i ⟩NESS = 0,
the correlation function (19) corresponds also to the connected correlation function.

With a similar method, we next calculate the fluctuations of the local particle number
density. This quantity is useful in order to assess the effect of the truncation of the local
Hilbert space in the numerical calculations. The variance is given by

VAR(ni) := ⟨n2
i ⟩ − ⟨ni⟩2 =

z

(1− z)2
. (20)

We note that at vanishing pump rate z → 0 the local number fluctuations vanish, while
they diverge for z → 1. In the latter regime the system is close to the instability point given
by the change of curvature of the Keldysh potential. The ratio of the number fluctuation
∆(ni) =

√
VAR(ni) to the average occupancy ⟨ni⟩ is given by 1√

z
and decreases for large

occupation. This calculation provides a good estimate on the error made by truncating
the Hilbert space to Ns states per lattice site. For example, choosing z = 1/10 (z = 1/5)
gives an average occupation of 1/9 (1/4) with the number fluctuation of

√
10/9 (

√
5/4).

Hence, for these parameters, a truncation of the Hilbert space to Ns = 3 allowing only for
the states {|0⟩, |1⟩, |2⟩} on each site is justified. This will be confirmed by the numerics in
the following.

For the total particle number N = ⟨
∑L

j=1 b
†
jbj⟩ in the system, one can solve the full

time evolution analytically. The result reads

⟨N(t)⟩ = (N0 −NNESS) e
−(γl−γp)t +NNESS , (21)

where N0 = N(t = 0) and NNESS = z
1−zL is the total steady state occupation. The details

can be found in Appendix A.2. Notice that there exists a NESS if and only if the pump
rate is chosen strictly smaller than the loss rate, i.e. z < 1, consistently with the previous
considerations.

4 Correlation function in real time

We report in this section our results for the non-equal time two-point correlation function.
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4.1 Analysis of the parameter space

The original model (2) depends on four couplings: {J, U, γl, γp}. By rescaling time
by the typical loss time τl = 1/γl, we are left with the three independent parameters
{J/γl, U/γl, z}, with z = γp/γl for which J ∈ R+

0 , U ∈ R+
0 and z ∈ [0, 1) for a NESS to

exist. The parameter space and known limiting cases are illustrated in Fig. 2. The plane
z = 0 corresponds to a purely lossy system with empty steady state. The plane J = 0
corresponds to the case of absence of tunneling among the sites – in this case the problem
maps to a set of single-site dissipative Kerr resonator which has an exact solution [59]. The
plane U = 0 corresponds to the non-interacting limit which can be solved exactly using
the non-interacting (Gaussian) Keldysh action. In the following, we fix a value for z and
explore numerically the two-point correlation function in the interaction/tunnel energy
plane.

Figure 2: Sketch of the parameter space under investigation: J/γl ∈ R+
0 , U/γl ∈

R+
0 and z ∈ [0, 1); the plane z = 0 (light green) describes a purely lossy system

with empty steady state; the plane J = 0 (yellow) corresponds to a local problem:
the solution to L independent dissipative Kerr resonators is known exactly; the
plane U = 0 is the non-interacting limit which can also be solved exactly. The
inserted plane for finite z̃ indicates the numerically investigated phase space.

4.2 Time correlations

Using the analytical expression for the NESS density matrix, we have performed numer-
ical calculations using exact diagonalisation (see details in Appendix F.1) to obtain the
retarded Green’s function in space-time. Fig. 3 displays an example of such a Green’s
function, which displays the emergence of two main features. First, the Green’s function
decays exponentially in time, and second, it oscillates at well-defined frequencies. Quite
remarkably, both the decay rate and oscillation frequencies are affected by the interac-
tions. We next focus on the properties of the decay rate κ. The frequencies are discussed
in Sec. 5 and Appendix A.4.

4.3 Renormalisation of the temporal decay

In order to capture the main features of the non-static quantities in the NESS, we deter-
mine the inverse life time, i.e. the decay κ of the equal-space retarded Green’s function.
We investigate how the decay κ(U, J) changes for fixed ratio of pump-to-loss rate z. As

9



SciPost Physics Submission

Figure 3: Left panel: space-time evolution of the real part of the retarded Green’s
function (dimensionless). Right panel: cuts for various spatial differences as in-
dicated on the legend as a function of time (in units of τl = 1/γl) and extracted
exponential decay rate (solid black line). All results are obtained by exact diag-
onalisation with parameters U = 50, J = 10, z = 0.2, L = 8, Ns = 3.

a benchmark of our numerical procedure, we recover the known exact results, both in the
limit of weak interaction and in the limit of weak hopping.

To extract the decay rate from the numerical data, we assume that the retarded Green’s
function GR

00(t) endows at coincident spatial points a single-pole form corresponding to

GR
sp(t) = −iθ(t)e−iΩt−κt . (22)

This leads us to define the decay rate as κ = −ℜ
[
ln iGR

sp(t)
]
/t for t > 0. We thus

represent the numerical data as G(t) = −ℜ
[
ln iGR

00(t)
]
and determine the slope of G to

obtain an estimate of the decay rate (see Appendix F.2 for details). The resulting decay
rate is depicted in Fig. 4 in the {U, J} plane. At weak interactions, i.e. for U/γl ≲ 1, we
recover the prediction from the free, quadratic theory of Sec. 2.3, given by Eq. (12). At
strong interactions, when tunneling is negligible with respect to both interaction energy
U/J ≫ 1 and pump/loss rates J ≪ γl, γp, the decay rate tends to a plateau independent
of the interaction strength which is to the best of our knowledge unknown for extended
systems. For the single-site case, the value of this plateau can be extracted from the exact
solution of Ref. [59] for a single dissipative Kerr resonator as

κ∞ =
γl + 3γp

2
= κ0 + 2γp (23)

(see Appendix E for details). In between these two limits, we observe a renormalisation
of the decay smoothly connecting weak and strong interactions, and weak and large decay
rate, similarly to the predictions for the single-site case [59]. We have checked that our
numerical simulation for L = 1 agrees well with the exact solution all through the crossover
from weak to strong interactions.

We notice that the decay rate increases both when the interaction strength increases at
fixed J , as well as when the tunnel amplitude increases at fixed (large) U . We understand
this latter effect as being due to increased decay possibilities upon allowing for tunneling

10
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Figure 4: Left panel: decay rate κ of the retarded Green’s function for z = 0.1
in the {U, J} plane with U , J in units of γl. Right panel: cut of the decay rate
as a function of U/γl at fixed J/γl = 10. The analytical solution for a single site
Eq. (58) is also shown, as well as the two limits κ0 = κ(U = 0) from Eq. (12) and
κ∞ = κ(U → ∞) from Eq. (23). Calculations are done by exact diagonalisation
with L = 4, Ns = 4.

among particles. For the parameter regime we could access numerically, we find that
the value of the decay rate for large tunneling amplitude and large interaction strengths
depends on the system size (see Appendix F.4).

5 The spectrum

We now focus on the properties of the single-particle excitations on top of the NESS by
analysing the spectral function A(k, ω) defined in Eq. (7). For interacting 1D bosons
in closed systems, this function displays several noticeable features as broad spectra with
power-law singularities in correspondence of the Lieb-I and Lieb-II excitation branches [64].
At low energy, the dispersion of the Goldstone branch is linear, confirming the z = 1
dynamical critical exponent of the equilibrium model. On the lattice, the spectral function
also displays a third excitation branch associated with the change of curvature of the single-
particle dispersion [17], as well as a doublon branch at energy close to U [65]. These results
are used as a reference to analyse and discuss the spectral function of the open system.

5.1 Spectrum of the open system

Our exact diagonalisation results for the spectral function are shown in Fig. 5. At weak
interaction, we find the free spectral line with the Lorenzian shape in frequency predicted
from the field theory calculation in Sec. 2.3. Two main features emerge at strong inter-
actions. First, differently from the closed-system case, the low-energy branch is quadratic
rather than linear, with an emerging dispersion branch corresponding to the free particle
one. The background of excitations behind this main branch is due to the N > 1 particle
sectors in ρNESS. They provide additional contributions to the spectral function whose
precise shape is difficult to resolve given the system size. Second, we identify an additional
excitation branch centered around energy U , which is the analogue of the doublon branch
of the closed-system case. This branch provides a clear signature of interactions. This is
remarkable as ρNESS does not contain information on the interaction itself and does not
depend explicitly on U . We provide an estimate of the position of this excitation branch
using a strong-coupling approach in Sec. 5.2.
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The spectral function here obtained has limited resolution due to the size of the sys-
tem accessible in numerical diagonalisation, but displays nevertheless emergent features
characteristic also of larger system sizes. This is illustrated in Sec. 5.3, where we present
the calculation of the spectral function for the closed-system case for two choices of system
size.

−π −π/2 0 −π/2 −π
k

−200

0

200

400

600

ω
[γ

l]
10−3

10−2

A(
ω
,k

)

Figure 5: Spectral function A(ω, k) for the NESS of a driven-dissipative Bose-
Hubbard model in the weakly (left panel, U/γl = 1, J/γl = 10) and strongly
(right panel U/γl = 500, J/γl = 50) interacting regimes. The other parameters
are: z = 0.2, L = 8, Ns = 3. The horizontal white lines are set at ωb := kU , k ∈
{0, ...Ns − 1} (positions of the branches for closed system and J = 0, compare
with (27)), and dotted lines at ω = ωb ± 2J .

5.2 Position of the excitation spectral lines for small hopping

In order to estimate the position of the excitation branches in the interacting case, we
analytically calculate the oscillation frequency of the doublon branch of the NESS under
unitary time evolution. As shown in Sec. 5.4, the unitary time evolution well accounts for
the position of the peaks of the spectral function.

We use the one-site model, i.e. we set J = 0. In this case, the Hamiltonian becomes
local in position space

H =
U

2

∑
j

nj(nj − 1) . (24)

Upon evaluating the two-point correlation function in the NESS,〈
b†j(t)b0

〉
NESS

= (1− z)L
∑
N

zN
∑
{m}

⟨{m}|eiHt b†je
−iHt b0|{m}⟩ , (25)

we obtain that the only non-vanishing term is the one with j = 0 due to the locality of
the strong-coupling Hamiltonian. This term reads

⟨m0|ei
U
2
n0(n0−1)t b†0e

iU
2
n0(n0−1)t b0|m0⟩ = m0e

iU(m0−1)t . (26)

This shows that there is an oscillation with period depending on the interaction strength
U . Altogether, we find〈

b†j(t)b0

〉
NESS

= δ0jz(1− z)

∞∑
m=0

zm(m+ 1)eiUmt , (27)
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with m + 1 corresponding to the occupation number of the site j = 0. Further details of
the calculation can be found in Appendix A.4. We notice from Eq. (27) that the position
of the first excitation peak for vanishing J and large U corresponds to the contribution
with m = 1, i.e. ωd(m = 1) = U . This is at the origin of the doublon branch in Fig. 5.
Furthermore, we observe that the number of dominant peaks in the excitation spectrum
at k = 0 is exactly Ns − 1, as predicted by (27).

5.3 Spectral function for the ground state of the Bose-Hubbard model

In order to assess the role of drive and dissipation on the spectral function, we show here
the results for the spectral function of a closed Bose-Hubbard system at small filling for
the same values of parameters, namely interactions and hopping strength, as well as the
same system size. In the closed system, numerical calculations allow one to tackle larger
system sizes, and to explore the interplay between interaction and finite-size effects in the
spectral function. As shown in Fig. 6, features clearly identified for large system size are
also found at smaller size and serve as guideline to interpret our results for the open case.

Figure 6: Spectral function A(k, ω) for the ground state of the Bose-Hubbard
model under unitary evolution (negative values in grey). Left panel: Exact solu-
tion without truncation at finite interaction (L = 12, N = 2 particles, U/J = 10).
Right panel: larger system size (L = 24, N = 6, U/J = 10, with Ns = 3 obtained
with DMRG).

Let us comment on the results for the closed system. In the lowest-energy excitation
manifold, we clearly identify the Lieb-I and Lieb-II branches, as well as the third branch
predicted for the lattice case [17]. The predictions for the dispersion branches in the
infinite interaction limit is also shown in Fig. 6. Notice that in this limit all the branches
are slightly shifted upwards with respect to the finite-U spectrum, since they are centered
at ω = µ − 2J and the value of the chemical potential µ at infinite interactions is larger
than the one at finite interactions. At frequencies ω ≃ µ+U+2J , we also see in the figure
a dispersive doublon branch.

We stress that this result is very different from the one obtained by the Lindblad evo-
lution presented in the previous section. In the latter case, the spectral function displays
a quadratic behaviour at low momenta, while in the current case the dispersion at low
momenta is linear. This is an illustration of the fact that the nature of the low-energy
excitations involved is different depending on the state of the system considered. For the
ground state, low-energy excitations are particle-hole excitations on top of an effective

13
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Figure 7: Spectral function A(ω, k) of the Markovian open system dynamics in
the NESS. Left: Under unitary dynamics; Right: Under Lindbladian dynamics.
The parameters are: U = 500, J = 50, z = 0.2, L = 8, Ns = 3. The horizontal
white lines are as in Fig. 5.

Fermi sphere, while for the NESS state, all excitations are possible, and single particle
excitations dominate the intensity of the spectral function.

5.4 Comparison of unitary evolution and Lindblad evolution of the NESS

Finally, to get further insights on the spectral function of the driven-dissipative system, we
compare the results obtained with the Lindblad evolution (4) to the ones obtained starting
from the same ρNESS, but with unitary evolution (5), in the regime where the coherent
parameters are much larger then the incoherent drive and dissipation J, U ≫ 1, z. The
latter can be interpreted as a quenched system: The system is initially open and in the
steady state and then, drive and dissipation are turned off and the temporal evolution
considered is the unitary one. As shown in Fig. 7 for strong interactions, the spectral
functions in both cases closely resemble each other, as one would expect in the limit of
vanishing incoherent parameters. The broadening of the lines is very small comparatively
to the typical features (depth, width) of the spectrum which are of the order of the coherent
parameters.

6 Conclusions and perspectives

The study of the bosonic quantum gas coupled to an environment is a present problem
of particular interest. Open quantum systems play a crucial role in the current noisy
intermediate-scale quantum (NISQ) era [66], with quantum science and quantum engi-
neering bringing forth a variety of platforms for quantum simulations of emergent col-
lective many-body phenomena. Notwithstanding the exceptional technological advances,
photonic platforms remain intrinsically dissipative and we foresee as particularly impor-
tant for the near future the characterisation of the interplay of the open-system dynamics
of these setups with the coherent Hamiltonian dynamics, which will be characterised by
increasingly strong Kerr non-linearities.

In this article we have studied the space-time behaviour of two-point correlation func-
tions and the spectral function for a driven-dissipative system of interacting bosons on a
lattice, subjected to uniform incoherent pump and one-body losses. Our starting point
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has been the analytical expression for the NESS density matrix of the system derived
in Ref. [58]. We have used several techniques, namely numerical exact diagonalisation,
Keldysh formalism and strong coupling approaches, to provide a complete understanding
of the excitation spectrum on top of the non-equilibrium steady state. We have found
that the decay of the retarded Green’s function is exponential in time, and the decay rate
is renormalised by interactions and increases at both increasing interactions and tunnel
amplitude. The spectral function displays at low frequency a quadratic-like branch, very
different from the linear branch found for the excitations on top of the ground state of the
closed system, for which we have calculated the spectral function at finite interactions.
At large interactions, we have identified, both in the open and in the closed system, a
dispersive doublon branch at energy of order U . By performing calculations for various
system sizes in the closed system case, we have shown that specific features of the spec-
trum clearly emerging at large system sizes are also recognisable in smaller systems, of
typical size accessible via numerical diagonalisation in the open case.

In outlook, on a technical level, it would be interesting to push the calculations for
the spectral function of the open system to larger system sizes using techniques based
on matrix-product states such as those detailed in Refs. [67, 68]. This would provide
conclusive evidence about the presence of excitations at negative energies (the ‘ghost’
branches) which, according to Bogoliubov theory, are predicted to be more elusive in the
driven-dissipative case than in the closed one [69–71] and could not be resolved in our
current numerical calculations. On a fundamental level, our work opens very interesting
perspectives for the possibility of observing the effects of interactions in out-of-equilibrium
systems within actual experiments, where short one-dimensional lattices of small photonic
resonators can be engineered.
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A Detailed calculations

A.1 Bosonic NESS density matrix

We show in this section that the ansatz (16) is a NESS of the Lindblad evolution (2).
The Hamiltonian conserves the particle number and hence commutes with each identity
operator in each particle number subspace. Furthermore, the non-hermitian Hamiltonian
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terms in (2) can be written as

ρNESS

∑
i

b†ibi = ρNESSN = NρNESS =
∑
i

b†ibiρNESS , (28)

ρNESS

∑
i

bib
†
i = ρNESS(N + L) =

∑
i

bib
†
iρNESS , (29)

such that we only have to compute the remaining terms∑
i

b†iρNESSbi =
∑
i

∑
N

ωN−1,L

∑
{lr}r=1,...,L;N

{nr}r=1,...,L;N

|{lp}⟩⟨{ns}|
∑

{mr}r=1,...,L;N−1

⟨{lp}|b†i |{mr}⟩⟨{mr}|bi|{ns}⟩

=
∑
N

ωN−1,L

∑
{lr}r=1,...,L;N

{nr}r=1,...,L;N

|{lp}⟩⟨{ns}|⟨{lp}|
∑
i

b†ibi|{ns}⟩

=
∑
N

NωN−1,L1N , (30)

and similarly, ∑
i

biρNESSb
†
i =

∑
N

(N + L)ωN+1,L1N . (31)

The sum of all these contributions vanishes

Lloss[ρNESS] + Lgain[ρNESS] =
∑
N

1N

[
γl

{
(N + L)ωN+1,L −NωN,L

}
+ γp

{
NωN−1,L − (N + L)ωN,L

}]
=
∑
N

1NωN−1,L

[
γl

{
z2(N + L)− zN

}
+ γp

{
N − z(N + L)

}]
= 0 , (32)

which shows that the ansatz (16) is indeed a steady state.

A.2 Approach to the NESS

The time evolution of the total particle number N =
∑L

j=0 b
†
jbj is given by the Lindblad

master equation (2). Since the total particle number commutes with the Hamiltonian
[H,N ] = 0, its evolution is purely generated by the dissipative and pump parts, which
yield

˙⟨N⟩ = (−γl + γp)⟨N⟩+ γpL . (33)

Starting with a total occupation of N0 := N(t = 0) and depending on the value of γl w.r.t
γp, we find the following solutions:

• γp = γl: The particle number grows linearly, there is no steady state. It can be
interpreted as a bosonic enhancement, following

⟨N⟩(t) = γpLt+N0 . (34)

• γp > γl: The particle number grows exponentially, there is no steady state.
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• γp < γl: The particle number changes according to

⟨N⟩(t) = (N0 −NNESS)e
(−γl+γp)t +NNESS , (35)

where the steady state is given by

NNESS =
z

1− z
L . (36)

A.3 Equal-time correlation functions

We start from equation (18). If the number of particles in position j is k, then all other
N − k particles are distributed over the remaining L− 1 sites. Hence, we have

∑
{mr}r=1,...,N

⟨{mr}|b†ibj |{mr}⟩ = δij

N∑
k=1

k

((
L− 1
N − k

))

= δij

N−1∑
k=0

(k + 1)

((
L− 1

N − 1− k

))
. (37)

Summing over N , we get

∞∑
N=1

zN
N−1∑
k=0

(k + 1)

((
L− 1

N − 1− k

))
= z

∞∑
N=0

zN
N∑
k=0

(k + 1)

((
L− 1
N − k

))

= z
∞∑
l=0

(l + 1)zl
∞∑

M=0

zM
((

L− 1
M

))
= z

1

(1− z)2
(1− z)−L+1

=
z

(1− z)L+1
, (38)

where from the first to the second line, we used

∞∑
p=0

p∑
q=0

f(q, p− q) =
∞∑

m=0

∞∑
n=0

f(m,n) . (39)

The geometrical series in the second line only converges if |z| < 1. All together, we find
the result (19) as expected from the calculation of the total particle number in the NESS.

For the variance, we need to calculate the average over quadratic terms in the local
particle number density. Performing similar steps, we obtain

⟨n2
i ⟩NESS =

∑
N

zN

(1− z)−L

∑
{mr}r=1,...,N

⟨{mr}|b†ibib
†
ibi|{mr}⟩

=
z

(1− z)−L

∞∑
l=0

(l + 1)2zl
∞∑

M=0

zM
((

L− 1
M

))
=

z(1 + z)

(1− z)2
. (40)
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A.4 Oscillation frequency

The dependence of the oscillation frequency on the interaction U can be best understood
for the single-particle Green’s function under the unitary dynamics in the limit of strong
interactions U ≫ J . We hence consider the evolution under

H =
U

2

∑
j

nj(nj − 1) . (41)

We evaluate the two-point correlation function in the NESS as〈
b†j(t)b0

〉
NESS

= (1− z)L
∑
N

zN
∑
{m}

⟨{m}|eiHt b†je
−iHt b0|{m}⟩ (42)

= (1− z)L
∑
N

zN
∑
{m}

⟨{m}|
(∏

k

ei
U
2
nk(nk−1)t

)
b†j

(∏
l

e−iU
2
nl(nl−1)t

)
b0|{m}⟩ .

The only non-vanishing contribution is the j = 0 one, which is just a consequence of
the density matrix being diagonal in the Fock basis. (We can show the same oscillating
behaviour for j ̸= 0 for a more generic density matrix). The matrix element factorises and
we find

⟨m0|ei
U
2
n0(n0−1)t b†0e

iU
2
n0(n0−1)t b0|m0⟩ = m0e

iU
2
m0(m0−1)t e−iU

2
(m0−1)(m0−2)t

= m0e
iU(m0−1)t , (43)

which indicates an overall oscillation with a period depending on the interaction strength
U . We finally obtain

〈
b†0(t)b0

〉
NESS

= (1− z)L
∞∑

N=0

zN
N∑

m0=0

m0e
iU(m0−1)t

((
L− 1

N −m0

))

= z(1− z)L
∑
N=0

zN
N∑

m0=0

(m0 + 1)eiUm0t

((
L− 1

N −m0

))

= z(1− z)L
∞∑
k=0

∞∑
l=0

zlzk(k + 1)eiUkt

((
L− 1

l

))

= z(1− z)
∞∑
k=0

zk(k + 1)eiUkt , (44)

with k being the occupation minus one of site zero (relabeled), where we used the infinite
double sum rule (39).

B Normalisation with truncation of the local Hilbert space

This section gives the normalisation of the NESS density matrix in each N -particle sector
depending on the system size L and on the local Hilbert space dimension dl. For this, one
has to solve a restricted star (balls/particles) and bar (box separations) problem which is
well known in combinatorics

L∑
i=1

xi = N , (45)
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and xi ∈ 0, ..., N . The latter condition is equivalent to the existence of an upper bound
for the integers xi < dl ∀i. This problem can be solved by using the inclusion-exclusion
principle on the lower-bound integer sum. The latter is given by the previous sum with
the constraint xi ≥ ai. We substitute x′i := xi − ai, such that the modified problem is the
unbounded one with x′i ≥ 0: ∑

i

x′i = N −
∑
i

ai . (46)

The number of all possible solutions (as for the bosons) is given by(
L+N − 1

L− 1

)
, (47)

then we subtract all the cases where there is at least one box with xi ≥ dl (solving the
lower-bound integer sum): (

L
1

)(
L+N − 1− dl

L− 1

)
, (48)

and finally add the two set intersections, such that

Ddl
L,N := #states(dl, L,N) =

k(dl−1)≤N∑
k=0

(−1)k
(
L
k

)(
L+N − 1− kdl

N − 1

)
. (49)

C Steady state solution for fermions

We consider the Lindblad master equation (2) where now the annihilation and creation

operators are fermionic ones bi := ci, b
†
i := c†i , obeying the anti-commutation relations

{ci, c†j} = δij and {ci, cj} = 0 = {c†i , c
†
j}. The unitary evolution is given by the Fermi-

Hubbard model.

C.1 NESS density matrix

In finite dimensional Hilbert spaces, there always exists a steady state solution of the
Lindbladian superoperator [43]. Starting from the same ansatz (16) as in the main text,
we obtain from the normalisation of the state that

N F
L =

1

(1 + γ)L
, (50)

where we used that the dimension of the Hilbert space for N fermions in a system of length
L corresponds to DF

L,N =
(
L
N

)
. This is exactly the size of the unit matrix Tr1N = DF

L,N .
This provides the NESS density matrix for fermions.
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C.2 Equal-time two-point correlation functions

We assume that the sums for fermions run only over non-equal elements. The correlation
function is given by

⟨c†icj⟩NESS =
L∑

N=0

zN

(1 + z)L

∑
{mr}r=1,...,N

⟨{mr}|c†icj |{mr}⟩

= δi,j

L∑
N=0

zN

(1 + z)L

(
L− 1

N − 1

)
= δi,j

z

1 + z
, (51)

where we introduced a complete basis in position space {mr} for N particles and evaluated
the sum as ∑

{mr}r=1,...,N

⟨{mr}|c†icj |{mr}⟩ =
∑

i,{mr}r=1,...,N−1∈{1,...,L}/{i}

⟨{mr}|c†icj |{mr}⟩δi,j

=

(
L− 1

N − 1

)
δi,j . (52)

The variance is given by

⟨n2
i ⟩NESS =

∑
N

zN

(1 + z)L

∑
{mr}r=1,...,N

⟨{mr}|c†icic
†
ici|{mr}⟩

=
z

1 + z
. (53)

Since the number of fermions in state i is the same as its squared value, the result of this
operator is the same as the first moment. This leads to

VAR(ni) = ⟨n2
i ⟩ − ⟨ni⟩2 =

z

(1 + z)2
. (54)

This function has a maximum variance of 1/4 for γp = γl. For either limit of pump much
bigger/smaller than the loss, the variance tends to zero.

D Steady-state solution for hard-core bosons

We consider a periodic chain of hard-core bosons, which can be mapped by the transforma-
tion due to Holstein and Primakoff [72] to the XX spin-12 -chain given by the Hamiltonian

H = −2J
L∑

j=1

(Sx
j S

x
j+1 + Sy

j S
y
j+1) , (55)

with Sµ = 1
2σ

µ where {σµ}µ=x,y,z are the Pauli matrices. We define the first state as the
spin-up state | ↑⟩ = |+⟩ = |0⟩ and note that the operator S+

j S
−
j acts as a local density

operator for the spin-up state at site j, where S+ = Sx + iSy and S− = Sx − iSy, which
act as spin-flip operators.
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The pump and loss of hard-core bosons hence correspond to spin flips in the XX-model,
implying that the resulting Lindbladian is of the form

L[ρ] = −i[H, ρ] + γl

L∑
i=1

(
S−

iρS
−
i
† − 1

2
{S−

i
†
S−

i, ρ}
)
+ γp

L∑
i=1

(
S+
i ρS

+†
i −

1

2
{S+†

iS
+
i, ρ}

)
.

(56)

We make the following ansatz for the non-equilibrium steady state

ρNESS =
1

NF

L∑
N=0

(γp
γl

)N
1N , (57)

where the identity operator is the sum over the complete Fock basis for the N -particle
sector. The number of states in the system of hard-core bosons is identical to the one
of the fermionic system, which explains the identical normalisation NF and structure
of the solution. One can show that the Hamiltonian conserves the particle number, or
equivalently the number of up-spins, and hence it commutes with the steady state density
matrix. The dissipative part of the Lindbladian evolution vanishes with the same reasoning
as for the bosons and fermions.

E Decay rate at large interactions

For J = 0, each site in the Keldysh action (9) decouples. Hence, in the strong interaction
limit U → ∞, one is left with solving the problem of L independent dissipative Kerr
resonators. This is a well-known exactly solvable problem [59]. One can exploit a weak
symmetry to block-diagonalise the Lindbladian and then introduce an operator which
renders the Lindbladian quadratic in the superoperators. Equivalently, one can introduce
a time-dependent gauge transformation to obtain a quadratic action as shown in [50]. The
Kerr non-linearity then transforms into a fluctuating frequency depending on the number
density which in turn leads to dephasing. The result for the retarded Green’s function is
given by [59]

GR(t) = −iθ(t)
eiUt+

γl−γp
2

t(
cosh Γ

2 t+R1 sinh
Γ
2 t
)2 , (58)

where

Γ :=
√

(γl − γp)2 − U2 + 2iU(γl + γp) , R1 :=
1

Γ

[
(γl − γp) + i

U(γl + γp)

γl − γp

]
. (59)

We can expand the term (assuming t > 0)

κ∞t = −ℜ
[
ln iGR(t)

]
= −ℜ

[
iUt+

γl − γp
2

t
]
+ 2ℜ ln

[
cosh

Γ

2
t+R1 sinh

Γ

2
t
]

= −γl − γp
2

t+ tℜΓ + 2ℜ ln
[
1 +R1 + e−Γt (1−R1)

]
. (60)

The last term is suppressed in the large t limit. Expanding the second term for U ≫ J ,
we find that

ℜΓ = γl + γp +O(U−2) . (61)
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such that the renormalised decay for U ≫ J reads

κ∞ =
γl + 3γp

2
= κ0 + 2γp . (62)

F Details on the numerical calculations

F.1 Exact diagonalisation

Numerical results were obtained by exact diagonalisation of the Hamiltonian or Lindbla-
dian in the Fock basis of particle occupation numbers per site and the time evolution
implemented in the qutip library [73, 74]. In the case of the closed-system evolution, we
additionally use the conservation of particle number, as explained in section F.5.

F.2 Fit of the decay

In order to extract the decay of the retarded Green’s function (3) in the NESS, we assume
that it is of the form given by the single-pole ansatz (22) and define

G(t) := −ℜ ln iGR
00(t) . (63)

In the non-interacting regime, the single-pole ansatz is exact and one has G(t) = κt. In
the interacting case, the decay is renormalised and we determine it from the linear trend
of the oscillating curve G(t).

Restricting the dimension of the local Hilbert space, we obtain results for all interaction
strength by exact diagonalisation. Using this method, we extract the slope of G(t) by
fitting a family of linear curves over different intervals. The multiple scale dependence of
the oscillation of the two-point function makes this fitting procedure necessary. As the
result depends on the chosen interval of the fit, we fit a family of 20 curves in the interval
accessible in order to reach sufficient numerical precision. The average and variance are
shown as an example in Fig. 8.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t[γ−1

l ]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5


(t)

ED: γp =0.1, U=5.623, J=1.0
fit, slope: κ=0.735±0.05

Figure 8: Logarithm of the retarded Green’s function G(t) = −ℜ
[
ln iGR

00(0t)
]
(di-

mensionless) obtained from exact diagonalisation (red) together with the single-
pole approximation (black, solid) as a function of time (in units of τl) for the site
j = 0. The corresponding fitted decay rate is indicated by the black solid line.
The parameters are U = 5.623, J = 1.0, z = 0.1, L = 4, Ns = 4.
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F.3 Effect of the Hilbert space truncation

We showed in the main text that we recover the analytically predicted renormalisation of
the decay κ(U) for small hopping J . In order to benchmark the numerical truncation over
the local Hilbert space, we here investigate the dependence of κ(U) for large J = 10. We
show in Fig. 9 the analytical (one-sited) prediction for small J and the numerical results
for Ns ∈ {3, 4, 5}. For large U , we expect a deviation from the one-sited result and we
observe that the reached plateau is independent of the local Hilbert space truncation. In
the weak interaction limit, we interpret the closeness of the results for Ns = 4, Ns = 5
with the exact prediction as an indication of numerical convergence.

10−2 10−1 100 101 102
U[γl]

0.4

0.5

0.6

0.7

0.8

0.9

κ[
γ l
]

one-sited
κ0
κ∞
ED: L=4, Ns=5
ED: L=4,  Ns=4
ED: L=4,  Ns=3

Figure 9: Decay κ(U) for J = 10, z = 0.1 and L = 4, and for different local
truncation of the Hilbert space Ns in the numerics. We expect to recover the
non-interacting solution for small U and a deviation from the one-sited solution
in the limit of large interaction.

F.4 System size dependence

We further investigate the dependence of the reached plateau value of the decay for large
U and J on the system size. From Fig. 9, we conclude that a truncation of Ns = 3 is
sufficient to reach the converged plateau value. We hence fix Ns = 3 and vary the system
size L. The dependence of the renormalised decay on L is shown in Fig. 10, in a limit of
large hopping and interaction (J = 10 and U = 100). We observe that the effective decay
increases monotonously with the system size. Further analytical insight could be obtained
from the perturbative calculation of corrections in J in the strong interaction limit around
the exact result (58).

F.5 Exact diagonalisation for the unitary system

We calculate the Green’s function as the overlap of two time-evolved states. Since we
are interested in the unitary time evolution, the dimensionality of the problem greatly
reduces, and is further diminished by the symmetries present in the problem (particle
number conservation, momentum conservation and parity conservation). We calculate the
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Figure 10: Decay κ(U) for different system sizes L. The parameters are J = 10,
z = 0.1 and Ns = 3.

Green’s function as

GR
j0(t, 0) = −iΘ(t)Tr

{[
bj(t), b

†
0(0)

]
ρNESS

}
(64)

= −iΘ(t)
(
G

(1)
j (t)−G

(2)
j (t)

)
(65)

with

G
(1)
j (t) := Tr

{
eiHt bje

−iHt b†0ρNESS

}

= N−1
∑
N=0

zN
∑

{mi}N

Tr

{
bj

∣∣∣e−iHN+1t b†0{mi}N
〉
⊗
∣∣∣e−iHN t {mi}N

〉†}
, (66)

G
(2)
j (t) := Tr

{
b†0e

iHt bje
−iHt ρNESS

}

= N−1
∑
N=0

zN
∑

{mi}N

Tr

{
bj

∣∣∣e−iHN t {mi}N
〉
⊗
∣∣∣e−iHN−1t b0{mi}N

〉†}
. (67)

In order to reduce the Hilbert space dimension further, we construct the Hamiltonian in
each particle number sector, since [N,H] = 0. Then, we draw states from the distribution
ρNESS, which constitute a sequence of numbers allowed by the local Hilbert space cutoff,
and evolve them with the block Hamiltonian constructed in the reduced basis. This is
performed using qutip [73, 74], which optimises the temporal evolution. We add and
subtract particles (before/ after the evolution) by action on the sequence directly.

F.6 Simulations with matrix product states

In order to produce the plots in Fig. 6 we employ a representation of the many-body
state as a matrix-product state [75] and code our algorithm using the Itensors library [76,
77]. We prepare the ground state considering a maximum number of bosons per site
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equal to 2 on a lattice with periodic boundary condition and at density N/L = 1/4. We

subsequently compute the lesser and greater Green’s functions G<
0j(t) = −i⟨b†j(t)b0⟩ and

G>
0j(t) = −i⟨b0b†j(t)⟩ and using these data we reconstruct the spectral functions plotted in

the figure. For the time evolution, we fix J = 1 and use a time step of δt = 0.01.
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