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Abstract

We study static black holes in scalar-Gauss-Bonnet (sGB) gravity with a massive scalar
field as an example of higher curvature gravity. The scalar mass introduces an addi-
tional scale and leads to a strong suppression of the scalar field beyond its Compton
wavelength. We numerically compute sGB black hole spacetimes and scalar configura-
tions and also compare with perturbative results for small couplings, where we focus on a
dilatonic coupling function. We analyze the constraints on the parameters from requiring
the curvature singularity to be located inside the black hole horizon rh and the relation to
the regularity condition for the scalar field. For scalar field masses mrh ≳ 10−1, this leads
to a new and currently most stringent bound on sGB coupling constant α of α/r2

h
∼ 10−1

in the context of stellar mass black holes. Lastly, we look at several properties of the
black hole configurations relevant for further work on observational consequences, in-
cluding the scalar monopole charge, Arnowitt–Deser–Misner mass, curvature invariants
and the frequencies of the innermost stable circular orbit and light ring.
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1 Introduction32

General Relativity (GR) as the theory of gravity has passed all empirical tests to date [1–3].33

Yet modern theoretical developments suggest that modifications of Einstein’s gravity are re-34

quired at some level. This has motivated a significant research effort in high-energy physics35

to develop a theory of quantum gravity. However, modifications to GR may already arise at36

intermediate, lower energy scales than the full quantum-gravity regimes. Such modifications37

have been constrained by high-precision tests of gravity in tabletop experiments [4], the solar38

system [1], and binary pulsars [5]. However, the genuinely nonlinear regimes of gravity re-39

main largely unexplored and have only recently started to become accessible to measurements,40

for instance, with gravitational waves [6–8]. This opens new opportunities to test modified41

theories where corrections to GR only become relevant in high-curvature regimes. One such42

family of theories is scalar-Gauss-Bonnet (sGB) gravity, where the gravitational action of GR is43

augmented by adding a quadratic-in-curvature contribution involving the topological Gauss-44

Bonnet invariant dynamically coupled with a scalar field. Because of the topological nature of45

the higher curvature term, the theory is ghost-free and the equations of motion are still second46

order in the fields [9] and thus a dynamical system whose mathematical well-posedness was47

proved in [10–12]. The sGB form of the gravitational action also has motivations from the low48

energy limit of quantum gravity paradigms [13–15].49

In this paper, we focus on consequences of sGB gravity for static spherical symmetric black50

holes when including a nonvanishing scalar field mass. Black holes are clean testbeds for pre-51

cision tests of higher-curvature gravity as they are devoid of any matter and solely involve52

curved spacetime. In GR, black holes are conjectured to have ’no-hair’: their exterior space-53

time can be entirely described by only three parameters: their mass, spin, and electromag-54

2



SciPost Physics Submission

netic charge [16–20]. This also implies that black holes cannot be dressed with any nontrivial55

scalar, vector, or spinor fields [20–24], even when considering more complex potentials for56

the fields [25]. The no-hair property of black holes also extends to several classes of modified57

gravity theories such as Brans-Dicke theories [26] and more generalized scalar-tensor theo-58

ries [27]. Yet for many other classes of theories, including sGB gravity, the no-hair properties59

no longer hold. Instead, depending on the parameters, the scalar field can develop a nontriv-60

ial profile around black holes that extends through the horizon [12, 28–36] or spontaneous61

(de-)scalarization can arise [37–42], see the review articles [43,44] for a detailed discussion.62

The scalarization of black holes in sGB strongly depends on properties of the coupling63

function f (ϕ) between the scalar field and the quadratic curvature terms. When f (ϕ) has64

a non-vanishing first derivative for all values of ϕ, which is often referred to as type I and65

includes dilatonic couplings f (ϕ) ∼ eγϕ , with γ a numerical coefficient [28,29,45] and linear66

functions f (ϕ) ∼ ϕ leading to shift-symmetric sGB theories [30], only scalarized black hole so-67

lutions exist. Studies showed explicitly that black holes evade the no-hair theorem [28,33,34]68

and obtained static [46–48], slowly rotating [29, 49, 50] and rapidly rotating [51–54] black69

hole solutions. They found that requiring regularity of the scalar field at the horizon leads70

to an analytical bound in the parameter space beyond which no physical solutions exist [28].71

Additionally, the resulting sGB black hole solutions generally have a curvature singularity at a72

finite radius [47,55]. For a fixed sGB coupling and smaller black hole masses, the singularity73

moves farther away from the origin and closer to the horizon. Requiring the absence of naked74

singularities thus leads to a minimum mass for the domain of existence of black holes. For75

type II coupling functions whose derivative vanishes for some values of ϕ, such as quadratic76

f (ϕ) ∼ ϕ2 [37,40,41] and Gaussian f (ϕ) ∼ eγϕ2 [56,57] couplings, the quadratic scalar field77

term acts as an effective scalar mass. As the effective mass term can be negative, the black78

hole solution can become unstable and the presence of scalar condensates becomes favored79

and results in scalarized black holes.80

While black holes in sGB theories with a massless scalar field have been extensively studied81

as discussed above, the effects of including a scalar field mass remain less explored. Including82

a mass term in the action is natural from a theoretical perspective and represents the lowest83

order self-interaction. Accounting for a mass of the scalar field is further motivated by the84

only scalar field measured to date, the Higgs boson, and common in scalar models for other85

sectors of particle physics such as the proposed QCD axion and ultralight dark matter candi-86

dates [58–62]. A mass term leads to an exponential suppression of effects of the scalar field87

at scales larger than its Compton wavelength instead of having an infinite extent as in the88

massless case.89

The phenomenology of massive scalar fields around compact objects has been considered90

in several contexts, including studies of charged black holes [63, 64], black hole superradi-91

ance [65–67], neutron stars in scalar tensor gravity [68,69], and type II sGB black holes [70].92

For black holes in type I sGB with a massive scalar field, previous work has numerically cal-93

culated black hole solutions [71], included a scalar potential and cosmological constant [72],94

and studied the dynamics of a massive scalar field with self- interaction in the decoupling limit,95

i.e. on a fixed Schwarzschild spacetime, via a numerical relativity code [73]. Observational96

consequences of a massive scalar field in the context of compact objects have also been con-97

sidered. While the exponential suppression of the field at large distances reduces the size of98

several of the observational signatures compared to the massless case it may also lead to novel99

features due to the additional scale involved, as found for gravitational waves from superra-100

diant ultralight boson clouds [74]. Several previous studies further showed that gravitational101

waves are promising probes for detecting or setting stringent constraints on theories involving102

massive scalar fields based on effects of scalar dipolar radiation losses in compact-object bi-103

nary systems. For example, [75] considered binary neutron stars in scalar-tensor gravity, [76]104
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analyzed extreme mass ratio inspirals, [77] analyzed probing massive fields in the context105

of multiband detection, and [78] placed the first empirical gravitational-wave constraints on106

massive sGB.107

108

In this paper, we go beyond previous work on static black holes in massive sGB [71–73]109

by (i) combining perturbative and numerical analyses to gain deeper insights into the behav-110

ior of the spacetime and scalar field and (ii) performing a systematic study of the solutions111

and resulting observables over a wide parameter space. This differs from the scope of the112

work in [71], which developed details of the theoretical framework and performed system-113

atic numerical studies of solutions focused on extracting the horizon radius and consequences114

for thermodynamics. Specifically, in this paper, we numerically compute black hole solutions115

and, for the first time, also calculate perturbative solutions for small sGB couplings to trace116

behaviors of the metric functions and scalar field configurations. Together, these two methods117

enable us to study features of curvature invariants of the spacetime and its energetics such as118

the gravitational mass and scalar-induced energy density of the configurations from different119

perspectives. We also analyze the parameter dependencies of the bounds on maximum scalar120

field at the horizon based on requiring the absence of naked singularities, as obtained from121

numerical solutions, and regularity of the scalar field at the horizon, as obtained from an ana-122

lytical bound. This lead to a theory bound on the coupling constant of the gravitational theory.123

In addition, we calculate the parameter dependencies of observables such as the shifts in the124

ISCO and light ring away from the GR values. We discuss the relevance of our results as a first125

step towards making connections with measurements such as the black hole shadows, tidal126

effects close to the black holes, and as a baseline for computing gravitational wave imprints127

beyond the leading-order dipole radiation losses. The latter would contribute to the recent128

ongoing efforts of constructing the gravitational waveforms for black hole binary systems in129

sGB gravity [79–81]. Our findings also identify interesting mass ranges for the sGB scalar130

condensate within the broader context of proposed scalar fields in the universe, and highlight131

interesting qualitative characteristics and parameter ranges for further studies.132

In this paper we use Greek indices to denote tensor components in standard Einstein notation.133

However we use Latin superscripts to assign orders in the small coupling expansion.134

2 Black holes in scalar-Gauss-Bonnet Gravity135

2.1 Action136

We consider the following action for sGB gravity1137

SsGB =
c4

16πG

∫

M

d4x
p

−g [R − 2gµν∂µϕ∂νϕ − V(ϕ) +α f (ϕ)R2
GB] . (1)

Here R denotes the Ricci scalar on manifold M with metric gµν. The scalar fieldϕ has potential138

V(ϕ) and is non-minimally coupled to the Gauss-Bonnet invariant139

R2
GB = R2 − 4RµνRµν + RµνρσRµνρσ . (2)

1For the numerical prefactor of the kinetic and potential (3) scalar field terms, we follow the standard convention
also considered for massless sGB, see e.g. [46,79]. However there is a discrepancy in how these factors are defined
in the literature on the massive scalar field extension, specifically between [72] and [71]. We follow here the
convention of [71], which means that our results of the field equations, metric and scalar field solutions will differ
in numerical factors from [72].
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via a dimensionless coupling function f (ϕ) and a coupling constant α with dimension length140

squared. In this work we focus on the simplest potential for a massive scalar field141

V(ϕ) = 2m2ϕ2 , (3)

where142

m =
mϕc

ħh
, (4)

denotes the scalar field mass parameter having the dimension of inverse length with mϕ the143

scalar field mass in kilograms. While much of our analysis is general for any coupling function144

f (ϕ), our case studies of static black hole solutions specialize to type I coupling functions of145

the form f (ϕ) = βeγϕ . This choice is inspired by the low-energy effective action of certain146

string theories, with the choice of β and γ corresponding to different string models [82–84].147

We will focus here on f (ϕ) =
1
4e2ϕ corresponding to the convention for Einstein-dilaton-148

Gauss-Bonnet (EdGB) gravity [28, 29, 46]. Other choices for γ will lead to qualitatively the149

same behavior for black hole spacetimes [71].150

For the massless scalar field theory with this dilatonic coupling, the strongest current ob-151

servational constraints on the coupling constant α come from a Bayesian analysis of the data152

from the first three observing runs from the LIGO-Virgo-KAGRA (LVK) detector network to153 p
α ≲ 0.8 − 1.33km [85–87]. For massive scalar field sGB, a first observational constraint154

based on data from the first two observing runs of LVK obtained
p
α ≲ 2.47km [78]. A weaker155

bound in the massive case is consistent with expectations, as the mass causes a suppression of156

the scalar field effect on large scales.157

2.2 Relevant length scales158

Before discussing the technical details of computing static black hole solutions in massive sGB,159

we give an overview of the key length scales and their hierarchy, which has important conse-160

quences for qualitative features of the solutions and for defining perturbative approximations.161

Figure 1 illustrates these scales for an example of a black hole and scalar condensate. We162

consider a static, spherically symmetric black hole of horizon radius rh which is of the order163

(but slightly smaller [71]) of the Schwarzschild radius164

rh ∼ rS =
2GM

c2
, (5)

with M the mass of the black hole. The black hole is surrounded by a massive scalar field cloud165

that extends inside the horizon. The characteristic size of the cloud is related to the mass of166

the scalar field. The cloud is exponentially suppressed for distances beyond the Compton167

wavelength λϕ which is inversely proportional to the scalar field mass m168

λϕ ∼ 1/m . (6)

Hence in the small-mass limit the scalar field cloud stretches out further to infinity, approach-169

ing the massless sGB solution. By contrast, for larger masses, the scalar field becomes more170

confined to the vicinity of the horizon, and for m→∞ the scalar field decouples and the so-171

lution approaches the Schwarzschild black hole. In Fig. 1 we show the Compton wavelength172

length scale for small masses. Here, small masses refers to the Compton wavelength being173

larger than the black hole horizon.174

The last length scale is set by the coupling constant
p
α which determines the strength175

of the higher curvature contributions. When we apply perturbation theory in section 3, we176

assume the dimensionless version of the coupling to be small177

α̂ ≡
α

r2
h

. (7)
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Assuming the current observational bound is saturated
p
α = 2.47 km and considering black178

holes in the mass range 5M⊙ ≲ M ≲ 1010M⊙, the dimensionless coupling lies in the range179

10−11
≲ α̂ ≲ 0.2, validating the assumption of working in the small coupling regime. The180

perturbation theory we set up is exact in m, i.e. we do not assume any restriction on the181

scalar field mass. Expanding both in the small mass and coupling limit resulted in non-regular182

solutions for the scalar field at the black hole horizon. On the other hand, when discussing the183

numerical solution to the field equations, no restrictions on the length scales related to both184

the mass and coupling are assumed. However it turns out that requiring the scalar field to be185

regular at the horizon does give a restriction on the value of the coupling and scalar field mass186

depending on the black hole mass and amount of scalar field at the horizon. This restrictions187

ensures that the curvature singularity at r ̸= 02 lies within the horizon and hence prevents a188

naked singularity, see also Fig.1.

Figure 1: Sketch of the black hole horizon (black region) and the scalar condensate
around the black hole (red) with the relevant length scales and their hierarchy in an
example of a small scalar field mass.

189

2.3 Field equations190

Varying the action (1) with respect to the metric gµν results in the following field equations191

Gµν = Tµν , (8)

with Gµν the Einstein tensor and Tµν the ’effective’ energy momentum tensor which includes192

contributions from the scalar field and the higher curvature terms,193

Tµν =2∂µϕ∂νϕ − gµν∂ρϕ∂
ρϕ − gµνm

2ϕ2 − 4α∗R∗
αµνβ
∇α∇β f (ϕ) . (9)

Here ∗R∗
αµνβ

is the double dual Riemann tensor defined as ∗R∗
αµνβ

=
1
4ε

γσ
αµ Rγσρϵε

ρϵ

νβ
with194

εαµγσ the anti-symmetric Levi-Civita tensor. The scalar field equation is given by195

□ϕ = m2ϕ −
1

4
α f ′(ϕ)R2

GB , (10)

with□ ≡ gαβ∇α∇β the d’Alembertian operator. One can check that the field equations (8), (10)196

are invariant under the rescaling of the coordinates with a generic factor c which leaves the197

fields invariant together with redefining m −→ m/c, α −→ c2α.198

2When working in Schwarzschild coordinates.
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2.4 Metric and asymptotic behavior199

In this work we focus on static, spherically symmetric black hole solutions for which the general200

metric is given by201

ds2 = −eA(r )dt 2 + eB(r )dr2 + r2(dθ 2 + sin2 θdφ2). (11)

We assume the same symmetries for the scalar field, hence ϕ = ϕ(r ). Substituting this and202

the general metric (11) in the field equations (8) and (10), we obtain the components of (8)203

given explicitly in (47) in Appendix A. The scalar field equation is given explicitly by (48).204

To obtain the desired black hole and condensate solutions to the equations of motion for the205

metric functions A(r ), B(r ) and the scalar field ϕ(r ) requires imposing the correct boundary206

conditions at the black hole horizon and at spatial infinity. The black hole horizon is defined207

in Schwarzschild coordinates by a vanishing time component of the metric and a diverging208

radial component. Furthermore we require the scalar field to remain regular at the horizon.209

Hence we have the following conditions approaching the black hole horizon rh210

A(r )→−∞ ,

B(r )→∞ ,

ϕ′(r ),ϕ′′(r ) finite .

(12)

Furthermore at infinite radial distance we require the solution to be asymptotically flat and211

approach Minkowski spacetime. Therefore, at spatial infinity, the scalar field sourcing the212

metric equations should vanish as well and we have213

A(r )→ 0 ,

B(r )→ 0 ,

ϕ(r )→ 0 .

(13)

To capture the nontrivial fall-off behavior of the scalar field near infinity, we substitute the214

asymptotic metric functions (13) in the scalar field equation (48) and obtain215

2r2ϕ′′(r ) + 4rϕ′(r )− 2m2r2ϕ(r ) = 0 . (14)

Solving this differential equation for ϕ(r ) yields the asymptotic solution216

ϕ(r )→ c1
e−mr

r
+ c2

emr

2mr
, (15)

with c1, c2 two integration constants. For an asymptotically flat solution we require c2 = 0217

while the remaining coefficient c1 is determined by matching to the near-horizon solutions and218

depends on the coupling as we show in Sec. 6.3.2. The expression (15) with c2 = 0 quantifies219

the qualitative behavior alluded to earlier: the scalar field mass causes the field configuration220

to be constrained to the vicinity of the black hole and exponentially suppressed beyond the221

scale of the Compton wavelength (6). In the limit m → 0, the exponential in (15) becomes222

unity and the falloff of the field is much slower ∼ 1/r , consistent with calculations in the223

massless case [46,47].224

3 Perturbative black hole solutions for small coupling225

Before we compute the exact metric and scalar field solutions by solving the field equations (8), (10)226

numerically, we analyze the solution in the small coupling expansion to gain further insights227
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into the behavior of the solution. We expand in the dimensionless coupling constant α̂ defined228

in (7). It is convenient to define a dimensionless radial coordinate229

u =
rh

r
, (16)

so the horizon always lies at u = 1 and spatial infinity at u = 0. Furthermore we introduce230

the dimensionless mass231

m̂ = rhm . (17)

We expand the metric components and the scalar field for small coupling α̂≪ 1. At this stage232

it is more convenient to reparameterize the metric functions233

eA(u)→ Ā(u) ,

eB(u)→
1

B̄(u)
,

(18)

as it makes the expansion more straightforward. Then the small-coupling expansion is given234

by the ansatz235

Ā =
∞
∑

i=0

Āi α̂i ,

ϕ =
∞
∑

i=0

ϕ i α̂i , (19)

where we omit here and in the following the explicit expansion of B̄ as it is similar to (19).236

We substitute this ansatz into (47), (48) and solve order by order in α̂. At O(α̂0) we need to237

obtain the Schwarzschild solution as the limit of α −→ 0 should recover GR. Therefore we can238

already impose239

Ā0 = B̄0 = 1− u ,

ϕ0 = 0 .
(20)

To recover the Schwarzschild solution at zeroth order in the coupling, in the context of the240

perturbative solution rh in (16), (17) and (7) is equal to rS (5). However we defined the241

variable u, mass and coupling parameters in terms of the general horizon radius so they can242

be used in the context of the exact solution in Sec. 4 as well.243

3.1 Equations of motion at linear order in the coupling244

Before analyzing in detail the expansion of the field equations, we can already gain insights245

into the scalings of different contributions with the coupling by considering the field equa-246

tions (47) with the expansion (19). At linear order in the coupling, there is a correction247

to the scalar field as the source term in (10) is linear in the coupling. Next, analyzing the248

source of the metric equations of motion (9) we find that the energy momentum tensor con-249

sists of terms quadratic in the scalar field and a contribution linear in the coupling times250

∇α∇β f (ϕ) =∇α( f ′(ϕ)∂ βϕ) which is at least linear in the scalar field. As the scalar field to251

lowest order is linear in the coupling, Tµν is quadratic and higher order in α̂. Consequently,252

the corrections to the field equations for the metric potentials (47) will only appear O(α̂2).253

At linear order in α̂, the metric remains the Schwarzschild metric and we need to compute254

the solution to the linearized scalar field equation in a Schwarzschild background. This is255

summarized in the second row of Table 1. In particular, to solve for the linear solutions in α̂,256

we substitute the small coupling expansion for the scalar field and metric components (19)257
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in (48) and use (20) for the zeroth order coefficients and Ā1 = B̄1 = 0 as discussed above.258

This leads to the linearized scalar field equation in the radial coordinate u defined in (16)259

(u − 1)ϕ1′′(u) +ϕ1′(u) +
m̂2

u4
ϕ1(u) = 3u2 f ′(ϕ0) . (21)

3.1.1 Near-horizon and asymptotic behavior of the linearized field260

To capture the solution of (21) near the horizon, we expand around the horizon radius261

ε = u − 1 . (22)

This leads to a double expansion of the fields in α̂ and ε, where each coefficient in the α̂262

expansion in (19) is further expanded in a Taylor series in ε. For the O(α̂) coefficient we have263

ϕ1 = ϕ1
h + εϕ

1′
h +O(ε2) . (23)

For the O(α̂) terms, solving the differential equation (21) order by order in ε and using (20)264

determines ϕ1′
h

in terms of ϕ1
h

via265

ϕ1′
h = 3 f ′(0)− m̂2ϕ1

h . (24)

The coefficient ϕ1
h

corresponds to the amount of scalar field at the horizon at linear order in266

the coupling and f ′(0) is a constant. One can reason that the solution to (21) has to be a267

monotonically increasing solution (see Appendix B for the detailed arguments) and therefore268

the first derivative at the horizon has to be positive [64]. This leads to the following constraint269

on the amount of (linearized) scalar hair at the horizon and the mass of the scalar field270

ϕ1
h <

3 f ′(0)

m̂2
. (25)

In the linearized case, we thus find a constraint on the amount of scalar field at the horizon.271

In massless sGB, similar arguments result in an expression for the scalar field derivative at the272

horizon (in this case for the full theory) [28] given by273

ϕ′h =
rh

4α f ′(ϕh)

 

−1±

√

√

√1−
24α2 f ′(ϕh)2

r4
h

!

. (26)

Requiring the square root to be positive yields the constraint274

f ′(ϕh)
2 <

r4
h

24α2
. (27)

For a fixed coupling function and constant, this bound (27) determines the maximum amount275

of allowed scalar hair at the horizon depending on the size of the black hole. Conversely,276

given a certain amount of scalar field at the horizon, the constraint (27) sets a lower bound277

on the black hole mass that can sustain this hair. Using the definition of m̂ from (17) in (25)278

shows that the maximum amount of scalar hair at the horizon depends both on the scalar field279

mass and the black hole mass. In Sec. 6 below we study the effect of the scalar mass on these280

quantities with full black hole solutions and establish a more meaningful comparison to the281

massless results (27).282

283

As at linear order in the coupling the background is still Schwarzschild spacetime, the284

asymptotic limit of the scalar field at this order follows (15) to first order in the asymptotic285

expansion in u. To write it in the notation introduced in this section286

ϕ1(u) = ϕ1′
∞e−m̂/u u + ϕ̄1′

∞
em̂/u

2m̂
u +O(u2) , (28)

where we absorbed the factor rh in the first term in the constant ϕ1′
∞.287

9
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3.1.2 Numerical solution for the linearized field288

The solution to (21) has to be calculated numerically. It is computed by defining an initial value289

problem at an infinitesimal distance from the black hole horizon u = 1− 10−5, with (23) as290

initial condition, and integrating to spatial infinity u = 0. We keep the description and dis-291

cussion of the numerical methods needed on top of a numerical integrator general. For the292

numerical integration we specify to an 8th order explicit Runge Kutta scheme with a machine293

and working precision of 30 digits to acquire the needed numerical precision. For more details294

we refer to the last section of Appendix C.295

296

In (23) ϕ1
h

is the constant that needs to be determined by matching to the asymptotic297

limit (28). A difficulty is to ensure that the asymptotic solution (28) obeys the desired fall-off298

conditions at infinity, with ϕ̄1′
∞ = 0 to eliminate the growing mode. If this condition is not299

exactly fulfilled, the growing mode always takes over at some large distance from the horizon.300

Furthermore, any small numerical error in the initial condition that results in an inexact match301

toϕ1′
∞ finite and ϕ̄1′

∞ zero in (28) immediately leads to a diverging solution. Therefore, finding302

the exact exponentially decaying solution numerically is a challenge. However, solutions close303

to the desired solution can be computed using the bisection method described in [64] and in304

Appendix C. This method is based on identifying the domain of existence of the exponentially305

decaying solution in the range of input guesses ϕ1
h

for which, when integrating the solution306

outwards, the behavior at infinity switches from positively to negatively diverging for too large307

or too small guesses respectively. Decreasing this range for ϕ1
h

through several iterations leads308

to a narrow range of guesses that approach the ’right’ value for ϕ1
h

such that the solution only309

decays. The more cycles in this bisection method, the more accurate the guess for ϕ1
h

and the310

farther the diverging behavior is pushed out to larger distances. This is shown in Fig. 2 below.311

For solving (21) we apply this bisection method for 15 cycles, where the difference in ϕ1
h

from

0.0 0.2 0.4 0.6 0.8 1.0
u

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1 (
u)

m = 1

2 cycles, 1
h = 0.418

3 cycles, 1
h = 0.393

10 cycles, 1
h = 0.395

15 cycles, 1
h = 0.395

Figure 2: Solution for the linearized scalar field with m̂ = 1 for different numbers of
cycles of the bisection method. The legend also shows the value of ϕ1

h
corresponding

to each curve. The integration starts at the horizon u = 1 − 10−5 and proceeds
outwards to infinity u = 0.

312

the value of the previous cycle is ∼ 10−14. We compare these small-coupling results for ϕ1
h

to313

the values obtained in the full solution in Sec. 4.314
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Order t t field equation r r field equation scalar field equation
α̂0 B̄0, ϕ0 Ā0, B̄0, ϕ0 Ā0, B̄0, ϕ0

α̂1 - - ϕ1

α̂2 B̄2, ϕ1 Ā2, B̄2, ϕ1 ϕ2

α̂3 B̄3, ϕ1, ϕ2 Ā3, B̄3, ϕ1, ϕ2 B̄2, Ā2, ϕ1, ϕ2, ϕ3

Table 1: Dependencies of the equations of motion (47) and (48) in the small-coupling
limit on the expansion coefficients at each order n in α̂. At orders n > 0, the dependen-
cies listed in the table are those obtained after substituting the lower order solutions.

3.2 Higher order corrections in α̂315

As discussed in Sec. 3.1, the corrections to the Schwarzschild metric first appear at order α̂2.316

At each n-th order in the perturbative expansions in α̂ with n ≥ 2, the field equations (47)317

together with the background and linearized solutions discussed above depend on the metric318

coefficients at orders ≤ n as well as the scalar field corrections up to one lower order ≤ n−1.319

The scalar field equation (48) becomes dependent on the metric corrections only at O(α̂3).320

Therefore we focus on obtaining the perturbative solution to that order so as to capture all the321

different dependencies of the solutions and compare with the full solution in the next section.322

We summarize these dependencies of the field equations at the different orders in Table 1. The323

approach to assemble all the inputs to compute solutions is similar to the linearized case: after324

obtaining the system of equations order by order in α̂ from the small-coupling expansion of325

the field equations, the next step is to analyze their asymptotic and near-horizon limits.326

3.2.1 Near horizon and asymptotic limit of the higher order correction solutions327

For the near horizon limit, we expand all functions ε defined in (22) as in the linearized328

case 3.1. Specifically, we make the ansatz329

Āi = Āi
h + εĀ

i′
h + ε

2Āi′′
h +O(ε3) ,

ϕ i = ϕ i
h + εϕ

i′
h + ε

2ϕ i′′
h +O(ε3) ,

(29)

and similarly for B̄i , where we focus on i = 2, 3 for the quadratic and cubic orders in the330

coupling respectively. We substitute this ansatz into the t t and r r components of the field331

equations (47) and the scalar equation of motion (48), expand for ε≪ 1 and solve order by332

order.333

To capture the asymptotic behavior at spatial infinity, we first note that as discussed above,334

the corrections to the scalar field equation of motion from the metric enter only at O(α̂3).335

Thus, at O(α̂2), the asymptotic behavior of ϕ2 is still given by (15). By contrast, the metric336

field equations (47) at O(α̂2) and higher depend on the scalar field one order lower in α̂ (see337

Table 1). Thus, near spatial infinity they involve contributions from a quadratic combination338

of the scalar field asymptotics (15) with c2 → 0. In turn, this implies that at O(α̂3), the339

asymptotic scalar field involves a cubic combination of (15). Based on these considerations,340

we include the expected number of factors of the exponential from (15) in our ansatz for the341

expansion of the functions near spatial infinity, specifically342

Āi = e−2m̂/u �Āi
∞ + uĀi′

∞ + u2Āi′′
∞ + u3Āi′′′

∞ +O(u4)
�

,

ϕ3 = e−3m̂/u �ϕ3
∞ + uϕ3′

∞ + u2ϕ3′′
∞ + u3ϕ3′′′

∞ +O(u4)
�

,
(30)

and similarly for B̄i again focussing on i = 2, 3. With the dependencies on the exponentials343

captured in the ansatz, one can factor them out in the field equations to the lowest orders344
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in u (here up to u3). Factoring out the exponentials is important to be able to proceed, as345

otherwise the field equations do not have a series expansion around u = 0 since e1/u remains346

large in this limit. In (30) we only kept terms up to O(1/u3), which we found to give sufficient347

accuracy for our purposes. However, the method can be extended to include higher orders by348

altering the ansatz in such a way that the dependencies on exponentials can be factored out349

in the equations of motion.350

We substitute the ansatz (30) into the t t , r r components of the field equations and the scalar351

one at each O(α̂i) and solve order by order in u for the coefficients. We find that, as expected352

based on the scaling considerations discussed above, these coefficients depend on the scalar353

field integration constants up to one order lower in α̂.354

3.2.2 Numerical solutions with higher order corrections355

With the asymptotics near the horizon and spatial infinity in hand, we turn to solving the field356

equations over the entire spatial domain order by order in α̂. We first note the simplifying fact357

that at quadratic order in α̂, the t t component of the field equations at O(α̂2) depends only358

on the B̄ correction and the scalar field at O(α̂) (see Table 1). We can therefore first solve359

the t t component of the field equations at O(α̂2) for B̄ by substituting the numerical solution360

of the linearized scalar field as described in Sec. 3.1 and solving the equation numerically by361

starting the integration from an infinitesimal distance outside of the horizon u = 1 − 10−5362

and integrating towards u = 0 using the same specifications for the numerical integrator as363

mentioned in Sec. 3.1.2. As discussed in Sec. 3.1 and Appendix C, the divergent behavior of364

the linearized solution, which enters into all subsequent calculations at higher orders in α̂,365

can numerically only be suppressed out to a small but finite u. This implies that the higher366

order solutions can only be computed up to a slightly larger value of u, as the onset of the367

divergence must be pushed outside the domain of integration. For a given accuracy of the368

linearized solution, this leads to a deterioration in accuracy at each higher order in α̂.369

For the initial conditions of the integration we use (29) to linear order in ε. For B̄2 this is given370

by371

B̄2 ∼ Ā2
h + ε

�

(m̂ϕ1
h)

2 + Ā2
h

�

. (31)

The coefficient Ā2
h

needs to be determined by matching to the asymptotic limit (30). The372

asymptotic solution of B̄2 in (30) is given by373

B̄2 ∼ e
−2m̂

u

�

m̂ϕ1′
∞u +

1

2
u2 �2(ϕ1′

∞)
2 − m̂(ϕ1′

∞)
2�
�

, (32)

with ϕ1′
∞ the integration constant of the asymptotic limit of the linearized scalar field (28) and374

is thus completely determined by the scalar field solution at linear order in the coupling. We375

compute the numerical solution having this desired asymptotic behavior by using a shooting376

method. This is based on obtaining the solution for B̄2 for different guesses of Ā2
h

and evalu-377

ating these solutions at infinity until these values agree with the values at infinity of (32). In378

Appendix C we describe details of the implementation of the shooting method in this context379

by giving the explicit example for computing B̄2.380

Having solved the t t component of the field equations, we use the resulting numerical381

solution for B̄2 together with ϕ1 in the r r field equation and solve for Ā2 using the shooting382

method described above and in Appendix C. This completes the computation of the metric383

functions at O(α̂2). The solution for the scalar field expansion coefficient ϕ2 at that order can384

be determined separately, as its equation of motion does not involve any metric corrections385

(see Table 1). Therefore we can use the same bisection method as for the linearized scalar386

field. Finally, the metric and scalar field corrections at O(α̂3) can be determined via the same387

procedure and methods as described for the second order corrections.388
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4 Full numerical black hole solutions389

To check to what extent the perturbative solution captures the behavior of the black hole390

spacetime correctly and compute results including non-perturbative effects, we solve the field391

equations (36) without approximations using numerical methods. We follow the methodology392

of [71] for a specific choice of coupling function, however, our analysis in Sec. 6 has a different393

focus and therefore complements the results in [71].394

For solving the full field equations, it is more convenient to work with a different setup from395

that used for the small-coupling approximations described above. In particular, we work with396

the parameterization of the metric potentials in terms of A and B instead or Ā and B̄ and397

rewrite (47), (48) as follows [47, 72]. We use the r r -component to eliminate the B(r ) and398

B′(r ) contributions to the field equations and cast the r r -component (47) as a quadratic399

equation in eB(r )400

e2B(r )ρ(r ) + eB(r )β(r ) + γ(r ) = 0 , (33)

where401

ρ(r ) = 4
�

1− (mrϕ(r ))2
�

,

β(r ) = −4
�

1+ r A′(r ) + 2αA′(r ) f ′(ϕ)ϕ′(r )− r2ϕ′(r )2
�

,

γ(r ) = 24αA′(r ) f ′(ϕ)ϕ′(r ) .

(34)

The solution to the quadratic equation (33) is given by402

eB(r ) =
−β(r ) +

p

β(r )2 − 4ρ(r )γ(r )

2ρ(r )
. (35)

Here, we chose the solution with the positive sign as it gives the desired asymptotic limit3403

defined by (13). Furthermore, the expression for B′(r ) is given by the derivative of (35). The404

remaining field equations can then be rewritten as two second order differential equations for405

A(r ) and ϕ(r ) given explicitly by406

A′′(r ) = f (r,ϕ(r ),ϕ′(r ), A′(r )) ,

ϕ′′(r ) =h(r,ϕ(r ),ϕ′(r ), A′(r )) .
(36)

Here f and h are functions of the corresponding variables in their arguments, which are given407

in by (49), (50). We note that in obtaining (36) we focused on rewriting the θθ and scalar408

field equations (47), (48), however the final solutions of the metric function A(r ) and ϕ are409

independent of this choice. In practice, finding the black hole solution requires solving (36)410

for A(r ) and ϕ(r ) as a boundary value problem corresponding to (12) and (13).411

4.1 Near-horizon and asymptotic behavior of the exact solutions412

As our goal to obtain the spherically symmetric black hole solution has been reduced to solving413

the boundary value problem corresponding to (36), we study in this section the behavior of the414

metric functions and scalar field approaching these boundaries in more detail following [47,415

72].416

3Substituting the asymptotic behavior for A(r ) and ϕ(r ) assuming both fall off to 0 as ∼ 1/r and ∼ e−mr/r
respectively , which we discuss in Sec. 4.1.1, leads to β(r ) −→ −4. Then the positive sign solution gives eB(r ) −→ 1
which is the desired asymptotically flat result.
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4.1.1 Asymptotic limit417

From our estimate in section 2.4, by substituting in this limit the Minkowski metric in the field418

equations, we found that the scalar field falls of as ∼ e−mr/r to first order in 1/r . We also419

limit the expansion of the asymptotic limit for the full solution to first order in the 1/r . This is420

motivated by the perturbative results of Sec. 3.2.1, which showed that higher order corrections421

in 1/r occur together with higher order powers of the exponent, hence these corrections are422

strongly suppressed. For the order 1/r correction to the metric functions, we can make the423

following argument. As the scalar field falls of exponentially, at spatial infinity the scalar field424

has decreased to zero. In the case of zero scalar field, the higher curvature corrections to425

the field equations vanish as well, see (47). This can also be reasoned from the action (1),426

where for a vanishing scalar field, the prefactor of the GB invariant is constant and because427

the term is a topological invariant it becomes a boundary term and its contribution to the428

dynamics vanishes. The asymptotic behavior at order 1/r of the metric function eA(r ) and429

eB(r ) therefore correspond to the Schwarzschild metric. Again we know from the perturbative430

case that in this regime, higher orders in 1/r are strongly suppressed. The asymptotic behavior431

of the functions in (36) is then given by432

eA(r )→
A′∞
r
+O(1/r2) ,

ϕ(r )→
ϕ′∞e−mr

r
+O(1/r2) .

(37)

The integration constants A′∞ and ϕ′∞ are proportional to the system’s ADM mass and scalar433

monopole charge respectively and are fixed by matching the solution to the near horizon limit434

detailed below.435

4.1.2 Near horizon limit436

The behavior of the metric functions and the scalar field at the horizon is given by (12). The437

divergence in the function A(r ) implies A′(r ) −→∞. Thus, 1/A′(r )→ 0 and we expand the438

field equations (35) in 1/A′(r ), which leads to439

eB(r ) =
2α f ′(ϕ)ϕ′(r ) + r

(1− r2m2ϕ(r )2)
A′ +

�

2α f ′(ϕ)ϕ′(r )
�

2− 3m2r2ϕ(r )2 + r2ϕ′(r )2
�

+r
�

r2ϕ′2 − 1
��

/ [
�

r2m2ϕ(r )2 − 1
� �

2α f ′(ϕ)ϕ′(r ) + r
��

+O
�

1

A′

�

.
(38)

Substituting the expanded expression (38) in (36) and expanding the equations in the440

same limit gives441

A′′(r ) =
a

b
A(r )2 +O

�

A′
�

, (39a)

ϕ′′(r ) =
c

b

�

2α f ′(ϕ)ϕ′(r ) + r
�

A′(r ) +O(1) , (39b)

where a, b and c are given by (51). For ϕ′′(r ) to remain finite as A′(r ) −→∞, we require442

the coefficient of A′ in (39b) to vanish at a rate equal or faster than A′ diverges. However,443

comparing (39) with (38), we see that letting (2α f ′(ϕ)ϕ′(r ) + r ) vanish would also make444

the divergent term ∼ A′ of eB(r ) vanish, which is inconsistent with the horizon condition (12).445

Therefore, to impose regularity of the scalar field near the horizon requires c −→ 0 and b ̸= 0.446

At the black hole horizon we can rewrite c = 0 using the explicit expression (51) as a447

condition on ϕ′(rh) = ϕ′h given by448

ϕ′h = −
A±

�

1−m2r2
h
ϕh

2
�p

C

B
, (40)
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with A, B and C given by (52) and (53). Only the minus solution converges to (26) in the small449

mass limit and to (24) in the small coupling limit. We also note that the square root in (40)450

adds an additional requirement as it should be positive definite, imposing an inequality which451

gives a further restriction on the parameters ϕh, rh.452

Next, considering the near-horizon expansion of the field equations and substituting the453

minus solution of (40) in (39) yields454

A′′ = −(A′)2 +O
�

A′
�

,

ϕ′′ =O(1) .
(41)

Integrating (41) yields a logarithmic function and fixing the integration constant such that the455

solution diverges to minus infinity at rh leads to the derivative A′(r ) ∼ 1
r−rh

. Combining this456

with (38) we obtain the near-horizon behavior of the metric components and scalar field457

eA(r ) = A′h (r − rh) +O(r − rh) ,

ϕ(r ) = ϕh +ϕ
′
h (r − rh) +O(r − rh) ,

(42)

where ϕ′
h

is given by (40). Then A′
h
, ϕh are the only free integration constants which get fixed458

by matching with the asymptotic solution.459

4.2 Numerical computation of the full solution460

We use an initial value formulation to solve the second order differential equations (36) for461

A(r ) andϕ(r ) simultaneously again using the same specifications for the numerical integrator462

as mentioned in Sec. 3.1.2. Note that α, m and rh are all input parameters in this initial463

value problem. The solution for B(r ) can be recovered by substituting these solutions in (35).464

We start the integration at an infinitesimal distance (r/rh = 1 + 10−3) outside the event465

horizon using the near-horizon solutions (42) and (40) as initial conditions. The amount of466

scalar field at the horizon ϕh and the coefficient A′
h

are determined by matching to the right467

asymptotic behavior. The unstable nature of the scalar field solution poses a challenge for468

solving (36) simultaneously with the right asymptotic behavior. It turns out that the scalar469

field solution and approximation for ϕh are not sensitive to the estimation for A′
h
. One can470

therefore obtain an educated guess for ϕh independent of A′
h

and use this guess to solve the471

system simultaneously. The scalar field solution up to some finite value of r then already472

behaves as the exponentially decaying solution and a numerical root finding routine is then473

able to extract the initial conditions corresponding to the right asymptotic behaviors.474

More explicitly, we implement these considerations as follows. After defining the system475

of differential equations (36) as functions of the initial values ϕh, A′
h
, we use the bisection476

method described in Sec. 3.1 and Appendix C to obtain an educated guess for ϕh, setting A′
h

477

temporarily to 1. Looking at the scalar field solution with these initial conditions, we define478

the maximum r for which the solution is still exponentially decaying as r∞, where for r > r∞479

the exponentially growing mode takes over. We set up a shooting method routine similar to480

the methodology described in Sec. 3.2 and Appendix C to find the initial conditions that match481

the solution to the asymptotic behavior (37) at r∞. We justify matching the solutions to the482

asymptotic limit for some finite r∞ ̸=∞ by similar arguments as for the higher order pertur-483

bative solutions. In brief, r∞ is the maximum distance where the scalar field has essentially484

fallen off to 0. For a vanishing scalar field the metric is the Schwarzschild solution as described485

in Sec. 4.1.1, hence we can already require the metric function A(r ) and scalar field to fol-486

low (37) at r∞. Additionally as the constants A′∞, ϕ′∞ are unknown, we define our shooting487

method in terms of the ratios eA/(eA)′ and ϕ/ϕ′(r ) as functions of the initial conditions to488
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match489

eA(r )

eA(r )′
→−r ,

ϕ(r )

ϕ′(r )
→−

r

(1+mr )
, (43)

and determine A′∞, ϕ′∞ afterwards. We achieve this by defining a function of the differ-490

ence between the metric solution with the initial conditions found as described above and the491

asymptotic limit in (37), and similarly for the scalar field solution, as a function of A′∞ and492

ϕ′∞ respectively.493

To match the coefficients, we integrate over the absolute difference between the solution and494

the asymptotic limit and determine the constants A′∞ and ϕ′∞ that minimize the integral over495

a small region in r . For A′∞ the small region was determined around r∞ and for ϕ′∞ the re-496

gion is based on integer multiples of the Compton wavelength. For each choice of parameters,497

we require that the minimized integral is ≲ 10−9 as criterion for a good match, where A′∞ is498

approximately constant and thus less sensitive to the choice of integral range than ϕ′∞, which499

requires matching two functions that are rapidly decaying.500

Additionally, we are interested in the solution for the spacetime inside the horizon to see if501

the scalar field extends inside the horizon and to analyze the singular behavior of the space-502

time inside the black hole. We therefore use an extension of the metric (11) as done in [47]503

by defining a coordinate patch inside the horizon described by similar metric potentials as504

in (11) but the opposite signs. With this convention, we capture the sign flip that occurs for505

the time and radial components of the metric in Schwarzschild coordinates inside the horizon,506

for which the time coordinate becomes spacelike and vice versa. This switch is then incorpo-507

rated in the additional minus sign and therefore the solution to the metric corrections itself508

can retain the same sign in- and outside the horizon. With this setup, we calculate numerical509

solutions to (36) by integrating from a small distance inside the event horizon to r = 0. An510

important assumption in this process needed to set the initial value of the scalar field is that511

the limit of the scalar field approaching the horizon from both sides exists and can be glued512

together smoothly. This implies that the same initial conditions and coefficients ϕh, A′
h

apply513

as for the outside solution. However, the metric functions are discontinuous in this setup, for514

instance, the solution for A(r ) diverges to minus infinity on both sides of the horizon.515

A caveat is that the solution inside the horizon in Schwarzschild coordinates is not very mean-516

ingful, for example, there is no intuitive interpretation of the coordinates. However we can517

nevertheless use this solution to show that the scalar field extends to the inside of the black518

hole and to analyze the behavior of curvature invariants inside the horizon. We compute and519

discuss these curvature scalars in Sec. 6. As these quantities contain coordinate independent520

information, the conclusions of our analysis are valid more generally beyond the particular521

choice of interior coordinates.522

In this way, we construct the full numerical solution for A(r ) and ϕ(r ) in and outside the hori-523

zon. We compare this to the solution for a massless scalar field and the perturbative solution.524

5 Comparison between massless, massive, and perturbative solu-525

tions526

In Fig. 3 we show different results for the metric function A(r ) defined in (11) and in Fig. 4527

the corresponding scalar field profile ϕ(r ) for a coupling function of f (ϕ) = e2ϕ/4. The pink528

curves correspond to the full solution with vanishing scalar field mass, while black curves are529

the results for a mass of m̂ = 0.1. The upper panels are for a larger value of the coupling than530

the lower ones. For the perturbative and Schwarzschild solutions we only show the curves531

outside the black hole horizon.532

Before discussing the results, we note an important point regarding comparisons between533
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the perturbative and exact solutions. The perturbative solutions are computed in terms of534

u = rS/r and similarly for the Schwarzschild solution. These need to be rescaled to compare535

with the full solution shown here in terms of rh/r . We choose to compare black holes with536

the same ADM mass4, which implies for the asymptotic limit of the full sGB solutions (37) that537

A(1)∞/r = rS/r . Next, we rescale the radial coordinate of the full solution such that rh = 1.538

The ratio between the Schwarzschild and sGB horizons can be obtained via rS/rh = A(1)∞/1539

and is used to rescale the perturbative and Schwarzschild solution in the figures below.540

5.0.1 Massless case: code check and singularity541

First, we focus on the massless case as it has been more comprehensively studied in previous542

literature. For an independent check of our results, we compare the pink curves in Fig. 3543

with a corresponding result in Fig. 1 of [47] and verify a similar qualitative behavior, up to544

small differences arising from different choices of coupling functions and -constant. Next, we545

analyze the features of the metric potential in Fig. 3 and corresponding scalar profile in Fig. 4.546

At large distances, they show the expected asymptotic behavior A(r )→ 0 and an exponential547

decay for the scalar field. Near the horizon (black vertical line), the scalar field remains finite548

while A(r ) diverges to minus infinity when approaching from the outside. For the coupling549

α̂ ∼ 0.2 shown in the upper panel of Fig. 3 the divergence for r < rh occurs very close to550

the horizon r/rh ∼ 0.99 (pink dashed line). This is due to the presence of a finite radius551

singularity, which is a well known phenomenon for massless sGB black holes [47,48,55]. We552

will make a concrete identification between this divergence in A(r ) and a genuine curvature553

singularity in Sec. 6.1.1. We see from the lower panel of Fig. 3 that for a smaller coupling554

α̂, the singularity moves further to the interior, as expected based on recovering the GR limit555

for zero coupling. This implies that the maximum value of α̂ for which a black hole exists is556

determined by the singularity coinciding with the horizon; higher values of α̂ will lead to a557

naked singularity.558

5.0.2 Effect of the scalar mass559

Qualitatively, the features of the solutions for finite scalar field mass are similar to the massless560

case. For the metric functions outside the horizon, the mass has a very small effect, as seen in561

Fig. 3, while for the scalar field in Fig. 4 the differences are more noticeable. The singularity562

for the massive case occurs at r/rh = 0.97 for a coupling of α̂ = 0.2. A larger mass of the563

scalar field thus shifts the singularity further inwards, as also expected from the infinite mass564

limit, where the scalar condensate disappears and the black hole reduces to Schwarzschild565

with a singularity at r/rh = 0. This implies that the maximum value of the coupling for which566

black hole solutions exist increases for larger scalar field masses, consistent with the results567

of [71].568

From a computational perspective we directly identify the maximum α̂ for black hole solutions569

based on the fact that for any value exceeding it, the near-horizon initial conditions and the570

asymptotically flat limit can no longer be connected by a smooth numerical solution.571

5.0.3 Performance of the perturbative small-coupling solutions and comparison to572

Schwarzschild573

Another interesting feature illustrated in Figs. 3 and 4 is the quality of the perturbative solu-574

tions to O(α̂3) corresponding to the green curves. We see that near the horizon for the larger575

value of the coupling (upper panel) the perturbative solution differs appreciably from the full576

4For sGB and Schwarzschild black holes with the same ADM mass, the global mass generally differs due to the
contributions from the scalar field in sGB [46]
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solution. This is most noticeable when comparing the locations of the horizon, which for the577

perturbative and Schwarzschild solution lie at larger radial coordinate than the full solution, as578

indicated by the divergence of A to −∞. While the near-horizon behavior of the perturbative579

solution is based on expanding around the Schwarzschild horizon (29), the actual black hole580

horizon in this case is determined by the root of B̄. After appropriately rescaling coordinates581

as described in the beginning of the section, this leads to the horizon locations indicated in582

the plots. As expected, for larger couplings the differences between the perturbative and exact583

solutions become larger, which is especially noticeable near the horizon. As mentioned, for584

larger couplings the singularity lies close to the horizon, and it is reasonable to expect non-585

perturbative effects to be important in its vicinity. In the large r/rh limit, the perturbative and586

numerical solutions coincide as the curvature effects become less and less significant. We also587

see that for the smaller coupling shown in the lower panel, the perturbative solution agrees588

much better with the full solutions near the horizon, as it is also farther from the singular-589

ity and the horizon moves closer to rh. In Appendix D we give some additional analysis on590

the perturbative solution comparing also the solutions up to different orders in the coupling.591

Together with this analysis we conclude that the perturbative solution also becomes more ac-592

curate in the large scalar mass regime. As expected as in the large mass limit the singularity593

shifts inwards further away from the horizon. Furthermore, we find no particular behavioural594

change comparing the solution up to quadratic and cubic order, for which the metric correc-595

tions to scalar field come in, see Table 1. Lastly we find the difference of the perturbative596

solution in the near horizon region to be largest. However even with the finite radius sin-597

gularity lying close to the horizon for larger values of the coupling, when restricting to the598

regimes away from the immediate vicinity of the divergence, we find no sign of qualitatively599

new non-perturbative behaviour that would not be approximately captured by adding higher600

small coupling corrections to the solution.601
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Figure 3: Behavior of the metric function A(r ) characterizing the time-time component
of the metric for couplings of α̂ = 0.2 (upper panel) and α̂ = 0.1 (lower panel).
Black curves show the full solution for a scalar field mass m̂ = 0.1, pink curves the
massless case, green curves represent the perturbative solution including corrections
to O(α̂3) and grey curves show the Schwarzschild solution for comparison. For the
latter two only the solutions outside the horizon are shown. The black vertical line
denotes the horizon radius and the vertical dashed curves the singularities.

6 Properties of the solutions602

Having constructed the full and perturbative numerical solutions for a static black hole in603

massive sGB, we analyse the properties of these solutions. We start by studying the spacetime604
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Figure 4: Scalar field profile for couplings of α̂ = 0.2 (upper panel) and α̂ = 0.1
(lower panel). Black curves show the full solution for a scalar field mass m̂ = 0.1,
pink curves are for the massless case, and green curves represent the perturbative so-
lution including corrections to O(α̂3) only showing the solution outside the horizon.
The black vertical line denotes the horizon radius and the vertical dashed curves the
singularities.

curvature in and outside the horizon and recover how properties such as the amount of scalar605

field on the horizon or the scalar monopole charge depend on the parameters of the theory.606

The analysis in this section complements the discussion of [71] which focused on the horizon607

radius, amount of scalar field at the horizon, black hole surface, entropy, and temperature608

as function of the black hole mass for different coupling functions and scalar field masses.609

Note that the rescalings in [71] to obtain dimensionless variables are different from those610

used in this paper, in particular, we rescale based on the horizon radius, while [71] rescaled611

by the coupling constant. In all further analysis we specify to a dilatonic coupling function612

f (ϕ) = e2ϕ/4.613

6.1 Characterizing the curvature and field density614

Before we analyze more specifically how certain properties of the black hole solutions depend615

on the parameters of the theory, we first consider the curvature scalars and energy density616

around the black hole to gain more intuition for the solutions.617

6.1.1 Curvature invariants and singularity618

To characterize the curvature we analyze the curvature invariants. Here we focus on the619

Kretschmann scalar620

K = RµνρσRµνρσ , (44)

and its cousin; the fully contracted Weyl tensor squared621

C = CµνρσCµνρσ . (45)

In vacuum in GR these two invariants coincide. We calculate them using the full numerical622

solution for a coupling of α̂ = 0.2 and for masses of m̂ = 0.1 and m̂ = 1. The results are623

illustrated in Fig. 5, where the bottom panel shows the percent difference of the Kretschmann624

scalar for a massive sGB and Schwarzschild black hole. Here we make the same choice as625

for Fig. 3, comparing to a Schwarzschild black hole with the same ADM mass. We see that626

the curvature invariants blow up for r/rh ∼ 0.88 and r/rh ∼ 0.97 for m̂ = 1 and m̂ = 0.1627

respectively. For m̂ = 0.1 this corresponds to the same location as the divergences in A and628
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Figure 5: Top panel: Curvature invariants of the Kretschmann scalar K (dashed lines)
and the contracted Weyl tensor C (pink and purple curves) in- and outside the event
horizon (black vertical line) for two values of the scalar field mass (lighter colors
for larger mass). The vertical dashed black lines denote the location of the finite
radius singularity. Bottom panel: The percent difference of K in massive sGB and
Schwarzschild for two values of the scalar field mass only for the spacetime outside
the horizon.

ϕ seen in the top panels in Fig. 3 and 4, which corroborates the identifications between these629

divergences and genuine singularities already mentioned in Sec. 4. We also note from com-630

paring the solid curves corresponding to C and the dashed lines illustrating the results for K631

in Fig. 5 that while for most regions outside the horizon the two kinds of curvature invariants632

coincide, they differ slightly in its immediate vicinity and the interior.633

Looking at the bottom panel of Fig. 5 we see that close to the horizon up to r/rh ∼ 1.1, the634

curvature in sGB gravity is larger than for the Schwarzschild black hole. Interestingly, how-635

ever, in the region 1.1 ≲ r/rh ≲ 5 the curvature in sGB is weaker than Schwarzschild, with636

the fractional difference attaining its largest negative value around r/rh ∼ 1.3. In the large-r637

limit the curvature invariants coincide, as expected. With increasing scalar field mass, the cur-638

vature decreases. Hence, the massless limit leads to the strongest curvature and thus largest639

deviation from Schwarzschild. The distinguishability of the curvature up to r/rh ∼ 5 could640

have interesting consequences, for instance, for tidal effects.641

6.1.2 Energy density642

The energy density of the spacetime is given by T t
t = −ρ in (47). Additionally we define643

ρϕ as the pure scalar contributions of T t
t which can be obtained by setting α → 0 in (47).644

The results for the energy densities for a case with the maximum coupling for a massless sGB645

black hole are illustrated in Fig. 6. The top panel shows the full energy density including the646

higher curvature contributions for a scalar mass m̂ = 0.8, while the bottom panels show the647

corresponding radial profiles for that case (green curves) and the massless one (black curves).648

The upper panel of Fig. 6 shows that ρ is concentrated close to the horizon and becomes649

more dilute further away from the black hole. Around r/rh ∼ 2 the energy density has already650

fallen off to essentially zero. From the bottom panels of Fig. 6, we see that for the full energy651

density (top), the same behavior occurs in the massless case, also around the same values.652

However, the pure scalar field contribution to the energy density (bottom) has very different653

features, namely for the massless field configuration, the falloff to zero is much slower, as654

expected based on the asymptotic behavior of the field (37) indicating the scalar field is su-655

pressed for distances larger than the Compton wavelength. Specifically, the percent difference656
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the black disk for a system with α̂ = 0.2, m̂ = 0.8. Bottom panel: Energy density
(top) and scalar part of the energy density (bottom) as function of r for a massless and
m̂ = 0.8 scalar field.

in ρϕ between one and two times the Compton wavelength (λϕ = 1.25) for the massive case657

is 99%. For comparison, in the massless case, the falloff of the density between the same radial658

distances is only 94%. Another interesting feature is that while the scalar field contribution659

is always positive, the full energy density is not. The reason is that the higher curvature con-660

tributions can have different signs, which leads to a negative total energy density close to the661

black hole horizon. The fact that the energy density can become negative is one of the reasons662

black holes both in massless and massive sGB can evade the no hair theorem [25,28].663

6.2 Scalar hair, regularity constraint and bound on the coupling664

As explained in Sec. 4.1, requiring the scalar field solution to be regular at the horizon leads665

to a constraint for the derivative of the scalar field at the horizon, c.f. (24), (26) and (40) for666

the linear-in-coupling, massless and massive full theory respectively. From Fig. 4 we conclude667

that for the scalar field solution near the horizon to be able to match the asymptotic fall off, the668

derivative at the horizon needs to be real and negative in terms of r or positive for u. For the669

linearized case this is accomplished via (25) and in the massless full theory case this is done by670

imposing the square root to be real via (27). However, in the massive case requiring the square671

root to be real by imposing C > 0 does not ensure ϕ′
h
< 0 (40). Therefore in this case both672

C > 0 and ϕ′
h
< 0 need to be imposed to ensure an asymptotically flat solution. All of these673

inequalities depend on the parameters ϕh, α̂ and m̂. The dependence on rh is encapsulated in674

the dimensionless parameters α̂, m̂. In this section, we study these inequalities imposed near675

the horizon to determine how ϕh depends on the theory parameters.676

The top panel of Fig. 7 compares the results of the near-horizon constraints on ϕh, indi-677

cated by the solid (linearized) and dashed (full) lines to the values extracted from the numer-678

ical solution in the linearized (diamonds) and massive full theory (dots) cases. We see that679

the amount of scalar hair at the horizon and the difference between the linearized and full680

theory results is largest for a larger coupling, as expected. For scalar field masses larger than681

m̂ > 1, where in dimensionfull parameters the Compton wavelength lies inside the black hole682

horizon, the scalar hair is severely suppressed (note the logarithmic scale of the plot). In the683

large m̂ limit, the linearized and full theory result coincide as for m̂ → ∞ the scalar field684

should decouple and black holes should have no hair.685
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Figure 7: Top panel: The amount of scalar field at the horizon ϕh as function of the
dimensionless scalar field mass m̂. The panel shows the values for the linearized (di-
amonds) and full solution (dots) of the scalar field equation for two different values
of the coupling (grey and pink shades). Additionally, the linearized (25) (solid lines)
and full theory constraints (40) (dashed lines) are shown for two different values of
the coupling. Bottom panels: maximum allowed value of the scalar field at the horizon
and coupling constant as a function of the scalar field mass from the requirement of
preventing a naked singularity (squares) and the near horizon constraint (40) (dots).

In the same panel we also show the linearized inequality (25) as the pink and gray lines. We686

obtain the full theory constraint (dashed lines) by selecting the largest value for ϕh allowed687

for which (40) is real and negative for each choice of α̂ and m̂. For increasing m̂, we find that688

beyond a certain coupling-dependent threshold that coincides with the cusp in the dashed689

curves in Fig. 7, two branches of values for ϕh arise for which ϕ′
h
< 0. For one branch the690

values of ϕh becomes larger for larger mass while for the other branch they become smaller,691

which we identify as the desired physical solution. We therefore selected the largest possi-692

ble ϕh in the physical branch. From Fig. 7 we see that the linearized and full constraints693

coincide in the large mass limit as required. The values for ϕh obtained from the numerical694

solutions are always below the curves from the near-horizon constraints. In the small-mass695

limit, the matching to the asymptotic falloff fixes ϕh to smaller values than allowed by the696

near-horizon constraints. In the zero-mass limit and largest possible coupling in the massless697

theory α̂ ∼ 0.2, the amount of scalar field on the horizon approaches the largest allowed value698

by the near-horizon constraint. Similarly, in the large-mass limit, the numerical solution for699

ϕh approaches the maximum allowed value by the corresponding near-horizon constraint.700

The literature on the massless theory suggests that the near-horizon constraint (26) pre-701

vents the finite surface singularity from extending outside the black hole horizon. We analyze702

the link between the singularity and the near-horizon constraint in the massive theory in the703

bottom panels of Fig. 7. These plots show the results of the following procedure. For a fixed704

mass m̂, we increased α̂ up to the value for which the curvature singularity lies on the horizon.705

This identifies the largest possible α̂ = α̂max to prevent a naked singularity and a correspond-706

ing ϕα̂max

h
. For the same (α̂max, m̂), we also determined the maximum allowed ϕh for which707

ϕ′
h
< 0 from (40). These two results for the maximum allowed ϕh are shown as the green708

squares (singularity constraint) and black dots (horizon constraint) in the middle panel of709

Fig. 7. Next, we considered the implications of the horizon constraint (40) when evaluated710

for the maximum hair ϕα̂max

h
set by the verge of a naked singularity to determine the cor-711

responding maximum allowed coupling α̂ for which ϕ′
h
< 0. These results for the maximum712

coupling, together with those obtained from the singularity constraint are shown in the bottom713

panel of Fig. 7 as black dots and green squares respectively.714
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We see from Fig. 7 that for masses m̂ < 1, the constraints from the curvature singularity715

and regularity of the field at the horizon on the maximum ϕh coincide. For slightly larger716

masses, the cusp feature arises in the horizon constraint, as discussed above. In this regime,717

the requirement of not having a naked singularity is a stronger constraint than the near horizon718

requirement. For the maximum allowed coupling, both cases agree for the range of masses we719

studied, hence the maximum coupling is not sensitive to the choice of ϕh.720

6.2.1 Implications in relation to the coupling and scalar field mass721

The results from the bottom panel on Fig. 7 show the theoretical bound on the coupling as722

function of the scalar field mass. As mentioned in Sec. 2.1 a first observational constraint723

on the coupling is
p
α ≲ 2.47km for 10−15eV ≲ m ≲ 10−13 [78]. Relating this to the di-724

mensionless mass defined in (17) for stellar mass black holes ranging from approximately725

5M⊙ ≲ M ≲ 150M⊙ with horizon size of order rh ∼ rS, this observational constraint on the726

coupling is set for 10−5
≲ m̂ ≲ 10−1. Notably, this implies that for stellar mass black holes,727

the tightest constraints on the coupling in the range of masses m̂ > 10−1 are given by the728

theoretical constraints shown in the bottom panel of Fig. 7.729

We can also use the results of the top panel of Fig. 7 to make a rough estimate of the730

possible scalar field mass range that would be interesting in relation to observation. From731

Fig. 7 we find that beyond m̂ ∼ 1 the scalar field becomes highly suppressed, which decreases732

the likelihood for detection by probing the black hole environment. Hence m̂ ∼ 1 seems the733

largest scalar field mass for which there is still significant scalar hair around the black hole.734

Then we consider a back of the envelope calculation similar to what was done in [88]. We735

assume that astrophysical black holes lie in the mass range 5M⊙ ≲ M ≲ 1010M⊙ again using736

rh ∼ rS to find the dimensionful mass via (17), (4) for m̂ = 1. This results in737

1.3× 10−11eV ≳ mϕ ≳ 6.7× 10−21eV . (46)

Massive sGB black holes thus enable exploring a large swath of parameter space of ultralight738

dark matter models, see e.g. [60] for a review.739

6.3 Dependencies of black hole properties740

6.3.1 Innermost stable circular orbit and light ring741

Next, we use the full numerical solutions to analyze the dependence of gauge-invariant quanti-742

ties such as the orbital frequency of a test particle at the innermost stable circular orbit (ISCO)743

and a photon at the unstable circular orbit (light ring) on the parameters of the theory.744

In Appendix E we compute the ISCO and light ring (LR) radii from considering geodesic745

motions of test particles and photons, and formulating the dynamics in terms of an effective746

potential whose maximum determines the ISCO and LR. Specifically, we calculated the roots747

of the second derivative of (59) and (64) numerically after substituting the solutions for A(r )748

and B(r ). We convert all expressions to functions of the orbital frequency as it is a coordinate-749

independent quantity by contrast to the radius, by using the relationship between the radial750

coordinate and frequency from (61). In Fig. 8 we show the difference between the orbital751

frequencyω at the ISCO/LR in massive sGB and Schwarzschild spacetimes for different scalar752

field masses. Note that we give the results in terms of the dimensionless quantity ωrh, there-753

fore the Schwarzschild frequencies ωISCO rS = 1/3
p

6, ωLRrS = 2/3
p

3, need to be rescaled754

to rh in the same way as described in Sec. 5.0.3.755

From both panels of Fig. 8 we conclude that, as the differences are positive, the orbital756

frequencies in massive sGB are larger (corresponding to the ISCO/LR radii being smaller)757

than for a Schwarzschild black hole with the same ADM mass. When comparing this to our758
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Figure 8: The difference in orbital angular frequency at the ISCO (top panel) and LR
(bottom panel) rescaled by the horizon radius from the Schwarzschild results as a
function of the scalar mass for three different values of the coupling.

result for the behavior of the curvature in the bottom panel of Fig. 5, we see that for radii759

around rISCO/rh ∼ 3, rLR/rh ∼ 3/2 the curvature in massive sGB is less strong than for760

a Schwarzschild black hole, and a stable orbit for a test particle/photon can therefore lie761

closer to the horizon. This also corresponds to the findings for the ISCO/LR frequencies in the762

literature on massless sGB, e.g. in [89, 90]. Furthermore, Fig. 8 shows that the difference in763

the orbital frequencies becomes smaller for smaller coupling and larger masses, as expected764

in these limits. As for other quantities, massless sGB gives the strongest deviations from a765

Schwarzschild blackhole.766

6.3.2 ADM mass and scalar charge767

Lastly we consider the analysis of the obtained ADM mass MADM = 1/2A′∞ and scalar monopole768

charge ϕ′∞ defined in (37). We obtain these quantities from the numerical solutions as de-769

scribed in Sec. 4.2 for different masses and coupling. The ADM mass and scalar charge are770

relevant e.g. in effective action descriptions for black hole binary systems [55], where the771

two bodies are reduced to center-of-mass worldlines augmented with additional parameters772

that are matched to physical properties of the full configuration and capture its coarse-grained773

effects. In the massless case, the scalar charge is defined to be the coefficient of the 1/r term774

in the asymptotic falloff of the scalar profile. However, for massive scalar fields the asymptotic775

limit has an exponential decay (37) and the definition of the charge must be adapted. We con-776

sider here the convention of [65], which is still based on the decaying tail of the scalar field777

solution and defines the charge to be the prefactor of the exponential ϕ′∞ as given in (37).778

As described in Sec. 4.2, matching the solution to the asymptotic limit for the scalar field is779

more susceptible to the choice of integral region used for the matching than the metric func-780

tions. In practice we therefore limited the construction of ϕ′∞ to m̂ ≤ 1, as for larger values781

the solution outside the black hole horizon has already fallen off to nearly zero and it is not782

possible to unambiguously match to (37) to determine ϕ′∞. In principle one could obtain the783

charge in this regime by working with the solution in the interior of the horizon, however as784

we mentioned in Sec. 6.2 the m̂ ≲ 1 regime is the most interesting, therefore we limited our785

analysis to this regime. We show the results of these calculations for the ADM mass and scalar786

charge as function of the scalar field mass in Fig. 9. From the Fig. 9 we see that both the scalar787

charge and ADM mass become less sensitive to the scalar field mass for smaller values of the788

coupling. Both are also proportional to the coupling, where for vanishing coupling constant,789

the scalar charge vanishes and the ADM mass goes to 1/2rh as expected.790
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Figure 9: The amount of scalar charge (top panel) and ADM mass (bottom panel) as
function of the dimensionless scalar field mass m̂ for three different values of the
coupling.

7 Conclusion791

In this paper we performed a systematic study of various features of static, spherically sym-792

metric black holes in sGB with a massive scalar field. This is a more natural scenario than793

assuming a massless field, as has been the focus of the majority of previous work, except for a794

few numerical examples. The scalar field mass introduces an additional scale in the problem795

and gives rise to richer features of the spacetime and scalar condensate. For the first time, we796

calculated perturbative solutions in a small coupling expansion up to third order in α̂ and com-797

pared this to full numerical solutions for the spacetime and scalar field. The small-coupling798

approximation yields more direct analytical insights into intriguing features that arise, while799

the numerical solutions capture fully nonlinear regimes. To compute numerical solutions, we800

used a bisection method to approach the scalar field solution with the desired asymptotic fall-801

off behavior at spatial infinity and a shooting method to obtain the metric potentials with802

the correct near-horizon and asymptotic behaviors. By extending the full numerical solutions803

inside the horizon, we found that the metric potentials and scalar field diverge at a finite ra-804

dius. From analyzing the Kretschmann and contracted Weyl tensor curvature invariants we805

concluded that these divergences coincide with a genuine curvature singularity. The loca-806

tion of this singularity depends on the coupling constant and the scalar field mass, where for807

smaller couplings and higher masses the singularity moves closer to the center of the black808

hole. The location of the singularity also impacts the performance of the small-coupling per-809

turbative solution, which we found to be viable for small couplings, large scalar masses, and810

large distances from the black hole. These trends can be attributed to the fact that at large811

distances and for small coupling, the scalar and nonlinear curvature effects decrease, and for812

large scalar masses the scalar field decouples from the metric and the GB contribution to the813

action becomes a total derivative with no dynamical impact.814

For finding the black hole solution, in addition to the condition of asymptotic flatness one re-815

quires the scalar field to be regular at the horizon. This leads to conditions relating the amount816

of scalar field at the horizon to the coupling constant, black hole radius and scalar field mass.817

We discussed these conditions in the massless, linearized, and exact cases and interpreted818

them for the maximum amount of scalar hair possible at the horizon for each choice of param-819

eters. Inverting this argument led to an upper bound on the coupling or lower bound on the820

mass of the black hole. We found that introducing the scalar field mass leads to the existence821

of black hole solutions for larger couplings or conversely, for a fixed coupling, the domain of822

black holes extends to lower masses, see also [71]. By comparing these near-horizon condi-823

tions for the scalar field to the parameters corresponding to the finite radius singularity being824
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located at the black hole horizon, we found that both lead to bounds on the maximum scalar825

field at the horizon. The latter condition provides a more stringent constraint on the maximal826

possible ϕh when the Compton wavelength is comparable to the radius of the black hole. For827

the maximum allowed value of the coupling constant, the near horizon condition and the sin-828

gularity bound agree well. Comparing these theoretical bounds on the coupling with the first829

observational constraint on massive sGB [78] we concluded that for stellar mass black holes,830

for masses m̂ > 10−1 our theoretical results provide the most stringent bounds to date. Addi-831

tionally, in the case of the scalar Compton wavelength being larger than the black hole radius,832

the numerical matching between the near horizon and asymptotic limits shows that the actual833

values lie well below these bounds. On the other hand, for Compton wavelengths smaller than834

the black hole radius, the amount of scalar hair at the horizon in the exact calculations turns835

out to be identical to the maximum value determined by the regularity constraint.836

Using the results for the amount of scalar hair near the horizon we could make a rough esti-837

mation of the scalar field mass range that could be promising in the light of observation. We838

found that this mass range includes the current scalar particle models. Lastly we analysed839

how the ISCO radius, light ring radius, ADM mass and scalar monopole charge depend on the840

scalar field mass and coupling constant.841

For future work, the study of black holes in sGB could be extended to include next to the scalar842

field mass, also the self interaction term in the scalar potential or one could add different843

interactions e.g. study the optical channel, including the interaction with light. Considering844

massive scalar fields in other promising modified gravity contexts would be interesting as well.845

Furthermore, obtaining rotating black hole solutions would be a next exploration. This would846

lead to the opportunity to study the possibility of superradiance instability in the context where847

the massive scalar field is also coupled to the spacetime curvature. Our work contributed to848

the first exploratory studies of sGB black holes with massive scalar fields. The full and pertur-849

bative numerical solutions can be used in further studies of black holes in massive sGB and in850

modelling compact binary systems in these theories, extending the work of [79–81] to include851

massive scalar fields. Furthermore our analysis and numerical method related to the massive852

scalar cloud configuration can be applied to massive scalar fields in a broader context and853

our results on the ADM mass and scalar monopole charge can be useful in the effective field854

theory description of compact binaries. In direct continuation of this work the analysis of the855

gravitational radiation from compact objects in massive sGB can be explored, contributing to856

the efforts of probing the strong field environments of black holes in the search for beyond GR857

signatures.858
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A Explicit expressions for equations864

In this appendix we show the explicit equations that were not given in the main text for the865

sake of readability.866

A.0.1 Field equations867

The explicit components of the modified Einstein equations (8) with (9) in terms of the met-868

ric (11) are given by869

G t
t =−

1

r2
+

e−B(r )

r2
−

e−B(r )B′(r )
r

,

Gr
r =−

1

r2
+

e−B(r )

r2
+

e−B(r )B′(r )
r

,

Gθ
θ
=Gϕϕ =

e−B(r )
�

r A′(r )2 − 2B′(r ) + A′(r )(2− r B′(r ) + 2r A′′(r ))
�

4r
,

T t
t =−

e−2B(r )

r2

�

ϕ′2
�

r2eB(r ) + 4α f ′′(ϕ)
�

eB(r ) − 1
��

− 2α f ′(ϕ)
�

B′(r )ϕ′(r )
�

eB(r ) − 3
�

−2ϕ′′(r )
�

eB(r ) − 1
��

+
�

eB(r )mrϕ(r )
�2�

,

T r
r =

e−B(r )ϕ′(r )
�

ϕ′(r )−
2e−B(r )

�

eB(r )− 3
�

α f ′(ϕ)A′(r )

r2

�

− (mϕ(r ))2 ,

Tθ
θ
=Tϕϕ = −

e−2B(r )

r2

�

ϕ′2(r )
�

reB(r ) − 2α f ′′(ϕ)A′(r )
�

− 4α f ′(ϕ)
�

A′2(r )ϕ′(r )

+2ϕ′(r )A′′(r ) + A′(r )
�

2ϕ′′(r )− 3B(r )′ϕ′(r )
��

+ e2B(r )m2r2ϕ(r )2
�

.
(47)

The scalar field equation (10) becomes870

2rϕ′′(r ) +
�

4+ r A′(r )− r B′(r )
�

ϕ′(r ) +
α f ′(ϕ)e−B(r )

r

��

eB(r ) − 3
�

A′(r )B′(r )

−
�

eB(r ) − 1
� �

2A′′(r ) + A′2(r )
��

− 2eB(r )m2rϕ(r ) = 0.
(48)

A.0.2 Master equations in A and ϕ871

In Sec. 4, we rewrote the modified Einstein equations as a system of second order differential872

equations (36), where the right hand sides are given by the functions873
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f (r,ϕ(r ),ϕ′(r ), A′(r )) =
�

4e4B(r )m4ϕ(r )3
�

eB(r )r − 4α f ′(ϕ)ϕ′(r )
�

r4 − 8e4B(r ) �−1+ eB(r )�m4αϕ(r )4 f ′(ϕ)r3

− e2B(r )m2ϕ(r )
�

eB(r )r − 4α f ′(ϕ)ϕ′(r )
� �

4eB(r ) �r2ϕ′(r )2 + eB(r ) − 1
�

− 3A′(r )
�

eB(r )r + 2
�

−3+ eB(r )�α f ′(ϕ)ϕ′(r )
��

r2 + 8e2B(r )ϕ′(r )
�

eB(r )r +
�

−5+ eB(r )�α f ′(ϕ)ϕ′(r )
�

�

r2ϕ′(r )2 + eB(r ) − 1
�

r + 2e2B(r )m2ϕ(r )2
�

−e2B(r ) �r A′(r ) + 4
�

ϕ′(r )r3 − 6
�

3− 4eB(r ) + e2B(r )�α2A′(r ) f ′(ϕ)2ϕ′(r ) +α f ′(ϕ)
�

4eB(r )
�
�

−1+ eB(r )�2 + 4r2ϕ′(r )2
�

+r A′(r )
�

4ϕ′(r )2
�

eB(r )r2 + 2
�

−1+ eB(r )�α f ′′(ϕ)
�

− 5eB(r ) �−1+ eB(r )���� r

+ eB(r )αA′(r )3 f ′(ϕ)
�

r − 4α f ′(ϕ)ϕ′(r )
� �

eB(r )r + 2
�

−3+ eB(r )�α f ′(ϕ)ϕ′(r )
�

+ eB(r )A′(r )
�

eB(r )ϕ′(r )
��

eB(r )r2 − 4α f ′′(ϕ)
�

ϕ′(r )2 + 2eB(r ) �−4+ eB(r )�� r3

−12
�

15− 8eB(r ) + e2B(r )�α2 f ′(ϕ)2ϕ′(r )3r + 4α f ′(ϕ)
�

−r2 �eB(r )r2 + 4
�

−2+ eB(r )�α f ′′(ϕ)
�

ϕ′(r )4

−2
�

3eB(r ) �−3+ eB(r )� r2 +
�

1− 3eB(r ) + 2e2B(r )�α f ′′(ϕ)
�

ϕ′(r )2 + eB(r ) �−1+ eB(r )�2
��

− A′(r )2
�

e3B(r )ϕ′(r )r4 + 2eB(r )α f ′(ϕ)
��

eB(r ) �−4+ eB(r )� r2 − 2
�

−5+ 3eB(r )�α f ′′(ϕ)
�

ϕ′(r )2

+eB(r ) �−1+ eB(r )�� r + 4α2 f ′(ϕ)2ϕ′(r )
�

eB(r ) �3− 4eB(r ) + e2B(r )�− 2ϕ′(r )2

�

eB(r ) �−3+ 2eB(r )� r2 +
�

9− 8eB(r ) + 3e2B(r )�α f ′′(ϕ)
���

�

Á

�

− 4e2B(r )

�

eB(r )r − 4α f ′(ϕ)ϕ′(r )
� �

r2ϕ′(r )2 + eB(r ) − 1
�

r2 + 4e2B(r )m2ϕ(r )2
�

eB(r )r2

�

eB(r )r − 4α f ′(ϕ)ϕ′(r )
�

− 4
�

−1+ eB(r )�α2A′(r ) f ′(ϕ)2
�

r2 − 8
�

−1+ eB(r )�

α2A′(r )2 f ′(ϕ)2
�

eB(r )r +
�

−9+ 5eB(r )�α f ′(ϕ)ϕ′(r )
�

+ eB(r )A′(r )
�

3e2B(r )r4 + 8eB(r )

�

−4+ eB(r )�α f ′(ϕ)ϕ′(r )r3 + 4α2 f ′(ϕ)2
�

5
�

−1+ eB(r )�2 − 4
�

−4+ eB(r )� r2ϕ′(r )2
��

�

(49)
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and874

h(r,ϕ(r ),ϕ′(r ), A′(r )) =
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4e4B(r )m4ϕ(r )3
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eB(r )r − 4α f ′(ϕ)ϕ′(r )
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αA′(r )3 f ′(ϕ)
�

r − 4α f ′(ϕ)ϕ′(r )
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�
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�
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�
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−4
�

−4+ eB(r )� r2ϕ′(r )2
��

�

(50)
with eB(r ) given by (35).875

A.0.3 Near-horizon expansion in 1/A′876

In the near horizon limit, the expansion of the second order differential equations (36) in877

terms of 1/A′(r ) resulted in (39) with the coefficients given by878

a =− 6α2m4r4ϕ(r )4 f ′(ϕ)2 − 2αm2r2ϕ(r ) f ′(ϕ)
�

2α f ′(ϕ)ϕ′(r ) + r
�2 −m2ϕ(r )2

�

4αr5 f ′(ϕ)ϕ′(r ) + 4α2r2 f ′(ϕ)2
�

r2ϕ′(r )2 − 4
�

− 16α4 f ′(ϕ)4ϕ′(r )2

−16α3r f ′(ϕ)3ϕ′(r ) + r6�+ 4αr3 f ′(ϕ)ϕ′(r ) + 2α2 f ′(ϕ)2
�

2r2ϕ′(r )2 − 3
�

+ r4,

b =
�

m2r2ϕ(r )2 − 1
� �

4α2 f ′(ϕ)2
�

2m2r2ϕ(r )2 − 3
�

− 8α3m2rϕ(r )2 f ′(ϕ)3ϕ′(r )

+2αr3 f ′(ϕ)ϕ′(r ) + r4� ,

c =αm4r3ϕ(r )4 f ′(ϕ)
�

r − 4α f ′(ϕ)ϕ′(r )
�

−m2r2ϕ(r )
�

2α f ′(ϕ)ϕ′(r ) + r
�2

−m2ϕ(r )2
�

2αr2 f ′(ϕ)
�

r2ϕ′(r )2 + 1
�

− 8α3 f ′(ϕ)3ϕ′(r )2 − 12α2r f ′(ϕ)2ϕ′(r )

+r5ϕ′(r )
�

+α f ′(ϕ)
�

2r2ϕ′(r )2 + 3
�

+ r3ϕ′(r ).
(51)
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A.0.4 Regularity condition879

Requiring regularity of the scalar field at the horizon lead to (40) for the derivative of the880

scalar field at the horizon with coefficients881

A = −4α2m4r3
hϕ

4
h

f ′(ϕh)
2 −m2rhϕ

2
h

�

r4
h
− 12α2 f ′(ϕh)

2�− 4αm2r3
hϕh f ′(ϕh) + r3

h

B = 4α f ′(ϕh)
�

−m2ϕ2
h

�

r4
h
− 4α2 f ′(ϕh)

2�− 2αm2r2
hϕh f ′(ϕh) + r2

h

�

,
(52)

882

C =16α4m2ϕ2
h f ′(ϕh)

4 �m2r2
hϕ

2
h − 6

�

+ 48α3m2r2
hϕh f ′(ϕh)

3

+ 8α2r2
h f ′(ϕh)

2 �2m2r2
hϕ

2
h − 3

�

+ r6
h .

(53)

B Theoretical arguments for a monotonically decreasing linearized883

scalar profile884

With similar arguments as in the discussion in [64], one can deduce that the solution to (21)885

has to be a monotonically increasing function in terms of u or decreasing in terms of r . We886

start from the linear-in-coupling equation of motion (21) hence work in the dimensionless pa-887

rameter u defined in (16). We are searching for solutions with a finite behavior at the horizon888

u = 1 and an asymptotically flat solution at infinity u = 0 as found in (28). This involves the889

following considerations:890

891

1) Once the solution becomes negative it can only become more negative, and cannot increase to892

zero again893

Suppose that the solution for the scalar profile becomes negative. To change sign again to894

positive values requires the existence of a minimum at negative field values. Multiplying (21)895

by (−1) leads to896

(1− u)ϕ1′′ −ϕ1′ =
m̂2ϕ1

u4
− 3 f ′(ϕ0)u2 . (54)

If there is an extremum for negative ϕ1, we have ϕ1 < 0 and ϕ1′ = 0 there. Hence at this897

location in between the boundaries898

(1− u)ϕ1′′ =
m̂2ϕ1

u4
− 3 f ′(ϕ0)u2 , (55)

Now the right hand side is < 0 and thus ϕ1′′ < 0, since (1− u) ≥ 0. Therefore, if there is899

an extremum for negative ϕ1 it has to be a (local) maximum. This implies that field can only900

become more negative, which is incompatible with the required asymptotic behavior. Thus, for901

a positive coupling to have a solution that falls off to zero, the scalar field has to stay positive.902

903

2) The positive scalar field cannot have an extremum904

Next, we consider the case where the scalar field starts out positive. At a local maximum905

for a positive scalar field we have ϕ1 > 0 and ϕ1′ = 0. Evaluating (21) at this location results906

again in (55). For a local maximum the second derivative should be negative, hence the right907

hand side should be negative as well. This implies the following inequality at the maximum908

m̂2ϕ1

u4
< 3 f ′(ϕ0)u2 . (56)

Moving towards the horizon at u = 1 after a local maximum means ϕ1 decreases and u909

increases. Therefore the left hand side of the inequality (56) decreases and the right hand910
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side increases so the inequality holds. There cannot be an minimum because in that case (56)911

would need to flip. Thus, the inequality holds up to the horizon. This further implies that the912

slope of the profile at the horizon is negative or zero. However the differential equation at the913

horizon is914

−ϕ1′ = m̂2ϕ1 − 3 f ′(ϕ0) . (57)

Because the inequality (56) still holds at the horizon, the right hand side of (57) is negative.915

This implies from (57) a nonzero positive derivative at the horizon, which is in contradiction916

with the consequences of the inequality discussed above. Therefore, there cannot be a local917

maximum for positive field values.918

If the solution had a local minimum for the positive scalar field, it would require a local maxi-919

mum as well to have an asymptotic fall off to 0, which we just argued cannot be the case. This920

means that having a local minimum would lead to a diverging solution at infinity.921

922

3) The derivative of the scalar field at the horizon needs to be positive (or negative when working923

in r )924

From the arguments above, the scalar field at linear order in the coupling needs to be925

positive and cannot have local maxima or minima. Therefore the derivative of the scalar field926

at the horizon at u = 1 needs to be positive to be able to connect to zero at infinity, because927

a negative derivative at u = 1 leads to a ever increasing (or partly constant) function going928

inwards to infinity, never reaching zero.929

C Numerical methods930

In this appendix we describe in detail the two numerical methods used to obtain the pertur-931

bative and full solutions discussed in Sec. 3 and 4. Additionally a discussion on numerical932

precision tests is given.933

C.1 Bisection method934

Firstly in section 3.1.2 we describe solving the scalar field equation at linear order in the cou-935

pling. As described in this section the asymptotic limit of the solution for the linearized scalar936

field has an exponentially growing and decreasing mode (28). If not obtaining the initial con-937

dition for which this growing mode is exactly zero, there will always be a large radial distance938

at which the growing mode takes over and the solution diverges. Therefore a slight numerical939

inaccuracy already leads to a divergence. Obtaining the exact solution is hard, however ap-940

proaching the right initial condition is relatively easy. In this section we describe how one can941

approach the right initial condition which corresponds to the exponentially decaying solution.942

The differential equation (21) is approached as an initial value problem, starting the inte-943

gration at an infinitesimal distance from the horizon u = 1− 10−5. The initial conditions are944

given by (24). For a fixed mass and coupling, we vary the constant ϕ1
h

to find the solution that945

has an asymptotically flat limit. We obtain this by first determining an interval of ϕ1
h

for which946

the asymptotic behavior switches from positive infinity to negative infinity. By decreasing this947

interval, the estimate of ϕ1
h

corresponding to an asymptotically flat solution improves. We948

implement this through the following algorithm, for each choice of m̂:949

• Make an initial guess ϕ1
h

obtained by extrapolating (28) with ϕ̄1
∞ = 0 and computing950

its value at the horizon.951

• Check if the solution corresponding to this guess diverges to positive or negative infinity.952
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• Incrementally increase (decrease) ϕ1
h

if the solution with the initial guess diverges neg-953

atively (positively) and check the divergence behavior at each step.954

• When reaching a step for which the divergence flips sign, defining this value as ϕ1
h, f l ip

,955

calculate ϕ1
h,new

= (ϕ1
h,ini t ial

+ϕ1
h, f l ip

)/2.956

• Use this mean valueϕ1
h,new

as the new initial guess, decrease the step size every iteration957

by one order of magnitude.958

• Continue these iterations until the guess saturates, where more iterations result in more959

accurate solutions.960

In Fig. 2 we show the solution of (21) running the bisection method described above dif-961

ferent number of times. One can see that for more cycles, the diverging behavior happens962

for smaller u/larger r . In principle, extending to infinite cycles, one would obtain the actual963

decaying solution. However the estimation for ϕ1
h

would only differ infinitesimally, hence it964

is accurate enough to cut of the number of cycles at a finite value. In our analysis in section965

3.1.2 and 4 we execute 15 cycles. This means that the estimation for ϕ1
h

differs with an order966

of magnitude of 10−14 from the estimate at 14 cycles. This estimate therefore has very high967

accuracy, however the main reason applying this many cycles is to push the diverging behav-968

ior relatively close to u = 0 without making the computational time too long. The linearized969

scalar field solution is substituted in the higher order field equations and therefore the diverg-970

ing behavior works through in the solutions for the metric functions and higher order scalar971

field as well. Therefore to get an accurate perturbative solution for as largest range of u as972

possible, around 15 cycles or more is advised.973

C.2 Shooting method974

For numerically calculating the perturbative solution to the metric functions in section 3.2 and975

the full solution in section 4, we use the so called shooting method. In this section we describe976

in more detail what this method entails.977

The shooting method can be used as a numerical method to solve differential equations978

with a boundary value problem. This is the case for the modified Einstein equations for which979

we constructed the behavior of the metric functions at the boundaries; the near horizon and980

asymptotic limits. An additional requirement is that the solution does not have the instable be-981

havior with respect to the initial conditions as is the case for the scalar field equation described982

in the previous section.983

The shooting method is based on reframing the problem as an initial value problem with984

variable initial conditions. One integrates outwards to obtain the solution of this initial value985

problem for different guesses of the initial condition and evaluates the solution at infinity until986

these values at infinity agree with the boundary condition in the asymptotic limit. To describe987

this in more detail let us describe this for the specific case of solving the t t component at988

second order in the coupling for the metric function B̄2 as is done in section 3.2. The boundary989

conditions are given by (31) and (32), where we can vary the near horizon constant Ā2
h
.990

• Construct a function f [Ā2
h
, u] of the differential equation solver from the black hole hori-991

zon outwards to infinity, in this case for the t t component of (47) with initial conditions992

at the horizon following (31) with Ā2
h

as variable.993

• Define the function of the asymptotic limit g [u] as in (32) .994

• Then define h[Ā2
h
] = f [Ā2

h
, 0]− g [0] the difference between the solution to the initial995

value problem and the asymptotic limit evaluated at infinity u = 0.996
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• Find the root(s) of h, the value of Ā2
h

corresponding to the root is the correct initial997

condition to the boundary value problem and substituting this value for Ā2
h

in f gives998

you the correct solution for B̄2(u).999

In our case the outer boundary lies in the asymptotic limit, however as one substitutes the1000

linearized scalar field solution in the differential equations at higher orders in the coupling,1001

the divergence behavior at finite u of this scalar field also works through in the higher order1002

equations. Therefore in practice instead of evaluating function h at infinity, evaluate the func-1003

tions at smallest possible u before the divergence in ϕ1 starts. This does slightly deteriorate1004

the accuracy of the perturbative solution.1005

Following this calculation results in the following solution for B̄2 for a mass of m̂ = 1.

0.2 0.4 0.6 0.8 1.0
u

0.00

0.05

0.10

0.15

0.20

0.25

0.30

B2 (
u)

m = 1

Figure 10: Solution for B̄2 with m̂ = 1. The shooting method resulted in Ā2
h
= 0.295

as initial condition in (31).

1006

C.3 Numerical precision tests1007

In this section we describe in more detail the used numerical method for the numerical inte-1008

grator mentioned in Sec. 3, 4. We used the MATHEMATICA numerical integrator NDSolve for1009

solving the boundary value problems in the perturbative and exact contexts. To obtain the1010

numerical solutions for the metric functions and scalar field on itself the standard machine1011

precision and "StiffnessSwitching" method in the NDSolve environment are sufficient, and no1012

problems arise for the solutions and its derivatives. However, we encountered problems with1013

numerical stability of the solutions in follow up calculations, more specifically when com-1014

puting the percent difference of the Kretschmann scalar in Fig. 5. This arose as oscillatory1015

behaviour of the final numerical function describing this percent difference. We therefore set1016

up a (non-exhaustive) sweep over the different methods and working precision for the ND-1017

Solve environment to conclude which setting could mitigate this effect. Working from left to1018

right we checked the following configurations, shown in Table 2.1019

We executed the tests in the following manner. We set up a module function with the1020

boundary value problem for the exact field equations as described in Sec. 4 that computes the1021

solution for the metric function A(r ) and ϕ(r ), with the method, WorkingPrecision, Accuracy-1022

Goal and PrecisionGoal as variables. In the same module we compute the percentual difference1023

of the Kretschmann scalar in massive sGB substituting the solutions, with the Schwarzschild1024

curvature invariant. From random test we had already found the oscillations due to limited1025

numerical precision to worsen for smaller choices of the coupling constant, hence we chose1026

to do the tests for α̂ = 0.01, and to keep the running time manageable, we choose a small1027
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Methods WorkingPrecision AccuracyGoal PrecisionGoal
"Adams" 5 20 20
"BDF" 15 25 25
"ExplicitRungeKutta" 25 30 30
"ImplicitRungeKutta" 30
"SymplecticPartitionedRungeKutta" 40
"MethodOfLines" 50
"Extrapolation"
"DoubleStep"
"LocallyExact"
"StiffnessSwitching"
"Projection"
"OrthogonalProjection"
"IDA"
"StiffnessSwitching", Method→
{"ExplicitRungeKutta", Automatic}
"TimeIntegration"→
{"ExplicitRungeKutta",
"DifferenceOrder"→ 8}
"TimeIntegration"→
"ExplicitEuler"
"PDEDiscretization"→
{"MethodOfLines", "SpatialDiscretization"
→{"TensorProductGrid",
"MinPoints"→ 1000}}
"PDEDiscretization"→
{"MethodOfLines", "SpatialDiscretization"
→ {"FiniteElement"}}}

Table 2: Working from left to right, the different settings for the Method, WorkingPre-
cision, AccuracyGoal and PrecisionGoal within the NDSolve function, for finding the
configuration mitigating the effect of numerical inaccuracy.
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scalar field mass m̂ = 0.01. Additionally from the sample tests we found that some of the1028

methods in Table 2 that did improve on the numerical inprecision issues, did not give output1029

for the default WorkingPrecision, therefore in general we set the WorkingPrecision and Ma-1030

chinePrecision to 30. First we computed the percent difference function up to r/rH = 10 for1031

the different methods in the first column of Table 2 with the AccuracyGoal and PrecisionGoal1032

on default. We selected the method for which the function did not diverge at the horizon1033

and which mitigated the oscillation the most, which resulted in "TimeIntegration"→ {"Explic-1034

itRungeKutta", "DifferenceOrder"→ 8}.1035

Then we repeated the calculation specifying to this method, now varying the WorkingPrecision1036

found in the second column of Table 2. For precision below WorkingPrecision = 25 in combi-1037

nation with above chosen method, the correct solution for the boundary value problem is not1038

found, minimal precision of WorkingPrecision = 25 is required. The oscillations got damped1039

for higher values of the precision as expected, from WorkingPrecision = 30 and onwards the1040

oscillations up to r/rH = 10 are smoothed out completely.1041

Lastly we repeated the computation for the above mentioned method and WorkingPrecision = 251042

for different values of the AccuracyGoald and PrecisionGoals given in the last two columns of1043

Table 2, choosing values comparable to the set WorkingPrecision. Both tested separate from1044

each other and in the different combinations, checking what configuration of these settings1045

mitigated the oscillatory behaviour that is still present at this WorkingPrecision. We found1046

no observable improvement on the oscillatory behavior from these two settings. Hence spec-1047

ifying WorkingPrecision = 30 on itself results in sufficient numerical precision. The default1048

setting for the AccuracyGoal and PrecisionGoal are both set as half the WorkingPrecision. For1049

larger distances than r/rH = 10 the precision still might be too limited but in principle one1050

could solve this issue by improving on the precision settings. Note we also did not explore ev-1051

ery permutation of settings, however for our purposes computing the solutions with method1052

"TimeIntegration" → {"ExplicitRungeKutta", "DifferenceOrder" → 8}, WorkingPrecision = 301053

and AccuracyGoal, PrecisionGoal on default, suffices.1054

D Additional analysis of perturbative solutions1055

In addition to the analysis in Sec. 5 we discuss in this appendix the perturbative solution1056

in more detail, comparing the solution up to different orders in the coupling with the exact1057

numerical case. The difference between the solutions is most noticeable in the near horizon1058

region, where the spacetime curvature, see Fig. 5, is strongest and the scalar field energy1059

density the highest, see Fig. 6.1060

Starting with the metric function Ā as defined in (18) with the perturbative solution rescaled1061

to variable r with the method described in Sec. 5. The top and bottom panel of Fig. 11 show1062

the metric function near the horizon for α̂ = 0.2 and m̂ = 0.01 and m̂ = 0.1 respectively. We1063

zoom in on the region near the horizon as there the differences between the curves is most1064

noticeable, for larger radial distances the curves coincide in all cases below as expected. In1065

both panels of Fig. 11 one can see that the perturbative curves lie below the exact solution1066

and above the Schwarzschild solution. Including corrections to higher order in the coupling1067

for the perturbative solution results in the curve lying slightly closer to the exact solution as1068

one would expect. The roots of the curves correspond to the respective horizon radii. Similar1069

as we showed in 3 the horizon radius for the exact solution is smaller than the perturbative1070

and Schwarzschild horizons. Furthermore from both panels of Fig. 11 we find the horizon1071

radius shifts towards the horizon of the exact curve for higher corrections to the perturbative1072

solution.1073

1074
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Figure 11: The solution of metric function Ā close to the horizon, comparing the exact,
perturbative solution up to α̂3, up to α̂2 and the Schwarzschild solution respectively.

In Fig. 12 we show the perturbative solution of the scalar field up to linear, quadratic and1075

cubic order in the coupling compared to the exact solution for α̂ = 0.2 and m̂ = 0.01 and1076

m̂ = 0.1 respectively. In both panels we find that the perturbative solution approaches the
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Figure 12: The solution of ϕ close to the horizon, comparing the exact, perturbative
solution up to α̂3, up to α̂2 and the linearized solution respectively.

1077

exact solution from below and again becomes more accurate with increasing orders in α̂, as1078

one would expect. Furthermore, comparing the top and bottom panel we find the an increased1079

accuracy of the perturbative solution for larger scalar field mass where the improvement is1080

more noticeable than for the metric function in Fig. 11. For the case of the scalar field we1081

do not find any particular change comparing the second order solution (green curves) to the1082

cubic order solution (pink curves). This is interesting as for the latter, the corrections to the1083

metric function first contribute to the scalar field solution, see Table 1.1084

From the analysis in this appendix together with Sec. 5 we can conclude that the pertur-1085

bative solution becomes more accurate for small values of the coupling, large values of the1086

scalar field mass and/or large distances from the horizon. The comparison does not show any1087

qualitatively new non-perturbative behaviour that would not be captured by the perturbative1088

solution when adding higher order corrections to increase accuracy.1089

E Calculation of the ISCO and light ring radii1090

In this appendix we show how one can determine the ISCO radius and light ring radius in1091

Schwarzschild coordinates and the corresponding orbital frequencies. This is used in Sec. 6.3.1.1092

The ISCO radius can be determined from the effective potential. Starting from a static spheri-1093
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cally symmetric metric (11), one can write down the normalization of the four velocity gµν ẋµ ẋν = −1.1094

Before writing this down explicitly we can use the symmetries of the spacetime, e.g. as the1095

metric components are independent of φ and t there are two constants of motion E = −eA(r ) ṫ1096

and L = r2φ̇, the energy and angular momentum per unit mass. As the conservation of (the1097

direction of) angular momentum requires the motion of a particle to be planar, together with1098

rotational symmetry, one can fix the motion to be equatorial with θ =
π

2 . Substituting these1099

quantities in the normalization condition we obtain1100

eB(r ) ṙ2 = −1+ e−A(r )E2 −
L2

r2
,

ṙ2 = Ve f f (r ) ,
(58)

with1101

Ve f f (r ) = e−B(r )(−1+ e−A(r )E2 −
L2

r2
) , (59)

the effective potential as (58) now describes the equation for a classical particle moving in1102

potential Ve f f (r )5. Additionally to the effective potential we can write down the radial com-1103

ponent of the geodesic equation1104

ṙ2 +
eA(r )′

2eB(r )
ṫ 2 −

r2′

2eB(r )
φ̇2 = 0 . (60)

For finding the innermost stable circular orbit we are interested in circular orbits and therefore1105

ṙ = r̈ = 0. Substituting these conditions in (60) and using this equation to construct the1106

angular frequency ω =
φ̇

ṫ
results in1107

ω2 =
eA(r )′

r2′
. (61)

Then combining (58), the condition for circular orbits, the definitions of the constants of1108

motion and (61) we find for the energy and angular momentum per unit mass for circular1109

orbits1110

E = −
−eA(r )

p

eA(r ) − r2ω2
,

L =
r2ω

p

eA(r ) − r2ω2
.

(62)

Now Ve f f (r ) has two extrema, the inner extremum is a maximum corresponding to an unsta-1111

ble circular orbit and the outer with a minimum an thus a stable circular orbit. The minimum1112

radius for this stable circular orbits happens when these two extrema coincide, this is when the1113

second order derivative of Ve f f (r ) has a root. Therefore taking the second order derivative to1114

r of (59) treating E and L as constants of motion, followed by substituting (62) and finding1115

the radius that corresponds to the root results in rISCO . Substituting this radial coordinate1116

in (61), one obtains the orbital frequency at the ISCO radius, which is in contrary to the radius1117

a coordinate independent quantity.1118

1119

5In the literature there are slightly different interpretations of Ve f f e.g. sometimes the E2 term is treated
separately or the sign might be opposite. The definition of (59) intuitively makes sense as for large L there are
two extrema which correspond to circular orbits. The extremum closest to the horizon correspond to a maximum
and hence the unstable orbit and the outer extremum to a minimum, the stable orbit. The innermost stable orbit is
found at the point where the two extrema coincide, hence for this purpose the different interpretations generally
do not matter. However the interpretation of the extrema in this way of defining the effective potential makes
most sense.
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Finding the light ring is a bit more straight forward. Photons travel along null paths ds = 0,1120

additionally we are interested in circular orbits dr = 0 and for similar arguments as before1121

we can set θ = π/2 hence dθ = 0. This simplifies the equation for null paths to1122

φ̇2 =
eA(r )

r2
. (63)

Additionally from the radial component of the geodesic equation in circular orbits we obtained1123

(61), substituting this in (63) gives1124

eA(r )′

r2′
=

eA(r )

r2
, (64)

solving for r results in rLR. Substituting this radial coordinate in (61), one obtains the orbital1125

frequency at the light ring radius.1126

1127
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