
SciPost Physics Submission

On perturbation around closed exclusion processes

Masataka Watanabe

Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan

max.washton@gmail.com

Abstract

We derive the formula for the stationary states of particle-number conserving exclusion
processes infinitesimally perturbed by inhomogeneous adsorption and desorption. The
formula not only proves but also generalises the conjecture proposed in [Phys. Rev. E 97,
032135] to account for inhomogeneous adsorption and desorption. As an application of
the formula, we draw part of the phase diagrams of the open asymmetric simple exclu-
sion process with and without Langmuir kinetics, correctly reproducing known results.
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1 Introduction15

Among the famous solvable models of driven diffusive systems is the asymmetric simple ex-16

clusion process (ASEP). Aside from being solvable deep in the non-equilibrium regime, the17

model is interesting for its connections to various ideas in statistical physics such as boundary-18

induced phase transitions [1], the KPZ universality class [2], and random matrix theory [3]. It19
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has also attracted attention for its wide applicability to various phenomena in physics, biology20

or society [4–6].21

ASEP describes particles on a one-dimensional lattice that hop asymmetrically (e.g., more22

frequently to the right than left). It is a continuous-time Markov process and as such it is in-23

teresting to study where the probability distribution settles after a long time, i.e., its stationary24

distribution (state). This is equivalent to studying the eigenvector(s) of the Markov matrix25

with zero eigenvalue, which is possible for ASEP because of its Uq(s l(2)) symmetry [7–9].26

However, remained elusive is the stationary distribution (as well as other properties) for ex-27

clusion processes without integrability, even though their practical usefulness and applicability28

are not impaired by the lack thereof.29

One example of exclusion processes without integrability is the ASEP combined with Lang-30

muir kinetics (ASEP-LK), where, in addition to asymmetric hopping, a particle can attach to31

or detach from the lattice at homogeneous rates. Even though the system has the Uq(s l(2))32

symmetry on a periodic chain, it is indeed broken on a finite-length chain with boundary con-33

ditions. The model is proposed to describe unidirectional motion of motor proteins [10], so it34

is a good example of non-integrable exclusion processes with interesting applications.35

One possible way to analytically study the properties of non-integrable exclusion processes36

is to take the thermodynamic limit. One can for example determine the phase diagram of the37

system by solving the fluid equations obtained by taking the coarse-grained, continuum limit.38

However, the strategy usually involves using the mean-field approximation, which may or39

may not be justified from first principles. It would be desirable if we have another theoretical40

method with a clear regime of validity to compare with experiments or computer simulations.41

This could theoretically justify the mean-field approximations as well.42

There is one such method which seemingly has been mostly overlooked – the perturbation43

theory. The ASEP-LK is a prime example: The stationary states of the periodic/closed/open44

ASEP have been obtained exactly, and so one can in principle obtain those of the ASEP-LK per-45

turbatively when the ad/desorption rates are small. For example, [11] conjectured a formula46

for the stationary states of the closed ASEP with infinitesimally small Langmuir kinetics. This47

formula is yet to be proven despite having a simple and inviting form, however.48

The goal of this paper is to set up such perturbation in generic situations. We consider49

perturbing a particle-number conserving hopping process with inhomogeneous ad/desorption50

and derive a formula for the stationary state at leading order. (The leading order result is51

meaningful because this is a degenerate perturbation theory.) Our formula potentially has52

various interesting applications. For one thing, the above-mentioned conjecture is its imme-53

diate consequence since closed ASEP is clearly a particle-number conserving process. We can54

also apply the formula to draw perturbative part of the phase diagrams of the open ASEP55

with/without Langmuir kinetics. We do so by interpreting the open boundary condition as a56

special case of the inhomogeneous ad/desorption acting only on boundary sites. The results,57

as we will see later, reproduce the results obtained in [12] but without relying on the mean-58

field approximation or any other unjustified approximations at all. Therefore we are going to59

have a clear regime of validity for our theoretical formula, even though the price we pay is the60

restriction to the perturbative regime.61

The rest of the paper is organised as follows. We first briefly review Markov processes, in62

particular closed ASEP with/without infinitesimal Langmuir kinetics in Section 2. We then go63

on to construct the stationary states of generic particle-number conserving Markov processes64

infinitesimally perturbed by inhomogeneous ad/desorption in Section 3. This will, as a special65

case, prove the conjecture given in [11]. We will provide other applications of the formula by66

deriving the phase diagram of the open ASEP with and without Langmuir kinetics in Section67

4. We conclude in Section 5 with discussions and future directions.68
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2 Driven diffusive systems with ad/desorption69

2.1 Continuous-time Markov process70

Let us consider a continuous-time Markov process describing particles hopping on L lattice71

sites (of arbitrary shapes and dimensions). We are interested in the time evolution of the72

probability associated with a given configuration. This is given by a collection of differential73

equations, conveniently written in matrix form using the Markov matrix M ,74

d

dt
|P〉 = M |P〉 , (2.1)

where |P〉 is a vector collecting probabilities of realising given configurations. In other words,75

by writing the configuration of particles as (τ1, . . . ,τL) where τi = 1 (τi = 0) means that a76

particle is (not) present at site i, and its realisation probability as p(τ1, . . . ,τL), we package77

the distribution into a state78

|P〉 =
∑

τ1,...,τL

p(τ1, . . . ,τL) |τ1, . . . ,τL〉 , (2.2)

and this vector evolves according to the differential equation above.79

For later convenience we denote the total Hilbert space as V , which is a tensor product of80

the Hilbert space Vi on site i from i = 1 to L,81

V =
L
⊗

i=1

Vi . (2.3)

It can also be decomposed into a direct sum of fixed particle number subspaces WN (where N82

indicates the number of particles in the system), so that83

V =
L
⊕

N=0

WN . (2.4)

Given such an evolution equation, one interest lies in finding where the probability distri-84

bution settles after a long time. This is given by the eigenvector of M with eigenvalue zero.85

The number of such eigenvectors are expected to match that of the superselection sectors of86

M .87

2.2 Closed exclusion process with ad/desorption88

Our interest in this paper lies in the system M such that M = M0 + εH where ε ≪ 1 is89

the perturbation parameter1. We require that M0 conserves the particle number (i.e., U(1)90

symmetric) while εH breaks it via ad/desorption. Concretely, we have91

M ≡ M0 + εH , M0

�

�

WN
: WN → WN

H =
L
∑

i=1

hi , hi ≡
�

−αi βi
αi −βi

�

Vi

.
(2.5)

where hi only acts on i-sites, with εαi and εβi representing adsorption and desorption rates92

at site i, respectively.93

Note that, before perturbation, the state space breaks up into L+ 1 superselection sectors94

WN , and we have a stationary state for each of them. We denote the N-particle stationary state95

1We will hereafter identify the Markov matrix as the corresponding system itself.
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as |SN〉 hereafter. In addition, since the perturbation breaks the particle-number symmetry,96

there are no more superselection sectors for M . It therefore has only one stationary state,97

which we denote as |S̃〉.98

The goal of this paper is to construct |S̃〉 in terms of |SN〉 at leading order in ε. It is by now99

clear that this is the zeroth order degenerate perturbation theory. We need to find the right100

basis on which the higher-order perturbation theory is run. We will study this in Section 3.101

Example: ASEP with Langmuir kinetics Before moving on, we present an example of such102

systems, known as the closed ASEP perturbed by Langmuir kinetics (ASEP-LK). The Markov103

matrix of closed ASEP-LK is given by the following,104

M = M0 + εH

M0 =
L−1
∑

i=1

Mi,i+1, Mi,i+1 =







0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0







Vi⊗Vi+1

H =
L
∑

i=1

hi , hi ≡
�

−α 1
α −1

�

Vi

.

(2.6)

where M0 describes the closed ASEP and εH the Langmuir kinetics. Mi,i+1 acts as an identity105

outside Vi ⊗ Vi+1 and the bases of Mi,i+1 inside Vi ⊗ Vi+1 are given by, from top to bottom106

columns or left to right rows, |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. The perturbation εH describes107

a particle homogeneously detaching from the lattice at rate ωd ≡ ε while attaching at rate108

ωa ≡ εα.109

The closed ASEP, M0, trivially conserves the particle number and so has superselection110

sectors labelled by it. There are therefore L+1 stationary states in M0, which can be computed111

by using the Bethe ansatz as [13]112

|SN〉 =
�

L

N

�−1

q

∑

(n)N

q
∑N

j=1(L− j+1−n j ) |(n)N〉 , (2.7)

where |SN〉 denotes the N-particle stationary state. Here
� L

N

�

q is the q -binomial, defined by113

�

L

N

�

q
≡

(q; q)L
(q; q)N(q; q)L−N

, (a; q)n ≡
n
∏

i=1

(1− aq i−1), (2.8)

and (n)N is an ordered collection of N sites on which the particles are present. We also used114

a shorthand notation |(n)N〉 to refer to the basis corresponding to such a configuration. The115

overall normalisation is because the sum of probabilities must be one.116

Once we perturb the system by εH , the particle-number conservation is lost and there117

is only one stationary state, |S̃〉. Because the integrability is (mostly likely) lost due to the118

perturbation, it is considered difficult to derive the stationary state for this model. It was119

however conjectured in [11] that in the ε ≡ωd → 0 limit (while fixing α) |S̃〉 is given by120

|S̃〉 =
1

(1+α)L

L
∑

N=0

�

L

N

�

αN |SN〉+ O(ε) (2.9)

We will prove this conjecture in the next section as a corollary to the main result.121
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3 Construction of the stationary state122

We are going to prove the following theorem.123

Theorem 1. For a class of continuous-time Markov processes M = M0+εH defined in (2.5), the124

stationary state of M can be written in terms of the N-particle stationary states of M0, |SN〉, as125

|S̃〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉+ O(ε), pN =
N
∏

i=1

�

AL − Ai−1

Bi

�

. (3.1)

where AN and BN are given by126

AN ≡
∑

(n)N

q[(n)N]
∑

n∈(n)N

αn, (3.2)

BN ≡
∑

(n)N

q[(n)N]
∑

n∈(n)N

βn, (3.3)

using127

|SN〉 ≡
∑

(n)N

q[(n)N] |(n)N〉 ,
∑

(n)N

q[(n)N] = 1 (3.4)

128

Incidentally, we have129

A0 = 0, AL =
L
∑

i=1

αi , B0 = 0, BL =
L
∑

i=1

βi (3.5)

Before attempting to prove this theorem, we have one remark.130

Corollary 1. This, as a corollary, immediately proves the conjecture (2.9) given in [11].131

Proof of Corollary 1. Because AN = Nα and BN = N in the current case, we immediately132

have pN =
� L

N

�

αN . We therefore have
∑L

N=0 pN = (1+ α)L. This concludes the proof of the133

conjecture (2.9).134

Now we move on to proving Theorem 1, but prior to this let us set up some notations which135

will be useful later. We denote K0 as the subspace spanned by all the stationary states of M0,136

while K1 as the subspace spanned by all other eigenvectors. Because M0 is non-normal, K0137

and K1 are not orthogonal to each other.138

Let us also present a general argument to understand the strategy of the proof. Notice that139

we are trying to find the eigenvector of a matrix in perturbation theory, starting from degen-140

erate vacua. In order to do this, we need to find a vector in K0 which is taken to K1 upon141

acting with εH . (For example see Appendix A.4 of [14].) This will single out a linear combi-142

nation of the stationary states of M0, on which higher-order perturbations can be studied. Put143

differently, we need to find |S〉 such that144

|S〉 ∈ K0 and H |S〉 ∈ K1, (3.6)

where |S〉 denotes the O(ε0) part of |S̃〉.145

It might seem as if one needs to know all the eigenvectors of M0 in order to impose such146

conditions. However, this is too pessimistic. The space K1 can be characterised by the fact147

that its inner product with the left eigenvector of M0 with vanishing eigenvalue is zero. In148
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other words, if we write |LN〉 as the N-particle eigenvector of M T
0 (the transpose of M0) with149

vanishing eigenvalue,150

M T
0 |LN〉 = 0, (3.7)

we have that151

〈LN |ψ〉 = 0 if |ψ〉 ∈ K1. (3.8)

In addition, the form of |LN〉 is immediate because M0 is a Markov matrix,152

|LN〉 =
∑

(ni)N

|(ni)N〉 . (3.9)

This hinges on the fact that the sum of probabilities is constant in time and hence the sum of153

columns in a Markov matrix is zero (in each superselection sector, if any).2 The normalisation154

is immaterial so we chose an arbitrary one.155

Summarising the discussions above, we now need to find |S〉 ∈ K0 such that 〈LN |H |S〉 = 0156

for any N. We parameterise |S〉 for convenience as157

|S〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉 , (3.10)

where we can set p0 = 1. We also parameterise |SN〉 as158

|SN〉 ≡
∑

(n)N

q[(n)N] |(n)N〉 . (3.11)

We demand that they are properly normalised, in other words that the sum of probabilities159

becomes one,
∑

(n)N q[(n)N] = 1.160

Let us prove Theorem 1 now.161

Proof of Theorem 1. First of all, H |Si〉 does not overlap with |LN〉 unless i = N−1, N, or N+1162

because H only takes i-particle states to i- or (i ± 1)-particle states. Therefore the conditions163

〈LN |H |S〉 = 0 reduce to a set of recursion relations,164

pN−1 〈LN |H |SN−1〉+ pN 〈LN |H |SN〉+ pN+1 〈LN |H |SN+1〉 = 0, (3.12)

where we set p−1 = pL+1 = 0 for consistency.165

Let us now compute 〈LN |H |Si〉 for i = N − 1, i = N, and i = N + 1. Because we only166

need to compute the overlap with |LN〉, we will only compute the projection of H |Si〉 to WN .167

Starting from i = N − 1, we have168

H |SN−1〉
�

�

�

�

WN

=
∑

(n)N−1

q[(n)N−1]
∑

n /∈(n)N−1

αn |(n)N−1 ∪ n〉 , (3.13)

where |(n)N−1 ∪ n〉 means adding a particle on site n to the (N − 1)-particle state |(n)N−1〉.169

We then have170

〈LN |H |SN−1〉 =
∑

(n)N−1

q[(n)N−1]
∑

n /∈(n)N−1

αn (3.14)

=
∑

(n)N−1

q[(n)N−1]

 

L
∑

n=1

αn −
∑

n∈(n)N−1

αn

!

= AL − AN−1 (3.15)

2The form of |LN〉 suggests that the overlap 〈LN |ψ〉 is the sum of probabilities of realising N-particle states in
|ψ〉. We thank Yuki Ishiguro and Jun Sato for discussions on this point. See also their paper [15]whose submission
was coordinated with ours.
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Let us continue to i = N. The N-particle subspace component in H |SN〉 is given by171

H |SN〉
�

�

�

�

WN

= −
∑

(n)N

q[(n)N]
∑

n /∈(n)N

αn |(n)N〉 −
∑

(n)N

q[(n)N]
∑

n∈(n)N

βn |(n)N〉 (3.16)

The overlap with |LN〉 is hence given by172

〈LN |H |SN〉 = − (AL − AN + BN) (3.17)

Finally we study the case where i = N+1. The N-particle subspace component in H |SN+1〉173

is given by174

H |SN+1〉
�

�

�

�

WN

=
∑

(n)N+1

q[(n)N+1]
∑

n∈(n)N+1

βn |(n)N+1 \ n〉 (3.18)

where |(ni) \ n〉 means removing a particle on site n from the (N +1)-particle state |(n)N+1〉.175

The overlap with |LN〉 is hence given by176

〈LN |H |SN〉 = BN+1 (3.19)

The recursion relation (3.12) therefore becomes177

(AL − AN−1)pN−1 − BN pN = (AL − AN)pN − BN+1pN+1. (3.20)

Since we have (AL − AN−1)pN−1 − BN pN |N=0 = 0, we can derive a simplified recursion rela-178

tion,179

pN =
AL − AN−1

BN
pN−1. (3.21)

By solving this recursion relation, we conclude that the stationary state of the system M180

becomes181

|S̃〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉+ O(ε), pN =
N
∏

i=1

�

AL − Ai−1

Bi

�

. (3.22)

In other words we have successfully proven Theorem 1.182

4 Phase diagram of the open ASEP(-LK)183

It is interesting to apply our formula to derive the phase diagram of the open ASEP with/without184

Langmuir kinetics in terms of perturbation theory. This can be done by considering the open185

boundary condition as a particular case of the inhomogeneous ad/desorption. More conretely,186

the open ASEP-LK is defined by the following Markov matrix187

M ≡ M0 + H̃ , H̃ =
L
∑

i=1

h̃i , h̃i ≡

�

−ω[a]
i

ω[d]
i

ω[a]
i
−ω[d]

i

�

Vi

, (4.1)

where M0 is the Markov matrix of the closed ASEP, while we demand ω[a]2 = ω[a]3 = · · · =188

ω[a]L−1 and ω[d]2 = ω[d]3 = · · · = ω[d]L−1. Note that the system becomes the open ASEP without189

Langmuir kinetics when ω[a]
i
= ω[d]

i
= 0 for i = 2, . . . , L − 1. When ω[a]

i
and ω[d]

i
are190

7
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small, the system is amenable to perturbation theory and our formula (3.22) is applicable. We191

therefore set192

ω[a]1 = εα, ω[d]L = εβ

ω[d]1 = εγ, ω[a]L = εδ

ω[a]
i
= εa, ω[d]

i
= εb for i = 2, . . . , L− 1

(4.2)

and compute the stationary state of the open ASEP-LK at leading order in ε ≪ 1. In other193

words, we have, in the language of (2.5),194

α1 = α, α2 = · · · = αL−1 = a, αL = δ

β1 = γ, β2 = · · · = βL−1 = b, βL = β
(4.3)

For later convenience, we will denote the N-particle stationary state of the closed ASEP as195

|SN〉 ≡
∑

(n)N

qL[(n)N] |(n)N〉 , qL[(n)N] =
�

L

N

�−1

q
q
∑N

j=1(L− j+1−n j ) (4.4)

emphasising that the number of sites is L. We will also denote qL[(n)N |τ1 = 0, 1,τL = 0, 1]196

to restrict (n)N to obey particles at site 1 and L being present/absent. Equivalently, we can set197

qL[(n)N |τ1 = 0, 1,τL = 0, 1] = 0 if (n)N is not consistent with τ1 = 0, 1 or τL = 0, 1.198

Let us now compute Ai and Bi . We hereafter restrict our attention to Ai only since Bi can199

be obtained from Ai by swapping α with γ, δ with β , and a with b. We have200

AN =
∑

τ1,τL=0,1

Aτ1,τL
N (4.5)

where (for example) A0,1
N means that the sum over (n)N in the definition of AN is restricted to201

its subset in which τ1 = 0 (absent) and τL = 1 (present). More concretely, they are defined202

as203

Aτ1,τL
N ≡ AN ≡

∑

(n)N

qL[(n)N |τ1,τL]
∑

n∈(n)N

αn (4.6)

This will not become too complicated as qL[(n)N |τ1,τL] can be related to qL−2[(n)N], qL−2[(n)N−1],204

etc. For example,205

qL[(n)N |τ1 = 0,τL = 0] = q2N−NqL−2[(n)N], (4.7)

where 2N and −N in the exponent comes from the shifting of L to L− 2 and of n j to n j − 1,206

respectively. Similar arguments lead to207

qL[(n)N |τ1 = 0,τL = 0] = q N × qL−2[(n)N]

qL[(n)N |τ1 = 0,τL = 1] = q0 × qL−2[(n)N−1],

qL[(n)N |τ1 = 1,τL = 0] = q L−1 × qL−2[(n)N−1],

qL[(n)N |τ1 = 1,τL = 1] = q L−N × qL−2[(n)N−2],

(4.8)

8
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We therefore have208

A0,0
N =

�L−2
N

�

q
� L

N

�

q

q N × aN

A0,1
N =

� L−2
N−1

�

q
� L

N

�

q

q0 × (a(N − 1) + δ)

A1,0
N =

� L−2
N−1

�

q
� L

N

�

q

q L−1 × (α+ a(N − 1))

A1,1
N =

� L−2
N−2

�

q
� L

N

�

q

q L−N × (α+ a(N − 2) + δ).

(4.9)

and likewise209

B0,0
N =

�L−2
N

�

q
� L

N

�

q

q N × bN

B0,1
N =

� L−2
N−1

�

q
� L

N

�

q

q0 × (b(N − 1) +β)

B1,0
N =

� L−2
N−1

�

q
� L

N

�

q

q L−1 × (γ+ b(N − 1))

B1,1
N =

� L−2
N−2

�

q
� L

N

�

q

q L−N × (γ+ b(N − 2) +β).

(4.10)

4.1 Phase diagram of the open ASEP210

We are now ready to compute the stationary state of the open ASEP by setting a = b = γ =211

δ = 0. From the above computations, we have212

Ai = αq L−N ×
1− q N

1− q L
, Bi = β ×

1− q N

1− q L
, (4.11)

which leads to213

pN ≡
N
∏

i=1

�

AL − Ai−1

Bi

�

=

�

α

β

�N

×
�

L

N

�

q
(4.12)

Therefore the stationary state |S̃〉 of the open ASEP becomes, at leading order in O(ε),214

|S̃〉 ≡
1

∑L
N=0(α/β)N ×

� L
N

�

q

L
∑

N=0

�

α

β

�N

×
�

L

N

�

q
|SN〉+ O(ε) (4.13)

=
1

∑L
N=0(α/β)N ×

� L
N

�

q

L
∑

N=0

�

α

β

�N
∑

(n)N

q
∑N

j=1(L− j+1−n j ) |(n)N〉+ O(ε), (4.14)
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from which all relevant physical quantities (particle number density, n-point functions, etc.)215

can be computed. Incidentally, the normalisation constant can be written more compactly as216

L
∑

N=0

�

α

β

�N

×
�

L

N

�

q
= 2φ0

�

q−N , 0
; ;q ,

α

β
× q N

�

(4.15)

where rφs is the q -hypergeometric function, defined as217

rφs

�

a1, a2, . . . , ar
b1, b2, . . . , bs

;q , z

�

=
∞
∑

n=0

(a1, a2, . . . , ar ; q)n
(b1, b2, . . . , bs ,q; q)n

�

(−1)nq(
n
2)
�s+1−r

zn, (4.16)

in which (a1, a2, . . . , ar ; q)n ≡
∏r

i=1(ai ; q)n .218

Let us now detect the phase transition in the open ASEP by computing the particle number219

density, or equivalently, the one point function 〈τi〉. For the sake of simpler analytic computa-220

tions, we hereafter restrict our attention to q = 0. This makes thing particularly easy because221

the particle number density 〈τi〉N of |SN〉 is given by the step function,222

〈τi〉N =

¨

1 i ≥ L− N + 1

0 i ≤ L− N
. (4.17)

The number density 〈τi〉 of |S̃〉 is then given by (at leading order in ε)223

〈τi〉 =

∑L
N=L−i+1(α/β)

N

∑L
N=0(α/β)N

=
(α/β)L+1−i − (α/β)L+1

1− (α/β)L+1
(4.18)

where we used limq→0
� L

N

�

q = 1. We plot 〈τi〉 for some values of α/β in Figure 1.224

α/β=1/1.3

α/β=1

α/β=1.3

0 20 40 60 80 100

0.0
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0.8

1.0

i

nu
m
be
r
de
ns
ity

Figure 1: Plot of the particle number densities of the open ASEP (at q = 0) as func-
tions of lattice sites i. We take the number of lattice sites to be L = 100. For L as
large as 100, we already see three distinct phases – α/β < 1 corresponds to the
low-density phase, α/β = 1, the coexistence phase, and α/β > 1, the high-density
phase.
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Let us take the thermodynamic limit L→∞. It is immediate to see that the behaviour of225

〈τi〉 are completely different for three cases, α/β ⪋ 1. For α/β < 1, we have226

〈τi〉 =







0 for L− i ≫ L0

�

α

β

�L+1−i

for L− i = O(L0)
, (4.19)

for α/β = 1,227

〈τi〉 =
i

L+ 1
, (4.20)

and for α/β > 1,228

〈τi〉 =







1−
�

α

β

�−i

for i = O(L0)

1 for i ≫ O(L0)
. (4.21)

Corresponding to the number density in the bulk region of the open chain, we call the phase229

realised forα/β < 1 as the low-density phase, α/β = 1 as the coexistence phase, andα/β > 1230

as the high-density phase. This is consistent with the known results obtained using exact231

methods in [16]. We depict our perturbative phase diagram of the open ASEP in Figure 2.232

β

α

High-density phase

Low-density phase

Coexistence phase α = β

Figure 2: The phase diagram of the open ASEP. The horizontal axis represents the
adsorption rate at site i = 1, while the vertical, the desorption rate at site i = L.
This recovers the perturbative part of the known phase diagram of the open ASEP,
obtained exactly in [16].

4.2 Phase diagram of the open ASEP-LK233

We can also compute the stationary state of the open ASEP-LK by turning on a and b. Just as234

in the case of the open ASEP, we have235

Ai =
a(i − 1) + aq i + (α− a)q L−i + (a −α− ai)q L

1− q L
, (4.22)

Bi =
b(i − 1) +β + (b −β)q i − bq L−i + (b − bi)q L

1− q L
, (4.23)
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from which we can compute the stationary state of the open ASEP-LK at leading order in ε. In236

particular at q = 0, pN can be expressed concisely as237

pN =
�

−
a

b

�n
�

−L− αa + 1
�

n
�

β

b

�

n

, (4.24)

where (x )n ≡
∏n−1

i=0 (x + i) is the Pochhammer symbol. One can then compute 〈τ〉i =238
∑L

L+1−i pN/
∑L

0 pN and express it using hypergeometric functions, but we will not discuss this239

further as it will just be unnecessarily complex. We plot 〈τ〉i for some parameters in Figure 3.240
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Ωa=Ωb=10, α+β=30

Figure 3: Plot of the particle number densities of open ASEP-LK (at q = 0) as func-
tions of lattice sites i. We take the number of lattice sites to be L = 100. We set
Ωa ≡ aL = 10, Ωb ≡ bL = 10 and varied α, β while fixing α + β = 30. We sam-
pled α = 5, 13, 15, 17, 25 in the plot. We see that α = 5 is in the low-density
phase, α = 13, 15, 17, the domain-wall phase, and α = 25, the high-density phase,
consistent with analytic computations.

We now take the thermodynamic limit, L→∞. For the sake of manageability we will only241

consider the bulk region of the open chain, so that we take i →∞ at the same time while242

fixing x ≡ i/L. We will also take a, b → 0 while fixing Ωa ≡ aL and Ωb ≡ bL – otherwise243

the collective effect of the bulk ad/desorption will dominate the physics and there will be no244

interesting phase transitions.245

Let us compute 〈τ〉i =
∑L

N=L+1−i pN/
∑L

N=0 pN . At large L and at fixed x , Ωa, Ωb, it simply246

becomes247

ρ(x ) ≡ 〈τ〉i =

¨

1 when pL−i+1/pL−i > 1

0 when pL−i+1/pL−i < 1
, (4.25)

where we have248

pL−i+1

pL−i
=

Ωax +α

Ωb(1− x ) +β
+ O(L−1), (4.26)

for general 0 < q < 1. This means that the domain-wall that separates the low- and the high-249

density phase happens at xd (the former appears for x < xd and the latter, x > xd), given250

12
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by251

xd =
Ωb −α+β
Ωa +Ωb

. (4.27)

We call this the domain-wall phase (called the shock phase in [12]).3 Additionally, when252

xd > 1, the system is in the low-density phase, whereas when xd < 0, it is in the high-density253

phase. Summarising this, we have the low-density phase when β > α + Ωa, the domain-254

wall phase when α − Ωb < β < α + Ωa, and the high-density phase when β < α − Ωb.255

This is consistent with the results obtained using the (theoretically unjustified but numerically256

confirmed) mean-field approximation in [12]. We depict our perturbative phase diagram of257

the open ASEP-LK in Figure 4.258

Ωb

Ωa

β

α

low-density phase

domain-wall phase

high-density phase

β = α+Ωa

β = α−Ωb

Figure 4: The phase diagram of the open ASEP-LK. The horizontal axis represents
the adsorption rate at site i = 1, while the vertical, the desorption rate at site i = L.
This recovers the perturbative part of the known phase diagram of the open ASEP-LK,
obtained using the mean-field approximation in [12].

5 Discussions and outlook259

In this paper, we studied the effect of perturbation on generic closed exclusion processes.260

We first derived the formula that expresses the stationary state of closed processes (infinites-261

imally) perturbed by ad/desorption in terms of that of the unperturbed system. The rates of262

ad/desorption did not have to be homogeneous in sites, so as a consequence we proved the263

formula in [11] while generalising it. We pointed out that our formula is a result of the simple264

degenerate perturbation theory on non-normal matrices.265

As an application of the formula, we drew the perturbative part of the phase diagram of the266

open ASEP(-LK), which agreed with known results. For the open ASEP we recognised three267

distinct phases, called the low-density, the coexistence, and the high-density phases. For the268

3The position of the domain wall xd is indeed consistent with numerics, see Figure 3. We expect the position
to lie at i = 70, 50, 30 for α = 13, 15, 17, respectively.
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open ASEP-LK, on the other hand, we recognised the low-density and the high-density phases,269

as well as the domain-wall phase in which the system contains a domain wall separating the270

low- and the high-density regions. It is important that these results were obtained without271

using any theoretically unjustified approximations – we exactly know when and how much272

our approximation breaks down.273

There are a number of interesting future directions. First of all, it would be interesting to274

continue the perturbation theory to higher orders in ε. For example, if we compare the phase275

diagram of [12] with ours, we notice that the phase boundaries are not exactly straight, i.e.,276

β at the critical value is not a linear function of α. It would be beneficial to compute the form277

of the phase boundaries at higher orders in perturbation theory to explain this.278

Secondly, it would be interesting to apply our method to other systems of interest. For279

example, it would be interesting to apply it to the multi-lane ASEP [17] or to the ASEP(-280

LK) with inhomogeneous hopping rates [18].4 It would also be interesting to study the open281

ASEP-LK by starting the perturbation from the exactly known stationary state of the open ASEP.282

Note that what we would need to do is in general non-degenerate perturbation theory. The283

result would allow us draw wider region of the phase diagram upon taking the thermodynamic284

limit. In particular, observing the three-phase coexistence predicted in [12] would be very285

interesting.286

Studying the relaxation dynamics in perturbation theory is also interesting. One could,287

for example, compute the low-lying spectra and the corresponding states for the same class of288

theories at leading order in perturbation theory. In fact, [11] conjectures such a formula for289

the closed ASEP-LK, so it would be interesting to start by proving it.290

It would be important to justify the mean-field approximation theoretically as well. One291

could for example compute the two-point functions perturbatively in ε; If they factorise in292

the thermodynamic limit, the mean-field approximation is justified at least perturbatively. It293

would also be useful to justify it without relying on other perturbation theory at all. In this con-294

text, it might be worthwhile to rewrite the open ASEP-LK in the language of one-dimensional295

(non-Hermitian) spin chains. The mean-field approximation can then be justified when the296

model flows to the free fixed-point in the infrared. It would also be interesting to come up297

with a model which is strongly-coupled in the infrared, where the mean-field approximation298

cannot be justified. Incidentally, in terms of the field theoretic understanding of the exclusion299

processes, interpreting the asymmetric hopping parameter q as an imaginary vector potential300

is also interesting [21]. Because the q → 0 limit corresponds to the limit of large imaginary301

vector potential, one might be able to use effective field theory to study such regions [22–28].302

Lastly, studying the relationship between the general solvable exclusion processes with303

other models with Uq(s l(2)) symmetry would be interesting. In particular, the SYK model (a304

quantum mechanical model with all-to-all random interactions of N fermions) in the double-305

scaling limit [29–31] is known to possess such a symmetry and it would be interesting to306

connect them further. It would also be interesting to interpret it in terms of Jackiw-Teitelboim307

gravity [32, 33], which is believe to be dual to the SYK model in the context of the AdS/CFT308

correspondence [34].309
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