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Abstract

We derive the formula for the stationary states of particle-number conserving exclusion
processes infinitesimally perturbed by inhomogeneous adsorption and desorption. The
formula not only proves but also generalises the conjecture proposed in [Phys. Rev. E 97,
032135] to account for inhomogeneous adsorption and desorption. As an application of
the formula, we draw part of the phase diagrams of the open asymmetric simple exclu-
sion process with and without Langmuir kinetics, correctly reproducing known results.
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1 Introduction

Among the famous solvable models of driven diffusive systems is the asymmetric simple ex-
clusion process (ASEP). Aside from being solvable deep in the non-equilibrium regime, the
model is interesting for its connections to various ideas in statistical physics such as boundary-
induced phase transitions [1], the KPZ universality class [2], and random matrix theory [3]. It
has also attracted attention for its wide applicability to various phenomena in physics, biology
or society [4–6].
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ASEP describes particles on a one-dimensional lattice that hop asymmetrically (e.g., more
frequently to the right than left). It is a continuous-time Markov process and as such it is in-
teresting to study where the probability distribution settles after a long time, i.e., its stationary
distribution (state). This is equivalent to studying the eigenvector(s) of the Markov matrix
with zero eigenvalue, which is possible for ASEP because of its Uq(s l(2)) symmetry [7–9].
However, remained elusive is the stationary distribution (as well as other properties) for ex-
clusion processes without integrability, even though their practical usefulness and applicability
are not impaired by the lack thereof.

One example of exclusion processes without integrability is the ASEP combined with Lang-
muir kinetics (ASEP-LK), where, in addition to asymmetric hopping, a particle can attach to
or detach from the lattice at homogeneous rates. Even though the system has the Uq(s l(2))
symmetry on a periodic chain, it is indeed broken on a finite-length chain with boundary con-
ditions. The model is proposed to describe unidirectional motion of motor proteins [10], so it
is a good example of non-integrable exclusion processes with interesting applications.

One possible way to analytically study the properties of non-integrable exclusion processes
is to take the thermodynamic limit. One can for example determine the phase diagram of the
system by solving the fluid equations obtained by taking the coarse-grained, continuum limit.
However, the strategy usually involves using the mean-field approximation, which may or may
not be justified from first principles [10,11]. One can also derive the hydrodynamic equation
by separating slow diffusion modes from fast transport modes as in [12]. Such analysis indeed
gives the correct phase diagram at large volume, even though it does not account for fluctua-
tions and so it does not constitute algorithmic computations of physical quantities. (However
see [13] for the application of fluctuating hydrodynamics to an exclusion process.) It would
therefore be desirable if we have another theoretical method with a clear regime of validity
to compare with experiments or computer simulations. This could theoretically justify the
mean-field approximations as well.

There is one such method which seemingly has been mostly overlooked – the perturbation
theory. The ASEP-LK is a prime example: The stationary states of the periodic/closed/open
ASEP have been obtained exactly, and so one can in principle obtain those of the ASEP-LK per-
turbatively when the ad/desorption rates are small. For example, [14] conjectured a formula
for the stationary states of the closed ASEP with infinitesimally small Langmuir kinetics. This
formula is yet to be proven despite having a simple and inviting form, however.

The goal of this paper is to set up such perturbation in generic situations. We consider
perturbing a particle-number conserving hopping process with inhomogeneous ad/desorption
and derive a formula for the stationary state at leading order. (The leading order result is
meaningful because this is a degenerate perturbation theory.) Our formula potentially has
various interesting applications. For one thing, the above-mentioned conjecture is its imme-
diate consequence since closed ASEP is clearly a particle-number conserving process. We can
also apply the formula to draw perturbative part of the phase diagrams of the open ASEP
with/without Langmuir kinetics. We do so by interpreting the open boundary condition as a
special case of the inhomogeneous ad/desorption acting only on boundary sites. The results,
as we will see later, reproduce the results obtained in [11] but without relying on the mean-
field approximation or any other unjustified approximations at all. Therefore we are going to
have a clear regime of validity for our theoretical formula, even though the price we pay is the
restriction to the perturbative regime.

The rest of the paper is organised as follows. We first briefly review Markov processes, in
particular closed ASEP with/without infinitesimal Langmuir kinetics in Section 2. We then go
on to construct the stationary states of generic particle-number conserving Markov processes
infinitesimally perturbed by inhomogeneous ad/desorption in Section 3. This will, as a special
case, prove the conjecture given in [14]. We will provide other applications of the formula by
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deriving the phase diagram of the open ASEP with and without Langmuir kinetics in Section
4. We conclude in Section 5 with discussions and future directions.

2 Driven diffusive systems with ad/desorption

2.1 Continuous-time Markov process

Let us consider a continuous-time Markov process describing particles hopping on L lattice
sites (of arbitrary shapes and dimensions). We are interested in the time evolution of the
probability associated with a given configuration. This is given by a collection of differential
equations, conveniently written in matrix form using the Markov matrix M ,

d

dt
|P〉 = M |P〉 , (2.1)

where |P〉 is a vector collecting probabilities of realising given configurations. In other words,
by writing the configuration of particles as (τ1, . . . ,τL) where τi = 1 (τi = 0) means that a
particle is (not) present at site i, and its realisation probability as p(τ1, . . . ,τL), we package
the distribution into a state

|P〉 =
∑

τ1,...,τL

p(τ1, . . . ,τL) |τ1, . . . ,τL〉 , (2.2)

and this vector evolves according to the differential equation above.
For later convenience we denote the total Hilbert space as V , which is a tensor product of

the Hilbert space Vi on site i from i = 1 to L,

V =
L
⊗

i=1

Vi . (2.3)

It can also be decomposed into a direct sum of fixed particle number subspaces WN (where N
indicates the number of particles in the system), so that

V =
L
⊕

N=0

WN . (2.4)

Given such an evolution equation, one interest lies in finding where the probability distri-
bution settles after a long time. This is given by the eigenvector of M with eigenvalue zero.
The number of such eigenvectors are expected to match that of the superselection sectors of
M .

2.2 Closed exclusion process with ad/desorption

Our interest in this paper lies in the system M such that M = M0 + εH where ε ≪ 1 is
the perturbation parameter1. We require that M0 conserves the particle number (i.e., U(1)
symmetric) while εH breaks it via ad/desorption. Concretely, we have

M ≡ M0 + εH , M0

�

�

WN
: WN → WN

H =
L
∑

i=1

hi , hi ≡
�

−αi βi
αi −βi

�

Vi

.
(2.5)

1We will hereafter identify the Markov matrix as the corresponding system itself.
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where hi only acts on i-sites, with εαi and εβi representing adsorption and desorption rates
at site i, respectively.

Note that, before perturbation, the state space breaks up into L+ 1 superselection sectors
WN , and we have a stationary state for each of them. We denote the N-particle stationary state
as |SN〉 hereafter. In addition, since the perturbation breaks the particle-number symmetry,
there are no more superselection sectors for M . It therefore has only one stationary state,
which we denote as |S̃〉.

The goal of this paper is to construct |S̃〉 in terms of |SN〉 at leading order in ε. It is by now
clear that this is the zeroth order degenerate perturbation theory. We need to find the right
basis on which the higher-order perturbation theory is run. We will study this in Section 3.

Example: ASEP with Langmuir kinetics Before moving on, we present an example of such
systems, known as the closed ASEP perturbed by Langmuir kinetics (ASEP-LK). The Markov
matrix of closed ASEP-LK is given by the following,

M = M0 + εH

M0 =
L−1
∑

i=1

Mi,i+1, Mi,i+1 =







0 0 0 0
0 −q 1 0
0 q −1 0
0 0 0 0







Vi⊗Vi+1

H =
L
∑

i=1

hi , hi ≡
�

−α 1
α −1

�

Vi

.

(2.6)

where M0 describes the closed ASEP and εH the Langmuir kinetics. Mi,i+1 acts as an identity
outside Vi ⊗ Vi+1 and the bases of Mi,i+1 inside Vi ⊗ Vi+1 are given by, from top to bottom
columns or left to right rows, |0, 0〉, |0, 1〉, |1, 0〉, and |1, 1〉. The perturbation εH describes
a particle homogeneously detaching from the lattice at rate ωd ≡ ε while attaching at rate
ωa ≡ εα.

The closed ASEP, M0, trivially conserves the particle number and so has superselection
sectors labelled by it. There are therefore L+1 stationary states in M0, which can be computed
by using the Bethe ansatz as [15]

|SN〉 =
�

L

N

�−1

q

∑

(n)N

q
∑N

j=1(L− j+1−n j ) |(n)N〉 , (2.7)

where |SN〉 denotes the N-particle stationary state. Here
� L

N

�

q is the q -binomial, defined by

�

L

N

�

q
≡

(q; q)L
(q; q)N(q; q)L−N

, (a; q)n ≡
n
∏

i=1

(1− aq i−1), (2.8)

and (n)N is an ordered collection of N sites on which the particles are present. We also used
a shorthand notation |(n)N〉 to refer to the basis corresponding to such a configuration. The
overall normalisation is because the sum of probabilities must be one.

Once we perturb the system by εH , the particle-number conservation is lost and there
is only one stationary state, |S̃〉. Because the integrability is (mostly likely) lost due to the
perturbation, it is considered difficult to derive the stationary state for this model. It was
however conjectured in [14] that in the ε ≡ωd → 0 limit (while fixing α) |S̃〉 is given by

|S̃〉 =
1

(1+α)L

L
∑

N=0

�

L

N

�

αN |SN〉+ O(ε). (2.9)

We will prove this conjecture in the next section as a corollary to the main result.
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3 Construction of the stationary state

We are going to prove the following theorem.

Theorem 1. For a class of continuous-time Markov processes M = M0+εH defined in (2.5), the
stationary state of M can be written in terms of the N-particle stationary states of M0, |SN〉, as

|S̃〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉+ O(ε), pN =
N
∏

i=1

�

AL − Ai−1

Bi

�

. (3.1)

where AN and BN are given by

AN ≡
∑

(n)N

q[(n)N]
∑

n∈(n)N

αn, (3.2)

BN ≡
∑

(n)N

q[(n)N]
∑

n∈(n)N

βn, (3.3)

using

|SN〉 ≡
∑

(n)N

q[(n)N] |(n)N〉 ,
∑

(n)N

q[(n)N] = 1. (3.4)

Incidentally, we have

A0 = 0, AL =
L
∑

i=1

αi , B0 = 0, BL =
L
∑

i=1

βi . (3.5)

Before attempting to prove this theorem, we have one remark.

Corollary 1. This, as a corollary, immediately proves the conjecture (2.9) given in [14].

Proof of Corollary 1. Because AN = Nα and BN = N in the current case, we immediately
have pN =

� L
N

�

αN . We therefore have
∑L

N=0 pN = (1+ α)L. This concludes the proof of the
conjecture (2.9).

Now we move on to proving Theorem 1, but prior to this let us set up some notations which
will be useful later. We denote K0 as the subspace spanned by all the stationary states of M0,
while K1 as the subspace spanned by all other eigenvectors. Because M0 is non-normal, K0
and K1 are not orthogonal to each other.

Let us also present the strategy of the proof. We will be finding an eigenvector of a non-
normal matrix in perturbation theory, starting from degenerate vacua. As the eigenvector we
are looking for is the stationary state of the perturbed Markox matrix, we have

(M0 + εH) |S̃〉 = 0, |S̃〉 ≡ |S〉+ ε |v〉+ O(ε2), (3.6)

where |S〉 ∈ K0 and |v〉 ∈ K1. At order O(ε), the equation reduces to

H |S〉 = M0 |v〉 ∈ K1. (3.7)

It might seem as if one needs to know all the eigenvectors of M0 in order to impose such
conditions, because the subspaces K0,1 are not orthogonal to each other. However, this is too
pessimistic. The space K1 can be characterised by the fact that its inner product with the left
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eigenvector of M0 with vanishing eigenvalue is zero. In other words, if we write |LN〉 as the
N-particle eigenvector of M T

0 (the transpose of M0) with vanishing eigenvalue,

M T
0 |LN〉 = 0, (3.8)

we have that

〈LN |ψ〉 = 0 if |ψ〉 ∈ K1. (3.9)

In addition, the form of |LN〉 is immediate because M0 is a Markov matrix,

|LN〉 =
∑

(ni)N

|(ni)N〉 . (3.10)

This hinges on the fact that the sum of probabilities is constant in time and hence the sum of
columns in a Markov matrix is zero (in each superselection sector, if any).2 The normalisation
is immaterial so we chose an arbitrary one.

Summarising the discussions above, we now need to find |S〉 ∈ K0 such that

〈LN |H |S〉 = 0 (3.11)

for any N. We parameterise |S〉 for convenience as

|S〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉 , (3.12)

where we can set p0 = 1. We also parameterise |SN〉 as

|SN〉 ≡
∑

(n)N

q[(n)N] |(n)N〉 . (3.13)

We demand that they are properly normalised, in other words that the sum of probabilities
becomes one,

∑

(n)N q[(n)N] = 1.
Let us prove Theorem 1 now.

Proof of Theorem 1. First of all, H |Si〉 does not overlap with |LN〉 unless i = N−1, N, or N+1
because H only takes i-particle states to i- or (i ± 1)-particle states. Therefore the conditions
〈LN |H |S〉 = 0 reduce to a set of recursion relations,

pN−1 〈LN |H |SN−1〉+ pN 〈LN |H |SN〉+ pN+1 〈LN |H |SN+1〉 = 0, (3.14)

where we set p−1 = pL+1 = 0 for consistency.
Let us now compute 〈LN |H |Si〉 for i = N − 1, i = N, and i = N + 1. Because we only

need to compute the overlap with |LN〉, we will only compute the projection of H |Si〉 to WN .
Starting from i = N − 1, we have

H |SN−1〉
�

�

�

�

WN

=
∑

(n)N−1

q[(n)N−1]
∑

n /∈(n)N−1

αn |(n)N−1 ∪ n〉 , (3.15)

2The form of |LN〉 suggests that the overlap 〈LN |ψ〉 is the sum of probabilities of realising N-particle states in
|ψ〉. We thank Yuki Ishiguro and Jun Sato for discussions on this point. See also their paper [16]whose submission
was coordinated with ours.
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where |(n)N−1 ∪ n〉 means adding a particle on site n to the (N − 1)-particle state |(n)N−1〉.
We then have

〈LN |H |SN−1〉 =
∑

(n)N−1

q[(n)N−1]
∑

n /∈(n)N−1

αn (3.16)

=
∑

(n)N−1

q[(n)N−1]

 

L
∑

n=1

αn −
∑

n∈(n)N−1

αn

!

= AL − AN−1. (3.17)

Let us continue to i = N. The N-particle subspace component in H |SN〉 is given by

H |SN〉
�

�

�

�

WN

= −
∑

(n)N

q[(n)N]
∑

n /∈(n)N

αn |(n)N〉 −
∑

(n)N

q[(n)N]
∑

n∈(n)N

βn |(n)N〉 . (3.18)

The overlap with |LN〉 is hence given by

〈LN |H |SN〉 = − (AL − AN + BN) (3.19)

Finally we study the case where i = N+1. The N-particle subspace component in H |SN+1〉
is given by

H |SN+1〉
�

�

�

�

WN

=
∑

(n)N+1

q[(n)N+1]
∑

n∈(n)N+1

βn |(n)N+1 \ n〉 (3.20)

where |(ni) \ n〉 means removing a particle on site n from the (N +1)-particle state |(n)N+1〉.
The overlap with |LN〉 is hence given by

〈LN |H |SN〉 = BN+1 (3.21)

The recursion relation (3.14) therefore becomes

(AL − AN−1)pN−1 − BN pN = (AL − AN)pN − BN+1pN+1. (3.22)

Since we have (AL − AN−1)pN−1 − BN pN |N=0 = 0, we can derive a simplified recursion rela-
tion,

pN =
AL − AN−1

BN
pN−1. (3.23)

By solving this recursion relation, we conclude that the stationary state of the system M
becomes

|S̃〉 ≡
1

∑L
N=0 pN

L
∑

N=0

pN |SN〉+ O(ε), pN =
N
∏

i=1

�

AL − Ai−1

Bi

�

. (3.24)

In other words we have successfully proven Theorem 1.

4 Phase diagram of the open ASEP(-LK)

It is interesting to apply our formula to derive the phase diagram of the open ASEP with/without
Langmuir kinetics in terms of perturbation theory. This can be done by considering the open
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boundary condition as a particular case of the inhomogeneous ad/desorption. More conretely,
the open ASEP-LK is defined by the following Markov matrix

M ≡ M0 + H̃ , H̃ =
L
∑

i=1

h̃i , h̃i ≡

�

−ω[a]
i

ω[d]
i

ω[a]
i
−ω[d]

i

�

Vi

, (4.1)

where M0 is the Markov matrix of the closed ASEP, while we demand ω[a]2 = ω[a]3 = · · · =
ω[a]L−1 and ω[d]2 = ω[d]3 = · · · = ω[d]L−1. Note that the system becomes the open ASEP without

Langmuir kinetics when ω[a]
i
= ω[d]

i
= 0 for i = 2, . . . , L − 1. When ω[a]

i
and ω[d]

i
are

small, the system is amenable to perturbation theory and our formula (3.24) is applicable. We
therefore set

ω[a]1 = εα, ω[d]L = εβ

ω[d]1 = εγ, ω[a]L = εδ

ω[a]
i
= εa, ω[d]

i
= εb for i = 2, . . . , L− 1

(4.2)

and compute the stationary state of the open ASEP-LK at leading order in ε ≪ 1. In other
words, we have, in the language of (2.5),

α1 = α, α2 = · · · = αL−1 = a, αL = δ

β1 = γ, β2 = · · · = βL−1 = b, βL = β .
(4.3)

For later convenience, we will denote the N-particle stationary state of the closed ASEP as

|SN〉 ≡
∑

(n)N

qL[(n)N] |(n)N〉 , qL[(n)N] =
�

L

N

�−1

q
q
∑N

j=1(L− j+1−n j ) (4.4)

emphasising that the number of sites is L. We will also denote qL[(n)N |τ1 = 0, 1,τL = 0, 1]
to restrict (n)N to obey particles at site 1 and L being present/absent. Equivalently, we can set
qL[(n)N |τ1 = 0, 1,τL = 0, 1] = 0 if (n)N is not consistent with τ1 = 0, 1 or τL = 0, 1.

Let us now compute Ai and Bi . We hereafter restrict our attention to Ai only since Bi can
be obtained from Ai by swapping α with γ, δ with β , and a with b. We have

AN =
∑

τ1,τL=0,1

Aτ1,τL
N , (4.5)

where (for example) A0,1
N means that the sum over (n)N in the definition of AN is restricted to

its subset in which τ1 = 0 (absent) and τL = 1 (present). More concretely, they are defined
as

Aτ1,τL
N ≡ AN ≡

∑

(n)N

qL[(n)N |τ1,τL]
∑

n∈(n)N

αn. (4.6)

This will not become too complicated as qL[(n)N |τ1,τL] can be related to qL−2[(n)N], qL−2[(n)N−1],
etc. For example,

qL[(n)N |τ1 = 0,τL = 0]×
�

L

N

�

q
= q2N−NqL−2[(n)N]×

�

L− 2

N

�

q
, (4.7)
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where 2N and −N in the exponent comes from the shifting of L to L− 2 and of n j to n j − 1,
respectively. Similar arguments lead to

qL[(n)N |τ1 = 0,τL = 0] =

�L−2
N

�

q
� L

N

�

q

q N × qL−2[(n)N],

qL[(n)N |τ1 = 0,τL = 1] =

� L−2
N−1

�

q
� L

N

�

q

q0 × qL−2[(n)N−1],

qL[(n)N |τ1 = 1,τL = 0] =

� L−2
N−1

�

q
� L

N

�

q

q L−1 × qL−2[(n)N−1],

qL[(n)N |τ1 = 1,τL = 1] =

� L−2
N−2

�

q
� L

N

�

q

q L−N × qL−2[(n)N−2].

(4.8)

By summing over (n)N in (4.6), we get, by noting that
∑

(n)N qL0
[(n)N0

] = 1,

AN = A0,0
N + A0,1

N + A1,0
N + A1,1

N

A0,0
N =

�L−2
N

�

q
� L

N

�

q

q N × aN, A0,1
N =

� L−2
N−1

�

q
� L

N

�

q

q0 × (a(N − 1) + δ)

A1,0
N =

� L−2
N−1

�

q
� L

N

�

q

q L−1 × (α+ a(N − 1)), A1,1
N =

� L−2
N−2

�

q
� L

N

�

q

q L−N × (α+ a(N − 2) + δ),

(4.9)

and likewise

BN = B0,0
N + B0,1

N + B1,0
N + B1,1

N

B0,0
N =

�L−2
N

�

q
� L

N

�

q

q N × bN, B0,1
N =

� L−2
N−1

�

q
� L

N

�

q

q0 × (b(N − 1) +β)

B1,0
N =

� L−2
N−1

�

q
� L

N

�

q

q L−1 × (γ+ b(N − 1)), B1,1
N =

� L−2
N−2

�

q
� L

N

�

q

q L−N × (γ+ b(N − 2) +β).

(4.10)

4.1 Phase diagram of the open ASEP

We are now ready to compute the stationary state of the open ASEP by setting a = b = γ =
δ = 0. From the above computations, we have

Ai = αq L−N ×
1− q N

1− q L
, Bi = β ×

1− q N

1− q L
, (4.11)

which leads to

pN ≡
N
∏

i=1

�

AL − Ai−1

Bi

�

=

�

α

β

�N

×
�

L

N

�

q
. (4.12)
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Therefore the stationary state |S̃〉 of the open ASEP becomes, at leading order in O(ε),

|S̃〉 ≡
1

∑L
N=0(α/β)N ×

� L
N

�

q

L
∑

N=0

�

α

β

�N

×
�

L

N

�

q
|SN〉+ O(ε) (4.13)

=
1

∑L
N=0(α/β)N ×

� L
N

�

q

L
∑

N=0

�

α

β

�N
∑

(n)N

q
∑N

j=1(L− j+1−n j ) |(n)N〉+ O(ε), (4.14)

from which all relevant physical quantities (particle number density, n-point functions, etc.)
can be computed. Incidentally, the normalisation constant can be written more compactly as

L
∑

N=0

�

α

β

�N

×
�

L

N

�

q
= 2φ0

�

q−N , 0
; ; q ,

α

β
× q N

�

, (4.15)

where rφs is the q -hypergeometric function, defined as

rφs

�

a1, a2, . . . , ar
b1, b2, . . . , bs

;q , z

�

=
∞
∑

n=0

(a1, a2, . . . , ar ; q)n
(b1, b2, . . . , bs ,q; q)n

�

(−1)nq(
n
2)
�s+1−r

zn, (4.16)

in which (a1, a2, . . . , ar ; q)n ≡
∏r

i=1(ai ; q)n .
Let us now detect the phase transition in the open ASEP by computing the particle number

density, or equivalently, the one point function 〈τi〉. For the sake of simpler analytic computa-
tions, we hereafter restrict our attention to q = 0. This makes thing particularly easy because
the particle number density 〈τi〉N of |SN〉 is given by the step function,

〈τi〉N =

¨

1 i ≥ L− N + 1

0 i ≤ L− N
. (4.17)

The number density 〈τi〉 of |S̃〉 is then given by (at leading order in ε)

〈τi〉 =

∑L
N=L−i+1(α/β)

N

∑L
N=0(α/β)N

=
(α/β)L+1−i − (α/β)L+1

1− (α/β)L+1
, (4.18)

where we used limq→0
� L

N

�

q = 1. We plot 〈τi〉 for some values of α/β in Figure 1.
Let us take the thermodynamic limit L→∞. It is immediate to see that the behaviour of

〈τi〉 are completely different for three cases, α/β ⪋ 1. For α/β < 1, we have

〈τi〉 =







0 for L− i ≫ L0

�

α

β

�L+1−i

for L− i = O(L0)
, (4.19)

for α/β = 1,

〈τi〉 =
i

L+ 1
, (4.20)

and for α/β > 1,

〈τi〉 =







1−
�

α

β

�−i

for i = O(L0)

1 for i ≫ O(L0)
. (4.21)

Corresponding to the number density in the bulk region of the open chain, we call the phase
realised forα/β < 1 as the low-density phase, α/β = 1 as the coexistence phase, andα/β > 1
as the high-density phase. This is consistent with the known results obtained using exact
methods in [17]. We depict our perturbative phase diagram of the open ASEP in Figure 2.
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Figure 1: Plot of the particle number densities of the open ASEP (at q = 0) as func-
tions of lattice sites i. We take the number of lattice sites to be L = 100. For L as
large as 100, we already see three distinct phases – α/β < 1 corresponds to the
low-density phase, α/β = 1, the coexistence phase, and α/β > 1, the high-density
phase.

4.2 Phase diagram of the open ASEP-LK

We can also compute the stationary state of the open ASEP-LK by turning on a and b. Just as
in the case of the open ASEP, we have

Ai =
a(i − 1) + aq i + (α− a)q L−i + (a −α− ai)q L

1− q L
, (4.22)

Bi =
b(i − 1) +β + (b −β)q i − bq L−i + (b − bi)q L

1− q L
, (4.23)

from which we can compute the stationary state of the open ASEP-LK at leading order in ε. In
particular at q = 0, pN can be expressed concisely as

pN =
�

−
a

b

�n
�

−L− αa + 1
�

n
�

β

b

�

n

, (4.24)

where (x )n ≡
∏n−1

i=0 (x + i) is the Pochhammer symbol. One can then compute 〈τ〉i =
∑L

L+1−i pN/
∑L

0 pN and express it using hypergeometric functions, but we will not discuss this
further as it will just be unnecessarily complex. We plot 〈τ〉i for some parameters in Figure 3.

We now take the thermodynamic limit, L→∞. For the sake of manageability we will only
consider the bulk region of the open chain, so that we take i →∞ at the same time while
fixing x ≡ i/L. We will also take a, b → 0 while fixing Ωa ≡ aL and Ωb ≡ bL – otherwise
the collective effect of the bulk ad/desorption will dominate the physics and there will be no
interesting phase transitions.

Let us compute 〈τ〉i =
∑L

N=L+1−i pN/
∑L

N=0 pN . At large L and at fixed x , Ωa, Ωb, it simply
becomes

ρ(x ) ≡ 〈τ〉i =

¨

1 when pL−i+1/pL−i > 1

0 when pL−i+1/pL−i < 1
, (4.25)
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β

α

High-density phase

Low-density phase

Coexistence phase α = β

Figure 2: The phase diagram of the open ASEP. The horizontal axis represents the
adsorption rate at site i = 1, while the vertical, the desorption rate at site i = L.
This recovers the perturbative part of the known phase diagram of the open ASEP,
obtained exactly in [17].

where we have

pL−i+1

pL−i
=

Ωax +α

Ωb(1− x ) +β
+ O(L−1), (4.26)

for general 0 < q < 1. This means that the domain-wall that separates the low- and the high-
density phase happens at xd (the former appears for x < xd and the latter, x > xd), given
by

xd =
Ωb −α+β
Ωa +Ωb

. (4.27)

We call this the domain-wall phase (called the shock phase in [11]).3 Additionally, when
xd > 1, the system is in the low-density phase, whereas when xd < 0, it is in the high-density
phase. Summarising this, we have the low-density phase when β > α + Ωa, the domain-
wall phase when α − Ωb < β < α + Ωa, and the high-density phase when β < α − Ωb.
This is consistent with the results obtained using the (theoretically unjustified but numerically
confirmed) mean-field approximation in [11]. We depict our perturbative phase diagram of
the open ASEP-LK in Figure 4.

5 Discussions and outlook

In this paper, we studied the effect of perturbation on generic closed exclusion processes.
We first derived the formula that expresses the stationary state of closed processes (infinites-
imally) perturbed by ad/desorption in terms of that of the unperturbed system. The rates of
ad/desorption did not have to be homogeneous in sites, so as a consequence we proved the
formula in [14] while generalising it. We pointed out that our formula is a result of the simple
degenerate perturbation theory on non-normal matrices.

3The position of the domain wall xd is indeed consistent with numerics, see Figure 3. We expect the position
to lie at i = 70, 50, 30 for α = 13, 15, 17, respectively.
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Figure 3: Plot of the particle number densities of open ASEP-LK (at q = 0) as func-
tions of lattice sites i. We take the number of lattice sites to be L = 100. We set
Ωa ≡ aL = 10, Ωb ≡ bL = 10 and varied α, β while fixing α + β = 30. We sam-
pled α = 5, 13, 15, 17, 25 in the plot. We see that α = 5 is in the low-density
phase, α = 13, 15, 17, the domain-wall phase, and α = 25, the high-density phase,
consistent with analytic computations.

As an application of the formula, we drew the perturbative part of the phase diagram of the
open ASEP(-LK), which agreed with known results. For the open ASEP we recognised three
distinct phases, called the low-density, the coexistence, and the high-density phases. For the
open ASEP-LK, on the other hand, we recognised the low-density and the high-density phases,
as well as the domain-wall phase in which the system contains a domain wall separating the
low- and the high-density regions. It is important that these results were obtained without
using any theoretically unjustified approximations – we exactly know when and how much
our approximation breaks down.

There are a number of interesting future directions. First of all, it would be interesting to
continue the perturbation theory to higher orders in ε. For example, if we compare the phase
diagram of [11] with ours, we notice that the phase boundaries are not exactly straight, i.e.,
β at the critical value is not a linear function of α. It would be beneficial to compute the form
of the phase boundaries at higher orders in perturbation theory to explain this.

Secondly, it would be interesting to apply our method to other systems of interest. For
example, it would be interesting to apply it to the multi-lane ASEP [18] or to the ASEP(-
LK) with inhomogeneous hopping rates [19].4 It would also be interesting to study the open
ASEP-LK by starting the perturbation from the exactly known stationary state of the open ASEP.
Note that what we would need to do is in general non-degenerate perturbation theory. The
result would allow us draw wider region of the phase diagram upon taking the thermodynamic
limit. In particular, observing the three-phase coexistence predicted in [11] would be very
interesting.

Studying the relaxation dynamics in perturbation theory is also interesting. One could,
for example, compute the low-lying spectra and the corresponding states for the same class of
theories at leading order in perturbation theory. In fact, [14] conjectures such a formula for

4Studying the latter in relation to sine-square deformation and other similar deformations [20, 21] might be
also interesting.
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α

low-density phase

domain-wall phase

high-density phase

β = α+Ωa

β = α−Ωb

Figure 4: The phase diagram of the open ASEP-LK. The horizontal axis represents
the adsorption rate at site i = 1, while the vertical, the desorption rate at site i = L.
This recovers the perturbative part of the known phase diagram of the open ASEP-LK,
obtained using the mean-field approximation in [11].

the closed ASEP-LK, so it would be interesting to start by proving it.
It would also be important to justify the hydrodynamic description theoretically. This could

be either justifying the mean-field approximation or continuing the idea developed in [12]. In
terms of the former, one could for example compute the two-point functions perturbatively in
ε; If they factorise in the thermodynamic limit, the mean-field approximation is justified at
least perturbatively. In this context, it might be worthwhile to rewrite the open ASEP-LK in
the language of one-dimensional (non-Hermitian) spin chains. The mean-field approximation
can then be justified when the model flows to the free fixed-point in the infrared. In terms
of the latter, it would be interesting to come up with a model which is strongly-coupled in
the infrared, where the mean-field approximation cannot be justified but the hydrodynamic
description is available [22–25]. Incidentally, in terms of the field theoretic understanding of
the exclusion processes, interpreting the asymmetric hopping parameter q as an imaginary
vector potential is also interesting [26]. Because the q → 0 limit corresponds to the limit of
large imaginary vector potential, one might be able to use effective field theory to study such
regions [27–33].

Lastly, studying the relationship between the general solvable exclusion processes with
other models with Uq(s l(2)) symmetry would be interesting. In particular, the SYK model (a
quantum mechanical model with all-to-all random interactions of N fermions) in the double-
scaling limit [34–36] is known to possess such a symmetry and it would be interesting to
connect them further. It would also be interesting to interpret it in terms of Jackiw-Teitelboim
gravity [37, 38], which is believe to be dual to the SYK model in the context of the AdS/CFT
correspondence [39].
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A A “physical” proof of Theorem 1

We give an equivalent but more physical proof of Theorem 1. Note that the idea of this proof
originally appears in [16], whose submission was coordinated with ours.

The idea of the proof is to interpret (3.11) as defining the stationary state of a new Markov
process by using the fact that 〈LN |ψ〉 is the sum of probabilities of realising N-particle states in
|ψ〉. Indeed, 〈LN |H |S〉 = 0 means that the probability distribution labelled by the number of
particles (forgetting the details about where individual particles are) in the system is unaltered
by the action of H . We will denote the state representing the sum of all N-particle states as
N and its realisation probability as p̃N . Now, the action of H is such that it takes N to
N + 1 with probability AL − AN per unit time and N to N − 1 with BN . Then, for p̃0 to be
constant in time, we have B1 p̃1 = (AL − A0)p̃0, for p̃1, B2 p̃2 = (AL − A1)p̃1, and so on, up to
BL p̃L = (AL − AL−1)p̃L−1. Equivalently, we have

p̃N =
AL − AN−1

BN
p̃N−1. (A.1)

We already know from linear algebra that |S〉 needs to be spanned only by using |SN〉, as in
(3.12). Therefore p̃N must be identified with pN/

∑L
N=1 pN . This concludes another proof of

Theorem 1.
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