
SciPost Physics Codebases Submission

Data Reduction for Low Energy Nuclear Physics Experiments
Using Data Frames

Caleb A. Marshall1,2⋆

1 Institute For Nuclear & Particle Physics, Ohio University, Athens, OH, USA
2 Facility For Rare Isotope Beams, East Lansing, MI, USA

⋆ camarsha@unc.edu

Abstract

Low energy nuclear physics experiments are transitioning towards fully digital data ac-
quisition systems. Realizing the gains in flexibility afforded by these systems relies on
equally flexible data reduction techniques. In this paper, methods utilizing data frames
and in-memory techniques to work with data, including data from self-triggering, digital
data acquisition systems, are discussed within the context of a Python package, sauce.
It is shown that data frame operations can encompass common analysis needs and allow
interactive data analysis. Two event building techniques, dubbed referenced and refer-
enceless event building, are shown to provide a means to transform raw list mode data
into correlated multi-detector events. These techniques are demonstrated in the analysis
of two example data sets.

Copyright attribution to authors.
This work is a submission to SciPost Physics Codebases.
License information to appear upon publication.
Publication information to appear upon publication.

Received Date
Accepted Date
Published Date

1

Contents2

1 Introduction 23

2 Motivation and Design Choices 34

2.1 Representation of List Mode Data 35

2.2 Data Frames 56

2.3 Basic Nuclear Physics Analysis as Data Frame Operations 67

3 Event Building 78

3.1 Referenceless Event Building 89

3.2 Referenced Event Building 910

3.3 Combining Events 1211

3.4 Combining Separate Files 1312

4 Example Analysis 1313

4.1 α-γ Coincidence Measurement 1314

4.2 SECAR Focal Plane Detectors 1715

5 Discussion and Conclusions 2016

1

mailto:email1


SciPost Physics Codebases Submission

References 2217

18

19

1 Introduction20

Low energy nuclear physics is concerned with the structure, properties, and origin of nuclei.21

As a consequence of the broad reach of this field, complementary experimental efforts happen22

at both billon dollar facilities with collaborations of several hundred participants, to university23

run labs where critical experimental information might be the product a few individuals1.24

While the trend has been slow, both national user facilities and university labs have transi-25

tioned or are transitioning away from traditional analog electronics and towards fully digital26

data acquisition systems (DAQ)2.These digital systems have removed the need for complex27

analog setups that handle triggering and signal processing. As a result, the data processing28

pipeline, both online and offline, is now tasked with software implementations of much of the29

logic that would have previously been handled by nuclear electronics, thus placing additional30

requirements on the field’s data analysis tools.31

Currently, a stumbling block for this transition to digital DAQs is that low energy nuclear32

physics frequently adopts the analysis tools and software of the high energy particle physics33

community, despite the significant structural differences between the data produced by the34

two fields. As an example of this difference, consider two of the most prominent experiments35

from the 1990s in both fields: the CDF and D; experiments at Fermilab responsible for the36

discovery of the top quark in 1995 [1,2] for the high energy particle physics community, and37

the construction and operation of Gammasphere at Lawrence Berkeley and Argonne National38

Labs in the low energy nuclear physics community. Both D; and CDF produced events (time39

correlated collections of all detector signals) of around 200 KB in size [3]. Gammasphere,40

however, was producing events of only 100 B [4]. Events in low energy nuclear physics are41

more numerous and nearly all detector information can be recorded, yet they contain sig-42

nificantly less information (hundreds to thousands of channels with low detector multiplicity43

versus hundreds of thousands to millions of channels with high detector multiplicity). The44

final volume of the data sets from the two fields might be comparable, it is reasonable to say45

that the low energy nuclear physics data is distributed among many more experiments mak-46

ing individual data sets orders of magnitude smaller. As a result, analysis methods tailored to47

smaller events sizes and fewer channels greatly benefit the field, and computational resources48

can be leveraged to allow efficient data exploration to speed up analysis.49

In this paper an analysis framework designed specifically for smaller scale low energy nu-50

clear physics will be discussed. This framework utilizes data frames for in-memory analysis51

(all the data can fit into random access memory (RAM)) encouraging rapid and interactive52

data exploration. Although designed with digital DAQs in mind, many of the benefits of the53

framework can be utilized for analog systems as well. A concrete implementation of the frame-54

work’s principles resides in a Python package called sauce3, which will be used in examples55

throughout the paper. However it is the goal of this paper to discuss the recurring challenges56

that arise when dealing with digital DAQs and data reduction in as much generality as possible.57

58

1https://aruna.physics.fsu.edu/
2This transition has been slowest among applications that had little need for the greater throughput of the

digital systems, but would suffer from the degraded timing and spectroscopic information. The gap in energy and
timing resolution between digital and analog systems has narrowed considerably over the last decade.

3https://github.com/camarsha/sauce

2

https://aruna.physics.fsu.edu/
https://github.com/camarsha/sauce


SciPost Physics Codebases Submission

2 Motivation and Design Choices59

For the remainder of this paper, code snippets will be given frequently. It is assumed the reader60

is familiar with the syntax of the Python programming language. Rapid data exploration is61

aided by minimizing the amount of code required to carry out common analysis tasks. Consider62

what it would take to be able to find the timing difference between two detectors in one line63

of code:64

dt = det0.time - det1.time65

Where this single line of code represents an array operation such that every timestamp recorded66

for det0 is subtracted from those of det1. For this operation to be meaningful, it is required67

that the two timestamp arrays be equal in length and ordered so that only the difference of68

related timestamps is computed. Ensuring these two conditions are met is difficult, and so it69

is far more common to write some variation of the following:70

for i, event in enumerate(events):71

if det0.time and det1.time:72

dt[i] = det0.time - det1.time73

Ignoring how a collection of events was even constructed to begin with, this small snippet74

of code already poses problems for exploratory analysis. First, we are forced to sort through75

every event to find the few that we are interested in, which can be computationally expen-76

sive. Second, any further analysis requires we either write many such loops, or worse that77

we add more logic within the body of the existing loop. Third, such granular logic is prone78

to introducing errors. This last point is especially important in the context of a low energy79

nuclear physics experiment, where many analysis will start directly from the list mode data of80

the DAQ. Experimenters will frequently be implementing their own sorting routines, making81

the lower level code of the later sample a larger liability for the correctness and efficiency82

of any subsequent analysis. The additional complexity that comes with digital DAQs further83

exacerbates these problems.84

We can avoid these issues entirely by developing a scheme that will enable the simple85

declarative nature of the former code sample. Doing so will require we have effective ways of86

handling list mode data and event building, which, in turn, requires we find a suitable data87

structure to hold and work with these data. The argument will be made that data frames88

serve this purpose well in Sec.2.2, but first a discussion on some of the pitfalls of other data89

structures is merited.90

2.1 Representation of List Mode Data91

Modeling our data as a collection of events that hold the information for each channel in the92

system closely mirrors the data flow from a traditional analog signal processing setup, and93

could be in part why such a data pipeline is so common. To clarify the operation of such a94

setup, a peak sensing analog to digital converter (ADC) is coupled to analog signal processing95

and logic. Prior to data recording, a trigger logic is decided upon and implemented. The ADC96

gate will open and record data when signals of interest are present. Offline analysis involves97

sifting through these “events”, which consist of the pulse height information of all the channels98

that fired within the ADC gate. Correlations between detectors are completely dictated by the99

hardware trigger logic and cannot be altered in software. In this case, it is simple to represent100

the DAQ’s list mode data as a single N-dimensional array of pulse heights as shown in Fig. 1.101

While attractively simple, this approach is memory inefficient. As the number of channels102

in the system grows, the N-dimensional array will increase in size as well, but critically its103

memory consumption is only tied to the number of channels and the system wide event rate.104

The same amount of memory is required for each event regardless of how many channels fired.105

3



SciPost Physics Codebases Submission

Figure 1: Simple event struture for a peak sensing ADC. The pulse height recorded
in each channel is one element of an N-dimensional array.

As an example, consider a system with 128 channels (four 32-channel ADCs) with 16 bit energy106

resolution firing at a total rate of 10 kHz. If a fixed length array is chosen to represent these107

data, then 9 GB of data would be produced in one hour. The size of this data can be unwieldy108

to deal with even if it fits into memory, as a loop will have to sift over 36 million events for109

any operation on the data. It is likely to push an experimenter towards a workflow of a single110

monolithic event loop to populate histograms, viewing those histograms, and then iterating111

this cycle until the analysis is finalized.112

Sticking to the analog case for the moment, what if we were to only process the data from113

the channels that fired in an event? We would need to identify each channel that fired with114

a channel number (conservatively assumed to be 8 bits in this case) and an event number115

to group the channel hits that belong to the same event (conservatively assumed to be 32116

bits). Software logic would then be needed to reconstruct events. However, the amount of117

data produced in an hour is now dependent on the average number of channels that fire,118

ranging from 250 MB if one channel fires on average to 32 GB if all channels fire. Less data119

is produced on average than the N-dimensional array case for average channel multiplicities120

below 35. It also seems more reasonable to start an analysis working on individual channels121

and then looking at event information only when needed.122

Now consider self-triggering digital DAQs, where each channel in the system triggers in-123

dependently and records any data that passes an electronic threshold to disk. Pulse height124

information is now accompanied by timestamps and there is no longer a hardware definition125

of an “event” [5]. Instead, we must start our data reduction with raw list mode data from the126

DAQ, which for simplicity can be thought of as a tuple of numbers:127

hi t = (channel, adc, t imes t amp). (1)

In this case, channel is a general variable that uniquely identifies an electronic channel in the128

system, adc is a digitized pulse height with arbitrary units, and t imes t amp is an absolute129

digital timestamp with a resolution that is system dependent. The N-dimensional array is no130

longer an obvious or convenient choice for a data structure, since no channel in the system131

can be correlated with another until a decision has been made about how to build events in132

software. A lack of trigger logic also means that when events are built, multiple hits from133

a channel could be present within a single event. If we were to implement the simple N-134

dimensional array event model, we would now need jagged arrays (Fig. 2) where each element135

of an array can have any number of sub-elements [6,7]. Assuming 64 bit timestamps, the 9 GB136

of the analog case would now become 46 GB, and it is now even harder to work with the data137

in memory, which will force our event loop to stream data from disk, slowing it down even138

further. This case also forces us to adopt an event building scheme before even seeing the data,139

4



SciPost Physics Codebases Submission

Figure 2: Simple event struture for a self-triggering DAQ. The pulse height (blue) is
now recorded with a timestamp (red) in each channel. Each channel can fire any
number of times within an event leading to an N-dimensional jagged array.

making it difficult to judge the effects of the event builder’s parameters like the build window.140

By trying to avoid the inherent complexity of a trigger-less digital DAQ and structuring the141

data from them as a set of events, we are lead towards an imperative programming style and142

a less interactive analysis.143

2.2 Data Frames144

It is now clear that effective analysis of data from a digital DAQ requires a data structure145

that is suited towards working with the raw list mode data of Eq. (1). The chosen data struc-146

tures should have a set of operations that closely map to typical analysis tasks, such as applying147

thresholds or energy calibration, while also providing tools to avoid the intensive memory costs148

of sparse jagged arrays. The choice made for sauce and that will be discussed for the rest of149

the paper is to use data frames for these tasks. Briefly, data frames are a type of columnar data150

structure that combine properties of relational tables and matrices [8]. They were first intro-151

duced in the context of the S programming language [9] and have since become widespread152

tools for data analysis. Implementations of data frames exist in numerous programming lan-153

guages, including R [10] and Python [11, 12]. CERN’s ROOT, a common choice for analysis154

in low energy nuclear physics, also implements data frames as RDataFrame [13, 14]. The155

version of sauce described in this paper has been implemented using the Python bindings of156

the polars4 library.157

To clarify the structure of the sauce’s channel data frames, recall the basic list mode datum158

given in Eq. 1. For each channel identifier, a separate data frame would be created such that we159

have a columnar data set of adc and t imes t amp values. Fig. 3 shows the transformation of160

list mode data into channel specific data frames which are named to uniquely identify them.161

Notice that as a consequence of this storage scheme pulse heights are naturally associated162

with their time stamps and visa-versa. If the DAQ produces additional information (e.g pile-up163

detection or waveform data) it can simply become another column. In sauce, these structures164

are implemented as a class called Detector, which stores a data frame along with an identifier165

(name). There is no requirement that data frames for individual channels be the same length166

or have the same number of columns. When it becomes necessary for the analysis to compare167

hits in different channels, multi-channel data frames will be constructed programmatically168

using event building (Sec. 3).169

4https://pola.rs/

5

https://pola.rs/


SciPost Physics Codebases Submission

Det1

PH TS

PH0 TS0

PH1 TS1

PHN TSN

ChaniDet1

Detector Signal

List Mode Data

Figure 3: Sketch of the transformation of list mode data to data frames that occurs
for each channel. sauce associates each data frame with a name in a class called
Detector so that it can be identified when combining data from multiple channels.
PH and TS stand for pulse height and timestamp, respectively.

2.3 Basic Nuclear Physics Analysis as Data Frame Operations170

There has been some effort in to formalize data frame operations in Ref. [8] (see Table 1 in that171

work), which are partially derived from Ref. [15]. However, in this discussion I will present172

code snippets showing the necessary polars operations to keep this work grounded in their173

practical use. While this removes some generality from the discussion, it has the benefit of174

showing the utility of data frames for this application, and how little code is necessary to175

carry out tasks. Many polars operations are analogous to similarly named SQL functions or176

share names with common higher-order functions from the functional programming paradigm177

(filter, reduce, etc.).178

Before moving on to sauce, let’s look at some basic analysis using data frame operations179

directly. A hypothetical data set comprised of all hits in a single data taking run has three180

columns: channel, adc, time. The data set has been saved as a parquet file. Loading the entire181

data set into memory is done with:182

run = pl.read_parquet("run_data.parquet")183

Our simplified experimental setup system of only two detectors occupying channels 0 and184

1 of the system, respectively, and dubbed, affectionately, “det0” and “det1”. The hits belonging185

to “det0” can be found by selecting the rows that have the number 0 in the “channel” column186

and likewise for “det1”:187

det0 = run.filter(pl.col("channel") == 0)188

det1 = run.filter(pl.col("channel") == 1)189

Now det0 and det1 are data frames that only consist of the hits that occurred in those190

channels of the system. As a result, if we wanted to look at the pulse height spectrum, we191

would merely need to select the “adc” column and then histogram it (for example using the192

histogram function of numpy [16]). Column selection can be done with either:193

det0.select(pl.col("adc"))194

or195

det0["adc"]196

Energy calibration can be taken care of in one line of code per detector. Assuming a linear197

calibration with slope a and intercept b that will give us units of keV:198

det0 = det0.with_columns(199

(a * pl.col("adc") + b).alias("energy")200

)201

6



SciPost Physics Codebases Submission

A new column, “energy”, is added to the data frame that has the energy calibrated values.202

Now an energy threshold can be applied to only keep hits above 100 keV. Again using the filter203

operation:204

det0 = det0.filter(pl.col("energy") > 100.0)205

The toy problems above show that data frames give us tools to act on entire columns with-206

out having to write loops. However, these are extremely simplified examples. Any real analy-207

sis would quickly run into bookkeeping issues when the number of detectors is large, and the208

timing information is useless until events can be built to compare timing differences between209

detectors. As mentioned at the end of Sec. 2.2, sauce wraps data frames in a Detector class210

that associates data frames with named identifiers. Methods for these classes are also imple-211

mented to make the expressions from above less verbose and to ensure in-place (destructive)212

modification of data frames to cut down on unnecessary copying. Utilizing this class, the above213

becomes for “det0”:214

det0 = sauce.Detector("det0")215

det0.find_hits("run_data.parquet", channel =0)216

det0["energy"] = a * det0["PH"] + b217

det0.apply_threshold (100.0 , axis="energy")218

where it is understood that the parameter axis is sauce’s terminology for a column name.219

The polars data can still be accessed directly using:220

# get the data frame contained in the detector.221

det0.data222

which can be necessary for more complex analysis (see Sec. 4.2).223

Before moving on to event building, two additional operations need to be defined that224

do not have the same immediate utility of the operations above, but that will be essential225

for dealing with the complexities of real detectors. The first is the union or concatenation of226

data frames. By applying a union to data frames from several channels, a single aggregate227

data frame will be returned that includes the hits of all the input channels. This is a useful228

operation for physical detectors that are readout with many channels. In sauce we write:229

# returns a new detector called det_0&1230

sauce.detector_union("det_0&1", det0 , det1)231

However, once a union has been performed, it is no longer possible to track which channel232

produced a hit. In order to recover this information, a “tagging” operation has been introduced.233

A tag merely adds a constant value to every hit in a data frame. If a Detector is tagged prior to234

a union, the resulting “tag” column will allow us to recover the individual channel information.235

# create a new column called "tag" filled with 0236

det0.tag(0)237

To see these two operations used in practice refer to Sec. 4.2, which treats a position238

sensitive micro-channel plate detector (MCP) with four corners as a single detector with a tag239

“corner”.240

3 Event Building241

A self-triggering DAQ cannot group channel data together without the concept of event build-242

ing. Hits in two channels can only be said to be related if their timestamps fall within a243

specified time interval, ultimately based on both physical (time-of-flight, lifetimes, etc.) and244

electronic properties (signal delay, overhead in signal processing, etc.). Hits that fall within245

the time interval can be assigned an event number, and at later stage in the analysis these246

7



SciPost Physics Codebases Submission

event numbers can be used to examine correlations between the separate channels by com-247

bining their data frames. The basic operations covered in the last section are of little use if248

we cannot relate the hits in one channel to another. However, once events are built, nearly249

any analysis task can be defined using some combination of basic data frame operations and250

event building. Below, two schemes for event building are described that cover a majority of251

common use cases. They are dubbed referenceless and referenced event building. The former252

allows any channel hit to start an event building period, and is well suited to working with a253

single detector that has multiple segments being readout into separate channels (e.g. a HPGe254

clover detector or segmented silicon detector). The latter is more suited for looking at coin-255

cidences from distinct detectors, since it will use only selected channels to build events (e.g.256

particle-gamma coincidence measurement of Sec.4.1).257

Before going further, all the data frames for the channels are assumed to be sorted by their258

timestamps such that they are increasing:259

t0 ≤ t1 ≤ t2 ≤ . . . , (2)

this is a trivial procedure to carry out with data frames, and the Detector class does it auto-260

matically when the data is loaded and when operations that could alter the order are carried261

out (e.g. a union operation).262

3.1 Referenceless Event Building263

Given that we have a set of n channel hits that are time ordered from t0 to tn−1, a referenceless264

event builder can be defined using only a single parameter, the build window ∆t . Starting265

from the earliest hit, t0, and beginning to enumerate the events, ev t = 0, all subsequent hits,266

ti that satisfy t0 ≤ ti ≤ t0 + ∆t are assigned ev t = 0. The next hit that does not satisfy267

the condition, call it tm , is taken as the start of the next build window, ev t is incremented,268

and all hits within tm ≤ ti < tm +∆t are assigned ev t = 1. The steps are repeated until all269

hits have been assigned to an event. Event building of this type is the equivalent procedure in270

analog electronics of using a logical OR from the channels to open an ADC gate. A sketch of271

this procedure is shown in Fig. 5, and pseudo-code is given in Fig. 4.272

It is possible with this technique to lose true coincidences due to background counts open-273

ing a build window which closes before all of the coincident hits are processed. When this274

happens, true coincident hits will be assigned different event numbers and effectively be lost.275

By considering two Poisson processes that generate the background counts and true coinci-276

dences, a rough estimate can be made to quantify the impact of the event builder failing to277

properly group hits. Let tr , λr , tn , and λn be the timestamps (in seconds) and rates of a hit278

of interest and noise (in Hz), respectively. Assuming coincident hits always come at a fixed279

time from tr , we define a coincident time interval δtcoin . The number of dropped hits is the280

expected number of background counts occurring at a time such that (tr − tn)+δtcoin >∆t .281

Since tr and tn are independent, the chances of this happening is simply the expected number282

of noise counts in the time interval δtcoin . Expressing the ratio of the number of measured283

coincidences after event building, Nmeas , to the true number of coincidences, Nt r ue , gives:284

Nmeas

Nt r ue
= δtcoinλn. (3)

Note that this is independent of the build window and only depends on the timing difference285

between the signal of interest and noise rate. A Monte-Carlo simulation was carried out that286

simulated the two process explicitly, and was found to agree with Eq. 3 for noise rates below287

1 MHz and build windows within a factor of 2 of δtcoin . For measurements that have high288

backgrounds relative to the signal of interest, there is a risk of a referenceless event builder289

8



SciPost Physics Codebases Submission

def build_referenceless_events(time_array , build_window):

t_i = time_array [0] # start of window
t_f = t_i + build_window # end of window
event = 0
# array that will hold the event numbers
event_numbers = np.empty(len(time_array))

for i in range(len(time_array)):
# current timestamp
tc = time_array[i]
# if it is within the window , assign it an event number
if tc >= t_i and tc < t_f:

event_numbers[i] = event
# else it is its own event , and starts a new window
else:

t_i = tc
t_f = tc + build_window
event += 1
event_numbers[i] = event

return event_numbers

Figure 4: Referenceless event builder in Python using numpy arrays.

dropping a significant fraction of coincidences due to high rate channels; however, by using a290

digital DAQ timestamps can be shifted such that δtcoin can be made arbitrarily small, down291

to the timing resolution of the system. If this precaution is taken, referenceless event building292

is a viable choice for a system wide event building scheme. However, practically, referenceless293

event building on a system wide scale leads to complex data reduction. Since it does not en-294

force a one-to-one relationship between hits in different channels, additional logic needs to be295

implemented by the experimenter in order to examine coincidences. Due to these considera-296

tions, referenceless event building is included in sauce as a method of the Detector class.297

An example:298

# build referenceless events299

det0.build_referenceless_events (500.0)300

det0["event_det0"] # event numbers301

det0["multiplicity"] # number of hits in an event302

The number passed to the event builder is the∆t (i.e the build window) from above and uses303

the units of the timestamp column. A “multiplicity” column is added automatically, since it is304

frequently needed as a diagnostic after referenced event building.305

3.2 Referenced Event Building306

The referenced event building procedure differs from the referenceless builder discussed above307

because it gives priority to selected channels. Reference channels are selected from the system308

and their timestamps are used to build a set of non-overlapping time windows. If some number309

of windows would overlap, then only the window defined by the earliest timestamp is kept.310

Once these windows are built, they are enumerated to define the events. Hits in other channels311

are then assigned event numbers if they fall into a given window, again with only the earliest312

hit being kept. As a result of these steps, the referenced event builder guarantees that events313

will only contain one hit per Detector object. This principle is illustrated in Fig. 6.314

To implement such a scheme, all hits must be time sorted, a build window must be de-315

fined, and n channels must be selected as reference channels. Additionally, keeping track of316

the number of hits that are dropped, we can define an event builder live time for diagnostic317

9



SciPost Physics Codebases Submission

Union
Referenceless 
Event Builder

0

1

2

3

1 2 30

Figure 5: Operation of the referenceless event builder. The top of the figure shows
four channels projected along the time axis after they have been digitized. Pulses
have a height (light blue) and time (light red), the pulse width corresponds to the
sampling rate of the digitizer. The dark blue dashed boxes show the events that would
be constructed using the referenceless event builder described in the text. The bottom
image shows the list mode data from these same events collected into data frames
and then processed in software to achieve the desired result of the top panel.

10



SciPost Physics Codebases Submission

Referenced 
Event Builder

10 2

0

1

2 

Figure 6: Operation of the referenced event builder. The top of the figure shows four
channels (circles) projected along the time axis after they have been digitized. The
black circle denotes the reference channel. Pulses have a height (light blue) and time
(light red), the pulse width corresponds to the sampling rate of the digitizer. The dark
blue dashed boxes show the events that would be constructed using the referenced
event builder described in the text. Hits that are dropped due to the referenced event
builder are gray. The bottom image shows the list mode data from these same events
collected into data frames and then processed in software to achieve the desired
result of the top panel.

11



SciPost Physics Codebases Submission

purposes:318

Live Time = NEB/NRaw , (4)

where NEB is the number of hits once the disjoint intervals are built and NRaw is the initial319

number of hits. If the reference channels are not expected to be in coincidence, then small live320

times indicate a build window that is too large considering the hit rate. For digital systems,321

build windows can be made smaller to partially compensated for high dead times by shifting322

the timestamps of selected channels.323

Since referenced event building prioritizes specific channels unlike the referenceless case,324

noisy channels have no impact on coincidences (Sec. 3.1). On the other hand, the deliberate325

choice to drop hits so that every event has only one hit per considered channel makes it difficult326

to combine information from multi-channel detectors. In such a case, multiple applications of327

referenced event building would be required in order to not drop data unnecessarily.328

Owing to the greater complexity in the implementation of referenced event building, in329

sauce there is a dedicated class for handling its operations.330

# construction331

eb = sauce.EventBuilder ()332

# either pass a Detector object or array of timestamps.333

eb.add_timestamps(det0)334

# construct the build windows.335

eb.create_build_windows (-500.0, 500.0)336

# In place modification of the data frame.337

# Drops all hits after the first and adds event column.338

eb.assign_events_to_detector_and_drop(det0)339

Although this class performs all of the operations detailing the text, it does not prescribe a spe-340

cific way to combine the events in separate Detectors which will be handled by a dedicated341

class. So in practice, constructing the disjoint build windows with eb.create_build_windows342

is the last interaction with the event builder a user will have.343

3.3 Combining Events344

The operations defined above only enumerate the events for Detector objects. A system is345

still needed to match event numbers between Detector objects and combine their respective346

data frames. On the data frame level, polars provides the join function (analogous to SQL’s347

JOIN), which can be used to combine two data frames on a shared column. Depending on348

whether the two Detector objects should be in coincidence or anti-coincidence, then either349

an inner-join or anti-join is applied. However, a join takes the columns from each data frame,350

which all come from list mode data and presumably share column names. This is the issue that351

was first alluded to in Sec. 2.2, and why the Detector class has a required name argument. On352

the inner-join or anti-join, we append this name to all columns in the Detector’s data frame.353

For example, if we want to combine two data frames with names “det0” and “det1”, each one354

will have a “ph” (pulse height) and “ts” (timestamp) column. We keep these columns distinct355

in the combined frame by renaming them “ph_det0”, “ph_det1”, “ts_det0”, and “ts_det1”.356

The operation to define coincidences is verbose in plain polars, so sauce abstracts away357

the details in the Coincidence class. First, an EventBuilder is constructed, build windows358

are created, and then it is used to initialize a Coincidence object.359

eb = sauce.EventBuilder ()360

eb.add_timestamps(det0)361

eb.create_build_windows (-500.0, 500.0)362

363

coin = sauce.Coincidence(eb)364

# get the coincidences between det0 and det1365

both = coin[det0 , det1]366

12



SciPost Physics Codebases Submission

# get the events in det0 that are anti -coincident with det1367

anti = coin[det0 , ∼det1]368

The compact syntax produces a new Detector object containing a data frame with all369

hits within the individual Detector objects that pass the event builder. Anti-coincidences are370

denoted with ∼ before a Detector object. All columns associated with det0 are now named371

column_det0 and the same goes for det1. Construction of coincidences on demand means372

that we do not have to waste memory on large, sparse coincidence matrices. It is also at this373

point that we can finally realize the goal stated in Sec. 2 and compute the timing difference374

between two detectors in one line of code:375

both["dt"] = both["time_det0"] - both["time_det1"]376

In fact, any event-by-event processing for the coincidences can be carried out by operations377

on the coincident Detector data frame columns (i.e gates).378

3.4 Combining Separate Files379

Data acquisition is periodically halted to insure data quality and adjust experimental param-380

eters as needed (for example beam retuning). The result is that the total data set will not be381

one large unbroken file, but will instead be a series of smaller data sets with varying param-382

eters such as integrated beam current. sauce relies on this to assume it can load individual383

runs into memory, but it then becomes necessary to save the run-to-run analysis to build up384

the final dataset. After a single run has been analyzed and reduced to the relevant counts,385

Detector objects can be tagged and saved to disk for later combination. The tags can then386

be used to filter the data by run and apply run specific corrections if they are combined via a387

detector_union. For example:388

det_of_interest.tag(run_number , tag_name="run")389

det_of_interest.save("det_int_run_number.parquet")390

391

det_of_interest = []392

393

for run in run_numbers:394

det = sauce.Detector("det_of_interest").load(f"det_int_{run}.395

parquet")396

det_of_interest.append(det)397

398

det_of_interest = sauce.detector_union("det_of_interest", *399

det_of_interest)400

4 Example Analysis401

Two examples analysis are presented below. Descriptions of the analysis are in this text along402

with code blocks. The full analysis code can be found in the supplemental materials.403

4.1 α-γ Coincidence Measurement404

The purpose of this example analysis is to demonstrate the methods of correlating two separate405

detectors using referenced event building (Sec. 3.2) in order to extract the absolute activity of406

an α source.407

The α-decay of 241Am lends itself to α-γ coincidence counting, as approximately 35%, of408

all decays will coincide with the emission of a 60-keV γ-ray from the second excited state to409

ground state transition of the daughter nucleus 237Np. Owing to the strong γ transition, a410

modest coincident setup can produce an accurate measurement of the source’s activity. Since411

13



SciPost Physics Codebases Submission

the coincidence technique, to first order, is not influenced by geometry or detector efficiency,412

it is a robust and simple precision measurement [17–19].413

An α-γ coincidence measurement was carried out to determine the absolute activity of an414

241Am source. The source was purchased from Eckert & Ziegler [20] and consists of 241Am415

material electroplated onto a platinum surface in an aluminum A-2 capsule. The quoted NIST416

traceable activity is 1.230(15) µCi at the 68% level. The coincidence setup consisted of a417

silicon surface barrier detector (SSB) located, along with the source, inside of a small vacuum418

chamber. A CeBr detector is located in atmosphere separated from the vacuum by an acrylic419

window. A diagram of the setup is shown in Fig. 7. The charge-sensitive preamp signal of the420

silicon detector and output of the CeBr photomultiplier tube (PMT) were fed directly into a421

single XIA Pixie-16 module. The list mode data of the Pixie-16 was stored to disk and then422

read into sauce offline.423

The goal of this example is to determine the decay rate of the source, which is denoted N0.424

The observed rate in our detectors (N) will be a function of their respective efficiencies (ε),425

decay branching ratios (B), and solid angles Ω. For the α and γ decay channels we have three426

equations that can be related to the observed decay rates:427

Nα = N0Ωα

N
∑

i=1

Bα;iεα;i (5)

Nγ = N0Ωγ

N
∑

i=1

Bγ;iεγ;i

.Nαγ = N0ΩγΩα

N
∑

i=1

Bγ;i Bα;iεαγ;i .

For the 241Am case, energy discrimination on the 60-keV γ-ray and assuming all Branches428

of Nα can be counted gives:429

NγNα

Nαγ
= N0. (6)

It can be seen that source activity is related only to measured quantities (corrected for dead430

time and background). More details and discussion can be found in Ref. [17].431

A Parquet5 file is provided in the supplemental material that can be loaded with sauce.432

Our goal is to extract Nα, Nγ, and Nα-γ. Starting with the singles data, Nα is the number of433

counts observed in the SSB spectrum between the electronic threshold and the highest energy434

α-particle (5544-keV in this case). In sauce:435

run_info = sauce.Run(data_path)436

ssb = sauce.Detector("ssb")437

# ssb hits are in module 0, channel 0438

ssb.find_hits(run_info , module=2, channel =0)439

Since the spectrum is not energy calibrated, we must identify the adc channels by eye to440

determine the appropriate cut. In a Python repl this can be done using matplotlib, which441

sauce has a few wrappers in order to call reasonable defaults:442

import matplotlib.pyplot as plt443

444

x, y = ssb.hist(0, 32000 , 32000)445

sauce.utils.step(x, y)446

plt.show()447

# we have now seen where to apply the cut448

5https://parquet.apache.org/

14

https://parquet.apache.org/


SciPost Physics Codebases Submission

Figure 7: Sketch of the side view of the coincidence setup used to determine the
activity of the 241Am source. A CeBr scintillator detects the γ-rays coincident with
α-particles in the silicon surface barrier (SSB) detector. The acrylic window serves as
the vacuum interface for chamber. The gap between the the CeBr detector and the
acrylic window is only for visualization purposes.

ssb.apply_cut ((0, 3100))449

# counts are the number of rows450

c_ssb = ssb.counts ()451

The SSB resolution was limited in this case, and as a result the 5468 keV peak cannot be452

separated from the 5511 and 5544 keV peaks. Closer inspection of the data prior to the cut453

shows that pile up was present, but based on just the high energy region is on the level of454

0.01% of all events.455

A similar analysis follows for the CeBr detector, but now is limited to the 60 keV region.456

Deducing Nγ for the 60 keV region posed more difficulty as is shown in Fig. 8. The low energy457

tail comes from interaction of the gamma rays with the source backing, silicon detector, and458

acrylic window. Depending on the exact energy cut taken, the final deduced activity could459

fluctuate over 3%. A relatively narrow region was defined around the maximum of the photo-460

peak. A side band estimate of the background was taken from the 100 channels adjacent to461

the 60 keV peak. The code in sauce:462

cebr = sauce.Detector("cebr")463

cebr.find_hits(run_info , module=2, channel =1)464

465

# regions of interest466

peak_region = [1200 , 1600]467

bkg_region = [2000 , 2100]468

peak_bins = peak_region [1] - peak_region [0]469

470

# copy creates a new detector instance471

bkg = cebr.copy().apply_cut(bkg_region).counts ()472

bkg_per_bin = bkg / (bkg_region [1] - bkg_region [0])473

474

cebr.apply_cut(peak_region)475

c_cebr = cebr.counts () - (peak_bins * bkg_per_bin)476

15



SciPost Physics Codebases Submission

0 1000 2000 3000 4000 5000 6000
Channel Number (arb. unit)

0

1000

2000

3000

4000

Co
un

t/C
ha

nn
el

 (a
rb

. u
ni

t)

Figure 8: γ-ray singles spectra of the CeBr detector. Shown are the 33-keV and
60-keV states with heavy low energy tailing induced from the material between the
source and the detector.

The “copy” command is necessary to avoid destructive operations on the peak Detector object477

and it copies all information into a fresh “Detector” object.478

Nαγ requires the use of the referenced event builder. In this case, the reference was the479

energy gated silicon detector. A build window of ±1 µs was selected to account for the480

T1/2 = 67.2(7) [21] 6 half life of the state. The event building dead time (Eq. (4)) was481

0.13%. Coincidences were constructed for both for the CeBr peak + tail and peak only energy482

gates. The random coincident rate was estimated from the flat portion of the spectra. The483

code:484

eb = sauce.EventBuilder ()485

eb.add_timestamps(ssb)486

eb.create_build_windows (-1000, 1000) # nanoseconds487

488

coin = sauce.Coincident(eb)489

ssb_cebr = coin[ssb , cebr]490

ssb_cebr["dt"] = ssb_cebr["evt_ts_ssb"] - ssb_cebr["evt_ts_cebr"]491

492

peak_region = [-500, 250]493

bkg_region = [250, 1000]494

peak_bins = peak_region [1] - peak_region [0]495

496

bkg = ssb_cebr.copy().apply_cut(bkg_region , axis="dt").counts ()497

bkg_per_bin = bkg / (bkg_region [1] - bkg_region [0])498

499

c_coin = ssb_cebr.apply_cut(peak_region , axis="dt") - (peak_bins *500

bkg_per_bin)501

The last element needed is the total running time of the experiment in seconds. We can closely502

approximate this by using the timestamps of first and last hits of the run:503

dt = (run_data.data["evt_ts"][-1] - run_data.data["evt_ts"][0]) / 1e9504

505

activity = (( c_cebr * c_ssb) / c_coin) / dt / 37000506

Errors from all source (background estimates and counting statistics) were propagated507

through the calculations via Monte Carlo and can be found in the jupyter notebook. The508

resulting samples were well described by a normal distribution, and we quote that distributions509

mean and standard deviation for the reported activities. Our value is N0 = 1.284(23) µCi. The510

statistical uncertainty is dominated by the counting uncertainty in the number of coincidences.511

This value is in slight tension with the NIST value of N0;NIST = 1.230(15) µCi. Systematic512

16



SciPost Physics Codebases Submission

effects such as non-uniformity of the active area of the 241Am source were difficult to estimate513

due to the poorly controlled geometry, but are thought to not amount to more than 5%.514

Looking at the code samples for this example, it should be clear that in the case of simple515

analysis tasks sauce leads to a very declarative format. There is not a single level of indention516

in the whole analysis, meaning we did not have to write loops, conditionals, or dedicated517

functions even though we essentially started from raw list mode data. Despite not knowing518

the exact regions to define our gates, it was never necessary to alter any of the code nor update519

the body of a loop. It serves as a demonstration that the framework outlined in this paper is520

well matched to its problem domain.521

4.2 SECAR Focal Plane Detectors522

The purpose of this example analysis is to demonstrate a more advanced analysis that requires523

all of the tools presented in this paper. It will require referenced and referenceless event524

building, tagging, and direct usage of data frame operations. Although it is significantly more525

complicated then the proceeding example, it shows that sauce is not limited to simple use526

cases.527

SECAR is a recoil mass separator located at the Facility for Rare Isotope Beams. It is devoted528

primarily towards measuring (p,γ) reactions of astrophysical interest on radioactive nuclei up529

to A = 65 [22]. Through a combination of magnetic dipoles and velocity filters, the intense530

flux of beam particles are separated from the reaction products. After mass separation, the final531

section of SECAR consists of two position sensitive micro channel plate (MCP) detectors and532

stopping detectors including a double sided silicon strip detector (DSSSD) and/or ionization533

chamber (IC). These combination of detectors are expected to increase the overall rejection of534

beam particles another 3 orders of magnitude. For the data considered here a hybrid detector535

(a DSSSD inside of an IC) and two MCPs were used. Descriptions of MCPs similar to those536

used here can be found in Ref. [23] and likewise for the IC in Ref. [24]. The data is from a537

100 µCi 241Am source positioned at the target position of SECAR. The separator was tuned to538

transmit 4.6 MeV α-particles to the final focal plane. The lower energy is a result of amount539

of material required for such a high activity. A 148Gd source was also positioned upstream of540

the hybrid detector to serve as a constant source of counts for gain matching of the DSSSD541

strips. Due to the low energy of the α-particles, the IC was not utilized and no gas was added542

to the hybrid detector.543

Our goal is to look at 3 fold coincidences between the two MCPs and the DSSSD. These544

coincidences require reducing the data by combining the 4 position signals for each MCP, and545

the 32 strips for the front and back of the DSSSD. The general strategy for making a composite546

detector in sauce is to tag each channel with an identifier, make a union of all of the channels547

into a single Detector object, perform referenceless event building, and then use group by548

operations on the events to reduce the data in the desired manner.549

Lets start with the MCPs, since their analysis is relatively simple compared to the DSSSD.550

For each MCP, the four corners of a resistive anode encoder are read into a channel and are551

denoted “A”, “B”, “C”, and “D”. The relation between the charge detected in the corners and552

the horizontal (X) and vertical position(Y) is:553

X ∼
QB +QC

QA +QB +QC +QD
(7)

Y ∼
QA +QB

QA +QB +QC +QD
.

6T1/2 was taken from ENSDF (https://www.nndc.bnl.gov/ensdf) which updated the suggested value from
Ref. [21].

17



SciPost Physics Codebases Submission

Figure 9: Sketch of the side view of the SECAR focal plane section used in this exam-
ple. Two position sensitive MCPs are mounted on the top of the chambers to detect
electrons produced by the interact of charged particles with aluminized Mylar foils.
A 148Gd source is located in front of the ionization chamber window, but out of the
mid-plane of the separator. An additonal Mylar window provides the vacuum inter-
face between the gas filled ionization chamber and the beam line. Note that for the
data presented here the IC was evacuated and at vacuum, with only the DSSSD being
biased.

These positions must be further calibrated if the position information is to correspond to the X554

and Y coordinates of the separator; however, this is beyond the scope of the current example.555

Lets look at the first block of code for the upstream detector:556

557

corners = ["A", "B", "C", "D"]558

channels = [4, 5, 6, 7]559

umcp = [560

sauce.Detector("temp") # this detector will not need a name561

.find_hits(run_data , crate=1, channel=channel , module =2)562

.apply_threshold (2.0) # cut out noise563

.tag(corner , tag_name="corner") # apply tag564

for corner , channel in zip(corners , channels)565

]566

umcp = sauce.detector_union("umcp", umcp)567

568

umcp.build_referenceless_events (500.0) # 500.0 ns build window569

The code is terse, but uses a list comprehension to build a list of detectors for each of570

the corners, applies a small threshold value to get rid of low energy hits, and then tags each571

detector with the name of the corner. This list is then used to build a single MCP detector572

via a union operation. Finally referenceless event building is performed with a 500 ns build573

window. Calculating X and Y from Eq. 7 requires that we only look at events where each of574

the four channels fired. Complex requirements like this are beyond the operations of sauce,575

and require that we drop down to the data frame level to accomplish our goal. Using polars576

we can do the following: count the number of unique corners in each event and assign that577

number to a new column, then filter the data frame to keep only the rows that have 4 corners578

and at least 4 hits, finally if there are multiple hits from a single corner in an event keep the579

earliest one.580

18



SciPost Physics Codebases Submission

581

# make a copy of the detector data582

df = umcp.data583

# see the polars documentation on windowing functions584

# this counts the unique corners within the "event_umcp" group ,585

# and assigns them to a new column called "corners"586

df = df.with_columns(587

pl.col("corner").n_unique ().over(pl.col("event_umcp")).alias("588

ncorner")589

)590

# next drop the rows that don’t have each of the four corners591

df = df.filter ((pl.col("ncorner") == 4))592

# drop multiple hits keeping the earliest593

df = df.unique (["event_umcp", "corner"], maintain_order=True , keep="594

first")595

umcp.data = df # update the detector data frame596

Positions can be calculated and associated with each event. The function below shows597

how this is achieved, but there are several equivalent ways to arrive at the same answer. The598

constants of 0.5 and 8.0 are chosen to give an approximate physical scale, but a means of599

calibration would be needed to make these positions meaningful.600

def calc_pos(mcp):601

q_a = get_corner(mcp.data , "A")602

q_b = get_corner(mcp.data , "B")603

q_c = get_corner(mcp.data , "C")604

q_d = get_corner(mcp.data , "D")605

denom = q_a + q_b + q_c + q_d606

607

x_raw = ((q_b + q_c) / denom - 0.5) * 8.0608

y_raw = ((q_a + q_b) / denom - 0.5) * 8.0609

610

# each event will now have a mean energy and the earliest611

timestamp612

mcp.data = mcp.data.group_by("event_" + mcp.name , maintain_order=613

True).agg(614

pl.col("adc").mean(),615

pl.col("evt_ts").min(),616

)617

618

# assign the position values.619

mcp["x_raw"] = x_raw620

mcp["y_raw"] = y_raw621

622

return mcp623

Each side of the DSSSD undergoes a similar procedure to the MCPs, where each strip624

is tagged and then combined via detector_union. It is possible using referenceless event625

building to correct for inter-strip events, where charge is distributed among adjacent strips626

[25, 26]. Figure 10 shows these events by plotting the hit that arrives first versus the hit627

that arrives second. Additional details can be found in supplemental notebook, the correction628

process is lengthy and requires gain matching the 32 strips per side, combining charge-sharing629

events, then reducing each column based on its own logic (i.e we keep the strip with the630

maximum energy in an event, the earliest timestamp, etc.).631

Relating the processed MCP and DSSSD hits requires referenced event building. The front632

strips of the DSSSD are the best candidate for the reference detector. An estimate of the633

efficiency of the MCPs for the alpha particles can be found by assuming the DSSSD is 100%634

efficient and looking at the number of coincidences in the 241Am peak.635

eb = sauce.EventBuilder ()636

19



SciPost Physics Codebases Submission

Figure 10: First and second energies for multiplicity equals 2 events from the DSSSD.
The charge from inter-strip hits is distributed into two adjacent strips as show here.
Strips were gain matched to the 241Am peak (assumed to be 4600 keV). Low line
is from the 148Gd source (3271 keV before the IC entrance window). Low energy
events are assumed to be electronic noise.

eb.add_timestamps(front)637

eb.create_build_windows (-500.0, 500.0)638

639

coin = sauce.Coincidence(eb)640

umcp_front = coin[umcp , front]641

642

eff = umcp_front.counts () / front.counts ()643

Doing this we see around 60− 70% efficiency for either of the MCPs. It should be clear that644

at this point we can examine any set of coincidences that we wish, and the data are ready for645

further, more detailed analysis. Histograms can be saved to a simple text file with:646

x, y = umcp_front.hist(0, 32000, 32000 , axis="energy_front")647

sauce.utils.save_txt_spectrum("dsssd_front_energy.txt", x, y)648

sauce’s role in the analysis is now finished.649

5 Discussion and Conclusions650

Looking over the examples it can been seen that the data pipeline presented throughout this651

paper has been hand tuned towards low energy nuclear physics experiments. It takes advan-652

tage of the relatively low data rates and channel numbers (in the hundreds) to ensure that653

every portion of the data reduction can be carried out interactively and iteratively. Decisions654

about how to sort data or combine the information from various detectors can be made while655

viewing the data, there is no compile and sort cycle typical to many programs in our field,656

encouraging experimenters to explore the effects of different cuts and event building schemes657

rather than worry about how to implement these steps. Once the exploratory phase is over,658

these same commands can easily be amalgamated into scripts and automated. The advan-659

tages of such a system are most apparent with trigger less digital DAQs that provide data with660

minimal structure, but any experiment that lacks a dedicated analysis framework can benefit.661

20



SciPost Physics Codebases Submission

It should be mentioned that similar methods have been described in the literature, see662

Ref. [27] and references therein, but to the author’s knowledge these frameworks only ever663

attempted to tackle data that had already undergone event building. In this regard, sauce664

is novel. By treating event building dynamically, experimenters gain full control over their665

analysis. There is no longer a distinction between operations that work event-by-event (gating,666

timing differences) and ones that can be carried out on a histogram (energy calibration, single667

channel thresholds).668

It may be noted that in the case of the SECAR focal plane analysis there was a significant669

amount of data frame specific code. Future work could focus on making such operations more670

compatible with the higher level Detector class. Additionally, the author would argue that671

much of this complexity is coming from the possibility of multiple hits in a channel during672

one event. This plagued an earlier version of sauce that relied solely on referenceless event673

building. The result was that each analysis would have to specify how to treat multiple hits on674

a channel-by-channel bases, with some channels needing to keep the most energetic hit, while675

others would need to keep the earliest. As a result, it was not clear that there was much of an676

advantage over using an event loop. Referenced event building removed this complexity by677

aggressively throwing out multiple hits, allowing a more universal analysis framework. Mov-678

ing forward, it might be beneficial to further diminish the role of referenceless event building679

and adapt as much analysis as possible to the referenced case.680

There is one more potential setback, the techniques described in this paper have been681

tailored to in memory analysis of list mode data. The focus has been on a fast and responsive682

data pipeline that can carry out complex analysis interactively, but that is incapable of handling683

data sets that would exhaust the physical memory of a system. Data sets that are more than684

20 GB per run are less common in low energy nuclear physics but by no means rare. Scaling685

the system described above so that it can handle larger than memory data is well outside686

the scope of this paper. The core idea of using data frames to provide a flat data structure687

and complement this structure with purpose built operations, however, can be adapted to688

use libraries such as Dask [28] and Vaex [29] that extend data frames to larger than memory689

data sets. It should be stressed that this step should only be taken as needed, as the in memory690

methods are typically faster and more flexible. Of all the libraries experimented with during691

the development of sauce, polars seemed the best match. It provides excellent speed, most692

notably for its reading of data from disk, and its data frame interface is well suited with the693

highly regular structure of list mode data. The out-of-memory solutions were experimented694

with, but the cost in performance was dramatic. Regardless the point stands: smaller size data695

sets are a critical part of the low energy nuclear physics mission and tools suited towards their696

needs have an important place in the field.697

Acknowledgements698

The author would like to the C. Brune, C. Iliadis, S. Johnson, R. Longland, and K. Setoodehnia699

for their reading of this manuscript and helpful comments.700

Funding information This material is based upon work supported by the U.S. DOE, Of-701

fice of Science, Office of Nuclear Physics Science, under grants DE-FG02-88ER40387 (Ohio),702

DE-FG02-97ER41041 (UNC) and DE-FG02-97ER41033 (TUNL). SECAR is supported by the703

U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Num-704

ber DE-SC0014384 and by the National Science Foundation under grant No. PHY-1624942705

with additional support from PHY 08-22648 (Joint Institute for Nuclear Astrophysics) and706

PHY-1430152 (JINA-CEE).707

21



SciPost Physics Codebases Submission

References708

[1] F. Abe, H. Akimoto, A. Akopian, M. G. Albrow, S. R. Amendolia, D. Amidei, J. Antos,709

C. Anway-Wiese, S. Aota, G. Apollinari, T. Asakawa, W. Ashmanskas et al., Observation710

of top quark production in pp collisions with the collider detector at fermilab, Phys. Rev.711

Lett. 74, 2626 (1995), doi:10.1103/PhysRevLett.74.2626.712

[2] S. Abachi, B. Abbott, M. Abolins, B. S. Acharya, I. Adam, D. L. Adams, M. Adams, S. Ahn,713

H. Aihara, J. Alitti, G. Álvarez, G. A. Alves et al., Observation of the top quark, Phys. Rev.714

Lett. 74, 2632 (1995), doi:10.1103/PhysRevLett.74.2632.715

[3] P. K. Sinervo, Top Quark Studies at Hadron Colliders, arXiv e-prints hep-ex/9608005716

(1996), doi:10.48550/arXiv.hep-ex/9608005, hep-ex/9608005.717

[4] I.-Y. Lee, The gammasphere, Nuclear Physics A 520, c641 (1990),718

doi:https://doi.org/10.1016/0375-9474(90)91181-P, Nuclear Structure in the719

Nineties.720

[5] J. Agramunt, J. L. Tain, F. Albiol, A. Algora, E. Estevez, G. Giubrone, M. D. Jor-721

dan, F. Molina, B. Rubio and E. Valencia, A triggerless digital data acquisition722

system for nuclear decay experiments, AIP Conference Proceedings 1541(1), 165723

(2013), doi:10.1063/1.4810829, https://pubs.aip.org/aip/acp/article-pdf/1541/1/724

165/11584331/165_1_online.pdf.725

[6] Smith, Nicholas, Gray, Lindsey, Cremonesi, Matteo, Jayatilaka, Bo, Gutsche, Oliver, Hall,726

Allison, Pedro, Kevin, Acosta, Maria, Melo, Andrew, Belforte, Stefano and Pivarski, Jim,727

Coffea columnar object framework for effective analysis, EPJ Web Conf. 245, 06012 (2020),728

doi:10.1051/epjconf/202024506012.729

[7] Pivarski, Jim, Elmer, Peter and Lange, David, Awkward arrays in python, c++, and numba,730

EPJ Web Conf. 245, 05023 (2020), doi:10.1051/epjconf/202024505023.731

[8] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonzalez, J. M. Hellerstein,732

A. D. Joseph and A. Parameswaran, Towards Scalable Dataframe Systems, arXiv e-prints733

arXiv:2001.00888 (2020), doi:10.48550/arXiv.2001.00888, 2001.00888.734

[9] T. Hastie, 3, p. 45–95, Routledge (1992).735

[10] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation736

for Statistical Computing, Vienna, Austria (2021).737

[11] T. pandas development team, pandas-dev/pandas: Pandas,738

doi:10.5281/zenodo.3509134 (2020).739

[12] Wes McKinney, Data Structures for Statistical Computing in Python, In Stéfan van der740

Walt and Jarrod Millman, eds., Proceedings of the 9th Python in Science Conference, pp.741

56 – 61, doi:10.25080/Majora-92bf1922-00a (2010).742

[13] G. Amadio, J. Blomer, P. Canal, G. Ganis, E. Guiraud, P. M. Vila, L. Moneta, D. Piparo,743

E. Tejedor and X. V. Pla, Novel functional and distributed approaches to data analy-744

sis available in root, Journal of Physics: Conference Series 1085(4), 042008 (2018),745

doi:10.1088/1742-6596/1085/4/042008.746

22

https://doi.org/10.1103/PhysRevLett.74.2626
https://doi.org/10.1103/PhysRevLett.74.2632
https://doi.org/10.48550/arXiv.hep-ex/9608005
hep-ex/9608005
https://doi.org/https://doi.org/10.1016/0375-9474(90)91181-P
https://doi.org/10.1063/1.4810829
https://pubs.aip.org/aip/acp/article-pdf/1541/1/165/11584331/165_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/1541/1/165/11584331/165_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/1541/1/165/11584331/165_1_online.pdf
https://doi.org/10.1051/epjconf/202024506012
https://doi.org/10.1051/epjconf/202024505023
https://doi.org/10.48550/arXiv.2001.00888
2001.00888
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1088/1742-6596/1085/4/042008


SciPost Physics Codebases Submission

[14] D. Piparo, P. Canal, E. Guiraud, X. V. Pla, G. Ganis, G. Amadio, A. Naumann and E. Tejedor,747

RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, In European Physical Journal748

Web of Conferences, vol. 214 of European Physical Journal Web of Conferences, p. 06029,749

doi:10.1051/epjconf/201921406029 (2019).750

[15] D. Hutchison, B. Howe and D. Suciu, Lara: A Key-Value Algebra underlying Arrays and751

Relations, arXiv e-prints arXiv:1604.03607 (2016), doi:10.48550/arXiv.1604.03607,752

1604.03607.753

[16] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,754

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus et al., Array programming with755

NumPy, Nature 585(7825), 357 (2020), doi:10.1038/s41586-020-2649-2.756

[17] A. P. Baerg, Measurement of radioactive disintegration rate by the coincidence method,757

Metrologia 2(1), 23 (1966), doi:10.1088/0026-1394/2/1/006.758

[18] Absolute Measurement of Alpha Emission and Spontaneous Fission, The National759

Academies Press, Washington, DC, doi:10.17226/21520 (1968).760

[19] L. P. Remsberg, Determination of absolute disintegration rates by coinci-761

dence methods, Annual Review of Nuclear Science 17(1), 347 (1967),762

doi:10.1146/annurev.ns.17.120167.002023.763

[20] Eckert & Ziegler, Eckert & Ziegler Reference & Calibration Sources Product Information.764

[21] M. Basunia, Nuclear data sheets for a = 237, Nuclear Data Sheets 107(8), 2323 (2006),765

doi:https://doi.org/10.1016/j.nds.2006.07.001.766

[22] G. Berg, M. Couder, M. Moran, K. Smith, M. Wiescher, H. Schatz, U. Hager, C. Wrede,767

F. Montes, G. Perdikakis, X. Wu, A. Zeller et al., Design of secar a recoil mass separator for768

astrophysical capture reactions with radioactive beams, Nuclear Instruments and Methods769

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated770

Equipment 877, 87 (2018), doi:https://doi.org/10.1016/j.nima.2017.08.048.771

[23] D. Shapira, T. Lewis and L. Hulett, A fast and accurate position-sensitive timing detec-772

tor based on secondary electron emission, Nuclear Instruments and Methods in Physics773

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment774

454(2), 409 (2000), doi:https://doi.org/10.1016/S0168-9002(00)00499-X.775

[24] J. Lai, L. Afanasieva, J. C. Blackmon, C. M. Deibel, H. E. Gardiner, A. Lauer, L. E. Linhardt,776

K. T. Macon, B. C. Rasco, C. Williams, D. Santiago-Gonzalez, S. A. Kuvin et al., Position-777

sensitive, fast ionization chambers, Nuclear Instruments and Methods in Physics Research778

A 890, 119 (2018), doi:10.1016/j.nima.2018.01.010.779

[25] J. Yorkston, A. Shotter, D. Syme and G. Huxtable, Interstrip surface effects in oxide pas-780

sivated ion-implanted silicon strip detectors, Nuclear Instruments and Methods in Physics781

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment782

262(2), 353 (1987), doi:https://doi.org/10.1016/0168-9002(87)90873-4.783

[26] C. Wrede, A. Hussein, J. G. Rogers and J. D’Auria, A double sided silicon strip de-784

tector as a dragon end detector, Nuclear Instruments and Methods in Physics Re-785

search Section B: Beam Interactions with Materials and Atoms 204, 619 (2003),786

doi:https://doi.org/10.1016/S0168-583X(02)02140-7, 14th International Conference787

on Electromagnetic Isotope Separators and Techniques Related to their Applications.788

23

https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.48550/arXiv.1604.03607
1604.03607
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1088/0026-1394/2/1/006
https://doi.org/10.17226/21520
https://doi.org/10.1146/annurev.ns.17.120167.002023
https://doi.org/https://doi.org/10.1016/j.nds.2006.07.001
https://doi.org/https://doi.org/10.1016/j.nima.2017.08.048
https://doi.org/https://doi.org/10.1016/S0168-9002(00)00499-X
https://doi.org/10.1016/j.nima.2018.01.010
https://doi.org/https://doi.org/10.1016/0168-9002(87)90873-4
https://doi.org/https://doi.org/10.1016/S0168-583X(02)02140-7


SciPost Physics Codebases Submission

[27] D. Graur, I. Müller, M. Proffitt, G. Fourny, G. T. Watts and G. Alonso, Evaluating query789

languages and systems for high-energy physics data, Proc. VLDB Endow. 15(2), 154–168790

(2021), doi:10.14778/3489496.3489498.791

[28] Dask Development Team, Dask: Library for dynamic task scheduling (2016).792

[29] M. A. Breddels and J. Veljanoski, Vaex: big data exploration in the era of Gaia, A&A618,793

A13 (2018), doi:10.1051/0004-6361/201732493, 1801.02638.794

24

https://doi.org/10.14778/3489496.3489498
https://doi.org/10.1051/0004-6361/201732493
1801.02638

	Introduction
	Motivation and Design Choices
	Representation of List Mode Data
	Data Frames
	Basic Nuclear Physics Analysis as Data Frame Operations

	Event Building
	Referenceless Event Building
	Referenced Event Building
	Combining Events
	Combining Separate Files

	Example Analysis
	-  Coincidence Measurement
	SECAR Focal Plane Detectors

	Discussion and Conclusions
	References

