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Abstract3

We present preliminary results of a partial-wave analysis of τ−→ π−π+π−ντ using data4

from the Belle experiment at the KEKB e+e− collider. We validate our model with a model-5

independent analysis. We see the a1(1420) and a G-parity-violating 1− [ω(782)π]P wave6

in tauon decays. Our results will improve models used in simulation studies necessary7

for measuring the electric and magnetic dipole moments and Michel parameters of the τ.8

1 Introduction9

Many studies of spin correlation in e+e−→ τ+τ−, such as measuring the electric and magnetic10

dipole moments of the τ, analyze tauon decay toπ−π+π−ντ [1].
1 However, lack of knowledge11

about τ− → π−π+π−ντ, which has never been analyzed for intermediate resonances, limits12

the precision of such measurements.13

This decay proceeds predominantly through a1(1260), a broad unflavored ground-state14

axial-vector meson [2], whose resonance shape is poorly known [3–5]. What other resonances15

are present and in what amounts is also poorly known. The COMPASS and VES experiments16

observed the a1(1420), potentially a narrow unflavored axial-vector meson, in pion-proton17

scattering [6, 7]. Seeing it in τ− → π−π+π−ντ and measuring how present it is in the decay18

will clarify whether it is a particle or an artifact of K∗K scattering [8].19

To study such matters, we perform a partial-wave analysis (PWA) of τ− → π−π+π−ντ20

using 980 fb−1 of data collected by the Belle experiment [9] at the asymmetric e+e− collider21

KEKB [10]. Consult [9] for details of the Belle detector.22

2 Event selection23

Using simulated data, we optimized our event selection to maximize efficiency and purity24

without introducing significantly uneven detection efficiency across the decay’s phase space.25

Each event has two hemispheres defined by the axis that minimizes the thrust of all detected26

charged particles and photons. We require there be three charged particles in one, the signal27

hemisphere, and one in the other, the tag hemisphere.28

1Inclusion of charge-conjugated decays is assumed throughout.
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We use a boosted decision tree (BDT), implemented with ROOT’s TMVA software [11], to29

remove events not coming from e+e− → τ+τ−. It is trained on simulated data and bases its30

decision on the sum of the momenta of charged particles and photons, the sum of energies of31

charged particles, the missing mass, the cosine of the polar angle of the missing momentum,32

the energy detected in the electromagnetic calorimeter, and the event thrust; the last is the33

most discriminating. All frame-dependent variables are calculated in the center-of-momentum34

frame.35

We veto the presence of charged kaons in the signal hemisphere by requiring the two36

particles with like charges be consistent with being pions. We veto the presence of neutral37

kaons by requiring the mass of each pair of oppositely charged pions in the signal hemisphere38

be more than 12 MeV from the known K0 mass [5]. And we reduce the presence of neutral39

pions by requiring the sum of photon energies in the signal hemisphere be below 480 MeV.40

We find 55 × 106 events, with 82% purity and 32% efficiency to find signal—the largest41

sample of τ− → π−π+π−ντ yet analyzed. Background events come mostly from e+e− → qq,42

with q = u,d, s, c, and from e+e− → τ+τ− with the τ in the signal hemisphere decaying to43

π−π+π−π0. We use a neural network to model the background in our partial-wave analysis;44

see [12,13] for more details.45

3 Partial-wave analysis46

The phase space of τ− → π−π+π−ντ has seven dimensions. We parameterize our model47

intensity in the helicity angle of the ντ, the Euler angles of the three pions in the τ rest frame,48

the π+π− squared masses, s1 and s2, and the mass of the three pions, m3π [14]. We average49

the intensity over the Euler angle that is unmeasurable because the ντ cannot be detected [13].50

We fit to the data independently in disjoint contiguous bins of m3π to decompose it into51

partial waves using an isobar model and the tensor formalism of [15]. We assume that the52

decay proceeds through a resonance X− that decays to three charged pions via a sequence of53

two-body decays, X− → ξ0π− and ξ0 → π−π+, where ξ0 is an isobar. The only requirement54

on X− in the partial-wave decomposition is that its spin and parity, J P , be 0−, 1+, or 1−; the55

presence of the last would violate G parity.56

We allow ξ0 to be ρ(770), ρ(1450), f0(500), f0(980), f0(1500), f2(1270), or ω(782). We57

model them all with the relativistic Breit-Wigner function with masses and widths the same58

as in the COMPASS PWA [3], except for the f0(500), which we model with the broad (ππ)S59

component described in [16]. Angular momentum up to 3 is allowed between ξ0 and the60

remaining pion. We denote a partial wave by J P[ξ0π]L for specific isobar resonances ξ0 and61

J P[(ππ) jπ]L for generic isobars with spin j; L is the total angular momentum of the three62

pions.63

The preliminary results of the PWA were presented in [17]. Here we present an update64

that includes systematic uncertainties. We observe that the most intense partial wave is the65

1+ [ρ(770)π]S wave, with a fit fraction of (76.42±0.05±3.29)%, where the first uncertainty66

is statistical, and the second uncertainty is systematic. The next most intense is the 1+ [σπ]P67

wave with a fit fraction of (8.40±0.02±1.16)%. The fit fraction of a partial wave is the integral68

over m3π of the intensity of that wave alone divided by the same integral of the intensity of the69

full PWA model. These fractions agree with those measured by CLEO II in τ−→ π−π0π0ντ [4].70

We use quasi-model-independent PWA (QMIPWA) [18] to verify our model. We replace71

the (ππ)S and 1+ [ρ(770)π]S models with complex step functions, letting the fit optimize72

their values [17]. We observe the narrow peak of the f0(980) in the (ππ)S wave, as shown in73

Fig. 1a.74

In [19], Mirkes and Urech stated that 1− intensity in τ− → π−π+π−ντ comes from the75
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Figure 1: QMIPWA intensities as functions of m2π with statistical uncertainties.

G-violating decay of ω(782) → π+π−, where ω(782) is produced by decay of a ρ(770),76

ρ(1450), or ρ(1700). We free the 1− [(ππ)Pπ]P wave in our QMIPWA and observe a narrow77

peak at 782 MeV, as shown in Fig. 1b. We include the 1− [ω(782)π]P wave in the conventional78

PWA and measure a fit fraction of (2.95±0.04)×10−3, consistent with the prediction of 4×10−3
79

in [19].80

4 Conclusion81

We will soon provide an updated model for τ− → π−π+π−ντ with about 15 partial waves82

and statistical and systematic uncertainties. It will be useful for simulating τ−→ π−π+π−ντ,83

necessary for measurement of the electric and magnetic dipole moments of the τ. We see the84

a1(1420) and 1− [ω(782)π]P wave in tauon decays in both conventional PWA and QMIPWA;85

this is their first sighting in tauon decay.86
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