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We address the Bose polaron problem of a mobile impurity interacting strongly with a host Bose-
Einstein condensate (BEC) through a Feshbach resonance. On the repulsive side at strong cou-
plings, theoretical approaches predict two distinct polaron branches corresponding to attractive
and repulsive polarons, but it remains unclear how the two are related. This is partly due to the
challenges resulting from a competition of strongly attractive (destabilizing) impurity-boson inter-
actions with weakly repulsive (stabilizing) boson-boson interactions, whose interplay is difficult to
describe with contemporary theoretical methods. Here we develop a powerful variational framework
that combines Gaussian correlations among impurity-boson scattering states, including up to an
infinite number of bosonic excitations, with exact non-Gaussian correlations among bosons occu-
pying an impurity-boson bound state. This variational scheme enables a full treatment of strong
nonlinearities arising in the Feshbach molecule on the repulsive side of the resonance. Within this
framework, we demonstrate that the interplay of impurity-induced instability and stabilization by
repulsive boson-boson interactions results in a discrete set of metastable many-body bound states at
intermediate energies between the attractive and repulsive polaron branches. These states exhibit
strong quantum statistical characteristics in the form of non-Gaussian quantum correlations, requir-
ing non-perturbative beyond mean-field treatments for their characterization. Furthermore, these
many-body bound states have sizable molecular spectral weights, accessible via molecular spec-
troscopy techniques. This work provides a unified theory of attractive and repulsive Bose polarons
on the repulsive side of the Feshbach resonance.

I. INTRODUCTION

Explaining the behavior of quantum materials through
the notion of quasiparticles is a central paradigm in
condensed matter physics. While many phases of mat-
ter, such as conventional superconductors and Fermi liq-
uids, possess quasiparticle-like excitations [1–3], in some
strongly correlated phases, such as strange metals, the
excitation spectra defy quasiparticle-based descriptions
[4–8]. Thus, studying the detailed mechanisms of quasi-
particle formation and breakdown is of prime interest.
An emblematic scenario for quasiparticle formation is
the dressing of electrons in solid-state systems by lat-
tice vibrations, giving rise to a quasiparticle termed po-
laron. Since its first formulation by Landau and Pekar
[9], the polaron concept has been central to describing
electron mobility in organic semiconductors [10–15], exci-
ton transport in light-harvesting complexes [16–18], and
phonon-based theories of high-temperature superconduc-
tivity [19–24]. The problem of characterization and de-
scription of polarons naturally falls in the broader con-
text of mobile quantum impurity problems, where a single
mobile impurity interacts with the elementary excitations
of a many-body medium and gives rise to a quasiparticle
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with renormalized properties.

Recent developments in the realization of synthetic
quantum systems with increasing degrees of control and
tunability resulted in an upsurge in research on mobile
quantum impurity problems, both in fermionic [25–34]
and bosonic [35–45] systems. In the latter case, the
quasiparticle formed from an impurity resonantly cou-
pled to a bosonic medium in a Bose-Einstein Condensate
(BEC) phase is called Bose polaron. Numerous theo-
retical works have studied different properties of Bose
polarons, including spectral response and quasiparticle
properties [35, 36, 42, 44, 46–49], the implication of three-
body correlations on the state of Bose polarons [50–54]
and finite-temperature effects [55–57], to name a few.
The powerful toolbox available in atomic gas settings
has enabled the investigation of various aspects of Bose
polaron physics, reaching impurity-medium interactions
deep into the strong coupling regime. Contrary to its
weak coupling counterpart, the strong coupling regime
poses substantial challenges to both experiments and the-
ory and comes with many aspects that, as we now review,
are still poorly understood.

In particular, a unified theoretical framework is lack-
ing that could describe the connection of repulsive and
attractive polarons. The mainly employed theoreti-
cal methods so far either included an infinite number
of weakly correlated excitations in the polaron cloud
[49, 58, 59] or a highly restricted number of potentially
strongly correlated excitations [35, 42, 43]. On the repul-
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FIG. 1. Schematic illustration of the Bose polaron spectrum
across an impurity-boson Feshbach resonance for repulsively
interacting bosons. In the presence of inter-boson interac-
tions, the attractive polaron persists to the repulsive side as
a well-defined resonance, while other metastable many-body
bound states appear in addition to the repulsive polaron.
These many-body bound states emerge due to the compe-
tition of multiple impurity-boson binding and inter-boson re-
pulsion. The structure of the main component of each many-
body bound state is shown schematically.

sive side of the Feshbach resonance the former approaches
do not include an attractive polaron branch. In contrast,
the latter approaches predict that the attractive polaron
continuously evolves into the molecular dimer state, en-
ergetically well below the metastable repulsive polaron,
as the Feshbach resonance is crossed. We will argue in
this article that neither of these scenarios is completely
correct.

The peculiar nature of the Bose polaron problem at
strong couplings becomes clearer by considering a static
impurity interacting with an ideal, i.e. non-interacting
BEC via an attractive potential. The strong coupling
regime occurs when the impurity-boson potential admits
a bound state with energy −EB < 0. In this regime, be-
yond a certain scattering length, a long-lived metastable
polaronic state with energy ERP > 0 emerges, known as
repulsive polaron, that involves the depletion of bosons
close to the impurity from the polaron cloud. The repul-
sive polaron is unstable against the decay of bosons to
the bound state. However, the number of decaying par-
ticles is not restricted for bosons, unlike fermions where
Pauli blocking inhibits multiple occupations of the bound
state. Thus, successive decay of bosons is energetically
favorable, with a gain in energy per particle equal to
the impurity-boson binding energy. In this sense, the
spectrum of the system consists of an incoherent con-
tinuum of excitations on top of the repulsive polaron,
together with a discrete set of bound states with energies
En = ERP−nEB for n = 1, 2, 3, · · ·, involving n particles
bound to the impurity.

This pathological behavior, first noted in Ref. [49] and
discussed in further detail in [59], initiated active the-

oretical research to improve theoretical models that in-
clude the repulsive inter-boson interactions to counter-
act the impurity-induced instability of the ground state.
In the simple model described above, including an effec-
tive inter-boson repulsion term Un2/2 stabilizes the sys-
tem. The ground state is then realized for n∗ = EB/U
bosons, giving a finite ground state energy ERP−E2

B/2U
(see Fig. 1 for a schematic illustration). Thus, an effec-
tive repulsive interaction among bosons makes the model
stable. In reality, this repulsion-induced stabilization is
manifested via short-range repulsion of bosons close to
the impurity, signifying the importance of short-range ef-
fects. Besides, an ideal theoretical description of strong
coupling Bose polarons must involve an indefinite num-
ber of interacting bosons in the polaron cloud to prop-
erly capture the local correlations around the impurity
while interpolating to long-length scales to account for
the distortion of the condensate, rendering the problem
theoretically challenging.

Recent theoretical works have analyzed the ground
state energy by treating inter-boson interaction at the
mean-field level [60–65], showing that the ground state
energy remains finite in the thermodynamic limit. Ex-
act Monte Carlo results [66] demonstrated that the the-
oretically employed classical field treatment accurately
describes the polaron cloud of a static impurity support-
ing a bound state, when the impurity-boson interaction
range r0 is much larger than the inter-boson scattering
length aB. Interestingly, in this framework, the polaron
cloud contains infinitely many bosons with boson num-
ber N growing sub-dimensional with system’s volume V
(that is N/V → 0 as N ,V → ∞). Nevertheless, the
polaron ground state energy remains finite as the main
contribution to the energy comes from the bosons local-
ized around the impurity and not in the polaron tail.

In the opposite limit r0 ≪ aB, the standard one-
parameter modeling of the low-energy scattering pro-
cesses in three dimensions by the scattering length has
to be amended by inclusion of short range details of the
impurity-boson and boson-boson interaction potentials
[63]. A non-local version of the Gross-Pitaevskii theory
was proposed for the regime r0 ≪ aB [67], including a
method to account for finite range effects. Furthermore,
truncated basis variational (TBV) methods exist that al-
low for the inclusion of impurity-boson correlations ex-
actly up to a few particles [48, 50]. The TBV methods
are especially suitable for cold atom realization of Bose
polarons where the impurity-boson system is described
by a two-channel model. In such models, another sta-
bilization mechanism was identified [68–70] whereby the
exchange of a closed-channel dimer effectively removes
the impurity from the system and reduces the number
of bound bosons to only a few, even in a non-interacting
bosonic system. Although these TBV methods predict
polaron energy accurately, their accuracy is limited by
their few particle nature for observables such as quasi-
particle residue that are sensitive to the particle number.
The proper inclusion of an indefinite number of excita-
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tions while at the same time accounting for finite-range
impurity-boson and boson-boson interactions remains a
central challenge in the development of an all-coupling
theory of Bose polarons in a BEC.

Thus far, theoretical works on strong coupling Bose
polarons have mainly focused on the independent char-
acterization of the repulsive and attractive Bose polaron
branches. In this work, we refine the understanding of
strong coupling Bose polarons by addressing the physics
of several metastable states that appear in this regime
in the form of many-body bound states in addition to
attractive and repulsive polarons. The existence of such
states is already signaled in the simple stability argu-
ment laid out above, namely, that until repulsive in-
teractions penalize bound state occupation beyond n∗

bosons, all the n−times occupations of the bound state
with n ≤ n∗ are energetically favorable. Such many-body
bound states were studied before in the context of Ryd-
berg [71] and ionic [72] impurities immersed in bosonic
quantum gases, and for neutral impurities in two dimen-
sions [73]. While for Bose polarons, such metastable
bound states have been predicted before [49], the crucial
effects of inter-boson repulsion have not been included so
far.

To characterize these metastable states, we develop a
variational principle that is able to accommodate the ef-
fects outlined above in a numerically efficient manner,
and is accurate as long as the bound state is well sep-
arated from the other states in the bosonic one-particle
spectrum. This variational principle builds upon a phe-
nomenological model we formulate that enables to cap-
ture the essential correlations relevant for strong coupling
Bose polarons. Although this variational scheme is suit-
able for generic impurity-condensate systems in arbitrary
dimensionality, as a concrete example we focus on cold
atom systems and characterize the metastable bound
states emerging on the repulsive side of an impurity-
boson Feshbach resonance.

Our variational approach enables us to unveil inter-
esting properties of these states. For instance, the vari-
ational energy of these metastable bound states lie in
between the attractive and repulsive polaron branches,
and behave non-monotonously with particle number, re-
sulting in level-crossings among the states (see Fig. 1).
Moreover, the statistics of bosons bound to the impu-
rity in these states exhibit strong quantum mechanical
features, including non-Gaussian quantum correlations
and interaction-induced anti-bunching. While the quan-
titative aspects of these effects depend on the particular
setting considered, the underlying physical principles are
general, and we expect such effects to occur in a broad
class of impurity-BEC systems. Our results pave the
way for investigating the implications of these metastable
many-body bound states for Bose polaron physics at
strong couplings.

Overall, our approach provides a unified theory of re-
pulsive and attractive Bose polarons: we argue that the
remnant of the attractive polaron branch on the repulsive

side of the Feshbach resonance coincides with the lowest-
lying multi-boson bound state around the metastable re-
pulsive polaron. As the resonance is crossed the attrac-
tive polaron adiabatically evolves first into a molecular
bound state with (approximately) one bound boson –
as proposed in Ref. [35] – but then continues to adia-
batically evolve into an (approximate) two-boson-plus-
impurity bound state, and so on. Thereby, the stable
attractive polaron on the repulsive side of the Feshbach
resonance, along with additional metastable many-body
bound states, is understood as a necessary and direct
consequence of having a metastable repulsive-polaron
saddle-point; i.e. the repulsive polaron cannot exist with-
out its attractive counterpart. Put differently, for repul-
sive impurity-boson interactions, repulsive polaron is the
stable ground state of repulsively interacting bosons, thus
it exists without any attractive polaron or other lower en-
ergy resonances. However, for attractive impurity-boson
interactions, whenever the repulsive polaron branch ex-
ists, other lower energy resonances such as the attractive
polaron branch and/or, depending on the setting, further
few- and many-body states such as clusters or many-body
bound states necessarily have to exist. This is because
the repulsive polaron is not anymore a stable lowest en-
ergy state. Thus, novel experimental schemes for detect-
ing the low-lying states and characterizing their proper-
ties is worthy of more research efforts, although detection
of these states is difficult with the conventional impurity
spectroscopy techniques.

The rest of the paper is organized as follows: in Sec. II,
we outline the theoretical formalism and introduce our
variational principle. In Sec. III, we apply our theo-
retical method to the special case of cold atomic Bose
polarons, extract their energies and quantum correlated
nature revealed by quantum statistics of bosons in the
bound state, and discuss possible experimental detection
of these states by molecular spectroscopy. In Sec. IV we
compare the variational scheme presented here to exist-
ing methods and discuss its merits and limitations. We
conclude in Sec. V and draw several future directions.

II. THEORETICAL FORMALISM

A. Model

We consider a mobile impurity of mass M coupled
to a bosonic medium, consisting of particles of mass
m in a condensed phase with density n0 in three di-
mensions. The boson-boson and impurity-boson inter-
actions are modeled by single-channel central potentials
UBB(x) and VIB(x), respectively. The impurity is de-

scribed by its position and momentum operators X̂ and
P̂ = −iℏ∇X, and the bosonic environment by the field

operators ϕ̂x and ϕ̂†x satisfying bosonic commutation re-

lations [ϕ̂x, ϕ̂
†
x′ ] = δ(3)(x − x′), [ϕ̂x, ϕ̂x′ ] = [ϕ̂†x, ϕ̂

†
x′ ] = 0.

It is convenient to treat the condensed system in a grand-
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canonical ensemble by introducing a chemical potential
µ fixing the condensate’s mean particle number.

The total Hamiltonian Ĥtot describing the system
takes the form

Ĥtot = P̂
2
/2M +

∫

x

VIB(x− X̂) ϕ̂†xϕ̂x + ĤB , (1)

with
∫
x
≡
∫
d3x. It consists of the impurity kinetic en-

ergy, impurity-boson interaction, and the bosonic Hamil-
tonian ĤB, given by

ĤB =

∫

x

ϕ̂†x
(
− ℏ2∇2/2m− µ

)
ϕ̂x

+
1

2

∫

x,x′
UBB(x− x′) ϕ̂†xϕ̂

†
x′ ϕ̂x′ ϕ̂x .

(2)

The problem is further simplified by transforming to
the frame co-moving with the impurity. This is achieved
through the Lee-Low-Pines transformation [44] ÛLLP =

exp
(
i/ℏ X̂ · P̂bath

)
, where P̂bath =

∫
x
ϕ̂†x(−iℏ∇x)ϕ̂x is

the total momentum operator of the bath. Under ÛLLP,
a state |Ψ(K0)⟩ with well-defined total momentum K0

transforms to

|Ψ(K0)⟩LLP = ÛLLP |Ψ(K0)⟩ = |K0⟩imp ⊗ |ΨK0⟩bath ,
(3)

which enables restricting the total Hilbert space to the
sector with well-defined impurity momentum K0. The
transformed total Hamiltonian under ÛLLP reads

ĤLLP =
ℏ2

2M
K2

0 −
ℏ
M

K0 · P̂bath +
: P̂

2

bath :

2M

+

∫

x

VIB(x) ϕ̂
†
xϕ̂x

+

∫

x

ϕ̂†x
(
− ℏ2∇2/2mred − µ

)
ϕ̂x

+
1

2

∫

x,x′
UBB(x− x′) ϕ̂†xϕ̂

†
x′ ϕ̂x′ ϕ̂x ,

(4)

where K0 is the total momentum of the system, m−1
red =

m−1 + M−1 is the impurity-boson reduced mass, and
: · · · : denotes normal ordering of field operators. Eq. 4

is obtained using Û†
LLP P̂ ÛLLP = P̂ − P̂bath and the re-

placement P̂ → K0 on the restricted Hilbert space. In
the rest of the paper we focus on the case K0 = 0, which
corresponds to the overall ground state.

After introducing the model Hamiltonian, it is instruc-
tive to adopt a path integral formalism to study strong
coupling Bose polarons. Path integral formulation is able
to represent Bose polaron models in dense and dilute
media and capture crucial strong coupling effects such
as impurity-induced instability and condensate deforma-
tion. The free energy F of the system in path integral
representation takes the following form

eiF/ℏ =

∫
D[φ∗, φ] eiS[φ∗,φ]/ℏ , (5)

where S[φ∗, φ] is the action in terms of the classical fields
φ∗ and φ, written as

S[φ∗, φ] =
∫
d3+1x

(
φ∗ iℏ∂tφ−HLLP[φ

∗, φ]
)
. (6)

It is standard to treat F within a saddle point approxima-
tion, that involves finding the saddle points of S[φ∗, φ].
Crucially, the saddle point analysis of the action re-

veals the existence of repulsive and attractive polarons
on the repulsive side of the Feshbach resonance as the
unstable, respectively, stable saddle points of the action.
It is a key messages of our work to underline the necessity
of going beyond the saddle point approximation to study
the physics of metastable many-body bound states, as
those states emerge due to the strong modification of the
energy landscape around the repulsive polaron by inter-
boson interactions. Nevertheless, as a starting point of
the theoretical construction it is necessary to outline a de-
tailed picture of the saddle point structure of the model.
This is the topic of the next subsection.

B. Saddle point analysis

1. Mean-field decoupling of ĤLLP

To obtain the saddle point solutions and analyze the
associated energy landscape, it is instructive to perform
a mean-field decoupling of the Hamiltonian. To this end,

we separate ϕ̂x into a classical component φx represent-

ing the condensate, and quantum fluctuations δϕ̂x, i.e.

ϕ̂x = φx + δϕ̂x. For notational convenience, we intro-
duce the Nambu vector δΨ̂ with coordinate representa-

tion δΨ̂x = (δϕ̂x, δϕ̂
†
x)

T .
Within the mean-field theory, the elementary exci-

tations of the system are modeled by weakly interact-
ing quasiparticles with Bogoliubov-type field operators

B̂x = (β̂x, β̂
†
x)

T related to δΨ̂ through the canonical

transformation δΨ̂x =
∫
y
SxyB̂y, where Sxy are 2 × 2

matrices. Note that both the classical component φx as
well as the Bogoliubov modes B̂x should be calculated in
the presence of the impurity in the Lee-Low-Pines frame,
as explained below.
Correspondingly, the vacuum state of elementary exci-

tations |GS⟩, defined by β̂x |GS⟩ = 0, is connected to the

bosonic vacuum |ø⟩ by |GS⟩ = Ŝ |ø⟩ where

Ŝ = exp

(
i

2
δΨ̂† Ξ δΨ̂

)
, (7)

is a bosonic squeezing operator. In Eq. 7, Ξ is a Her-
mitian matrix related to S by S = exp

(
iΣzΞ

)
with

Σz = σz δ
(3)(x − x′) and σz the Pauli-z operator. For

shorthand notation, matrix multiplication implies in-
tegration over spatial coordinates and summation over
Nambu components. To fulfill the bosonic commutation
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relations for β̂x and β̂†
x, S must be a symplectic matrix

satisfying S†ΣzS = Σz.
By means of Wick’s theorem, ĤLLP takes the form (see

Appendix A)

ĤLLP = E[Φ,Γ] +
(
δΨ̂† · ζ[Φ,Γ] + h.c.

)

+
1

2
: δΨ̂†HMF[Φ,Γ]δΨ̂ : +Ĥ3 + Ĥ4 .

(8)

Here, Φx = (φx, φ
∗
x)

T , the covariance matrix Γ is de-

fined by 2Γ = ⟨GS| {δΨ̂, δΨ̂†} |GS⟩ − I and can be ex-
pressed in terms of S by 2Γ + I = SS†, I is the identity
matrix and : · · · : denotes normal ordering with respect

to β̂x and β̂†
x. Furthermore, HMF[Φ,Γ] is the mean-field

Hamiltonian, Ĥ3 and Ĥ4 are the cubic and quartic Hamil-
tonians in the field operators, respectively, and ζ[Φ,Γ] is
defined in Appendix A.

In standard mean-field theory, beyond quadratic terms
are neglected, while Φ0 and S0 are found that correspond
to the saddle point solution ζ[Φ0,Γ0] = 0 and diagonal-

ize the mean-field Hamiltonian as S†
0HMF[Φ0,Γ0]S0 =

I2 ⊗D, with I2 the 2 × 2 identity matrix and D a diag-

onal matrix. The condition 2Γ0 + I = S0S
†
0 and the de-

pendence of HMF on Γ0 require that S0 be obtained self-
consistently. The resulting normal modes B̂0 = S−1

0 δΨ̂
are the well-known Bogoliubov modes.

In the following, we analyze the quadratic terms in
ĤLLP from a mean-field viewpoint. However, as we elu-
cidate later, it is crucial to retain the higher-order terms
Ĥ3 and Ĥ4 to describe essential strong coupling effects
such as the non-Gaussian correlations of Bose polaron
many-body bound states at strong couplings.

2. Saddle point structure

Next, we analyze the saddle point and normal mode
structure of the quadratic part of ĤLLP across an
impurity-boson scattering resonance. On the attractive
side (a < 0, with a the impurity-boson scattering length),
the saddle point condition is equivalent to the Gross-
Pitaevskii equation and admits a single solution Φatt that
is the attractive polaron (dashed green line in Fig. 2).
The static and dynamic properties of the attractive po-
laron obtained within Gross-Pitaevskii were investigated
in [61–63, 67], and the predictions for cold atom settings
are in excellent agreement with the experiments. Fur-
thermore, the attractive polaron is a stable saddle point
solution, meaning that all the corresponding fluctuation
modes have positive energy, or equivalently, HMF[Φ0,Γ0]
is positive-definite (see Fig. 2(b), panel (1)).

The attractive polaron solution extends to the repul-
sive side (a > 0) and remains a stable saddle point.
Nevertheless, for the mean-field Hamiltonian HMF[Φ,Γ],
there exists a dynamical instability window of impurity-
boson interaction strength, where an unstable phase
quadrature of a Bogoliubov mode emerges [58] (see
Fig. 2(b), panel (2)).

Beyond the dynamical instability, another saddle point
solution Φrep emerges that is the repulsive polaron. The
repulsive polaron saddle point is unstable, as a single Bo-
goliubov mode with negative energy exists in the spec-
trum of HMF[Φrep,Γrep]. The existence of this unstable
mode is traced back to the bound state of the impurity-
boson potential, therefore with a slight abuse of terminol-
ogy, we call it “the bound state” or “dimer” as well (see
Appendix C for further discussion on the bound Bogoli-
ubov mode and its relation to the impurity-boson bound
state). Analogously, we call the extended modes with
positive energy “scattering Bogoliubov modes” or “scat-
tering states”. In fact, when VIB admits ν bound states,
there exists 2ν+1 solution to the Gross-Pitaevskii equa-
tion; see Refs. [61, 74]. We leave the study of the third
solution to the Gross-Pitaevskii equation for future re-
search.

In a mean-field treatment of the Bose polaron without
including inter-boson interactions [58], the presence of
the unstable mode implies that the system can decrease
its energy by filling the bound state with bosons, result-
ing in the many-body ground state energy EGS = −∞.
This pathological behavior signifies the need for a non-
perturbative beyond mean-field treatment of the Bose
polaron by the full Hamiltonian in Eq. 8, i.e. including
the cubic and quartic terms.

While an exact non-perturbative solution for the spec-
trum of ĤLLP is infeasible due to the strongly correlated
nature of the problem, one can capture the essential cor-
relations using a phenomenological model, while render-
ing a stable state analysis of the problem possible. The
formulation of this phenomenological model is one of the
main results of our work. In the following we introduce
the effective model we devise for investigating Bose po-
larons at strong impurity-boson interactions.

C. Effective Model and variational principle

The first step to obtain the effective model is to har-
ness the large seperation of energy scales between the
scattering states and the bound state of the mean-field
Hamiltonian at strong couplings. This large separation
of energy and length scales enables to treat the bound
state separately from the rest of the modes. Formally,
this separation is achieved by splitting the bosonic an-

nihilation operator into two parts, ϕ̂x = ϕ̂
(B)
x + ϕ̂

(sc)
x .

Here, ϕ̂
(B)
x =

(
uB,xb̂ + vB,xb̂

†), uB,x and vB,x are the
real space form of Bogoliubov factors associated to the

bound Bogoliubov mode, b̂ is its annihilation operator,

and ϕ̂
(sc)
x = ϕ̂x − ϕ̂

(B)
x only consists of scattering Bogoli-

ubov modes. We deploy this mode separation to recast
the Hamiltonian ĤLLP to a form that is more appropriate
for our variational treatment later on. With this mode
separation, the Hamiltonian ĤLLP of Eq. 8 takes the fol-
lowing form,
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FIG. 2. (a) Energy of polaron states, including attractive and repulsive polaron, and metastable states ms1 to ms6 (see text),
across an impurity-boson Feshbach resonance. On the attractive side (a < 0), an impurity resonance exists corresponding
to the attractive polaron branch (green dashed line), which extends to the repulsive side and remains the well-defined stable
saddle point across the resonance. On the repulsive side, the repulsive polaron branch emerges as the unstable saddle point
solution with a bound state, as well as two many-body bound states ms1 and ms2 (red and blue solid lines). The red dotted line
indicates the bare dimer energy. Beyond a critical scattering length (denoted by a vertical black dotted line), further metastable
many-body bound states ms3 to ms6 emerge in the spectrum (grey shaded solid lines). Note that the normalized energy is
rescaled to show all bound states compactly. The grey-shaded region (2) on the repulsive side is bounded by 1/kna ≃ 1.2
where µ/εB ≃ 9 × 10−3, providing a conservative bound for the validity of our theory. (b) The energy landscape over the
phase space of the bound Bogoliubov mode, around the saddle points corresponding to different regions in (a). The real and
imaginary parts of the coherent state variable αB serve as coordinates for the phase space of the bound Bogoliubov mode. In
(1), the attractive polaron (green shaded point) is a stable saddle point, with all the fluctuation modes having positive energy.
Within region (2), a dynamical instability occurs as a precursor to the formation of the repulsive polaron, signified by a single
unstable phase mode with a corresponding stable amplitude mode. In (3), the repulsive polaron (purple shaded dot) is a saddle
point solution with a single unstable Bogoliubov mode. The energy and particle number of many-body bound states in (a)
are depicted qualitatively on the energy surfaces. The radius of each circle denotes the mean bound state occupation number,
while its position on the surface denotes the energy of the state. Repulsive inter-boson interaction increases the energy of
the many-body bound state with a higher particle number. By increasing 1/kna, further many-body bound-states enter the
atom-dimer continuum (grey shaded solid lines). Increasing the binding energy increases the number of bound bosons in the
lowest many-body bound state. The vertical black dashed lines mark the level crossings between many-body bound states.

ĤLLP =
∑

n,m
n+m≤4

b̂†nb̂m Ĥn,m[ϕ̂(sc)†x , ϕ̂(sc)x ] , (9)

where Ĥn,m[ϕ̂
(sc)†
x , ϕ̂

(sc)
x ] terms only act on the scatter-

ing Bogoliubov modes, and n ,m denote powers of the
bound Bogoliubov mode operators. Note that to obtain
the form in Eq. 9, the mean-field decoupling of ĤLLP

has to be performed over the repulsive polaron saddle
point, with the corresponding condensate field Φrep and

covariance matrix Γrep. This is again because the bound
Bogoliubov mode is a well-defined unstable mode of the
repulsive polaron saddle point.

We now introduce the structure of variational states
to model the metastable many-body bound states. First,
we note that an arbitrary eigenstate of ĤLLP Eq. 9 with
energy E can be decomposed into |ψE⟩ =

∑
n an,E |n⟩B⊗

|ψn,E⟩sc, where an,E for n = 0, 1, 2, · · · are coefficients,

|n⟩B = b̂†n/
√
n! |GS⟩ is the Fock state of the bound

Bogoliubov mode, and |ψn,E⟩sc is a corresponding many-
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body state of the scattering Bogoliubov modes.
Using the separation of time scales over which the

bound and scattering Bogoliubov modes evolve, we re-
quire the variational states

∣∣ψ(var)

〉
approximating |ψE⟩

to be separable in the Hilbert space of the bound and
scattering Bogoliubov modes as

∣∣ψ(var)

〉
=
∣∣ψ(B)

〉
B
⊗
∣∣ψ(sc)

〉
sc
, (10)

where the additional subscripts “B” and “sc” refer to the
Hilbert spaces of the bound and scattering Bogoliubov
modes, respectively, and we drop them hereafter. This
approximation is in the spirit of the Born-Oppenheimer
approximation [75] used frequently in quantum chemistry
to determine the electronic structure of a molecule, by
using the separation of energy scales between the fast
and slow degrees of freedom. One then assumes that fast
degrees of freedom adiabatically follow the dynamics of
the slow degrees of freedom. In the present context, the
bound and scattering Bogoliubov modes constitute the
fast and slow degrees of freedom, respectively.

To make a more direct connection to the Born-
Oppenheimer approximation in the context of quantum
chemistry, we compare the impurity-boson system in the
present setting to atoms and simple molecules. In such
chemical systems, the energy scales for nuclear excita-
tions are orders of magnitude higher than the electronic
ones. Thus, one can assume a specific stable internal
configuration of the nuclei and focus on the electronic
degrees of freedom relevant to chemical reactions. Anal-
ogously, in the present context, when the energy scale
of the impurity-boson dimer formation is far larger than
the energy scale for dressing by long wavelength BEC
excitations, one can treat the dynamics of the bound Bo-
goliubov modes separately from the scattering modes.
In addition to this intuitive motivation, we further jus-
tify the separable structure of the variational ansatz of
Eq. 10 by giving a rigorous derivation of it in Appendix B
as the form of the exact eigenstates to leading order in a
carefully defined perturbative description of the problem.

Following the same reasoning, we identify
∣∣ψ(B)

〉
as the

eigenstate of the effective Hamiltonian

Ĥeff,B =
〈
ψ(sc)

∣∣ ĤLLP

∣∣ψ(sc)

〉

=
∑

n,m
n+m≤4

〈
ψ(sc)

∣∣ Ĥn,m[ϕ̂(sc)†x , ϕ̂(sc)x ]
∣∣ψ(sc)

〉
b̂†nb̂m ,

(11)

while the effective Hamiltonian for scattering Bogoliubov
modes reads

Ĥeff,sc =
〈
ψ(B)

∣∣ ĤLLP

∣∣ψ(B)

〉

=
∑

n,m
n+m≤4

〈
ψ(B)

∣∣ b̂†nb̂m
∣∣ψ(B)

〉
Ĥn,m[ϕ̂(sc)†x , ϕ̂(sc)x ] .

(12)

To determine the variational structure of
∣∣ψ(B)

〉
and∣∣ψ(sc)

〉
, we take

∣∣ψ(B)

〉
to be an unrestricted superposition

of Fock states |n⟩B as
∣∣ψ(B)

〉
=
∑

n ψn |n⟩B, while we

take
∣∣ψ(sc)

〉
to be a coherent state

|αx⟩ = exp

(∫

x

αx δϕ̂
†
x − h.c.

)
|Φrep⟩ , (13)

where αx is the real space profile of the coherent cloud of
bosons occupying the scattering Bogoliubov modes. We
then obtain the complete form of the variational state as

∣∣ψ(var)[ψn, αx]
〉
=

(∑

n

ψn |n⟩B
)
⊗ |αx⟩ . (14)

The Hamiltonian ĤLLP displayed as in Eq. 9, together
with the variational states presented in Eq. 14, consti-
tute the basis of our variational principle. The varia-
tional parameters ψn, αx and α∗

x are then determined by
optimizing the energy functional

H[ψ∗
n, ψn,α

∗
x, αx]

=
〈
ψ(var)[ψn, αx]

∣∣ ĤLLP

∣∣ψ(var)[ψn, αx]
〉
,

(15)

with respect to ψn and αx subject to the conditions

〈
ψ(var)[ψn, αx]

∣∣ψ(var)[ψn, αx]
〉
= 1 , (16)

∫

x

(
u∗B,xαx − vB,xα

∗
x

)
= 0 . (17)

The condition in Eq. 16 is the normalization of the varia-
tional wavefunction, while the condition in Eq. 17 results
from the requirement that |αx⟩ consists of the scattering

Bogoliubov modes only, thus b̂ |αx⟩ = 0. Note that the
parameters uB,x, vB,x are determined by the saddle-point
solution of the repulsive polaron.

Some comments on the variational scheme presented
above are in order. First, note that

∣∣ψ(B)

〉
is a many-

body state composed of a superposition of Fock states
of the bound Bogoliubov mode, hence the name “many-
body bound state”. The Hamiltonian Ĥeff,B governing
the dynamics of the bound Bogoliubov mode contains
all the interaction terms including the interaction of the
bound Bogoliubov mode with itself, as well as its inter-
action with the condensate. This Hamiltonian is easy to
treat since it is the Hamiltonian of a single mode. Thus,
one can use exact diagonalization to find its eigenstates
and eigenenergies. In this sense, one can take into ac-
count the quantum correlations of the bound Bogoliubov
excitations encoded in the obtained eigenstates exactly,
without restricting the number of bound Bogoliubov ex-
citations. Furthermore, the excitation number of scatter-
ing modes is also not restricted in the ansatz, since there
is no restriction built into the ansatz to limit the coherent
state amplitude of the scattering modes. Furethermore,
in Appendix B we rigorously justify the assumption of the
separability of the eigenstates between the bound and the
scattering Bogoliubov modes.
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To explain the intuitive meaning of this second con-
dition, we again resort to the simple model presented in
the introduction, and note that all states with n-times
occupation of the bound state where n∗ ≤ n < 2n∗ have
energy less than the repulsive polaron. If the energy dif-
ference of the ⌊2n∗⌋ state (with ⌊n⌋ the integer part of
n) to the repulsive polaron is comparable to the typical
energy of phonon excitations (which is of the order of
the BEC chemical potential µ), then a boson added to
the bound state to construct the ⌊2n∗⌋ state from the
⌊2n∗⌋−1 state would also have a comparable occupation
of the scattering states. Requiring that |E⌊2n∗⌋| be much
larger than µ, leads to µ/|εB − U/2| ≪ 1. Applying the
same argument to the effective model introduced here
leads to the condition

µ≪
∣∣H22⌊1 + εB/H22⌋

(
εB/H22 − ⌊εB/H22⌋

)∣∣ , (18)

with H22 = 1/2
∫
x,x′ UBB(x− x′) |uB,x|2|uB,x′ |2 .

Third, regarding the assumption of coherent state oc-
cupation of scattering Bogoliubov modes, note that the
bosons occupying the bound state are localized around
the impurity. Thus they screen the impurity potential
for the rest of the condensed bosons. This screening re-
sults in a modification of the condensate field that leads
to the excitation of scattering Bogoliubov modes of the
unperturbed condensate. This condensate distortion ef-
fect is captured by the coherent field αx. In principle, an
exact many-body wavefunction for the Bose polaron in-
cludes higher-order correlations and entanglement among
the excited scattering Bogoliubov modes that goes be-
yond the uncorrelated coherent state. Nevertheless, for
heavy impurities, the scattering Bogoliubov modes are
now weakly interacting and delocalized, so the entangle-
ment among these modes caused by their interactions
- either mediated by the impurity or from higher-order
processes - plays a negligible role. Thus, modeling the
excitation of scattering Bogoliubov modes by a coherent
state |αx⟩ is justified.
A final remark concerns the influence of three-body

correlations on the spectrum of the system. Our anal-
ysis ignores the more complicated three-body correla-
tions underlying Efimov states [51–53, 76]. This is fully
justified for heavy impurities where the size of excited
Efimov clusters is much larger than many-body bound
states considered here. For lighter impurities, the few-
body bound states we describe are expected to decay
into deeply bound Efimov states but we leave a detailed
analysis of their influence to future research.

In the following, we apply our theory to a relevant
experimental cold atoms setting and discuss some of the
main features of the resulting many-body bound states
on the repulsive side of the Feshbach resonance. As a
key result, we reveal non-Gaussian quantum mechanical
correlations in the bound state occupation statistics of
these states.

III. RESULTS

Here we consider a Bose polaron setting comprised of
impurity 40K atoms immersed in a BEC of 87Rb atoms
with condensate density n0 = 1.8× 1014 cm−3 and inter-
boson scattering length aB = 100 a0 with a0 = 0.529 Å
the Bohr radius [36]. The natural length and energy units
are then the inverse Fermi momentum kn = (6π2n0)

1/3

and energy En = ℏ2k2n/2mB, respectively. The impurity-
boson potential is modeled by a squarewell of the form
VIB(r) = V0 Θ(r0 − r) where r = |r| and r0 is the po-
tential range tuned properly to retrieve the impurity-
boson effective range. The boson-boson scattering poten-
tial can be modeled by a zero-range contact interaction
UBB(x) = U0 δ(x) compatible with the Born approxi-
mation. Note that the major effect of any finite boson-
boson interaction range would appear in the interaction
of bound Bogoliubov modes, while the bound-scattering
and scattering-scattering mode interactions are still well
modeled by contact boson-boson interactions. The latter
is due to the fact that only low energy scattering Bo-
goliubov modes with momenta of the order of 1/ξred are
involved, with ξ2red = ℏ2/(2mredn0U0) the modified BEC
healing length, which is much larger than the boson-
boson interaction range. Thus, we expect the effect
of non-zero boson-boson interaction to be quantitative
and only result in marginal changes in the interaction
strength of bound Bogoliubov modes.

Having described the system, we now use the varia-
tional principle explained before to obtain the relevant
stable-state solutions across the impurity-boson scatter-
ing resonance. To this end, we apply the construction
presented earlier step-by-step. Furthermore, at each step
we carry out suitable approximations that are applicable
to the problem considered here and illustrate the essen-
tial physics in a more transparent manner.

The first step is to find the repulsive polaron saddle-
point solution by the procedure outlined in Sec. II B 1. To
find Φrep and Srep, we begin by an initial guess Srep,0 = I,
and solve ζ[Φrep,0, I] = 0. The resulting solution Φrep,0

is the repulsive polaron without Bogoliubov approxima-
tion. Since for small positive impurity-boson scattering
lengths a such that a/ξ ≪ 1, the condensate distortion of
the repulsive polaron relative to the unperturbed conden-
sate is O(a/ξ) [61, 62], HMF[Φrep,0, I] equals HMF[

√
n0, I]

up to perturbative terms coming from the condensate
distortion. Thus, the Bogoliubov transformation Srep,1

that diagonalizes HMF[Φrep,0, I] is identical to the stan-
dard Bogoliubov transformation SBog of an unperturbed
BEC, up to corrections of O

(
(a/ξ)2

)
.

The next step correction to the repulsive polaron
amounts to finding Φrep,1 such that ζ[Φrep,1,ΓBog] = 0.
The differential equation ζ[Φ,ΓBog] = 0 differs from
ζ[Φ, I] = 0 only in the terms containing Γ11

Bog and Γ12
Bog,

both of the order O(λ3/2) ∼ 5 × 10−3, with λ = n
1/3
0 aB

the BEC gas parameter [77, 78]. Due to the diluteness of
cold atomic gases, λ ≪ 1, and including bosonic corre-
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lations through Γ within Bogoliubov approximation and
beyond does not affect the repulsive polaron solution and
the quantum fluctuations atop. Thus, in connection to
the special setting we consider here, hereafter we neglect
corrections due to quantum fluctuations of the repulsive
polaron and set Srep = I.
Note that in general settings, especially pertaining to

atomic BECs in lower dimensionality or exciton-polariton
condensates in semiconductor heterostructures, it is es-
sential to include the effects of quantum fluctuations
through Γ, and our theory is capable to account for such
effects in principle. In these lower dimensional settings,
the role of quantum fluctuations is fundamentally differ-
ent, and one must take great care in applying standard
treatments of weakly interacting Bose gases in higher di-
mensions [79]. Even in three dimensions, the effect of
quantum fluctuations is essential for long-range physics.
However, for the setting we consider in this work, the
excitations come either in the form of a bound Bogoli-
ubov mode, which is highly localized around the impu-
rity, and as such the effect of Bogoliubov transformation
on it becomes insignificant (see Appendix C), or in the
form of scattering modes which, as we show later, have
a vanishingly small excitation number such that their
state is almost a vacuum state. In both cases, Bogoli-
ubov transformation does not add much information to
the conclusions about the physics of the problem. How-
ever, Inclusion of quantum fluctuations through Γ terms
is essential when considering light impurities and study-
ing impurity-induced instabilities on attractive polaron,
as studied for instance in Refs. [52, 53].

The next inputs to our variational theory are the
bound state Bogoliubov factors uB,x and vB,x, which
form the bound state solution of HMF[Φ, 0]. It can be
shown that the contribution of the off-diagonal terms
in HMF[Φ, 0] to the eigenstates and eigenenergies are of
O
(
µ/εB

)
∼ 9 × 10−3, and can be neglected to the lead-

ing order. This approximation amounts to setting vB,x =
0. Furthermore, the effective potential U0|φrep,x|2 − µ
caused by the repulsive polaron’s condensate distortion
around the impurity is much weaker than VIB(x), thus
uB,x can be approximated by ηx that is the bound state
solution of −ℏ2∇2/2mred+VIB(x) - see Appendix C for a
detailed derivation of these perturbative approximations.
Note that the leading-order approximations made above
can be extended to arbitrary higher orders in a system-
atic manner, and we expect that the quantitative changes
will not alter any of the key physics of the many-body
bound states.

By carrying out the previous steps, we are in a position
to obtain the metastable states from finding the optimal
solutions of Eqs. 15, 16 and 17 by solving the variational
equations (see Appendix D for the explicit form)

δ

δα∗
x

H[ψ∗
n, ψn, α

∗
x, αx]− ληx = 0 ,

δ

δψ∗
n

H[ψ∗
n, ψn, α

∗
x, αx] = E ψn .

(19)

In Eq. 19, λ is a Lagrange multiplier determined to ful-
fill Eq. 17, and E is the energy of the metastable state
that also acts as a Lagrange multiplier to fulfill the nor-
malization condition Eq. 16. Solving Eqs. 19 gives access
to the energies and variational states of the many-body
bound states across the Feshbach resonance, which are
discussed in the next sections.

A. Energy of the many-body bound states

In the regime µ/εB ≪ 1, we already noted that the
condensate distortion αx remains small in magnitude
compared to the repulsive polaron field φrep, and as we
will discuss at the end of this subsection, the energies
and wave functions of the many-body bound states ob-
tained by solving Eqs. 19 are well approximated by set-
ting αx = 0, meaning a vacuum of scattering Bogoliubov
modes on top of the repulsive polaron. Fig. 2(a) depicts
the energies of the metastable states obtained by setting
αx = 0 (note the unusual rescaling of the energy scale.
Plots on linear scale are provided in Appendix E). In the
attractive side (region (1) in Fig. 2(a)), the only stable-
state solution corresponds to the attractive polaron Φatt

(green dashed line), studied in Refs. [60, 62, 63]. All
the fluctuation modes that are eigenstates ofHMF[Φatt, I]
have positive energy with a parabolic energy landscape
as in panel (1) in Fig. 2(b).
On the repulsive side, there exists a range of scattering

lengths where impurity-boson interactions lead to the in-
stability of the phase quadrature of a Bogoliubov mode,
leading to dynamical instability. The dynamical instabil-
ity is a precursor to the formation of repulsive polaron,
and occurs for a range of scattering lengths which lies in-
side the region (2) in Fig. 2(a). The energy landscape of
the dynamically unstable mode is depicted in panel (2) of
Fig. 2(b), where the negative- and positive-curvature di-
rections correspond to the phase and amplitude quadra-
tures, respectively.
In region (3) of Fig. 2(a), a well-defined unstable fluc-

tuation mode emerges, that is the bound Bogoliubov
mode. The possibility of multiple occupation of the
bound Bogoliubov mode results in the emergence of the
two metstable states ms1 and ms2, depicted by solid
red and blue lines, respectively, in Fig. 2(a). The cor-
responding energy landscape in the form of a mexican
hat, alongside the relative energies of various metastable
states are depicted in panel (3) of Fig. 2(b). The ori-
gin of the energy landscape corresponds to the vaccum
of the fluctuation mode, i.e. the repulsive polaron. The
metastable states ms1 and ms2 are designated on the en-
ergy landscape schematically by circles whose radii and
relative positions indicate the mean bound state occupa-
tion number and the relative energy of the states, respec-
tively.
The energy landscape minimum corresponds roughly

to the bound state component of the attractive polaron
coherent state field, obtained by calculating the overlap
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FIG. 3. Density profile of the repulsive polaron (solid purple
line), attractive polaron (green dashed line), and ms1 state
(solid red line), as a function of the radial distance from the
impurity, for (a) 1/kna = 2.0 and (b) 1/kna = 3.61 . The
density profiles of the attractive polaron and the ms1 state
are qualitatively similar.

αatt,B =
∫
x
η∗xφatt,x. In fact, we interpret the lowest-

lying many-body bound state as nothing but the remnant
of the attractive polaron branch on the repulsive side of
the Feshbach resonance. The two variational states we
employ here, i.e. the attrative polaron and the ms1 state
have similar but not identical structures, which explains
their slightly different variational energies. To further
support our claim, in Fig. 3 we compare density-profile of
bosons around the impurity for the different variational
states. The qualitative similarity of the spatial struc-
tures of the lowest-lying many-body bound state and the
attractive polaron further suggests that the two states
describe the same ground state.

Beyond a certain critical scattering length, new stable
solutions emerge from the repulsive polaron, denoted by
ms3 to ms6 in Fig. 2. These states correspond to mul-
tiple occupation of the bound state. As the interaction
strength rises, the bound state becomes more localized,
resulting in an increase in the effective inter-boson re-
pulsive interaction. At the same time, the system gains
energy by binding more bosons. While both these effects
compete, the increase in bound state energy dominates,
lowering the energy of the states with higher bound state

occupation. In terms of the saddle point structure, the in-
crease in bound state energy means that the saddle point
gets deeper, and the mean occupation number of the
bound state increases, as depicted in panel (4) of Fig 2(b).
Another implication of the competition between the in-
crease in binding energy and the repulsive interaction
is the emergence of level crossings among the metastable
states in region (4) of Fig. 2(a). The presence of such level
crossings can be explained again by the simple model laid
out in the introduction. For a fixed bound state energy
εB,0, two metastable states with n1 and n2 occupation
of the bound state with n∗(εB,0) < n1 < n2 < 2n∗(εB,0)
have energies En1

< En2
. For larger 1/kna, the increase

in binding energy has the dominant effect on the energy
of the many-body bound states, and the energy of the
state with higher bound state occupation decreases more
rapidly, resulting in the level crossing pattern.

Fig. 4 depicts the behavior of energy and bound state
occupation for the first few many-body bound states to-
gether with the attractive and repulsive polaron. The
energy of the ms1 state decreases monotonically, and its
mean bound state occupation number saturates to dou-
ble occupation for the range of scattering lengths con-
sidered. The ms2 state approaches the bare dimer in
energy and bound state occupation number. Across the
level crossings of the two lowest-lying states, ⟨NB⟩ shows
a non-monotonic behavior, and by increasing 1/kna sat-
urates to single and double occupation for ms2 and ms1
states, respectively. The ms3 state appears in the atom-
dimer continuum at a critical scattering length (marked
by the vertical dotted line in Fig. 4 (b)) and maintains
a constant ⟨NB⟩ ≃ 3. In contrast, the mean bound state
occupation number of the attractive polaron increases
monotonically with a value that remains larger than ms1
and ms2. At the level crossing of ms1 and ms3, the two
states demonstrate strong mixing, resulting in spikes of
⟨NB⟩ for both states.

Before moving on to the next section, we comment on
the approximation αx = 0 introduced earlier. In Fig. 5,
we compare the energies of many-body bound states ob-
tained from solving the full set of Eqs. 19, to the energies
obtained under the assumption αx = 0. We find that the
effect of condensate distortion on the wave functions and
energies of many-body bound states are only marginal,
and setting αx = 0 is a reasonable approximation.

The main reason behind the markedly different behav-
ior of the many-body bound states compared to the at-
tractive and repulsive polaron lies in the particular com-
position of each many-body state

∣∣ψ(B)

〉
out of dimer

Fock states {|n⟩B , n = 0, 1, 2, · · · }. Indeed, inspection of

⟨NB⟩ in Fig. 4 suggests that
∣∣ψ(B)

〉
for each of the many-

body bound states has to be close to a Fock state |n⟩B
for some n. To gain further insight into the structure of
the many-body bound states, in the next subsection, we
investigate the dimer occupation statistics of the many-
body bound states.
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FIG. 4. Energy in units of the dimer binding energy (a) and
mean bound state occupation number (b) of the many-body
bound states (red, blue and grey solid lines for ms1, ms2 and
ms3 respectively), attractive polaron (green dashed line), and
repulsive polaron (purple solid line). Initially, the ms2 state
has higher mean bound state occupation number and energy
than thems1 state, indicating the dominant effect of the inter-
boson interaction on the energy of the states. Beyond the
first level crossing, the mean occupation number of the ms1
state increases above the ms2 state due to the gain in energy
from binding more bosons. The ms3 state enters the dimer-
boson continuum at the critical scattering length indicated
by vertical dotted line in panel (b) and maintains an almost
constantNB ≃ 3. For increasing 1/kna, the mean bound state
occupation number of ms1 and ms2 states approach integer
values. At the level crossing between ms1 and ms3, the states
strongly mix, resulting in sharp spikes in ⟨NB⟩ in panel (b).
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FIG. 5. Energy of the many-body bound states including
the effect of condensate distortion obtained by fully solving
Eqs. 19 (dotted lines), compared to the energies obtained by
setting αx = 0. Including condensate distortion effects results
in marginal changes in the energy (denoted by ∆Emsi , i =
1, 2, 3 ), and wave function of many-body bound states.

B. Dimer occupation statistics of the many-body
bound states

As mentioned at the end of Sec. II B 1, pure mean-field
approaches to model the state of Bose polaron neglect the
higher order terms Ĥ3 and Ĥ4, while the latter are cru-
cial to capture the physics of many-body bound states.
One consequence of including these higher order terms
in the model is their non-perturbative effects reflected in
the genuine quantum mechanical correlations of the wave
function in the dimer Fock space, which is represented in
our variational scheme by

∣∣ψ(B)

〉
. To quantify the quan-

tum mechanical correlations of
∣∣ψ(B)

〉
, we note that it for-

mally belongs to the Fock state of a single bosonic mode

b̂, thus its characteristics can be quantified via different
quantum mechanical quasiprobability distributions used
frequently in quantum optics to characterize the quan-
tum states of light.

A quasiprobability distribution that is specially suit-
able for characterizing

∣∣ψ(B)

〉
is the Husimi Q represen-

tation, that in our context can be defined by [80]

Q(α) =
1

π

〈
α
∣∣ψ(B)

〉 〈
ψ(B)

∣∣α
〉
. (20)

In Eq. 20, |α⟩ is an arbitrary coherent state that is the

eigenstate of b̂, i.e. b̂ |α⟩ = α |α⟩.
In Fig. 6, we depict the Q representation of the states

in Fig. 4 for 1/kna = 2.74. The repulsive and attractive
polaron, both include coherent state components of the

bosonic mode b̂ with a coherent state amplitude α(sp) =∫
x
η∗x φ

(sp)
x with the superscript “sp” indicating the re-

spective saddle point. The Q representation of the saddle
point state is thus Q(sp)(α) = 1/π exp

(
− |α − α(sp)|2

)
,

which is a Gaussian distribution localized on αsp. In
contrast, the many-body bound states have markedly
different Q representations, reminiscent of Fock states.
The Q representation already indicates that the state∣∣ψ(B)

〉
contains quantum mechanical correlations with

non-Gaussian characters, as opposed to coherent and
squeezed coherent states that are characterized by el-
lipsoidal Q distributions. We again highlight that the
non-Gaussianity of the Q distribution is a result of in-
cluding higher order terms Ĥ3 and Ĥ4 in the model, and
treating the boson correlations in the dimer Fock state
sector exactly. Note that with the strong boson-boson
repulsions considered here, a truncated-basis variational
ansatz can be accurate enough to predict essential fea-
tures of the polaron, however, it is best suited for the
limit of low densities. Our theory, on the other hand, has
the capability to include a fluctuating number of parti-
cles in the polaron cloud even in dense bosonic media, as
long as the binding energy is much larger than the BEC
chemical potential.

Another useful quantity signifying the correlations of
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FIG. 6. (a) Illustration of the energy landscape and the
metastable states at 1/kna = 2.74. As in Fig. 2 (b) panels
(3) and (4), the radius, respectively, the vertical order of each
circle on the energy surface reflect the mean bound state occu-
pation number, respectively, the energy of the corresponding
metastable state. Panels (b) and (c) show the quantitative
calculations of the Q representation of the repulsive and at-
tractive polaron, respectively. Panels (d) to (f) depict the Q
representation of ms1 to ms3 states.

bosons occupying the bound state is g
(2)
B defined by

g
(2)
B =

〈
ψ(B)

∣∣ b̂†b̂†b̂b̂
∣∣ψ(B)

〉
〈
ψ(B)

∣∣ b̂†b̂
∣∣ψ(B)

〉2 . (21)

Fig. 7 depicts g
(2)
B for different many-body bound states.

We again observe that due to the effect of boson-boson

repulsion, g
(2)
B shows strong boson anti-bunching for all

the many-body bound states. Especially, the states be-

yond ms2 have g
(2)
B ≃ 1 − 1/n with n ≥ 3, a hallmark

signature of Fock states in contrast to coherent states
that have g(2)(0) = 1.

C. Spectral signatures of the many-body bound
states

Here we consider the experimental observability of the
many-body bound states we predicted above. An experi-
mentally relevant quantity in polaron spectroscopy is the
quasiparticle residue, defined as

Z(E) =
∑

i

| ⟨GS0|i⟩ |2 δ(E − Ei) , (22)
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FIG. 7. g
(2)
B of the many-body bound states. Clear devia-

tions from the results of a Gaussian state indicates the non-
Gaussian nature of bosons spatial correlations occupying the
bound state.

where |i⟩ is an eigenstate of the interacting system with
energy Ei, and |GS0⟩ is the non-interacting ground state.
In the case of Bose polarons, the non-interacting ground
state consists of an impurity and an unperturbed con-
densate with no mutual interactions. In contrast, the
interacting state is of the form Ôi |GS⟩, where Ôi creates
the appropriate excitations of the eigenstate i on top of
the interacting ground state.
In Fig. 8 (a), the variation of Z across the Feshbach

resonance is depicted for each stable states, as well as
the Z factor for attractive and repulsive polaron. We ob-
serve that although the quasiparticle weights of ms1 and
ms2 states are higher than the attractive polaron, all the
other many-body states have essentially vanishing quasi-
particle residue. This observation is compatible with the
conclusion that beyond ms2, the many-body states are
well characterized by Fock states |n⟩B for n ≥ 3 with
vanishing quasiparticle residue. Furthermore, as the re-
pulsive inter-boson interaction is decreased, the Z fac-
tor of attractive polaron and all the many-body bound
state excitations decrease due to an increasing number of
bound state excitations.
Furthermore, in connection with detecting molecular

spectra in ultracold mixtures, a molecular quasiparticle
residue can be defined as

Zmol(E) =
∑

n

| ⟨GSmol|n⟩ |2 δ(E − En) , (23)

where |GSmol⟩ is a state comprised of an unperturbed
condensate and a single impurity-boson dimer. This
quasiparticle residue is suggested in [81, 82] to de-
tect molarons and observe polaron-molecule transition
in impurity-Fermi systems. Fig. 8(b) shows Zmol of the
many-body bound states. Interestingly, ms1 and ms2
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FIG. 8. (a) Quasiparticle residue of different many-body
bound states, compared to the attractive and repulsive po-
laron. At strong couplings, the quasiparticle residue of attrac-
tive polaron and all the many-body bound states are substan-
tially smaller than the repulsive polaron for strong couplings.
(b) Molecular quasiparticle residue of the states in (a). The
states ms1 and ms2 have substantial molecular weight with
non-monotonic behavior as a function of 1/kna, in contrast to
the prediction for the attractive polaron. The sharp spikes in
Zmol of ms1 and ms3 occurs at the corresponding level cross-
ing.

states have substantial Zmol, with the non-monotonous
variation with 1/kna compatible with their bound state
occupation number. For the attractive polaron, the mag-
nitude of Zmol is of the same order of magnitude as ms1,
although quantitative differences point to the remaining
differences of these variational states. Thus, Zmol can
be a sensitive probe for detection of many-body bound
states and to elucidate the exact nature of the overall
ground state.

The ms3 state exhibits a vanishing Zmol except for
values of 1/kna close to the level crossing with ms1 state,
where Zmol of both states vary rapidly and coincide at
Zmol = 0.5.

IV. COMPARISON TO THE EXISTING
METHODS

As mentioned earlier, the crucial assumption of the
variational formalism developed in this work is the large
separation of energy scales between the dimer binding
energy εB and the typical energy of the Bogoliubov ex-
citations (of the order of µ). This condition is violated
close to the unitarity on the repulsive side. The other

important assumption concerns the existence of a well-
defined unstable Bogoliubov mode on top of the repulsive
polaron saddle point, which breaks down in the presence
of a dynamical instability.
Variational schemes such as truncated basis methods

or Gaussian state theories including boson-boson inteac-
tions are in principle able to surpass these limitations.
Truncated basis methods are able to give access to the
full excitation spectrum and include multi-body correla-
tions exactly, however, they are limited in the number
of particles included in the variational state. In compari-
son, our approach includes exact correlations only among
excitations bound to the impurity and neglects some cor-
relations of excited scattering states, that is suitable for
heavy impurities. Nevertheless, it does not restrict the
number of excitations included in the ansatz. Gaussian
state theories are able to access the exact stable saddle
point of the system by optimizing Φ and Γ. However, the
states with non-Gaussian correlations are not included in
the variational manifold.
An improvement to our ansatz is to include Bogoli-

ubov transformation as a variational parameter, and ob-
tain the modifications of the Bogoliubov spectrum due to
the presence of the impurity. This approach has already
been incorporated to study the modification of local bo-
son correlations in the vicinity of the impurity [52, 53],
and predicted many-body shifts of Efimov states. Includ-
ing these correlations in our ansatz partially accounts for
three-body correlations on a many-body level. However,
it is a numerically challenging task to obtain metastable
variational solutions and we leave this problem for future
research.

V. CONCLUSION AND OUTLOOK

In this work, we addressed the problem of Bose polaron
at strong couplings. We introduced a variational scheme
that is suitable for the regime when the impurity-boson
binding energy is much larger than the BEC chemical
potential. We presented a comprehensive theoretical for-
malism that is sufficiently general to be applicable to di-
lute and dense bosonic media in any dimensions, ranging
from ultracold atomic mixtures to excitonic condensates
in semiconductor heterostructures, and include effects
that are crucial to describe Bose polarons at strong cou-
plings. We demonstrated that the interplay of impurity-
induced instability and repulsive inter-boson interactions
leads to the existence of multiple metastable states in the
form of many-body bound states with intermediate ener-
gies lying between the attractive and repulsive polaron.
Crucially, the existence and properties of the many-

body bound states we predict are closely linked to the
non-perturbative nature of the problem captured by the
higher order interaction processes Ĥ3 and Ĥ4, involv-
ing three- and four-boson terms, respectively. Within
our variational approach, we showed that including
the resulting correlations among the bound bosons ex-
actly leads to the emergence of genuine quantum me-
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chanical characteristics of the wave function, especially
non-Gaussian correlations and interaction-induced anti-
bunching. Furthermore, these many-body bound states
can have observable signatures in molecular spectroscopy
techniques with quasiparticle weights considerably dif-
ferent from the coherent state theory prediction for the
attractive and repulsive polarons.

The theoretical developments in this work present one
natural scheme to separate the modes of the strong cou-
pling impurity-boson system into a few strongly interact-
ing modes requiring non-perturbative treatment, and a
continuum of weakly interacting modes. With this theory
we are able to explore a broad range of parameters and
map out the phase diagram of the strong coupling Bose
polaron. In particular, we clarified how the attractive po-
laron continuously evolves into a multi-body bound state
as one crosses the Feshbach resonance into the repulsive
side. Thereby we arrive at a unified theory of repulsive
and attractive Bose polarons.

One future direction concerns studying the influence
of few-body Efimov-type correlations on the properties
of many-body bound states. In particular, establishing
universal features of many-body bound states and clari-
fying the role of finite range effects constitute important
open problems.

Another interesting future direction is to apply the
present framework to study strong coupling polarons in
one and two dimensions. The intricate physics of po-
larons in low dimensions, together with the availability of
multiple theoretical approaches for benchmarking such as
DMRG and exact diagonalization in one dimension and
Quantum Monte Carlo in one and two dimensions makes
this direction particularly promising.

In the present context, we pointed out the crucial role
of phonon nonlinearities on the physics of strong cou-

pling Bose polarons. It would be interesting to expand
the scope of this work by considering other models where
phonon nonlinearities play a crucial role, for instance,
to study impurity motion in nonlinear bosonic models
with non-perturbative solitonic excitations (e.g. in the
Ferenkel-Kontorova model [83], or models described by
the nonlinear Schrodinger equation [84]). As another av-
enue, one could apply this framework to study the mo-
tion of single holes in quantum antiferromagnets [85–87]
or the formation of magnon-impurity bound states [88].
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[15] J. Devreese, Fröhlich polarons. lecture course includ-

ing detailed theoretical derivations–, arXiv preprint
arXiv:1611.06122 (2016).
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Appendix A: Mean-field decoupling of ĤLLP

Here we detail on the mean-field decoupling procedure.
Using the Wick’s theorem [89], for ĤLLP in Eq. 4, the
mean-field Hamiltonian takes the following form,

ĤLLP = E +
(
δΨ̂† · ζ + h.c.

)

+
1

2
: δΨ̂†HMFδΨ̂ : +Ĥ3 + Ĥ4 .

(A1)

with explicit expressions for different terms as the follow-
ing,

E =
ℏ2K2

0

2M
− ℏK0

M
·
(∫

x

φ∗
x(−iℏ∇x)φx +

∫

k

ℏkΓ11
kk

)
+

∫ (ℏk · ℏk′

2M

){
Γ11
kkΓ

11
k′k′ + |Γ11

kk′ |2 + |Γ12
kk′ |2

+
(
φkφk′Γ21

k′k + φ∗
k′φkΓ

11
kk′ + φ∗

k′φk′Γ11
kk + c.c.

)
+ |φk|2|φk′ |2

}
+

∫

x

φ∗
x

(
− ℏ2∇2

2mred
+ VIB(x)− µ

)
φx

+

∫

x

(
− ℏ2∇2

2mred
+ VIB(x)− µ

)
Γ11
xx +

1

2

∫

x,x′
UBB(x− x′)

{
|φx|2|φx′ |2 +

(
φ∗
xφ

∗
x′Γ12

xx′

+ |φx|2Γ11
x′x′ + φ∗

x′φxΓ
11
xx′ + c.c.

)
+ |Γ12

xx′ |2 + |Γ11
xx′ |2 + Γ11

xxΓ
11
x′x′

}
.

(A2)

The linear Hamiltonian Ĥ1 has the following form,

Ĥ1 =

∫

x

ϕ̂†xζx + h.c. , (A3)

where we explicitly write the coordinate space integration
instead of shorthand inner product. The vector ζx then
reads as

ζx = h0φx +

[ ∫

x′
UBB(x− x′)

(
|φx′ |2 + Γ11

x′x′

)]
φx +

∫

x′

{[
UBB(x− x′)− 1

M
(−iℏ∇x) · (−iℏ∇x′)

]
Γ11
x′x

}
φx′

+

∫

x′

{[
UBB(x− x′) +

1

M
(−iℏ∇x) · (−iℏ∇x′)

]
Γ12
xx′

}
φ∗
x′ +

∫

x′

1

M

[
− iℏ∇x′

(
|φx′ |2 + Γ11

x′x′

)]
· (−iℏ∇xφx) ,

(A4)

where h0 = −ℏ2∇2/2mred + VIB(x) − µ . With ζx as
in Eq. A4, the saddle point condition is ζx = 0. In
the special case of Γ11

xx′ = Γ12
xx′ = 0 and M → ∞, the

saddle point condition reduces to the Gross-Pitaevskii
equation for the condensate, including the distortion
caused by the impurity (that is encoded in the impurity-
boson potential in h0). Given the saddle point condition
ζx = 0, and the boundary condition on the condensate
that lim|x|→∞ φx =

√
n0, the chemical potential includ-

ing the Lee-Huang-Yang and finite boson-boson range
corrections reads as

µ = (n0 + Γ11
00)

∫

x

UBB(x) +

∫

x

UBB(x)Re(Γ
12
x0 + Γ11

x0) .

(A5)
The quadratic Hamiltonian is of the following form

Ĥ2 =
1

2
:

∫

k,k′

(
δϕ̂†k′ δϕ̂−k′

)
Himp

k′k

(
δϕ̂k
δϕ̂†−k

)
:

+
1

2
:

∫

x,x′

(
δϕ̂†x′δϕ̂x′

)
Hx′x

(
δϕ̂x
δϕ̂†x

)
: ,

(A6)

thus, HMF consists of two terms: Himp comes from the fi-

nite mass of the impurity, and H is the mean-field Hamil-
tonian in the limit M → ∞. The explicit forms of H and
Himp are of the following form,

Himp
k′k =

(
E imp
k′k ∆imp

k′k

∆imp∗
(−k′)(−k) E imp∗

(−k′)(−k)

)
, (A7)

Hx′x =

(
Ex′x ∆x′x

∆∗
x′x E∗

x′x ,

)
, (A8)

where the diagonal and off-diagonal terms of Himp are as
follows,

E imp
k′k =

ℏk · ℏk′

M

(
Γ11
kk′ + φ∗

kφk′
)

+ δ(d)(k− k′)
∫

k′′

ℏk′ · ℏk′′

M
(Γ11

k′′k′′ + φ∗
k′′φk′′

)
,

(A9)

∆imp
k′k = −ℏk · ℏk′

M

(
Γ12
k′(−k) + φk′φ−k

)
. (A10)
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The diagonal and off-diagonal terms in H read as

Ex′x = δ(d)(x− x′)
[
h0

+

∫

x′′
UBB(x

′ − x′′)
(
Γ11
x′′x′′ + |φx′′ |2

)]

+ UBB(x− x′)
(
Γ11
xx′ + φ∗

xφx′
)
,

(A11)

∆x′x = UBB(x− x′)
(
Γ12
x′x + φx′φx

)
. (A12)

Finally, the cubic and quartic terms are of the following
forms

Ĥ3 =

∫

k,k′

ℏk · ℏk′

M

(
φk : δϕ̂†kδϕ̂

†
k′δϕ̂k′ : +h.c.

)

+

∫

x,x′
UBB(x− x′)

(
φx : δϕ̂†xδϕ̂

†
x′δϕ̂x′ : +h.c.

) .

(A13)

The quartic term representing the interaction of fluc-
tuation modes reads as

Ĥ4 =

∫

k,k′

ℏk · ℏk′

2M
: δϕ̂†kδϕ̂

†
k′δϕ̂k′δϕ̂k :

+
1

2

∫

x,x′
UBB(x− x′) : δϕ̂†xδϕ̂

†
x′δϕ̂x′δϕ̂x :

. (A14)

Appendix B: Justification of the effective model and
the variational principle

Here, we give a rigorous justification of the varia-
tional principle described in Sec. II C. To this end, we
present a formulation of the initial impurity-boson prob-
lem where many-body bound states emerge as an effec-
tive impurity with multiple internal states coupled to a
bath of weakly interacting, renormalized phonons. The
coupling causes transitions between different impurity in-
ternal states (i.e., many-body bound states) via phonon
scattering. Due to the large separation of energy scales
between the different impurity internal states compared
to the strength of transitions, one can treat the impurity-
bath coupling within perturbation theory. Crucially,
the relevant eigenstates of the unperturbed Hamiltonian
corresponding to different metastable branches have the
same product state form of the variational state

∣∣ψ(var)

〉

in Eq. 10. Since the variational manifold includes the
leading order term of the true eigenstates, optimizing the
variational parameters enables an even better approxima-
tion of the eigenstates. In the rest of this appendix, to
avoid complications in the arguments arising from finite-
ness of the impurity mass, we assume an infinitely heavy
impurity (M → ∞) while for the sake of completeness,
we keep the impurity mass M formally in all the expres-
sions.

As stated in the main text, a suitable Gaussian trans-
formation can eliminate the linear term in Eq. A1 by dis-
placing the field operator to the repulsive polaron saddle

point while at the same time diagonalizing HMF to give
the fluctuation modes on top of the repulsive polaron.
As in the main text, the fluctuation field operator can be
written as

δϕ̂x = δϕ̂(B)
x + δϕ̂(sc)x , (B1)

where δϕ̂
(B)
x = uB,x δb̂+ vB,x δb̂

† with δb̂ the fluctuation

operator of the unstable mode b̂. Inserting the mode-
separated form of the fluctuation operator Eq. B1 in
Eq. A1 results in the following form of ĤLLP,

ĤLLP = E[Φrep,Γrep]

+ ĤB[δϕ̂
(B)†
x , δϕ̂(B)

x ] + Ĥsc[δϕ̂
(sc)†
x , δϕ̂(sc)x ]

+ Ĥint[δϕ̂
(B)†
x , δϕ̂(B)

x ; δϕ̂(sc)†x , δϕ̂(sc)x ] .

(B2)

In Eq. B2,

ĤB[δϕ̂
(B)†
x , δϕ̂(B)

x ] = −εB δb̂†δb̂+ Ĥ3[δϕ̂
(B)†
x , δϕ̂(B)

x ]

+ Ĥ4[δϕ̂
(B)†
x , δϕ̂(B)

x ] ,
(B3)

where Ĥ3[δϕ̂
(B)†
x , δϕ̂

(B)
x ] and Ĥ4[δϕ̂

(B)†
x , δϕ̂

(B)
x ] are given

in Eqs. A13 and A14 with δϕ̂
(†)
x substituted by δϕ̂

(B)(†)
x .

Similarly, the Hamiltonian Ĥsc only involves δϕ̂
(sc)(†)
x . Fi-

nally, Ĥint describes the interaction between the bound
and scattering modes. By means of direct manipulation,
the interaction Hamiltonian can be absorbed into Ĥsc to
yield

Ĥ ′
sc = Ĥsc + Ĥint

=

(∫

x

δϕ̂(sc)†x ζ̂ ′x + h.c.

)

+
1

2

∫

x,x′
: δΨ̂(sc)†

x Ĥ′
2,xx′ δΨ̂

(sc)
x′ :

+

( ∫

x,x′
: δϕ̂(sc)†x δϕ̂

(sc)†
x′ Ĥ′

3,xx′ δϕ̂
(sc)
x′ : +h.c.

)

+ Ĥ4[δϕ̂
(sc)†
x , δϕ̂(sc)x ] .

(B4)

In Eq. B4, Ĥ′
2,xx′ , Ĥ′

3,xx′ and ζ̂ ′x are operators in terms

of δϕ̂
(B)(†)
x as follows,

Ĥ′
2,xx′ =

(
Ê ′
xx′ ∆̂′

xx′

∆̂′∗
xx′ Ê ′∗

xx′

)
, (B5)

Ê ′
xx′ = Exx′ + E imp

xx′ + Ūeff,xx′ φx δϕ̂
(B)†
x′

+ Ūeff,xx′ φ∗
x′ δϕ̂(B)

x + : δϕ̂
(B)†
x′ Ueff,xx′ δϕ̂(B)

x :

+ δ(d)(x− x′)

[ ∫

x′′
δϕ̂

(B)†
x′′ Ueff,x′′x′φx′′

+

∫

x′′
φ∗
x′′ Ueff,x′′x′ δϕ̂

(B)
x′′

+

∫

x′′
: δϕ̂

(B)†
x′′ Ueff,x′′x′δϕ̂

(B)
x′′ :

]
,

(B6)
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∆̂′
xx′ = ∆xx′ +∆imp

xx′ + 2Ueff,xx′ φx δϕ̂
(B)
x′

+ Ueff,xx′ : δϕ̂
(B)
x′ δϕ̂

(B)
x : ,

(B7)

Ĥ′
3,xx′ = Ueff,xx′φx + Ueff,xx′ δϕ̂(B)

x , (B8)

ζ̂ ′x =

∫

x′

(
Exx′ + E imp

xx′

)
δϕ̂

(B)
x′

+
1

2

∫

x′

(
∆xx′ +∆imp

xx′

)
δϕ̂

(B)†
x′

+
1

2

∫

x′

(
∆x′x +∆imp

x′x

)
δϕ̂

(B)†
x′

+

∫

x′
: δϕ̂

(B)†
x′

(
Ueff,xx′φx′

)
δϕ̂(B)

x :

+

∫

x′
: δϕ̂

(B)†
x′

(
Ueff,xx′φx

)
δϕ̂

(B)
x′ :

+

∫

x′
φ∗
x′ Ueff,xx′ : δϕ̂(B)

x δϕ̂
(B)
x′ :

+

∫

x′
: δϕ̂

(B)†
x′ Ueff,xx′ δϕ̂

(B)
x′ δϕ̂

(B)
x : .

(B9)

In Eq. B6, Ūeff,xx′ is different from Ueff,B and is given
by Ūeff,xx′ = UBB(x−x′)−1/M(−iℏ∇x) · (−iℏ∇x′), and
in the third line integration by parts is carried out. The
form of Ĥ ′

sc in Eq. B4 is the same as Eq. A1 up to a
constant, suggesting that the Hamiltonian parameters of
the scattering modes only get renormalized by the fluctu-
ations of the unstable mode. The physical meaning of ab-
sorbing Ĥint into Ĥsc to obtain Ĥ ′

sc becomes more trans-

parent if Ĥ ′
sc is partially expanded in terms of the eigen-

state |ψn⟩B of ĤB with energy En (ĤB |ψn⟩B = En |ψn⟩B)
as Ĥ ′

sc =
∑

n,m |ψn⟩⟨ψm|B ⊗ ⟨ψn| Ĥ ′
sc |ψm⟩B . The op-

erators ⟨ψn| Ĥ ′
sc |ψm⟩B are the same as in Eq. B4, but

with ζ̂ ′x, Ĥ′
2,xx′ and Ĥ′

3,xx′ substituted by their matrix

elements ⟨ζ̂ ′x⟩nm, ⟨Ĥ′
2,xx′⟩nm and ⟨Ĥ′

3,xx′⟩nm (⟨·⟩nm de-

notes the matrix element ⟨ψn| · |ψm⟩B). The diagonal

part of Ĥ ′
sc consists of effective renormalized Hamiltoni-

ans ⟨ψn| Ĥ ′
sc |ψn⟩B for stable modes when the impurity

forms a many-body bound state |ψn⟩. The off-diagonal

part of Ĥ ′
sc describes interaction processes between the

many-body bound states and phonons, where a phonon
scatter off the many-body bound state |ψm⟩ and trig-
gers the transition from |ψm⟩ to |ψn⟩. In this sense, off-
diagonal terms can be treated as a perturbation term

Ĥpert =
∑

n̸=m

|ψn⟩⟨ψm|B ⊗ ⟨ψn| Ĥ ′
sc |ψm⟩B , (B10)

added to the unperturbed Hamiltonian Ĥ0, defined by

Ĥ0 = ĤB +
∑

n

|ψn⟩⟨ψn|B ⊗ ⟨ψn| Ĥ ′
sc |ψn⟩B . (B11)

Thus, the strong-coupling impurity-boson problem has
reduced to finding the eigenstates of Ĥ0 and including

Ĥpert in perturbation theory. We still have to establish

that Ĥpert can indeed be treated perturbatively, but first,
it is instructive to gain a better understanding of the low
energy states of Ĥ0. The structure of ⟨ψn| Ĥ ′

sc |ψn⟩B is
similar to Eq. A1, which is form invariant under Gaus-
sian transformations. As a result, one can perform a

Gaussian transformation Û ′
n = D̂[α

(sc)
n,x ] Ŝn, implement-

ing n-dependent displacements α
(sc)
n,x of δϕ̂

(sc)
x to elimi-

nate the linear term proportional to ⟨ζ̂ ′

x⟩nn and diago-

nalize ⟨Ĥ′
2,xx′⟩nn by Ŝn. The resulting Bogoliubov modes

with field operators denoted by β̂n,k have a vacuum state

|GSn⟩ = D̂[α
(sc)
n,x ] Ŝn |Φrep⟩ and single-particle excitations

β̂†
n,k |GSn⟩. Thus, each many-body bound state has an

eigenstate of Ĥ0 associated to it, of the form
∣∣Ψn,(0)

〉
= |ψn⟩ ⊗ D̂[α(sc)

n,x ] Ŝn |Φrep⟩ , (B12)

which is the lowest energy state associated with the
many-body bound state |ψn⟩. Accordingly, the single
particle excitations on top of

∣∣Ψn,(0)

〉
are of the form

β̂†
n,k

∣∣Ψn,(0)

〉
. Intuitively,

∣∣Ψn,(0)

〉
describes a “many-

body bound state” polaron - the polaronic dressing of
a many-body bound state instead of the bare impurity.
As such, the many-body bound states emerge as internal
states |ψn⟩ of an effective impurity - the bare impurity
with several bosons bound to it - whose dynamics and
dressing by phonons is described by Ĥ0. In this regard,
Ĥpert describes transitions between internal states of this
effective impurity via phonon scattering.
The notable character of the state

∣∣Ψn,(0)

〉
is its prod-

uct state form, which closely connects to the same form
of the variational state

∣∣ψ(var)

〉
in Eq. 10. The differ-

ence of
∣∣Ψn,(0)

〉
and

∣∣ψ(var)

〉
is in the additional Gaussian

transformation Ŝn, which accounts for the renormaliza-
tion of the phonons by many-body bound state forma-
tion. This renormalization occurs due to the underlying
interactions among bosons bound to the impurity and
bosons in the BEC. Thus, the effect of Ŝn is to account
for terms in ⟨Ĥ′

2,xx′⟩nn which contain expectation val-

ues over |ψn⟩ of operators involving δϕ̂
(B)(†)
x . Note that

the n−independent part of the quadratic Hamiltonian
is already diagonal by the initial Gaussian transforma-
tion and has no instability since all the involved scat-
tering modes have positive energies. Furthermore, in-
vestigating the structure of |ψn⟩ obtained from numer-

ical diagonalization of ĤB reveals that the addition of
n-dependent terms has a minute effect and, importantly,
does not induce any instability. The absence of insta-
bility is confirmed by direct numerical evaluation which
shows that expectation values of single field operators as

well as ⟨: δϕ̂(B)
x δϕ̂

(B)
x′ :⟩nn over the relevant many-body

bound states are vanishingly small. This demonstrates
that the additional squeezing transformation Sn to re-
define phonon modes in the presence of the many-body
bound state |ψn⟩ has a minimal effect; thus we can set

Ŝn ≃ I. In this way, we recover exactly the same form of
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∣∣ψ(var)

〉
in Eq. 10.

In the following, we elaborate more on the perturbative
treatment of Ĥpert mentioned above. As discussed in the
main text, Fock states are excellent approximations to
the many-body bound states |ψn⟩. Thus, combinations

of δϕ̂
(B)(†)
x which change particle number have vanish-

ingly small expectation values over |ψn⟩, but the same is
not true for transition matrix elements between two dif-
ferent many-body bound states. To estimate the effect
of phonon-induced transitions, we consider the first-order
perturbative correction to

∣∣Ψn,(0)

〉
. The first order cor-

rection to
∣∣Ψn,(0)

〉
within perturbation theory reads

∣∣Ψn,(1)

〉
∝
∣∣Ψn,(0)

〉

+
∑

m̸=n

⟨GSm| ⟨Ĥ ′
sc⟩mn |GSn⟩

En,(0) − Em,(0)
|GSm⟩

+
∑

m̸=n

∫

{ki}m

⟨{ki}m| ⟨Ĥ ′
sc⟩mn |GSn⟩

En,(0) − Em,(0) − ε{ki}m

|{ki}m⟩ ,

(B13)

where En,(0) is the energy of En,(0), and |{ki}m⟩ denotes
the state containing elementary excitations of momenta
k1,k2, · · · on top of |GSm⟩. In the denominator of the
third term in Eq. B13, En,(0) −Em,(0) ∼ εB is by far the
largest energy scale. Thus the only relevant decay pro-
cesses are those where

∣∣Ψn,(0)

〉
decays to a lower energy

state
∣∣Ψm,(0)

〉
and emits high energy phonons with total

energy ε{ki}m
∼ εB . Note that although ⟨Ĥ ′

sc⟩mn con-
tains three- and four-phonon terms, such phonon inter-
action terms are weak compared to phonon kinetic term
which dominates. This can be seen from the structure
of ⟨Ĥ ′

sc⟩nn which resembles the Hamiltonian of a weakly

interacting Bose gas with a linear coupling ⟨ζ̂ ′

x⟩nn which

leads to a coherent state of excitations α
(sc)
n,x with total

excitation number much less than unity (see the main

text). Importantly, ⟨Ĥ ′
sc⟩nn does not contain any insta-

bility to compete with the interaction terms. Thus, the
true eigenstates of Ĥ ′

sc can be adiabatically connected to
the non-interacting ones |{ki}m⟩, and especially for high
energies, the interaction terms become irrelevant.

We now discuss the structure of the last term in
Eq. B13. A full perturbative treatment of ⟨Ĥ ′

sc⟩mn, while
systematically possible, is a formidable task and is exces-
sively cumbersome even at the level of the first-order per-
turbative term in Eq. B13. Nevertheless, we estimate the
magnitude of relevant terms in the expansion of |{ki}m⟩.
Specifically, we focus on single-excitation states |k⟩. The
relevant |k⟩ states have high energies εk ∼ εB, thus the

approximation Ŝn ≃ I is specifically more accurate here.
After a rather lengthy algebra, it turns out that the dom-

inant contribution of |k⟩ to
∣∣Ψn,(1)

〉
is proportional to

χk =

∫

x,x′
eik·x

(
⟨ζ̂ ′′

x ⟩mn + ⟨Ê ′
xx′⟩mn α

(sc)
n,x′

+ α
(sc)∗
m,x′ Re

[
⟨∆̂′

xx′⟩mn

])
,

(B14)

where ζ̂
′′

x equals ζ̂
′

x without the first three terms in
Eq. B9. The subleading contributions to |k⟩ contain

higher powers of α
(sc)
n,x and α

(sc)∗
m,x , which are significantly

smaller since
∫
x
|α(sc)

(n,m),x|2 ≪ 1 in accordance with the

results presented in the main text. Note that the large
value of |k| ∼

√
2mredεB/ℏ2 also suppresses the mag-

nitude of χk. Intuitively, the above formal arguments
mean that the decay of a dressed many-body bound state∣∣Ψn,(0)

〉
by emitting a high-energy phonon is strongly

suppressed. One can carry out the same type of argu-
mentation for the second term in Eq. B13, where the
leading term is found to be proportional to

χm =

∫

x

1

εB

(
α(sc)∗
m,x ⟨ζ̂ ′′

x ⟩mn+α
(sc)
n,x ⟨ζ̂ ′′†

x ⟩mn

)〈
α(sc)
m,x

∣∣∣α(sc)
n,x

〉
.

(B15)
Given that both estimates of the size of the first-order

perturbative corrections quantified by the amplitudes χm

and χk are substantially smaller than unity, we conclude
that the variational ansatz based on the product form
of
∣∣Ψn,(0)

〉
can provide qualitatively reliable information

about general characteristics of the many-body bound
states. Note that the structure of the variational ansatz
in Eq. 10 provides more freedom to optimize the param-
eters and find better approximations to the true many-
body bound states than the zeroth order state

∣∣Ψn,(0)

〉
,

as the variational manifold includes
∣∣Ψn,(0)

〉
. As such,

the optimization procedure partially accounts for higher-
order perturbative corrections.
Ultimately, we emphasize that the proportionality con-
stants mentioned above scale according to the occupa-
tion number of many-body bound states. As such, the
above arguments are valid for cases where a few bosons
are bound to the impurity, but in general, the validity
of arguments has to be checked for each specific case un-
der consideration. Problems that require caution include
Rydberg and ionic impurities in a BEC, where hundreds
of bosons are bound to the impurity. In such cases, the
transition matrix elements of Ĥpert can be large, which
might require including perturbative corrections to high
orders.

Appendix C: Connection of the bound Bogoliubov
mode to the bare impurity-boson bound state

Here we try to find the bound state of the quadratic
Hamiltonian Eq. A6. As mentioned in the text, the
exact excitation spectrum of the system is determined
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by finding φ0,x and S0,xy such that ζ[Φ0,Γ0] = 0 and

S†
0HMF[Φ0,Γ0]S0 = I2 ⊗ D, while fulfilling 2Γ0 + I =

S0S
†
0. The self-consistent solution can be obtained iter-

atively, starting from an unperturbed weakly-interacting
Bose gas φi=0

x =
√
n0 and Si=0 = I as initial guess.

At each step, the updated condensate field Φi+1
x =

(φi+1
x , φi+1∗

x )T satisfies ζ[Φi+1,Γi] = 0, and Si+1 diag-
onalizes HMF[Φ

i,Γi], giving the updated covariance ma-
trix Γi+1. Iterations are then carried out until conver-
gence.

In the first iteration, the quadratic Hamiltonian is

Ĥi=0
2 =

1

2
:

∫

k

(
δϕ̂†k δϕ̂−k

)
HBog(k)

(
δϕ̂k
δϕ̂†−k

)
:

+
1

2
:

∫

k,k′

(
δϕ̂†k′ δϕ̂−k′

)
ṼIB(k

′ − k) I2×2

(
δϕ̂k
δϕ̂†−k

)
: ,

(C1)

where HBog(k) is the standard Bogoliubov Hamiltonian

HBog(k) =

(
ϵk + n0UBB(k) n0UBB(k)
n0UBB(k) ϵk + n0UBB(k)

)
, (C2)

with ϵk = ℏ2k2/2mred, and ṼIB(k) is the Fourier trans-
form of VIB(x). HBog(k) is diagonalized by the matrix
Sk given by

Sk =

(
uk −vk
−vk uk

)
(C3)

where uk = cosh(θk), vk = sinh(θk), and tanh(2θk) =
n0UBB(k)/

(
ϵk+n0UBB(k)

)
. Diagonalization by Sk leads

to the Bogoliubov dispersion relation

εk =
√
ϵk
(
ϵk + 2n0UBB(k)

)
. (C4)

The bound state of the Hamiltonian in Eq. C1 is ob-

tained from
(
ϵk + n0UBB(k) n0UBB(k)
n0UBB(k) ϵk + n0UBB(k)

)(
uB,k

vB,k

)

+

∫

k′
ṼIB(k− k′)

(
uB,k′

vB,k′

)
= −εB

(
uB,k

vB,k

)
.

(C5)

Formally solving for vB,k in Eq. C5 results in

vB,k =

∫

k′
G(−εB)kk′ n0UBB(k

′)uB,k′ , (C6)

where G−1(E)kk′ =
(
E − ϵk − n0UBB(k)

)
δ(d)(k− k′)−

ṼIB(k−k′). Inserting vB,k of Eq. C6 back in the equation
satisfied by uB,k results in

(
ϵk + n0UBB(k)

)
uB,k +

∫

k′
ṼIB(k− k′)uB,k′

+ n0UBB(k)

∫

k′
G(−εB)kk′ n0UBB(k

′)uB,k′ = −εB uB,k .

(C7)
Applying standard perturbation theory to Eq. C7 in
the regime n0UBB(0) ≪ εB , uB,k is obtained as the
bound state of −ℏ2∇2/2mred + VIB(x) up to correc-
tions of O(n0UBB(0)/εB). Thus, to leading order in
n0UBB(0)/εB, uB,x = ηx and vB,x = 0.

Appendix D: Explicit form of variational equations

In this appendix, for the sake of completeness, we first
derive the general form of variational equations in 19 for
the case Γ = 0. Then we specialize the variational equa-
tions solved to obtain the variational states and energies
of the many-body bound states presented in this work.
The coherent state αx satisfies the following nonlinear

integro-differential equation
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FIG. 9. Energy of polaron states across an impurity-boson Feshbach resonance, as in Fig. 2, on a linear scale (see Appendix
E). The large separation of the bound state energy from the BEC energy scale is evident.

[
h0 +

∫

x′
UBB(x− x′)|φrep,x′ |2

]
αx +

∫

x′
UBB(x− x′)φ∗

rep,xφrep,x′ αx′ +

∫

x′
UBB(x− x′)φrep,x′φrep,x α

∗
x′

+

∫

x′
UBB(x− x′)

[
φ̃∗
x′ φ̃x − φ∗

rep,x′φrep,x +∆⟨: ϕ̂(B)†
x′ ϕ̂(B)

x :⟩
]
αx′

+

∫

x′
UBB(x− x′)

[
|φ̃x′ |2 − |φ∗

rep,x′ |2 +∆⟨: ϕ̂(B)†
x′ ϕ̂

(B)
x′ :⟩

]
αx

+

∫

x′
UBB(x− x′)

[
φ̃x′ φ̃x − φrep,x′φrep,x +∆⟨: ϕ̂(B)

x′ ϕ̂
(B)
x :⟩

]
α∗
x′

+

∫

x′
UBB(x− x′)φ̃x α

∗
x′αx′ +

∫

x′
UBB(x− x′)φ̃x′ α∗

x′αx

+

∫

x′
UBB(x− x′)φ̃∗

x′ αx′αx +

∫

x′
UBB(x− x′)α∗

x′αx′αx

+

∫

x′
UBB(x− x′)φrep,x ⟨: ϕ̂(B)†

x′ ϕ̂
(B)
x′ :⟩+

∫

x′
UBB(x− x′)φrep,x′ ⟨: ϕ̂(B)†

x′ ϕ̂(B)
x :⟩

+

∫

x′
UBB(x− x′)φ∗

rep,x′ ⟨: ϕ̂(B)
x ϕ̂

(B)
x′ :⟩+

∫

x′
UBB(x− x′) ⟨: ϕ̂(B)†

x′ ϕ̂
(B)
x′ ϕ̂

(B)
x :⟩

+
[
h0 +

∫

x′
UBB(x− x′)|φrep,x′ |2

]
⟨ϕ̂(B)

x′ ⟩+
∫

x′
UBB(x− x′)φ∗

rep,xφrep,x′ ⟨ϕ̂(B)
x′ ⟩

+

∫

x′
UBB(x− x′)φrep,x′φrep,x⟨ϕ̂(B)†

x′ ⟩ − λuB,x + λ∗vB,x = 0 ,

(D1)

where φ̃x = φrep,x + ⟨ϕ̂(B)
x ⟩, ∆⟨: ϕ̂(B)(†)

x ϕ̂
(B)
y :⟩ = ⟨:

ϕ̂
(B)(†)
x ϕ̂

(B)
y :⟩−⟨ϕ̂(B)(†)

x ⟩⟨ϕ̂(B)
y ⟩, and the expectation value

⟨· · · ⟩ is taken over
∣∣ψ(B)

〉
. The states

∣∣ψ(B)

〉
, respectively,

the energies of the metastbale states are the eigenstates,
respectively, eigen energies of

Ĥeff,B =
∑

n,m=0

Ĥn,m[α∗
x, αx] b̂

†nb̂m , (D2)

in the Fock space of b̂, determined by exact diagonaliza-

tion. The explicit eigenvalue problem is

∑

l

2∑

n,m=0

Ĥn,m[α∗
x, αx] ⟨k| b̂†nb̂m |l⟩ψl = E ψk , (D3)

where E is the energy of the many-body bound state∣∣ψ(B)

〉
=
∑

n ψn |n⟩B.
By applying the assumptions and approximations we

made in this work, the equation D1 satisfied by αx re-
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duces to the following simplified equation

[
h0 + 3U0φ̃

2
x + 2U0η

2
x∆⟨b̂†b̂⟩+ η2x∆⟨b̂2⟩

]
αx

+ 3U0 φ̃x α
2
x + U0 α

3
x + 2U0φrep,x η

2
x⟨b̂†b̂⟩

+ U0φrep,x η
2
x⟨b̂2⟩+ U0 η

3
x⟨b̂†b̂2⟩

+
[
h0 + 2U0φ

2
rep,x⟨b̂⟩+ U0 φ

2
rep,x⟨b̂†⟩

]
ηx − ληx = 0 .

(D4)

In Eq. D4, we made use of the fact that αx can be taken
to be real, αx = α∗

x.

Appendix E: Energy of polaron states on linear scale

In this appendix, we plot the energies of different po-
laron states in linear scale in Fig. 9, where it is more
transparent to compare to experimental results.
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