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Abstract

We construct new continuous families of AdS3 x S3 x T* and AdS3 x S3 x S3 x ST solutions in
heterotic and type II supergravities. These families are found in three-dimensional consistent
truncations and controlled by 17 parameters, which include TsT S deformations and encompass
several supersymmetric sub-families. The different uplifts are constructed in a unified fashion by
means of Exceptional Field Theory (ExFT). This allows the computation of the Kaluza-Klein
spectra around the deformations, to test the stability of the solutions, and to interpret them
holographically and as worldsheet models. To achieve this, we describe how the half-maximal
SO(8,8) ExFT can be embedded into Eggy ExFT.
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1 Introduction

In any Lorentz invariant quantum field theory in d dimensions, operators can be classified according to their
behaviour under the renormalisation group (RG), and for conformal field theories (CFTs) sitting at the
fixed points of the RG flow this behaviour can be characterised by the operator’s conformal dimension A.
For irrelevant operators, A exceeds the spacetime dimension and the RG flow takes the theory back to the
original CFT. Conversely, relevant deformations are triggered by operators with A < d and RG flow drives
the theory away from the starting point. A third class of deformations, called marginal, stay unaffected by
changes in the energy scale. Instead, these marginal operators encode the space of theories into which the
original theory can be deformed without breaking conformal invariance. This space is called the CFT’s
conformal manifold. Holographically, it corresponds to a continuous family of AdS solutions sharing the
same cosmological constant, but having different internal spaces. Although there is no systematic way of
constructing these gravity solutions from the CFT information, the AdS/CFT dictionary identifies the
marginal operators as massless modes in the bulk.

Supersymmetry is expected to be required for holographic conformal manifolds to exist, as non-
supersymmetric AdS solutions are believed to be unstable [1-3]. However, recent scrutiny [4| has revealed
AdSy configurations that might evade this requirement, as all the standard decay channels, both perturbative
and non-perturbative, are absent for this solution. In AdS3/CFTs, the scenario could be richer and there
is a long-standing counter-example [5,6] which is understood both in the field theory and gravity sides.
It is based on current-current deformations of the two-dimensional CF'T, which are known to be exactly
marginal [7| despite possibly supersymmetry breaking. From the gravity perspective, these deformed
solutions will remain in the small curvature regime for small values of the deformation parameters, and
this assures that the deformed solution can also be studied in the supergravity approximation.

The purpose of this note is to explore the landscape of continuously connected AdS3 solutions in type
IIB and heterotic supergravities, expanding the work of [8]. The class of theories we focus on is given by
the near-horizon limit of NS5-F1 branes, and thus related by S-duality to the D1-D5 configuration [9-12]
and have been recently studied in ref. [13-15]. These latter works, together with [16,17], conjecture that
string theory on AdSz x S x S2 x S! and AdS3 x S? x T# are holographic duals to non-linear sigma
models on symmetric SU(2) x U(1) and T* orbifolds, respectively. They take advantage of the absence of
RR fluxes to encode the dynamics as a supersymmetric WZW model on the worldsheet, and for the most
part focus on the tensionless string limit, where the supergravity description is not valid. The opposite
limit, where all string excitations decouple, remains largely unexplored.

Previous works have studied deformations of the AdSs x S3 x S x S! background in type IIB
supergravity [18], and its AdS3 x S x T counterpart in both the type IIB and heterotic theories [8].
This has shown very similar structures on both examples, and here we propose a generic framework to
study their deformations for both half-maximal as well as maximal theories simultaneously. We enlarge
our understanding of the landscape of deformations by exhibiting a 17-parameter family of solutions,
that include Lunin-Maldacena TsT deformations [19] and Wilson loops analogous to the recently studied
fibrations in [20-26]. The parameters generically break all supersymmetries, but in certain loci some
supersymmetry is recovered. We further study the spectra of Kaluza-Klein excitations on these solutions,
and discuss the perturbative stability of several supersymmetry breaking subfamilies. Additionally, given
the fact that the deformations do not excite any RR fluxes, the solutions stay pure NSNS and can thus be
described from a worldsheet point of view. This allows us to show that the marginal parameters induce J.J

operators on the worldsheet.



The techniques we employ to obtain these large conformal manifolds are based on a convenient feature of
the AdSsz x S%xT* and AdSs x S x 5% x St solutions: they admit consistent truncations to three-dimensional
gauged supergravity. These are restrictions to a finite subset of modes in the Kaluza-Klein tower such that
any solution of the three-dimensional gauged supergravity defines a solution of the full set of equations of
motion in ten dimensions. Having a consistent truncation is a particularly valuable tool given that they
give access to a subsector of the higher-dimensional theory using only the lower-dimensional dynamics.
In the three-dimensional truncation, the theory for the modes retained has a scalar potential featuring
stationary points. The solution at these points correspond to AdSs x K solutions in ten dimensions, and in
particular, marginal deformations correspond to flat directions in the 3d potential, leading to continuous
deformations of the internal manifold /C.

The existence of these consistent truncations can be exploited through the tools of Exceptional Field
Theory (ExFT) [27,28]|. ExFT is a reformulation of higher-dimensional supergravity making it formally
covariant under the U duality group of the lower-dimensional theory obtained by toroidal reductions. The
higher-dimensional fields are reorganised to mimic the ones in lower dimensions, thus allowing the use of
the U duality symmetry before the compactification already. This reformulation is extremely efficient to
build and parameterise consistent truncations [29,30] and to compute Kaluza-Klein spectra [31-35] and
higher-couplings [36] around any solution in the truncation. Most prominently, these techniques also apply
to vacua preserving few or no (super)symmetries, which were beyond the reach of traditional methods. In
this note, we focus on ExF'Ts based on the U duality groups of maximal and half-maximal supergravities
in three dimensions, respectively given by Eg(gy and SO(8,7n), which were constructed in ref. [37,38].

The rest of the paper is divided in two main parts. The first one exposes the technical tools necessary
to the study, and can be skipped by readers only interested in the main results, which are presented
in the second part. In sec. 2 we review the main features of maximal and half-maximal supergravities
in three dimensions, and explain how the half-maximal theories can be embedded in their maximal
counterparts. Sec. 3 introduces the Egg) and SO(8,n) exceptional field theories with an emphasis on
their applications to the study of consistent truncations and Kaluza-Klein spectra. We show that SO(8, 8)
ExFT can be consistently embedded into its Eg(g) analogue, and use this embedding to demonstrate that a
consistent truncation of half-maximal supergravity automatically defines a consistent truncation in maximal
supergravity. Finally, in sec. 4 we exemplify how this framework applies to the round AdSz x S3 x 83 x S!
and AdS3 x S3 x T* solutions in both type II and heterotic supergravity.

The second part is dedicated to the analysis of new families of marginal deformations of these solutions.
This constitutes the main result of this note. In sec. 5, we present for each family the details of the ten-
dimensional solution and explain how the deformation affects the spectrum of Kaluza-Klein modes. From
the spectrum, we deduce possible supersymmetry enhancements and discuss the perturbative stability of
the non-supersymmetric solutions by testing the masses of scalar fields against the Breitenlohner-Freedman
bound [39]. All deformed solutions we present are purely NSNS and we use this fact in sec. 6 to study them
from the point of view of the worldsheet action. This shows that these deformation parameters induce
current-current operators of the original worldsheet model, and this can be used to predict the holographic
CFT operators as combinations of JJ deformations. We end in sec. 7 with some final comments and
relegate further technical details to four appendices.



2 Gauged Supergravities in D = 3

2.1 Half-maximal theories

The first instance of AdSs3 families leading to the AdSs x 83 x S2 x ST and AdS3 x S3 x T? solutions
mentioned above was found in [40] as a family of vacua in half-maximal D = 3 supergravity with four
scalar multiplets. For theories containing n scalar multiplets, the global symmetry of the ungauged
theory is SO(8,n) [41], and the pure supergravity multiplet containing the graviton and eight gravitini is
supplemented by 8n scalars and spin-1/2 fermions. The former parameterise the manifold

SO(8,n)

S0(8) x SO(n) ° (2.1)

and the gravitini and spin-1/2 fields transform respectively in the spinorial and co-spinorial of the denominator
SO(8). To describe the gauging, vectors can be included in this theory that are dual to the scalar and
live in the adjoint representation of SO(8,n) [42]. The gauging of these matter-coupled supergravities
is specified by an embedding tensor © gy y;y, with indices in the vector representation of SO(8,n). As

customary, apart from introducing covariant derivatives'

D=d+ @I_(EWIN AKETMN , (2.2)

for TMN the generators of SO(8,n) in the relevant representation, such a gauging induces extra fermionic
couplings and a potential for the scalars, respectively linear and quadratic in the embedding tensor. The
Lagrangian of the gauged half-maximal theory reads [42,43,40]

1 _
e 1A m =R+ gg“”DuMMNDVMMN + e_lﬁcs, h.m. — Vhom, + fermions, (2.3)

with M = VYT for VMN the coset representative specifying the point in (2.1). The Chern-Simons kinetic
term for the vectors is given by

_ R 1 — —
Log = —ehvP O NP AMMN (81/ ApPQ + 3 Orsov fPQ’RS)"(Y AVUVApXY> ; (2.4)

with £/7% the constant Levi-Civita density and fMN.PQ rL =40k (MNP § i @ the structure constants of

s0(8,n) for generators normalised as
TN Q — 95,MpNIQ (2.5)

Consistency of the gauging requires two constraints, one linear and the other quadratic in the embedding
tensor. The linear constraint restricts the representations in which ©zz 7y can live. Given that it is
antisymmetric in each pair of indices and symmetric under exchange of both pairs,” based only on its index

'In 3d, all our indices have overbars so as to distinguish them from their ExXFT counterparts, introduced in sec. 3.
%We do not consider gaugings of the trombone unless otherwise stated.



structure it includes®

(B@B)szl@ljj@@ . (2.6)

Supersymmetry of the gauged supergravity requires that not all representations in (2.6) appear in 6. In

particular, one needs to implement the projection [43]

which allows the embedding tensor to be parameterised as
1
Orimn =Orimn + 5(771\‘4[1%9£]N — y&985r) + ORI N (2.8)

in terms of totally antisymmetric, symmetric traceless and singlet tensors. The second requirement,
quadratic in the embedding tensor, is the invariance of © under gauge transformations generated by ©

itself. This amounts to the vanishing of
R R
QrimN P = —2Oriw ONRIPG — 2OkLP OQRINN - (2.9)
with indices raised and lowered with the SO(8,n) invariant tensor 1;; 5. The space of non-trivial constraints

|
| ]

Qrimnpo C[ | |OoF—®2x ® . (2.10)

can be computed to be

The scalar potential and couplings describing the dynamics of the gauged D = 3 supergravity are
determined entirely by the embedding tensor (2.8). The former, taking into consideration that the
embedding tensors we are going to consider also satisfy the quadratic relation [38]

Ok riin9pors) =0 (2.11)
for them to be compatible with a generalised Scherk-Schwarz origin, is given by [44, 40]
1 _ - = _ _ _ . _ _
Vi = » Oz LumdPaRs (MKPMLQMMRMNS _ 6 MRP IRy MR, NS

1 L o L _
+ g@KEQPQ(QMKPMLQ —277KP77LQ —MKLMPQ) —|—499R-EMKL — 3262,

*We employ Young tableaux to refer to SO(N) representations. For example, dim((L]) = (N — 1)(N + 2) and
dim(HH) = LN(N = 3)(N + 1)(N +2).



Critical points are those that annihilate

Vi, = 3 Oriiinfpars (MKPMLQMNS — 3 MEPIR NS 4 o nKPnLQnNS> MR o)
2.13

1 55 1 55\ .17 O
+ 5(91\7[139NQ MFPe — ieMNepQMPQ)jMN + 49¢9MNjMN

for arbitrary jy;5 € 50(8,n) © (s0(8) @ s0(n)). The rest of the couplings can be described through the
dressed embedding tensor

Trpmn =V "2V (v ) 5" Opgrs (2.14)

which can be decomposed into T 775, Tz and T following (2.8). Given that fermions transform as
representations of SO(8) x SO(n) in the denominator of (2.1), with the gravitini in the spinorial of SO(8)
and the spin-1/2 fields in the product of the co-spinorial of SO(8) and the vector of SO(n), it is useful to
introduce indices I, 4, A € [1, 8] respectively in the vector, spinorial and co-spinorial of SO(8), and hatted
counterparts for SO(n). This way, the fermion fields are denoted by z/)A and XAf

In terms of the T-tensor (2.14), the bosonic masses are given by [43,45, 40]

My g = (UK[MnN}L _ 5K[M5N]L)TKE‘PQ’ (2.159)
My M jre M (2.15b)

respectively for vectors and scalars. In the latter,

_ 4 _ _
KRgLS UV cKRSLS
main.pQ = 4 Tupri Tngrs 07 0™ + 5 Turr Tpvrs Ong 07" 07770
_ R . 8 R
~4Typrr Tng" " —ATworr Tpo™ Hong oV + 3 TuokL Tp"" o5 (2.16)

+ 2TM]5TNQ — TM]\_/TPQ + 2Ty Thr 5NQ 5KE
— TypTkr 5NQ oKL 4 16T Ty p 5NQ7

and the jM N currents project adjoint indices onto the coset (2.1). The fermionic masses and couplings are
specified by the SO(8) x SO(n)-covariant fermion shifts, which read

1
A{B = 13 HTIKL i Tijri— 45AB T+ 2048 T,
[ 1
AAT _ IJK
A3 37V i TRi T 37 i (2.17)
TESR 1 - = 1 - ==
AIBJ _ ij IJKL,, - IJ_ . ABsIJ AB AB I
as B o o
MAB = (P MATBT — _ pdiBT (2.18)

The SO(8) gamma matrices in (2.17) are constructed in appendix A.

Several choices for n are relevant in string theory. The theory with four scalar multiplets was shown
in [38] to arise from the truncation of D =6 N = (1,1) and N' = (2,0) supergravities, and the theory
with n = 8 corresponds to the NSNS sector of the superstring [46,47]. In the following, we will review



how half-maximal gauged supergravities based on SO(8, 8) can be embedded into maximal supergravity in
D = 3, which arises as a truncation of the type II superstrings. The addition of n, further scalar multiplets
in D = 3 corresponds to the addition of n, vector multiplets in half-maximal D = 10 supergravity, which
for n, = 16 captures the Cartan subsector of the low-energy regime of the heterotic stings [48].

2.2 Maximal theories

To make contact with type IIB supergravity, we must embed the gauged SO(8,8) half-maximal theory into
its maximal counterpart [49-51]. The matter content of this N' = 16 supergravity in three dimensions is
comprised by the dreibein and 16 Majorana gravitino fields, which do not propagate degrees of freedom,
together with 128 real scalar fields and 128 Majorana fermions. The scalars are coordinates of [52]

Es(g) SO(8,8)
SO(16) ~ SO(8) x SO(8)’

(2.19)

and together with the spin-1/2 fermions they represent the two inequivalent spinorial representations of the
denominator SO(16). Despite redundant, to describe gaugings of this theory it is again useful to introduce
the one-forms dual to the scalars, which furnish the adjoint representation of Eg(g).
To describe the scalar dynamics, it is again convenient to represent the coset (2.19) in terms of a
symmetric matrix ) )
My = VMPVNQAﬁQ , (2.20)

with M € [[1,248] labelling the adjoint representation of Eg(s), and Apg a matrix such that (tM)ﬁﬁAsz
is symmetric if the generator ¢ is non-compact and anti-symmetric if compact. In terms of these fields,
the Lagrangian reads

e ' Lrax = R+ ﬁ g“”D“MMNDVMMN + e_lfcgmax — Vinax + fermions. (2.21)
The gauging is specified by a symmetric embedding tensor X v such that covariant derivatives read
D =d+ X gy AMV. (2.22)

An expression for the Chern-Simons contribution in (2.21) can be found in [49] and will not be needed in
the sequel. For the gauging to preserve maximal supersymmetry, the embedding tensor must lie in the
1 & 3875 representation of Egg) and obey the quadratic relation

Xpp Xsou fay)*® =0 = [Xg Xylp? = —Xun™ Xpp©. (2.23)

with the gauge group generator in the adjoint representation defined in terms of the Eg(g) structure constants
as Xy’ = —X sl Q% [53]. Throughout, Eg(g) indices are raised and lowered with the Cartan-Killing
form k 5 normalised as in equation (A.12).

For generic gaugings satisfying the above constraints, the potential and matter couplings are known in
terms of SO(16)-covariant fermions shifts [49]. The former is also known to have a formally Eg(g)-covariant
expression [54]| given by

- _ 3 g R 2 - - —
MMP NQ (MP, NQ RMNKPQ) ‘ (2.24)



The embedding of half-maximal supergravity into the maximal theory then follows from®*

Eg(g) D) SO(8,8)
248 — 120+ 128;, (2.26)
M [N Ay

with M € [[1,16] labelling the vector representation of SO(8,8) as in sec. 2.1. The maximal embedding
tensor thus decomposes under SO(8, 8) into

1@ 3875 — 1@ 135 @ 1820 & 1920, , (2.27)

where one can recognise the three first representations as the ones appearing in (2.8). The spinorial
representation 1920, cannot be excited in half-maximal supergravity, the SO(8,8) and Egg) singlets can
be identified, and the symmetric and four-fold antisymmetric tensors lie in the 3875 representation of
Eg(s). The explicit breaking of the embedding tensor components is [45]

Xgomn =29k mw Xag=—0na5+ 55 Uag" " Oximrw - (2.28)

Details on the construction of Egg) based on SO(8,8) can be found in appendix A. The chiral SO(8,8)

gamma matrices are given by (A.7) if we work in the basis in which the SO(8, 8) invariant metric assumes

the diagonal form (A.2). In this basis, the charge conjugation matrix 7 z3 is simply given by (A.3).
Breaking the Egg) indices as in (2.26), the consistency condition (2.23) leads to three equations

RyRo8i5
X Ry Ro| PPy X5 S| i SRy 272 =0, (2.29a)
X 45 X5, 5,0 11, fo 012 =0, (2.29b)

%
X5 Xep frm, ¢ = 0. (2.29¢)

The first relation leads to (2.9), transforming into (2.10), upon the decomposition (2.28). The equations
(2.29b) and (2.29¢) imply extra compatibility conditions transforming in the 35 @ 6435, of SO(8,8) [45]
for the half-maximal gauging to admit an embedding into the maximal theory. Moreover, for the theory to
be obtainable by Scherk-Schwarz reduction from type II/eleven-dimensional supergravity, the embedding
tensor must also satisfy [18]

X XV 4 — (X M) =0, (2.30)

Supergravity vacua are solutions to the equation

OVanax = 71 X e Xpo (MM + 76 9) 17 (2.31)

with arbitrary jM? € eg(3) ©50(16). For a theory fulfilling (2.29), given a solution of (2.13) it automatically

4Civen the breaking (2.26), the summing rule for Eg(sy indices acquires extra combinatorial factors, e.g.

UMV = %UMNVMI\-, + UV, (2.25)



solves (2.31). The consistency of this truncation is guaranteed by the “fermion number” Z, symmetry that
acts on the SO(8, 8) indices in (2.26) as

XWMNT Ly x MN] XA XA (2.32)

Instead of using the embedding (2.19) to construct the Eg(g)/SO(16) coset representatives and define
the dressed embedding tensor

Tow =0 " (V% Xps, (2.33)
one can equivalently build it as
s 2 RLNIN
Trpmn = 2Tkpn 5= -Tnas+ o Triin (2.34)

in terms of the dressed embedding tensor in (2.14) for the half-maximal supergravity. At the different
solutions of (2.31), the masses of the bosonic modes captured in gauged supergravity sit among the
eigenvalues of

MMy = - (AW5 + ﬁMﬁ) 57 (2.35a)
2 MNp PO[1 A 7 KL | RE\ s 7
M(O);ig? =P P Fe [% wplio + (% AM 4+ K ) e Trp AN’Q , (2.35b)
for vectors and scalars, respectively. In the mass matrix for the scalars, 73’!2{_/\71/\7 = (t, Qf—)ﬁ/\;‘ APN are the

projectors onto the non-compact generators of (2.19), with ./ € [1,128] labelling the spinorial of SO(16).
As for the scalars, fermion mass matrices for the maximal theory are written naturally in SO(16)-
covariant form [49,50],

. 16 2 . BG

Argr = = Onan + = Tap gl e,

i 2R g

Aoy = =777 Tan g (2.36)
i _ L oNpQ 4

As g =40055+ 5 17 7z Taneq »

with indices M € [1,16], and &/ € [1,128] respectively in the vector and co-spinorial of SO(16). As
discussed in appendix A, the invariant tensors nyy, 7,742 and n7% for this signature are simply given by
identity matrices and the SO(16) components of the dressed embedding tensor follow from (2.33) under
the decomposition in (A.14).

As in the half-maximal case, the eigenvalues of these matrices also encompass non-physical modes such
as the vectors which are not gauged by the embedding tensor (and therefore sit outside the gauge group),
and massless scalars that serve as Goldstone modes for the massive vectors.

2.3 Gaugings for S3 x M*

In the following, unless otherwise stated, we will restrict ourselves to the case n = 8. As will become
apparent in sec. 3, a convenient basis to describe the SO(8, 8)-supergravities is such that the invariant

5The coefficients for the terms in 6 are not tested by our solutions.



metric 1y is given by

01:0 0:0 0:0 0
10,0 0:0 0:00
000 13;0 00 0
0 0i13 0:0 0:0 0
R ol S A A R , 2.37
TN =000 0T 0 1500 0 (2:37)
00/0 013 000
00:0 00 00 1
00{0 0{0 0:i10
according to the breaking
SO(8,8) D  SO(1,1) x GL(3) x GL(3) x SO(1,1), 2.38)

XM X0 X, X X, XX X7 Xs)

This choice aligns the D = 3 supergravity with the coordinates that solve the section constraint in
Exceptional Field Theory. For this reason, we take the ranges of the indices above as m € [1,3] and
i € [4,6]. In this basis, the class of embedding tensors determining the half-maximal supergravities of
interest are specified by the choice

1
by = —4 V1402, Onpo = —5Xuxp, (2.39)
with o o o
X7 Ap — Emnap » X7 = EMAP » XMpP = Emmap » anﬁ = Emnap
- o _ (2.40)
jk k ij
Xm‘(:a8m‘{, XT] :Oéé‘m;, )(VIJT :aeivjl-(, XUR:Oé{:‘m‘(,

and a € RT a free parameter.® The embedding tensor described in [40] can be obtained by taking the o — 0
limit of (2.39) and truncating SO(8,8) down to SO(8,4). For generic «, the half-maximal supergravity in
3d resulting from (2.39) has gauge group

Go70 = [SO(3) w T?]" x T2, (2.41)

which, for o = 0, reduces to

G=0 = [SO(3) x T?]* x T%, (2.42)

with the remaining SO(4) becoming a global symmetry.
One can verify that the SO(8,8) embedding tensor in (2.39) does verify the quadratic constraint (2.9)
and also the compatibility conditions with maximal supergravity. In fact, it satisfies the stronger relations

01" O par =0,

Okiin Opgrs) =0, Oy 0™ =0, (2.43)
after which the others automatically follow. Upon embedding the half-maximal embedding tensor (2.39)
into its Eg(g) counterpart via (2.28), these identities also guarantee that (2.30) holds, and therefore the

resulting embedding tensor can be obtained via generalized Scherk-Schwarz reduction of Egg)-ExFT.

5The sign of « only affects the chirality of the fermionic modes, and can be taken to be positive without loss of generality.
Following the ten-dimensional uplifts, its range can in fact be restricted to [0, 1] (see eq. (5.43)).
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In the maximal theory, the gauge groups (2.41) and (2.42) are promoted into
G0 = [SOB3)* x B x (T")? (2.44)
for non-vanishing «, which reduces to
Go=0 = [SO(3)? x ¥'] x (T")° (2.45)
in the o = 0 case. Here X is a nilpotent subalgebra decomposing as
YT ® Tao, (2.46)

where 712 is an abelian subalgebra transforming in the adjoint of SO(3)*, and T30 represents two copies
of the (3,3,3,1) of SO(3)* which close into Ti2. In (2.45), the nilpotent subalgebra is X/ ~ T & Tao
now representing the adjoint of SO(3)? and eight copies of its bi-spinor representation, which close into
T6. The groups in (2.44) and (2.45) have the expected structure of gauged groups of three-dimensional

Chern-Simons gauged supergravity [51] (see also sec. 3.2 of ref. [55]).

2.4 Solutions

In the half-maximal theory, a family of solutions annihilating (2.13) with embedding tensor (2.39) is given
by the natural inclusion of the two-parameter locus found in the SO(8,4) theory [40] into SO(8,8). In
the basis (2.38) and with the generators of s0(8,8) normalised as is (2.5), it can be characterised by the
representative

Iy 0:0 0 :0:0 0
00 0 —C
. 0 0ily, 0 (000
3 w 37 3 ! Lo
V= exp| —wl — (1% - T%)} =0 0i0 e 10i00 (2.47)
0. 0.0 0 16:0 0
0 0:0 e¢i0il0
0 0:0 —e“¢i0i0 1
All points in this family of solutions share the AdS radius
2 1
BRoo=—l—_ - 2.48

For a # 0, the preserved gauge group out of (2.41) is SO(4) x SO(2) x SO(2) at generic values of the
parameters, whilst it reduces to SO(2) x SO(2) in the a = 0 case. There are special loci where symmetry
enhances. On the line

C=1-—e?, (2.49)

two more vectors become massless,” and the gauge symmetry becomes SO(4) x SO(3) x SO(2) for o # 0.
At the scalar origin, it further enhances to SO(4) x SO(4). For a = 0, one of these SO(4) factors is always

"We consider massless vectors and gravitini in spite of the fact that, together with the massless graviton, in D = 3 they
are non-propagating. We find this useful as they correspond to the unbroken (super-)symmetry of the solution.
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absent from the gauge group, and instead there is a global factor. Whenever ¢ = 0, this global symmetry is
SO(4), which is broken down to SO(3)giag otherwise.

At generic points of the two-parameter family no supersymmetry is preserved. As discussed in [40], the
symmetry enhancement at (2.49) corresponds to the locus where four gravitini become massless, resulting
in A/ = (0,4) preserved supersymmetry. Away from the supersymmetric locus, stability is not guaranteed,
as can already be observed at the gauged supergravity level. The modes that trigger instabilities can
already be found in the SO(8,4) truncation with a = 0 of [40].

The family of solutions (2.47) can be embedded into the sigma model (2.19) pertaining to the maximal
theory. Following (2.26), the representative reads

_ _ (JJC __ _
ViV = exp| —w 35— — (f%7 - f37)} 7 (2.50)
with indices in the (2.38) basis. As shown in [8], for a = 0 this family can be uplifted into type IIB
supergravity on an AdSs x S3 x T4 background, with the parameters w and ¢ controlling the squashing
of the S3 and its fibration over one of the torus directions. This intuition allows us to promote the
solution (2.50) into a 15-parameter family for generic a;, with two extra moduli in the case o = 0. The
coset representative depending on these 17 parameters can be given as

Vi = exp[—wfgg -

T Ca £ e f57 4 B f + B )

& w

0%~ T (% T+ R T+ B £ + B i) (2:51)
—51f36—52f36—53f36—54f36—U4f421—05f55—07f7?}7

with o4 and o5 stabilised to zero in the a # 0 case. This conformal manifold is entirely contained inside
SO(7,7) C SO(8,8) C Eg(s). Despite intensive search, no solution has been found in the half-maximal
theory where excited scalars lie outside this SO(7,7). Generically, the gauge group breaks to SO(2)* for
a # 0 and SO(2)? for o = 0, and all supersymmetries are broken. At certain loci, partial (super-)symmetry
enhancements take place, as will be discussed for the computation of the Kaluza-Klein spectra in sec. 5. As
will also be described in that section, the solutions with non-vanishing values for the #’s and w correspond
to TsT transformations of the undeformed background. In fact, some subfamilies uplift to the standard
Lunin-Maldecena deformations [19]. It is a remarkable characteristic of D = 3 supergravity that such g
deformations can be captured in a consistent truncation, unlike in the otherwise similar AdSs x S7 and
AdSs x S® solutions [19,56,57].

From a 3d perspective, the parameters in (2.51) span R'7. Nevertheless, as will be seen in sec. 5,
geometric identifications in 10d render the x; and y; moduli periodic. Similarly, string theory dualities [19]
also compactify the 8 directions.

3 Exceptional Field Theories in 3d

3.1 Review of SO(8,n) exceptional field theory

We are interested in the SO(8, n)-covariant reformulation of half-maximal 10d supergravity, first constructed
in ref. [38], to make contact with the 3d gauged supergravity in sec. 2.1. The bosonic fields of such an
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extended field theory are
MN
n
{9ws Mun, A7, Buunt, (3.1)

with ¢ € [0,2] and M, N € [1,84n] in the fundamental of SO(8,n). The metric g,, is a 3d metric, Myrn
is the generalised metric parameterising the coset SO(8,n)/(SO(8) x SO(n)) and A, M¥ parameterise the
gauge fields of the gauged supergravity. The gauge fields B, psn are covariantly constrained and necessary
for the gauge algebra to close, as we will review below. The internal indices of both AMM N and BN
belong to the adjoint representation of SO(8,n). All these fields depend on 3 external coordinates z* and
YMN in the adjoint representation of SO(8,n). Their dependence on Y MV

internal ones is subject to the

section constraints

a[MN & 8PQ] = 0, (32&)
nF@onp ® dng = 0, (3.2b)

such that there are only 7 physical coordinates 3* among Y™~ . The ® product in eq. (3.2) means that the
derivatives act on any combination of fields or gauge parameters.
The Lagrangian of the SO(8,n) exceptional field theory is
~ 1 SO(8, SO(8,
SO(8,n) _ \/m (RSO(S,n) + gDuMMN DHAMN + .5 (8,n) +$cs( n) (3.3)
The first term is an SO(8,n) covariantisation of the scalar curvature (see ref. [38] for more details). The

second term is the kinetic term for the generalised metric, and the Chern-Simons term, which ensures the
on-shell duality between scalars and vectors, is given by®

n v 2
.,?CSS(B’ ) — g enrp (F,WMN B,un + 0 Ay N O AMY — 3 N Ok LA AMY A, Pt 34
3.4
2 4
+ 3 AN oy N AM p O ATE — 3 AN oprp AM aKLApPK> ,

where F,,”N are the Yang-Mills field strength associated to A, (see eq. (2.55) of ref. [38] for an
explicit expression). Finally, the potential is [35]

o1
380(8, ) :g aKLMMN 8PQMMN MKPMLQ + 8MKMNP 8NL MMQMPQMKL

int

1
-3 N MEE 9 MMQ MpE MY — Opr g MNE Oy p MME 55
3.5
1
+ g7 O g O MMEMNE 1 MMEMNE 720, 8vg Ok g

1
+ 1 MMKMNL 8MN9;U/ aKLg'lW'

Such defined, the Lagrangian (3.3) is invariant under local generalised internal diffeomorphisms, defined by
their action on a vector VM of weight A as follows

SO(8,n)

Longy VM= Mo v 42 (0" MA gy — 0w AT + 25 ) VY 4 X o ARV (3.6)

8The global factor has been corrected compared to [38] by recovering the SO(8, 8) theory as a truncation of the Eg(s)
ExFT reviewed in the following.
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To make sure that these generalised diffeomorphisms close into an algebra, the gauge parameters >y are
subject to constraints similar to eq. (3.2),

{ Yn Xpg) =0, { Y Opqr =0, (3.7)
nVPE N Spg =0, NP\ N Opg = 0.
The associated covariant external derivatives used in eq. (3.3) are defined as
Dy =00~ L) (3.8)
with the weights of the fields in (3.1) and the gauge parameters AMY and ¥y specified as
G Muyn AN Baun AM Syn (3.9)

A2 0 1 0 1 0

To ensure the invariance of the action, the gauge fields B, must also enter constraints analogous to (3.7).

The section constraints (3.2) for the SO(8,n) theory admit two inequivalent solutions [38]. One
corresponds to the N' = (2,0) theory in six dimensions coupled to 5 self-dual and n — 3 anti self-dual tensor
fields and 5(n — 3) scalars. Such a theory cannot be oxidised to more than six dimensions. For the alternate
solution of (3.2), the theory (3.3) describes the NSNS sector of ten-dimensional supergravity coupled to
n — 8 ten-dimensional vectors. Setting n = 8 and denoting the physical internal coordinates as y’ with
i € [1,7], the constraints (3.2) are solved by breaking

SO(8,8) O  SO(1,1) x GL(7),

o . , (3.10)
X — {X°, Xy, XT, X;},

and restricting coordinate dependence to 3* = Y. The ExFT indices are aligned with the ones of the
three-dimensional half-maximal theory by embedding GL(3) x GL(3) x SO(1,1) C GL(7) as in (2.38). The
explicit dictionary between the SO(8, 8)-ExFT generalised metric and the internal components of the NSNS
fields is given by [8]
MO = 51 o2/2
MO — é MO0 i g 6]'
MO — MOIAOT = 5150
MOOMij _ MOiMOj _ g—lgik bk‘] ’

1..-J6 9

(3.11)

where g;; is the purely internal block of the ten-dimensional metric in Einstein frame, and g its determinant.
The ExFT fields b and b do not directly embed into the ten-dimensional two-form, but determine its field
strength H = dB through A

H =db+e®/® %9 db, (3.12)

with the ten-dimensional Hodge star taken with respect to the Einstein-frame metric. To describe our
configuration in the string frame, the only change needed is the usual rescaling of the metric gy ;0 = e?/? Jp-

The consistent truncation of the NSNS sector of type II supergravity on S% x T and S3 x 53 x St down
to a half-maximal supergravity can be described in terms of generalised Scherk-Schwarz Ansétze, where the
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dependence on external and internal coordinates factorises. The dependence on the former is carried by
the D = 3 fields and the latter by a group-valued twist matrix U(Y") and a scale factor p(Y") of weight —1.
The precise factorisation reads [38]

gm,(a:, Y)= p(Y)_2gW(x) )

Marn(,Y) = Un ™ (V)UN" (V) My (@),
AHMN(H?, Y)= P(Y)*l(U*1>MM(Y)(U71)NN(Y)AMMN(QC) 7 (3.13)

1 _ _ _
Bucr(2,Y) = = p(¥) " Uy (V)Orer (U )y (V) AN (),
On the right-hand sides, g, My;5 and AMMN are the fields of the half-maximal three-dimensional

supergravity described in sec. 2.1. The truncation to these fields is consistent if

SO(8,n — V _
Lo U™ =20k~ 05", (3.14)

with )
Ugr™ = p7 U (U ", and Sgp e = 1 p Ok (U M)z Upp, (3.15)

and a constant embedding tensor © RL|NIN- This tensor specifies the explicit gauging and its compo-
nents (2.8) can be expressed using the twist matrix and the scaling function as

Oriiiny = =30 JiRLi1N):
O =20 Tranm" = i 0+ s (3.16)
2 _
0— _ -1y KL
stnf 7KL

with the SO(8,8) currents Jy;5 g% = (U™4) ;M (U ) YV (U & K9y nUgE and the trombone gauging

N

an =29 (U) 5y " (U § "Okrp = 207" Trpm wy™- (3.17)

In the following, all twist matrices will be such that &;;5 = 0, allowing for a Lagrangian formulation of
the three-dimensional supergravity. For the SO(8,n) case with n > 8 relevant to heterotic supergravity,
equations (3.13)—(3.17) generalise straightforwardly.

3.2 Review of Eg) exceptional field theory

We can similarly employ an exceptional field theory suited to studying compactifications of maximal 10d
supergravity (and 11d supergravity) down to 3d. As detailed in sec. 2.2, the duality group is then Egg.
The Egg)-covariant reformulation of type IIB and 11d supergravities is Egg) exceptional field theory [37].
Its structure is very similar to what we described in the previous section. The fields are

{gHVa MMN7 AMM7 BuM}v (318)

alongside their fermionic superpartners. As before, they depend on both the external coordinates x* and
on a set of 248 extended coordinates Y M. Here and in (3.18), the index M € [1,248] is the adjoint index
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of Eg(g). The dependence on the YM coordinates must be restricted by the section constraints

HNou @ oy =0, (3.19a)
N pom @ On =0, (3.19b)
(Pss7s) mn”™“ 0k © 9z = 0, (3.19¢)

which have two inequivalent solutions. One preserves seven physical coordinates and corresponds to type
[IB supergravity, and the other has eight coordinates and is associated to M-theory. The Eg(g) structure
constants fan” and Cartan-Killing metric £MV can be respectively found in eq. (A.11) and (A.12) in
appendix A. The components of the projector 248 ® 248 — 3875 can also be found in (A.21).

The theory is invariant under gauge symmetries generated by the Eg(g) generalised Lie derivative. On a

vector VM of weight ), it acts as

LD VM = MV oNvM — (60 (o) a oA’ — FARy ) VA 4 AV MopaN,  (3.20)

with (Posg)™ . in (A.21). As previously, the closure of the algebra of E(Ei(;)) imposes constraints on the
gauge parameters ¥ and By fields similar to eq. (3.19), and the fields in (3.18) need to be assigned
weights analogously to the (3.9) assignment.

The bosonic Lagrangian, invariant under eq. (3.20), is given by [37]

int

. 1
£ = /]g] < RE®) 4 o DMy D MM $E8(8>) + L5, (3.21)

We denote RPs®) the Eg(g)-covariantised Ricci scalar and define the Eg(g)-covariant derivative as’

_ Eg(s)
D, =09, — L(AH,BM) . (3.22)

. E
The potential term .,iﬂmf ®) reads

1 1
Lt = 510 MV oM EoN My — 5 MMN Oy MEEO Mk
1

~ 7500 FNCp S MPROMM o MREIN My (3.23)
1 1 . 1 3}
+ 59 Omg INMMN i MMN 672919 Ong + i MMN 00t g1 O g™

E
and the Chern-Simons term Xcsg ® has the following expression:

1 2
chsS(B) =5 (FWMBpM — fieeN A O AL — 3 Ve OO ASAMAF
(3.24)

1
-3 Fyvare P o R s -AuMa'PAugaR-ApS> :

We refer to the eq. (2.26) of ref. [37] for the expression of the covariant field strength F),,” of A,™, which
will not be needed in the following.

9For the sake of readability, we use the same notation for the SO(8, n) and Egs) covariant derivatives in eq. (3.8) and (3.22).
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Within Egg) exceptional field theory, the Scherk-Schwarz Ansatz describes consistent truncations of
type II supergravity down to maximal D = 3 gauged supergravities. It is expressed in term of a twist
matrix UpM € Eg(g) and a scaling function p, and parallels eq. (3.13) [53,58]:

guu(xa Y)= p(Y)729;w(x) )

M (z,Y) = Up™M ) UMY (V) M g ()

AM(2,Y) = p(V) LU o M(Y) AM (@), (3.25)

P - po g . :
Bum(e,¥) = 2= 1P (U ) pp (V)0 )P (V) A (@)
The fields g,,,,, M 5 and AMM now belong to the maximal three-dimensional supergravity described in
sec. 2.2. The truncation to these fields is consistent if the following condition for generalised parallelisability
is satisfied:

E M Prs M
5(51?,%)“/\7 = Xon Up™, (3.26)
where
1 1 5O 77— _
UM =p P U H o™ Zom= il L") ppom (U7, (3.27)
and with constant torsion [18]
_ _ _ . — 1 _ — _
— — K L - K L
X" == Taw” + 07 ol e T = o507 7w b ® Tra
3.28)
1 1.5 .08 s ce s 1, re. B (
=50 P xal ¥ Ire” + (W’C%P -3 fMLKf/\T[:P> €k

which can be identified with the embedding tensor of the three-dimensional gauged supergravity. Here we
have introduced the Eg(g) current Jy 5" = (U MUY ¢*0cULP and the trombone gauging

£ =201 N owp™ + p o (U . (3.29)

As before, we will always consider ,; = 0. This consistency condition is most nicely expressed once
projected on the adjoint representation

X = =207 Toany — p " Teoa” T (3.30)
with
Xow = Xupafv’ S and  Tuw =g Tupa I 2 (3.31)
3.3 ExFT matryoshka

We embed the SO(8,8) exceptional field theory into its Eg(g) counterpart by breaking the latter group as
in eq. (2.26):
Eg(g) — SO(& 8) s

(3.32)
XM — {XIMN] AL
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The SO(8, 8)-ExFT coordinates Y™V of sec. 3.1 are identified with the components in the 120 of the Eg(s)
coordinates Y™, and all fields and parameters are independent of Y4,

YMN cyM and 94=0. (3.33)

The fields of the two theories can also be related through (3.32). The relevant sigma models are identified
through the inclusion (2.19), and the vectors in the adjoint of SO(8,8) are identified in the two theories:

ASEMN _ g JSOEBMN 4 358]\(/[8;\[ = 4B, (3.34)

The remaining components are identified with the Ramond-Ramond fields of maximal supergravity. From
an SO(8, 8) perspective, the consistency of the truncation to the NSNS sector follows from the projection
in (2.32).

In the following, we describe how the Eg(g) section constraints and generalised Lie derivatives are related
to their SO(8, 8) counterparts. For configurations that admit a generalised Leibniz parallelisation in the
SO(8, 8) theory, we detail how to build a twist matrix U. MM from U MM in such a way that the embedding
tensors in the corresponding consistent truncations are related as in (2.28).

Section constraints For the adjoint coordinate dependence (3.33), the Eg(g) section conditions (3.19)
follow from the SO(8, 8) ones (3.2). This can be seen explicitly using the SO(8, 8) decomposition of the Egg)
structure constants given in (A.11). For the conditions (3.19a) and (3.19b), the non-trivial components are

1
MNG @Oy = —= Oyn @ OMN
K M N 3 MN ) (3.35)

FMNPC g Oy ® Opg = —40jg" @ Ogr

which vanish as a consequence of eq. (3.2b). Concerning the last condition (3.19¢), let us first note that it
is equivalent to eq. (3.19a) and (3.19b) together with

R tN LR O @ O — 20 @8y = 0. (3.36)
The only non trivial components of this equation are

FMunr Y Q™ OMm ® Oy — Oun ® Opg — Opg @ N = — 6 ImnN ® Ipq) 5

1 (3.37)
FM AR N R O @ Oy = T (PHTHRE) g 017 © OkL -
They both vanish thanks to the SO(8, 8) section condition (3.2) and
N M
(CMNTPQ) = TUNPQ popMIPPGN oy NIPPGRT — 2 pMIPyQIN ) (3.38)

For the solution of the section constraint in (3.10), the dictionary between the Eg(g)-ExFT generalised
metric and the internal components of the NSNS fields is obtained by further splitting SO(8,8) under
SO(1,1) x GL(7) and using eq. (3.11). The internal components of the RR fluxes could be computed
similarly through the components of the Eg(g)-ExFT generalissd metric in the 128 of SO(8,8). However,
as the deformations of the AdS; x S% x T* and AdS; x 52 x 52 x S! solutions we consider do not excite
those fluxes, this part of the dictionary will not be needed in here.
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Generalised Lie derivative With the coordinates (3.33), the Eg(s) generalised Lie derivative (3.20)

decomposes as

ERBY = LRV 4 (PN 4y VADu A = (D) BV,
1 1
LasyVA = LGV -3 (T7P9)™ gV BoRoA  p + =@ QLKLY LVpodk AP (3.39)
1

AB
+ Z (PKL) (EBVKL + EKLVB) ,

where (AMN $,y) = (AAMN 15,n), in accordance with eq. (3.34), and V4 is considered a set of
SO(8, 8) scalars. Restricting all the objects to have vanishing components in the spinorial representation of
the orthogonal group, the generalised Lie derivative of the Egg) theory can be observed to reduce to the
one for the SO(8,8) ExFT.

Uplift An Egg) twist matrix satisfying the consistency condition (3.26) can be constructed from an
SO(8, 8) twist matrix satisfying the condition (3.14). We identify the scale factors p and define'’

; 20 MUY T 0
UpM = | S TN D , 3.40
M ( 0 | UAA ( )
where U A“‘i is a 128; representation of U, MM ,
_ 1 _
U™ = exp <2 UMN FMN> A (3.41)
A

M with TMN the generators of s0(8, 8) normalised

where the matrix « is such that UMM = exp (uPQ TPQ)M
as in eq. (2.5). Then, using the decomposition (3.39) of the generalised Lie derivative, the Eg(g) generalised

parallelisability condition (3.26) has the following non-vanishing components:

Eg(g) ~ MN __ ~_ [Ps_ Ql2;,. _MN

Lo oo oUrp™ =405z 0% Upg™™,
Eg(s) a1 (m) B, A
E 1 R NG (3.42)
LugmoUs™™ =] (— Onge+ 507" ac 9PQRs> () 5 Ui ™™

E L poRs BC
Loty gUnn™ =5 (— Onas+ 5 T a5 9PQ35> (Crw)™ Ue™,
where we used SO(8,8) consistency equation (3.16). Hence, the consistency of the Egg) Ansatz (3.25)
is ensured by the one of the SO(8,8) Ansatz (3.13). The components of the resulting Eg(g) embedding

tensor read

1
Xiw,pq=20mNnpe.  Xag=—0nas+ g as%ivpg,  Xuwa=0 (3.43)

10The coefficients in eq. (3.40) are different from those in ref. [8] to match the summing convention (2.25).
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The relation between the embedding tensors reproduces the three-dimensional embedding tensor (2.28).
Thus, a twist matrix UuM € SO(8,8) and a scale factor p satisfying the consistency condition (3.14)
will both give a consistent truncation of half-maximal ten-dimensional supergravity down to N' = 8
three-dimensional supergravity through eq. (3.13) and a consistent truncation of IIB supergravity down to
N = 16 supergravity in 3d through eq. (3.25) and (3.40). In sec. 4, we describe the pairs (p, Up/M) suited
to the reductions on $3 x $3 x S and S3 x T*.

3.4 Kaluza-Klein spectroscopy

On Leibniz parallelisable solutions of exceptional field theory, the Kaluza-Klein spectrum can be obtained
by extending the Scherk-Schwarz factorisations in (3.13) and (3.25) to include the linearised perturbations.
These linear perturbations have a natural tower structure when expanded in terms of the harmonics of
the most symmetric configuration homeomorphic to the relevant background [31,32]. In fact, only the
scalar harmonics are needed and the levels are not mixed by the mass operators, a feature that turns the
computation of the Kaluza-Klein masses into a diagonalisation problem for a set of mass matrices. In the
following we will discuss how to compute the Kaluza-Klein spectrum on any solution that uplifts from 3d
supergravity using these ExFT techniques.

3.4.1 SO(8,n) mass matrices

For the modes arising from the 10d metric, dilaton, Kalb-Ramond field, and possibly extra ten-dimensional
vector multiplets, it suffices to extend the Scherk-Schwarz Ansatz (3.13) in analogy with [35]. Starting
from a background specified by three-dimensional SO(8, n)-supergravity fields

(G My ANNY = {Gr Ajrw, 0, (3.44)
we consider the expansion
G (V) = V)2 (G (1) + By M) VA (YY)
Mun(,Y) = UM (V)UNY (V) (Ajrx + G (@) VA (Y))
AN (5,Y) = p(1) UL M) (UY) N (V) 4, TR @) YA (Y (3:45)
Buien(,¥) = — 5 oV Uy (V)0 5V () 4,8 A @)y (v),

extending (3.13). Here, A denotes a possibly composite Kaluza-Klein index which will depend on the
topology of the background solution. These harmonics lead to the definition of 7T;; > as the constant
representation matrix encoded in the SO(8,n) twist matrix as

p HU Y MUY gNounIA = 2Ty EVE. (3.46)

The properties of the twist matrix (3.16) guarantee that the 70-1\’4 NAE represent the gauge algebra, with the
commutator normalised as [35]

[ﬁzm 7%@] = O " Tk + ©pom”™ Taik - (3.47)

To describe backgrounds corresponding to other points of the scalar manifold, it is convenient to dress
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this tensor analogously to eq. (2.14),

Tan =V "V e kL (3.48)

Then, the Kaluza-Klein mass matrices are those presented in [35,40], which we reproduce here in the
present notation. The mass matrices corresponding to the bosonic Kaluza-Klein modes read

MR = —26MPNOT B0 TR, (3.49a)
My "N 5= = <nf<[1\’4nN]E _ §KIM 5N}E) (Tmm 559 4 47[,{[1529”@@)  (3.49D)
M(20) MN,PQEQ JUNZPQQ _ <mMN,PQ 539 4 mg\_ﬂfﬁ@zn) JMNZ PO (3.49¢)

where my;y pg is given in eq. (2.16) and
mhﬁ,pgm = 8Ty pi Oy 00T Tor ™ + 8 Twrpri 5QR5RL Taz™®
— 8ny1p Trgir 0" 6% Tas™ + 8nyp Tygrp T 29
+8 (Tygp + Twep) Tag™ + 2nwrp Mg 6% 205 Tie ®ATpa™? (3.50)
+ 1695 SKL TQEEATNKAQ —4 (5MR515E TQEEATNRAQ
+ 16 TMPEATNQAQ .

In turn, the mass matrices for the fermionic fields are'!

My AP AE = —APP 68 291 55 Tr A%, (3.51a)

M(1/2)AIBJ7 AS _ _A?IBJ SAS _ 27”]15? 517 TfjAE +86 55 7—ﬁAz , (3.51b)
in terms of the shift tensors in (2.17) and the SO(8) x SO(8) components of Ty x*>.

As in previously studied 3d Kaluza-Klein spectra [35,40], all the eigenvalues of the graviton and gravitino
mass matrices correspond to physical modes in the spectrum (on the proviso remarked in footnote 7), and
one must take into account that each of the eigenvalues of (3.49a) in fact corresponds to two states of
opposite spin. The eigenvalues of the remaining matrices include the Goldstone modes which are absorbed
by massive gravitons, gravitini and vectors in the super-BEH mechanism upon taking into account the
off-diagonal couplings between modes of different spin. Ignoring these couplings, the eigenvalues to be
discarded can be identified given the masses of the gravitons and gravitini [59,40]. The relevant relations
in D = 3 are [40]

(m)€AdS) goldstone = £ 2 \/1 + (Meylags)’ (m(/2)lads) = 3M(3/2)lAdS s (3.52)

goldstino

for goldstinos and goldstone vectors. Out of the eigenvalues of the scalar mass matrix (3.49¢), one must
also remove the usual massless fields corresponding to longitudinal polarisations of massive vectors, as well

" This corrects a sign in eq. (4.13) of [40]
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as two values for every massive graviton. One of them is always zero and the other is given by

2
goldstone

(m(0)ads) = —3 (mglags)” - (3.53)

3.4.2 Eg;) mass matrices

For the spectrum of the full type II supergravity, we need to consider a deformation of (3.25) for Egg)
ExFT. Around the background specified by 3d fields

{g/uu MMN: Aﬁ/l} = {gum AMN? O}a (354)

the fluctuation Ansatz is 8]

G (@, Y) = p(Y) 2 (G () + b= () YE(Y))
M (@, Y) = UM U (V) (A o + G (2) YEY))
A M@, Y) = p(YV) MU o MY) A E (@) YE(Y),

p(Y)_l f_75Q (Ufl)_ (Y)a U*l _P A M, )
o I Pp(NOMU )P (V) A4 @) YY), (3.59)

BMM (.’E, Y) =

The scalar fluctuations are parametrised as j 4 /\72 =2Pg ;N > 2 where P xaxr 1s the projector onto

the coset (2.19). The scalar harmonics satisfy
p U)MoY = = T Y2, (3.56)
such that the constant matrices TMZQ define the algebra
[T Tir| = Xpan) T (3.57)

As in eq. (2.33) and (3.48), these matrices can be dressed to describe backgrounds corresponding to other
points of the scalar manifold.

With the twist matrix (3.40) and the physical coordinates embedded in Y™ as in eq. (3.33), the
matrices ’7A'MEQ have as only non-vanishing components

Tiw =2Tiw » (3.58)

where Tasw is the SO(8,8) tensor in (3.46).
Inserting the Ansatz (3.55) into the ExFT action (3.21), one can read off the bosonic mass matrices

M P = - AN ST, (3.59a)
M(I)MEA_[Q _ (A/\?HS T RMﬁ) (Xﬁ/\'/ PRl fﬁj\_[@ 7529) ’ (3.50b)
M?o)ﬁz Q_ sZQp MNPgﬁQ (;X (X s + X (; ARL | ICL) Xzp ANQ)

+2 (X s — 2 Xjgam) AT 42 X g 5N T30 (3.59¢)



— (TaTw) ™ AWk 7+ 2 (T Ti) ™ AP 5™ fa6™ = 2 (T577) ™7
Upon considering the supersymmetric completion of (3.21) in [53] and the expansions [33]
UM@Y) = o7 2 MA @A (), Y (2,Y) = p )07 M @YY, (3.00)
for the ExFT gravitini and spin-1/2 fields, their mass matrices can also be found to be
M(g/Q)ME,NQ _ _A1I\7IN529 - 4(V‘1)
M(l/Q),QZE,&?Q _ 71213,920}?529 _ N ?(V_I)MNM%MEQ’

(3.61)

in terms of the shift matrices in eq. (2.36). The mass matrices (3.59) and (3.61) also contain unphysical
Goldstone modes that need to be removed using (3.52) and (3.53) and decoupled vectors.

4 The Round S2 x S3 x S! and S® x T* Solutions

In this section we show how the techniques discussed in sec. 3 apply to the consistent truncations on the
round AdS; x S3 x 92 x ST and AdS3 x S3 x T solutions, and how can be used to compute their associated
Kaluza-Klein spectra.

4.1 Scherk-Schwarz factorisation

Twist matrix for §3 x §3 x S1 The relevant pair (p, U M ) which makes contact with the embedding
tensor (2.39) can be constructed out of two copies of the SO(4,4)-ExFT parallelisation discussed in [40] as

p 0 VItaZém 0 iVIt+aZd 0 10
O P 0 0 . 0 0 0
0 —p V1+a2Zmmém iy Zom | 0 0 0
U = ,9,,:f,’,,l,V,,,li?{z,?f‘mfif,3 ,,,,, ke 00 0 (4D
0 —p Wl+a2Z¢ 0 0 akf a1z, 10
0 —pWita2ZE L0 0 | ki o720
0 0 | 0 0 ¢ 0 0 |l

in terms of the SO(8,8) D SO(1,1) x GL(3) x GL(3) x SO(1, 1) breaking of both flat and curved indices
such that
XM ={X% Xo, X™, X, X', X3, X7, X7}, (4.2)

following eq. (2.38). The objects appearing in eq. (4.1) are constructed from the Killing vectors on the
round S%’s,
Kopm = Via|Omdg) » Kspi = Va0 (4.3)

with Y and Y% the harmonics that embed the spheres in R?* as 5aﬁyay/3 = 1 and likewise for tilded
indices. The fiducial unit-radius metrics on the round 5%’s can be recovered from the Killing vectors as

.&mn = 2KaBmKw5n5a76ﬂ6 > éij = 2%&B1K§Sj5d§6ﬁs7 (4'4)
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and the vectors can then be split into SO(4) ~ SO(3)1, x SO(3)r as

1 .
Lz™ <K4mn + 5 E4mnp Knpn> g,

1 (4.5)
Rz™ = <K4mn - 5 E4mnp Kmm) f]nma
normalised so that
ELmLﬁ :€m—ﬁLﬁ, £LmRﬁ:0, £RmRﬁ: _EmﬁﬁRﬁ, (46)
and analogously for the tilded counterparts.
The different blocks in the twist matrix (4.1) are then given by the SO(3,3) C SO(4,4) vectors
C-m = L*m—l—R*m,
" " "o (4.7)
ICmm — (Rﬁm . Lﬁm) 5nm7
and one-forms B i
anm - 6mﬁ ]Cnnénm -2 \/glcfnn Emnp é-p ’ (4 8)

me = 6mﬁ Kﬁn.&nm -2 \/g,cfrm Emnp gp )
with f a vector satisfying Vm§m = 1 with respect to the Levi-Civita connection associated to the metric (4.4).
The analogous objects IE;i, If@i, Z.. Z\; and £~1 are defined similarly for S3.

Together with the scaling function
p=ay g, (4.9)

these objects recover the embedding tensor (2.39) via eq. (3.16). Moreover, if we parameterise the ExFT
coordinates Y in (3.10) as

Y™ Y0 = cos(0) cos(pr), Y29 =cos(f) sin(pr), Y30 =sin(f) cos(p2),

Y0 y40 = cos () cos (@1), YO =cos(f) sin (@), YOO =sin(f) cos(Pa), (4.10)
Y70 — T
with
0<6,0<7, O<pnpi<em, 0<y <l (4.11)

with i € {1,2}, and use the dictionary in (3.11), we can write the AdSs x 3 x §3 x S solution as

dg® = (3 45 ds?(AdS3) + d6? + cos®(0) dp? + sin?(0) dp3 + a2 (dﬂﬁv2 + cosz(g) dg? + sin?(6) d(ﬁ%) + (dy")?,
H ;) = 203 45 vol(AdS3) + 2sin(8) cos(h) d8 A dg1 A des + 22 sin (6) cos () df A d@y A B,

Gy =G =G =0, (4.12)

both in the string and Einstein frames owing to the vanishing dilaton. Here and throughout, ds?(AdS3)
denotes the unit-radius metric on AdSs, faqs is the AdS length in (2.48), and vol(AdSs) its associated
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volume form. For later convenience, we will choose a gauge such that the local two-form potential leading
to the internal part of the Kalb-Ramond three-form in (4.12) is given by

B(Q) = sin(G)ngol A dps + a 2sin (5)2d&1 ANdps . (4.13)

Twist matrix for §3 x T* The twist matrix for S2 x T* can be similarly parameterised as

p 0 L26m 0 10
O Pl 0 0 10
O™ =10 2071 Znm™ 1 K™ Zam 0 0 | (4.14)
0 _2p—1zmm£m i jcmm me i 0
0 0 L0 0 1lg
in terms of the I, Z and § tensors above, and the scaling function
p=g V2. (4.15)

Embedding the S3 x T4 coordinates in ExFT as
Y10 = cos(8) cos(e1), Y20 = cos(8) sin(ypy), Y30 = sin(0) cos(ea), Ye0 =y (4.16)

the AdS3 x S3 x T* solution reads

ds? = (3 45 ds*(AdS3) + db? + cos?(0) dp? + sin?(0) des + dap dy®dy’,

H ) = 203 45 vol(AdS3) 4 2sin(#) cos(h) df A dgy A des, e
Gy =G =G =0,
with the coordinates now ranging as
0<6<Z, O0<pLg<2r, 0<y <L, (4.18)
and the local two-form potential simply given by
By = sin(0)*de; A degy . (4.19)

4.2 Sphere harmonics

For the products of spheres under consideration, the composite index A in (3.45) and (3.55) labels
representations in the infinite-dimensional towers

ST Dy Do (59%) of SO(4) x SO(2)4,

(p4,ps5,P6,D7)

SBx TS By DT, B, (% m B %) of SO(4) x SO(4) x SO(2),

p7

(4.20)
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and the corresponding harmonics factorise as

VA = YAemidirave for §3 x T4,

S _ (4.21)
YA = YA YA 2mivryr for §3 % §3 % ST
with each one-cycle having length 1. The SO(4) harmonics,
={1, ¥, YA Y ae[,4], (4.22)

and similarly for yf\, correspond to symmetric-traceless products of the level-one harmonics for the round
53’s, which we choose as

= {2 vt V- )2 - (87)? - (v7)%) (4.23)

and analogously for Y%.
Following (4.21) the matrices in (3.46) can in turn be decomposed as (c.f. S® x S! S-fold solutions
in [20,22])

Tinw POAS = T o 4 00 Ty o) for 3 x T4,
. _ (4.24)
Tig PSS = gAY T oAS 4 gAS T A L GANGAS T S 0n) for §3 % B x ST
analogously for their maximal counterparts in (3.56).
For the $3 x T* background (4.14), the SO(4) matrix T;; 5> has non-vanishing components
o o - 1 -
Tm 5[0455] Tm(_) aB _ = mdof ’ (4.25)

4 Ym> 9

when acting on the level m = 1 harmonics in eq. (4.23). Similarly, in the S x 53 x ST case we have

. . 1 - oz . . = o
T o @2 = 85000 . Tl = el T o = a sl ngaﬁzgsm‘*aﬁ, (4.26)

At higher levels, the tensors 70'1\;1 &M can be constructed recursively from (4.25) and (4.26) as
(Tir)an w5 = (Tt ) o P62 . 5000 (4.27)

and analogously for TM N]\i. Similarly, the SO(2) blocks are simply given by

T o5 P = —wip, . (4.28)

In this conventions, the matrices in (4.24) are complex, and hermitian conjugations need to be introduced
in the mass matrices. Equivalently, we could have used manifestly real objects at the price of introducing a
two-fold degeneracy in the eigenvalues.

4.3 Spectra on the round solutions

As the AdSs isometry group SO(2,2) ~ SL(2,R) x SL(2,R) is not simple, the superisometry group of
AdSs3 background is in general a direct product of simple supergroups G = Gp, X Gg. The spectrum of
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such backgrounds organises into representations of G, with conformal dimension A = Ay, + Ag built from
the conformal dimensions of each Gy, r factor. The spacetime spin s of a field in a given representation is
then given by s = Ar — Ar,. In the following, we use the ExFT spectroscopy of sec. 3.4 to compute the
masses M) of each Kaluza-Klein tower of spin s, and identify the corresponding conformal dimensions
from [60-65]

Ao (A —2) = aas)’ App =1+ ¢
{ 0 (o) = 2) = (m)laas)” { (1/2) m(1/2)CAdS) (4.29)

A(1) =1+ |m(1)£AdS’v A(3/2) =1+ |m(3/2)€Ads|,

where the masses are normalised by the AdS length fa4s.

The Kaluza-Klein spectrum on the round S2 x 53 % S1 solution of type II supergravity, recently revisited
in 18], organises into supermultiplets of

ga;ﬁO = D(2a 1‘(1)[4 X D(27 1’0[)1:{ X U(l)a (430)

with D(2, 1]a) the large N' = 4 supergroup in three dimensions. The even part of (4.30),

SO(2,2) x SO(4) x SO(4) x U(1), (4.31)

now corresponds to the isometries of AdS3 x S3 x §3 x S, with SO(2,2) ~ SL(2,R)L, x SL(2,R)R,
SO(4) ~ SU(2)1, x SU(2)Rr and similarly for the tilded counterparts. The long multiplets of each D(2, 1|a)
can be labelled as [h,j1,77] [66] (see appendix B for a review), and the complete spectrum of type IT

§= P ([ro. 6.7 @ [ho, ,])

£,0>0
prEL

supergravity then reads [66]

pr (4.32)

with p7 the U(1) integer charge and

hog=—=+— T (4.33)

11 40(0+1) +4020(0 +1) + (27 pr)?
5o\l .

The dimension of the superconformal primary of ([ho,ﬁ,ﬂ ® [ho,ﬁ,ﬂ) is then A = 2hg. For these
p7

multiplets, shortening occurs when p; = 0 and ¢ = ¢ following equation (B.6) of appendix B.

The case of the heterotic string can be described using the half-maximal supergravity of sec. 2.1. Given
the 16 vector fields coupled to the NSNS fields in ten-dimensions, the three-dimensional supergravity arising
from compactification to three dimensions has a coset space in the class of eq. (2.1),

SO(8,24)
SO(8) x SO(24)”

(4.34)

The heterotic gauged supergravity is then obtained by embedding theSO(8, 8) tensors of sec. 2.3 in SO(8, 24).
All vacua of the SO(8,8) theory are vacua from the SO(8,24) theory. The supergroup organising the
spectrum at the scalar origin is

—_——

SL(2,R), x SU(2)1, x SU(2);, x D(2, 1|ar)r x U(1) x SO(16). (4.35)
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The bosonic isometries of the background are built similarly as in the maximal case, with an additional
SO(16) factor for the heterotic vector fields. The spectrum can be described based on that in eq. (4.32).
For each term in the sum, the left factor [ho, ¢, £] breaks into

SL(2,R) SU(2)y, x SU( )L,
ho ~ - (&.0) N (4.36)
I+h ((+L0e(l-1)a (e (e (—1,0e (I+1)
2+ hg (f, Z)
and the spectrum is supplemented at each level by 16 copies of the multiplet
((1 + ho, £,0) ® [hO,&ZD : (4.37)
p7
transforming as a vector of SO(16).
Regarding the spectrum of the round S® x T# solution, it abides by the supergroup
G = [S/G/(Q)L % SUIL, 1)t ] [S/UV(z)R x SU2|1, 1)r] x U1, (4.38)

where SU(2|1,1) is the small N' = 4 supergroup in three dimensions. The even part of the superisometry
corresponds to the isometries of AdSz x S3 x T4,

SO(2,2) x SO(4) x U(1)*, (4.39)

where SO(2,2) ~ SL(2,R)1, x SL(2,R)r and SO(4) ~ SU(2)1, x SU(2)Rr correspond to the AdSz x S*
isometries, together with an extra global S/O\/M) o~ S/U\/(Z)L X S/U\/(2)R factor corresponding to relabelling
of the torus angles. We denote [A, j*, 7] the long multiplets of SU(2)_ x SU(2|1,1); and p, the U(1)*
charges. See appendix B for a review of the multiplet content of this superalgebra. The spectrum is then

given by
= @ ([h0,6,0] @ [no,£,0]) : (4.40)
>0 P4,P5,P6,P7
pa€Z*
where
11
= —_ _ 2
ho = 2+2\/1+4£(£+1)+Za:(2wpa) : (4.41)

The conformal dimension of the primary of each factor is then A = 2hy. The unitary bound (B.6) is
saturated for py = ps = pg = p7 = 0, and the multiplets get shortened according to (B.7). Therefore, at
levels with ¢ = 0 equation (4.40) must be interpreted as a shorthand of

(B3lse ) o (Balse0s)e @ ([A.0.0]@ [Ar.0,0)) L (a4

P4.P5,P6,P7
Pa€Z*\{0}

In the heterotic case, the supergroup organising the spectrum is

P

[SL(2,R)L, x SUR),, x SU()L] x [S/G/Q)R x SUIL, g x U(1)* x SO(16). (4.43)
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The spectrum can again be described based on that in eq. (4.40). The left factor [ho, L, O] of each term
breaks into

—_—

Ar SU(2)1, x SU(2),
ho (¢,0) (4.44)

1+hy (6L1)® (¢+1,0)@ (4,0) @ (¢—1,0)

2+ ho (¢,0)

with hg given in (4.41), and 16 additional copies of the multiplet

((1+ho,2.0) @ [¢.0]) (4.45)

P4,P5,P6,P7

adds up to each level.

5 Deformations

The three-dimensional solutions in (2.51) can be uplifted to ten dimensions as deformations of the round
S3 x T4 and $3 x $3 x §! configurations reviewed in the previous section. For clarity, we will refrain
from presenting the entire 17-parameter family, and focus instead on some subfamilies that best exemplify
different phenomena. We discuss only the solutions in type IIB, but all of them have vanishing RR fluxes
so the heterotic case follows easily.

Given that all the moduli in (2.51) belong to SO(7,7)/SO(7) x SO(7), it is interesting to analyse the
solutions from a generalised geometry perspective in terms of a generalised metric

b~ BoT'B Byt
H = (g _g—.lgSB .@gsl ) ’ (51)

with g5 and B the internal components of the string frame metric and two-form. The deformed solu-
tions (2.51) can be described as transformations of the undeformed solution by a constant SO(7,7) element
that depends on the marginal parameters,

Hdef =I. Hround . Ft 5 (52)

with I' € SO(7,7). This element can be written as products of TST transformations 7, GL(7,R) ones G
and constant shifts of the B field B, where

(1T 0 _(r O (1 s
3 I S

2
peGL(T,R), B se /\R". (5.4)

with

In the following, we choose to represent the SO(7,7) elements as

r=7-G-B. (5.5)
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These elements will be expressed in the bases

{d6, dp1, dpo, db,d@1,dFs, dy7}  for AdSs x 3 x 3 x ST,

5.6
{df,dp1,dps, dy*, dy®, dy®, dy”}  for AdSz x S3 x T4. (56)

5.1 Uplift of the (wx3)-family

The two-parameter family of AdSz x S? solutions in six-dimensional A" = (1, 1) supergravity found in [40]
through the uplift of (2.47) can be further lifted into the NSNS sector of type IIB supergravity. See app. D
for a direct account on how to construct this Ansatz for AdSz x S3 x T%. More generally, using ExFT we
can obtain its embedding both in AdSs x S x §3 x S and AdSs x S x T* [8], which reads

e? = VA,
ds2 = (345 ds?(AdSs) + dO? + e“A(cos?0 dp? + (¢* + e ) sin?0 dyp3) + ds®(M3)
+2 e“’CAdy7( cos?0 dp; — sin?6 dyo) + (dy™)?,
His) = 203 45 vol(AdS3) + 2H () vol(M?) + sin(20) A%e*2d A (dpr + Cdy”) A ((¢% + e *)depa — ¢dy7)

Gy =Gu =G =0,

(5.7)
with
. o2 (d6% + cos?d@? +sin20d32) , for AdSs x S3 x §3 x 1,
ds®(Mg) = < 4 s (p2> ’ (5.8)
i dy'dy? for AdS3 x 83 x T,
the function ~
e w

A — 5.9
1+ (2+e 2% —1)cos?0’ (59)

and H(«) a Heaviside function with H(0) = 0. The angles parameterising this manifold range as in (4.11)
and (4.18). The moduli (w,() define a perturbatively stable solution if all scalars within the spectrum
satisfy the Breithenlohner-Freedman (BF) bound (mKAdS)2 > —1 [39]. This restricts the parameters as

2 3
< 7 2> \2[6_“’ —e W, (5.10)

See fig. 1 for a graphical representation. At the locus (2.49), where supersymmetric enhancement takes

(&

place, the configuration (5.7) becomes [8]

g
2
82 = (345 ds*(AdS3) + ds?(CPY) + e 2 n? + ds* (M) + (dy” + /1 — e=27)?, 5.1
Heyy = 202 45 vol(AdS3) + 2H (a) vol (M) + 2n A J +2¢/1 — e 20 T Ady” '
Guy =G =Ge =0,
with
1 = cos20 dg; — sin0 dys J = %dn. (5.12)
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SUSY loci:
--- N = (0,4)
o N =(4,4)

D Instability area

|
I
-1 0 1 ¢

Fig. 1 The solution (5.7) is perturbatively stable for any couple of parameters outside of the instability
area, as given by eq. (5.10). The dashed line represents eq. (2.49), where A" = (0,4) supersymmetries
are preserved. At w = ¢ = 0 supersymmetry further enhances to N' = (4,4).

In terms of the SO(7,7) transformations in (5.5), the family of solutions in (5.7) is described by

B=—Cdpr Ady" + (e7¥ —1)dg; A depy,

1 O 0 O

0 ¢ 0 0 (5.13)
p= , s=0.

0O 0 14 O

0 ¢ 0 1

As apparent from (5.13), the family of solutions (5.7) cannot be generated via pure TsT transformations [19],
since there is no value of the moduli w and ¢ for which both G and B reduce to the identity and 7 remains
non-trivial. Nevertheless, we can achieve this by uncoupling the parameters x; and f; in (2.51). If we

consider

VMN = exp[ —w i — 1 _we_w (x1 7+ 8 f§7)} ) (5.14)

the type IIB supergravity solution is
et — VA,
ds? = (3 45 ds*(AdS3) + ds*(M?) + d?

2 2
+e¥A [00520 (dgpl + X1 dy7> + sin?6 (51 dps + dy7> + e 2 sin%0 dp? + e =2 cos?f (dy7)2} ,
H sy = 203 45 vol(AdS3) 4 2H () vol(M?) + sin(260) A%e2*df A (d(pl +x1 dy7) A <(ﬂ% + e_2w) dea + 51 dy7) ,

G = G‘(3) =G =0,
(5.15)
with

e—w

A= :
14 (B} + e 2 —1) cos?d
The deformation generically breaks the SO(4) factor in (4.31) and (4.39) to the Cartan subalgebra

(5.16)
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U(1)r, x U(1)r and all supersymmetries. The relevant SO(7,7) transformation to construct (5.15) is given

by
B=PF1der Ady” + (7% — 1) dg1 Ades,

1 0 0 O

0 e 0 0 (5.17)
p= , s=0.

0 0 14 0

0 e“x1 0 1

Therefore, the deformation is the combination of a coordinate redefinition coupling the angles ¢ and 37 and
a rescaling of the ¢ coordinate, both described by the GL(7,R) transformation, and TsT transformations
between ¢ and y” on one hand, and ¢; and ¢y on the other. For this reason, the modulus x; is periodic,
and taking spinors into account its period can be shown to be x1 ~ x1 + 47.'? We can describe a pure TsT
transformation by turning off w and x; while keeping a non-vanishing 81. To the best of our knowledge,
this is the first example of such a Lunin-Maldacena deformation captured among the modes of a consistent
truncation down to a gauged maximal supergravity.

Before analysing generalisations of this solution, let us discuss its complete Kaluza-Klein spectrum. It
can be obtained by shifting the dimensions (4.33) and (4.41) of each physical mode in (4.32) and (4.40) as

2 2w
(27 pr)? — <27rp7 + % (g +qr) (x1 + 51)) e ((QL—QR)+(QL+QR) (e — x1B1) —4mpr 51)2—(13 ,
(5.18)
for g1, and ggr the integer-normalised charges under the bosonic Cartan subalgebra sitting in the superalgebra,
taking values
27
i— P2k -7, under  SU(2) D U(1). (5.19)
k=0
Under a shift x; — x1 + 4, the conformal dimensions following (5.18) map back to themselves modulo a
shift of the p7 number, as expected from the periodicity of the solution (5.15). For pure TsT deformations
the spectrum reads

1 S| 2

(27 p7)* — (27Tp7 +5 (L + ar) ﬂl) +7 (2(1L — 47 pr 51) —qi . (5.20)

Even though it is not apparent from the Kaluza-Klein spectrum, the construction of this family using

SO(7,7) transformations also indicates that the parameter 1 is compact in the full string theory.
Conversely, for w = =0 eq. (5.18) reduces to

1
2mpr — 2mpr + 5 (qu + qr) X1 (5.21)

following the pattern of other Wilson loop deformations in S-fold compactifications [20,22,23,25].

The spectrum (5.18) can be used to determine potential supersymmetry enhancements within the
three-dimensional moduli space, as well as the stability of the solutions. Supersymmetry enhancement
points corresponds to combinations of the moduli such that some gravitini become massless, i.e. Ay = 3/2.
This can first happen within the 3d consistent truncation, by leaving the modes with As/,) = 3/2 unchanged.

12Gee ref. [4] for an anologous discussion.
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For the (w, x1, 1) deformation, it occurs along the lines

{ X1 = V1 —e 2, and { X1 = V1 —e 2

5.22
B = FVI— e, b= £/T— e, (5:22)

where supersymmetry is enhanced to ' = (0,4) and N = (4, 0), respectively. Both cases reproduce the
solution (5.11), with 1 as in (5.12) or = cos?0 dip + sin?6 dys, respectively. We further find back the
round N = (4, 4) solution at the origin w = 1 = x1 = 0. Alternatively some gravitini, originally massive,
can become massless under the deformation. This happens here when

x1=4rqE V1 —e 2w, x1=4rqEt V1 —e 2, <7 (5.23)
or q : :
b= FVI— e, N
There are then four massless gravitini, two of them belonging to the multiplets ¢ = (= pase = 0 and
p7 = q of (4.32) and (4.40), and the two others in the multiplet with opposite charges. Supersymmetry is
then enhanced to N = (0,4) or N’ = (4,0). The existence of these additionnal enhancement lines reflects
the 4m-periodicity in x1.

Concerning the stability of the solutions, in both cases it is guaranteed if

3

y
‘ 1(1+ e2p2)

2
— \/g Y

There are such wide volumes inside the 3-dimensional parameter space inside which the perturbative

and (x1+7pr)’ > —e % Vp; €T (5.24)

stability of the deformations is ensured (see fig. 2). This is for example the case if

2
—w < 2
3\/?7 (5.25)
2 > 2 —2w
ﬁl sl 4 € )
and x; arbitrary.
The moduli space of this deformation is governed by the metric

1
ds%am. = dw? + 562“’ (dﬁf + dx%) , (5.26)

which corresponds to the leading order in the large- /N limit of the Zamolodchikov metric of the holographic
conformal manifold. Therefore, there are no infinite distances inside the family (5.14), and we have neither
found them in its further genelisation in (2.51)

In the following, we describe two four-parameter families of solution mixing S3 x M? coordinates with 7.
The first family generalises the y; deformations in (5.17), whilst the second contains pure TST deformations
mixing 5% x M3 and S! for both topologies. Later on, we also discuss deformations that mix S3 with
M3 =S5,
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SUSY loci:
--- N = (4,0) or (0,4)
o N =(4,4)

[ Instability volume

0 x1 =—pB1 plane

Fig. 2 Instability volume (5.24) for the (w,f1,x1) deformations at level p; = 0. Supersymmetry is
enhanced along dashed lines, following eq. (5.22). Within the x; = —f; plane (in blue), this reproduces
fig. 1 for the (w, () family. For p7; # 0, similar instability volumes are repeated with 7 shifts along the x
axis. Those excluded volumes do not intersect.

5.2 Wilson loop deformations

Based on the previous example, we are now led to consider the representative
Vir =exp| =i /7 e Sy - ST - e f) (5.27)

The corresponding 10d configuration on S2 x 53 x S can be found in (C.1), and can be described in terms
of (5.5) as

1 0 0 0 O 0 0
01 0 0 0 0 0
0 0 1 0 O 0 0
B=0, p=10 0 0 1 O 0 0], s=0, (5.28)
0 0 0 0 1 0 0
0 0 0 0 O 1 0
0 xa —x2 0 axi —axz 1
whilst the S3 x T* configuration can be found in (C.2) and is described by
1 0 0 0O O O
01 0 00 0 O
0 0 1 00 0 O
B=0, p=10 0 0 1 0 0 O], 5s=0, (5.29)
0 0 0 01 0 O
00 0 00 1 O
0 x1 —x2 0 0 x2 1

which shows that the parameter Y1 in (5.27) is pure gauge in the S® x T reduction. In both cases, the
deformation consists only in local coordinate redefinitions coupling the angles ¢;, ; and 3® with y7. They
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can be interpreted as Wilson loops along the S' with coordinate y”. Generically, the only remaining
isometries are

SO(2,2) x U(1)p, x U(1)r x U(1), x U(1)g x U(1)  for AdS3 x 3 x §3 x S,

(5.30)
SO(2,2) x U(1)y, x U(1)g x U(1)* for AdSz x 83 x T,

and all supersymmetries are broken. The deformed S3 x 3 x St background can be identified with equation
(6.10) in [18].
The spectrum for these solutions is deformed out of (4.32) through the replacement

1 I o
2mpy — 2mpr — 5 [(QL +qr) x1+ (L — qr) X2 + @ (qL + qr) X1 + @ (4L — GR) XQ] (5.31)

in the $% x S x S! case, and out of (4.40) through

1 -
2mpr — 2mp7 — 5 [(QL +qr) x1+ (gL — qr) X2| — 27 P X2 (5.32)

in the S% x T4 one. They are invariant under

s xi +4m g, _
)fz f’ T _ for AdS3 x §% x S3 x S*
Xi = Xi +4a7im g,
(5.33)
and { 0T XTI AdSs x 83 % T,
X2 — X2 + @2,

with ¢;,¢; € Z. Given the form of the deformations (5.31) and (5.32), both spectra are bounded from below
by the masses of the round solutions, and pertubative stability is ensured for the entire 4-dimensional
family of deformations.

The moduli space of the deformed S3 x 53 x S1 solutions enjoys numerous supersymmetry enhancements,
as described in ref. [18]. The possible enhancements within the three-dimensional truncation are the
following;:

N=(20): xa=x1taX1—X2), N=(0,2): x2=-x1talX1+X2)

N = (4,0) o N = (0,4) e
X2 = X1, X2 = —X1,

_ ~ (5.34)
= +ax1, = +a¥o,
N =(2,2): X1 afl N =(2,2): X1 OONQ
X2 = Taxa, X2 = Taxi,

= = iQN } - — = :l:Oé~ y
N = (4, 2) : )fl )jQ X1 N = (274) : )jl )j? X1
X2 = X1, X2 = —X1-

SUSY enhancements at higher levels in the py tower can be obtained from the periodicities (5.33). For the
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T* background, supersymmetry is enhanced from A" = (0,0) to A" = (4,0) and A/ = (0,4) when
X2 =4mq+x1, and xo =4wq¢—x1, q€EZ, (5.35)

respectively. There are then two massless gravitini at level p; = ¢ and two other at level p; = —g¢, all other
charges and SU(2) spins vanishing.
5.3 TsT deformations
The deformation . . )
Vir™ =exp| = B1 5 — B faz — B %7 — Ba fa (5.36)

recovers a family previously obtained in [18]. From a 10d perspective, this family can be shown to uplift to
a type IIB solution which can be constructed through the SO(7,7) transformation in (5.5), with

B=B1de1 Ady" + afy d@i Ady” — Badpa Ady” — afad@s Ady”,
1 0 0 0 O 0

01 0 00 —f

00 1 0 0 0 (5.37)
p= 13 | s=0,

00 0 10 —alp

00 0 01 0

00 0 0 0 1

on the $3 x 3 x St background, and

B=PB1de1 Ady" — Badps Ady™ + Bady® Ady",

100 0 0 O

010 0 0 —pB

001 0 0 0 (5.38)
p= ) s=0,

000 1, 0 0

000 0 1 —F

000 0 0 1

in the S x T case. The detailed D = 10 solutions can be respectively found in (C.3) and (C.6). Again,
the remaining isometries are those of eq. (5.30) and N' = (0, 0) for generic values of the parameters. These
deformations consist in couplings between the angles ¢;, $; and y5 with 37, and TsT transformations
between those same angles. Pure TsT deformations are obtained for the couples of cycles (¢1,y") and
(P1,y7) when 3y = 52 = 0 in the S3 x S! case and similarly when £ = 51 =0 for T*. Alternatively, the
solutions can be generated from the SO(7,7) transformation in (5.5), with

B =B1dp1 Ady" — Badps Ady” + By dgr Ady” — afad@e Ady”,

1, 0 0 O 0

0 1.0 0 4 o (5.39)
p=10 01, 0 O ; s=—dp1 Ap2 —a” “dp1 A g2,

0 0 0 1 a'p

0 0 0 O 1
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on S3 x 83 x St and

B=prder Ady" — Badpa Ady” + B2 dy® AdyT

1, 0 0 0 O

01 0 0 B (5.40)
p=10 0 15 O 0 , s = —dp1 A pa,

00 0 1 -5

0O 0 0 0 1

on S3 x T4, giving rise to pure TsT when B; = B; = 0. These two solutions differ from (5.37) and (5.38) by
the gauge choice for the undeformed 2-form in (4.13) and (4.19), respectively. The shift s would be absent
in (5.39) and (5.40) if the sin?# and sin® would have been replaced by —cos? 6 and —cos? 6 in (4.13)
and (4.19).
The spectrum of these deformations of S3 x S3 x S! can be obtained from eq. (4.32) and (4.33) by
shifting
(2npr)? — (2rpo)? (1+ B2+ B3 + B2 + 33 + (8162 + Bi o))

— 2mp7 ((1 + B1B2 + B13a) (QL (B1 + Ba) + iy, (B + 52))
1 Bt ) (am (01— o)+ i - ) )

+ i (ﬁl(C_IL +qr) + Bo(qr — qr) + a B1(GL + Gr) + @ B2 (qr, — %))2-

Similarly, the spectrum for the deformed S x T# background follows from eq. (4.40) and (4.41) by replacing

1 N2
(27 pr)® — <2 ((QL +qr)A1 + (qu — QR)ﬁz) — 27 ps 52)

+ (27 pr)? (1 + B+ B3 4B+ B+ (Bfa + 51&2)2> (5.42)

—%m<%wﬁwgu+&@+&@mwmm—@x4+m@+&@0
+ 872 pepr (51 + B1fBafa + 51522) .

For p; = 0, these turn out to be the exact same spectra as the ones for the x’s in sec. 5.2 up to
matching y; — B; and x; — EZ The solutions then enjoy the same supersymmetry enhancements as the x
deformations restricted to the 3d consistent truncation, see eq. (5.34) and (5.35) (for ¢ = 0).

For El = 52 = 0, the solution is stable for any value of 5; and fB2. The converse is not true, however,
with instabilities present when g1 = 2 = 0 and 51 and Eg are non-vanishing. This apparent inequity is not
in tension with the interchangeability between the two spheres, given that is a symmetry of the equations
of motion only if the S is also rescaled, as can be seen in (4.12). This rescaling can be parameterised by
the modulus o7 in (2.51), and the configuration is then invariant under the transformation

BirBis B Bin e Tale . (5.43)

The precise stability range when the four 8s are turned on needs further study, but perturbative stability
is guaranteed in certain subregions by the existence of the supersymmetric loci.
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5.4 Mixing of S® and S®

We now analyse the deformation
ViV = exp| — 25 £ — B4 féé] : (5.44)

On the S3 x T* background, this is analogous to the deformations in sec. 5.2 and 5.3 up to relabelling of
the torus coordinates. On the other hand, on the S2 x S3 x S' background it corresponds to mixing the
coordinates on the two spheres through the SO(7,7) transformation (5.5) with

1 0 0 00 0 O
0 1 0 0 0 aZ4 0
0 0 1 00 0 ©

B=a(-Eadp; +Z4dp2) Adga, p= |0 0 0 10 0 0], s=0, (545
0 a'Z —a'Z, 01 0
0 0 0 00 1 0
0 0 0 00 0 1

involving in particular TsT transformations coupling each ; with 5. The explicit solution in D = 10
can be found in eq. (C.8). Generically, the isometries are broken down to (5.30) and there is no remaining
supersymmetry. At the points

9 2
Sy=-F4=4 and Sy =5F,=+>, (5.46)
(0%

SUSY enhances to N = (2,0) and N/ = (0,2), respectively. This can be observed from the deformed
spectrum, given by eq. (4.32) and (4.33) by shifting

1 _ _ _ _ 2
(27 pr)? —(2mpr)* + (qL (B2 + Z4) + qr (B4 — :2)>

4
2
oz S SO
+ (qr. — qr) <QL (24— 22)? —Gr (B2 + E4)* + (@ — GR) (52:4)2) (5.47)
« — — ~ ~ N — ~ « — —_ ~ ~ N — ~
— 5 (2 +E4) ((qL — qr)ZE2E4 — 2¢R) — 3 & (B4 —Z2) ((qL — qr)=2E4 — 2q1,) -

Regarding the perturbative stability of these deformations, analysis of the lowest Kaluza-Klein levels
indicates that the region in parameter space with tachyonic modes can get arbitrary close to the SUSY
lines (5.46). This feature is not apparent at low Kaluza-Klein levels (¢ + ¢ < 1/2), but already at level
(1/2,1/2) we find modes whose region of instability ends on the SUSY enhancement lines, where the modes
saturate the BF bound. This can be observed in fig. 3. This analysis is not conclusive about the region of
stability around the origin =21 = =3 = 0.

6 Worldsheet and Holographic Descriptions

The above solutions are JJ deformations of N = 1 superconformal WZW models with target spaces [13,14]

SL(2,R) x SU(2) x U(1)* for AdS3 x S3 x T4, 6.1)
SL(2,R) x SU(2) x SU(2) x U(1) for AdSs x S3 x §3 x S, '
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N =(0,2)

14 Unstable areas:
B (v/2,1/2)
L1 (1/2,3/2)

0 1 2 3 2

Fig. 3 Parameter space for the deformation (5.44) with Z; = E5 = E. Supersymmetry is enhanced
to N = (2,0) along the dashed line (see eq. (5.46)) and totally broken otherwise for non-vanishing Z.
There are subregions of the parameter space for which some modes become unstable, as presented at

levels (¢,0) = (1/2,1/2) and (1/2,3/2) for p; = 0. At the border of these regions, the modes have masses
saturating the BF bound. At level (1/2,¢), the potentially unstable modes are those arising from the

deformation of the SO(4) x SO(4) scalars (3/2,,1/2,0+1) and (1/2,0+1,1/2, £+ 1) with extremal charges.

The undeformed WZW action at level k € N for each factor is given by [67, 68|

k - k .
§=— / Tr(0g0g™") + — / Pz Tr[(g7" 9i9) (97! 059) (9" Org)], (6.2)
a7 [ 67 Jq
with © such that ¥ = 9€Q. The entire model is superconformal if the levels of the different factors in (6.1)
|
are related as 11 N 1 63
ko k k ‘
for ko the SL(2,R) level and k, k corresponding to the spheres. The AdSs x S3 x T* case is given by the
limit 1/k = 0, which in terms of the geometric radii

ko =4m*lhgs,  k=4r"0%,  k =4}, = 4na 2, (6.4)

corresponds to the limit « — 0. With these identifications, the level matching condition (6.3) reproduces
the supergravity result (2.48) with normalisation £g3 = 1.

As the deformations we consider preserve the conformal algebra, in the following we will omit the
SL(2,R) factors. We parameterise the SU(2) elements in terms of Euler angles as

g= ei(p1+p2)os/2 jifo ei(“’1+‘P2)”3/2, (6.5)

—_—

with o; the Pauli matrices, and similarly for SU(2) in terms of the tilded angles on S3. For the circle
directions, the representative is simply

G = ™" (6.6)

The angles are here understood as fields on the worldsheet depending on the coordinates z,Zz. In the
SU(2) x U(1)? case, eq. (6.2) reads

Ssu@)xTs = %/ 9000 + 05?0 D101 + sin0 Dpadps + G40y dy” + sin29(8<p15g02 — 0p20¢1) . (6.7)
b
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Besides the translations in y®, this action is invariant under SU(2) x SU(2), generated by currents

JE 4 ik = [200 — isin 20(dp1 + Opo)]e’P11¥2) | g = 2(00829&,01 — sin268g02) ,
_ _ _ , - ~ (6.8)
G il = [200 + isin 20(Dp; — Bpy)]eP1FR2) g = 2(605206g01 + Sin208<,02) ,
which, upon using the equations of motion, satisfy
Oji =05t =0,  9jr =€ ngr, 05 =T A G (6.9)

—_—

Similarly, for SU(2) x SU(2) x U(1), the action reads
k _ _ _ _ _
Ssu@)zxu) = 277/ D000 + cos20 D101 + sin0 Dpadps + Sin29(3cp18<p2 — 8g028901)
b

k . - - - - . - 1 -
+o- / 9000 + cos*0 0p10¢1 + sin®0 0p20p2 + sin®0(9p10@2 — 0P20¢1) + o / oy oy" .
by b
(6.10)
with now, besides the y7 translations, a group SU(2)? x SU(2)? worth of symmetries generated by (6.8)
and their tilded counterparts. In both eq. (6.7) and (6.10), the internal components of the metric and B
field can be read off from

S:/ayiéyj Eyj, (6.11)
by

~

with Eij = (gs)ij + Bl]

6.1 Deformations around generic points

For every solution in sec. 5, the worldsheet action is defined by eq. (6.11). Let us now show that infinitesimal
deformations around generic points of the families discussed in that section are current-current deformations
of this worldsheet action. The currents generating the Cartan subalgebra of the preserved symmetry group
can be expressed in terms of Ej; as [69)]

jj =k Eij, ji = Eijk?, (6.12)

where k' and k' are Killing vectors of the metric in the bases (5.6). For ¢1,2, 1,2 and the angles on the
tori, the isometries are just shifts and therefore the Killing vectors reduce to derivatives of the angles. For
the deformed solutions in sec. 5, the E;; matrix can be read off from (5.1) and (5.2). For instance, for the
three-parameter family of solutions in (5.15) the deformed currents include

. 2(0¢1 + (x1+ B1)0y") cos? § — 2sin? 6 Doy

2= 1+ (6*2‘” + B2 — 1) cos26 ’

_ 2(5g01 + (x1 — 51)5y7) cos? 0 + 2sin? 6 Do

2= 1+ (e=2v + 87 — 1) cos? 0 ’ (6.13)
6.13

o (1 + (e‘2w +x2 — 1) cos? 0) oy" + (x1 — p1) ( cos? 0 Opy — sin? G&pg)

7= 14 (e + 7 — 1) cos?6 ’

[ (1+ (e +x3 — 1) cos?6) dy” + (x1 + B1)(cos? 6 Dy + sin® Dy

14 (e + 7 — 1) cos?6
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which respectively reduce to j:%, j?, dy" and Jy” in (6.8) when w = 1 = x1 = 0.

Infinitesimal variations of the marginal parameters around the deformed solutions can be expressed in
terms of the currents in (6.12). For the family in (5.15), the results at (w + dw, 51 + d51, x1 + dx1) and
(w, B1,x1) are related as

SE = (e 6w — x16x1) jo ® jo + 5(6x1 — 6B1) jo ® jr + 2(6x1 + 651) j7 ® Jo (6.14)

to linear order in (dw,df1,dx1) and for both cases in (6.1). Regarding the ten-dimensional dilaton, it
changes as a compensator of the variation of the metric so as to keep the generalised dilaton d=d— i log gs
invariant under the deformations, as required by marginality [70,68]. This can be checked to happen for all
deformations in sec. 5.

Similarly, for the 4x and 45 families in (5.27) and (5.36) the infinitesimal variations read

0B = 5(0x1 + 0x2) j2 ® Oy" + L(6x1 — dx2) 0y” ® Jo
+300X1 (j5 ® 9y + 0y" ® Js) — 300Xz (js ® Iy + y” @ Js) . (6.15)
OF = —5(0p1+ 8B2) j2 ® jr + 5(0p1 — 8B2) jr ® o
— La(8B1 + 6B2) js ® jr + 2a(6B1 — 3B2) j7 @ s — 2(B20Pa + B2052) 57 @ Jr (6.16)
for the AdS3 x §3 x $3 x S! topology, and'?

0E = 3(0x1 + 0x2) j2 @ Oy” + L(6x1 — x2) 0y” @ Jo + 6%2 (o ® Oy + Ay @ Js) (6.17)

O = —3(0B1 + 382) j2 @ jr + 3(381 — 68) jr @ ja

— (881 4 0B2) jo ® jr — (361 — 8B2) jr @ Jo — 2(B20B2 + 1651)j7 @ jr (6.18)

for the AdS3 x 2 x T, In (6.15) and (6.17), the forms dy” and 9y are given by the following combinations

of currents
Ay = jr — 3x1j2 + S x203 — X2Je for AdSs x S% x T4, (6.19)
YT = jr — Ax1ja + Sxods — $X1js + sX2je  for AdSs x S% x 3 x S,

and gauge transformations of the B field have been omitted. Finally, the = deformation (5.44) gives rise to

oF = (552 + (554) (]2 — oy jﬁ) (= (0435 + =4 33) + ((532 — 554) (52 — By 56) ® (Ozj5 + =4 jg)

— 252053 (Jo — aZ4 J6) @ (J2 — aZ4 J6) ,

up to gauge transformations of B.

6.2 Deformations around the origin and CFT dual

Interestingly, around the origin the deformations in (6.14)—(6.18) simplify drastically. For the (w, 51, x1)
family, we get

(82 + By) = (d82 + Bp))o + 20w iy @ iR+ 1(0x1 — 681) j5 @ 0y" + 3(0xa +0B1) ay” @ iR, (6.21)

3Note that the actual expressions for js and js in terms of the coordinates depend on the topology.
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Concerning the 4y and 4 solutions, the simplifications read

(ds2 + Byy)) = (d82 + Biay)o + 3(0x1 + x2) 5 ® 0y” + 2(6x1 — dx2) Oy” @ 4
+ 107 (6% 4 6%2) JY © By + La T (6% — 6%2) 0y @ Y, (6.22)
(ds2 + By)) = (82 + Biay)o — (581 + 652) jiy ® Oy” + 3(6B1 — 6B2) Oy” @ ji
— 2071 (081 + 0B2) j5 @ Oy” + a1 (0B — 0Bs) OyT @ ji, (6.23)
for AdS3 x 93 x §3 x S, and
(d82 + By) = (A8 + Bey)o + 3(6x1 + 6x2) J5 © 9y” + 5(6x1 — 6x2) Oy’ ® iy’
+ 632 (0y° ® dy” + oy™ @ dy°), (6.24)

(82 + By)) = (d82 + B))o — (381 + 6p2) j& @ dy” + 1 (381 — 62) By” @ j&
—551(0y° @ Oy + dy" @ ByP) (6.25)

in the AdS3 x S2 x T case. For each topology, these expressions match at the linearised level up to a
straightforward redefinition of the parameters given by

dx1 — —dB2, dx2 = —0p31, 5X1 > —0a, 5X2 > —6Pr - (6.26)
The = deformation (5.44) also simplifies to
(452 + By) = (82 + Biy)o + 2071 (052 + 084) j§ @ 5t + 1o~ (625 — 024) 3 @ 55 (6.27)

For all these cases, the deformations are described by products of (anti-)holomorphic currents, and are
thus exactly marginal [7]. This is not apparent for the deformations around generic points discussed in
sec. 6.1. In these cases, to check exact marginality one would need to compute the three-point functions for
the Kaluza-Klein modes following ref. [36] so as to study the vanishing of the beta-functions in conformal
perturbation theory [71]. We plan to return to this question in the future.

From a holographic perspective, the identification of the WZW currents in (6.21)—(6.27) allows us to
conjecture that the marginal operators in the holographic conformal field theories are also of jj type. In
the symmetric orbifold theories,

Sym™ (M*?), (6.28)

one can identify two SU(2) factors corresponding to the left- and right-moving currents associated to the
R-symmetry, and extra flavour symmetries realised on every copy of M* = U(1)* or M* = SU(2) x U(1).
The relevant “single trace” operators [72] on the orbifold are given by the projection

O~ (i), (6.29)

k

with k£ an index on each of the copies.
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7 Discussion

This note focused on the construction and study of new marginal deformations of the AdS3 x S3 x §3 x St
and AdSz x S3 x T* solutions of heterotic and type IIB supergravities using exceptional field theory.
These solutions are of particular relevance for the AdS3/CFTy correspondence and we built a general
framework that unifies the description of those backgrounds in both theories. The rich structure of marginal
deformations thus revealed is in sharp contrast with what happens in higher dimensions. These deformations
include Lunin-Maldacena TsT transformations and Wilson loops among more general deformations. However,
our search of moduli is far from being exhaustive and needs to be generalised, for example to include mixing
of TsT transformation between the sphere and multiple directions on the torus, or couplings between TsT
and Wilson loop deformations. The integrability of the WZW models describing the round solutions |73]
allow to describe our deformed solutions as Yang-Baxter deformations along the lines of [74]. Integrability
could provide powerful tools to study these solutions in more detail.

All the deformation parameters we considered belong to three-dimensional consistent truncations. This
makes it possible to use the ExFT’s Kaluza-Klein spectrometer to compute the effect of the deformations
on the full Kaluza-Klein tower of excitations. We used these deformation-dependent spectra to study
the perturbative stability of some non-supersymmetric vacua, and demonstrated that there is a vast
subregion of parameter space where the solutions are free from perturbative instabilities. The complete
stability of these solutions has to be tested against potential non-perturbative decay channels, as brane-jet
instabilities |75-77] and nucleations of bubbles [78-83]. This would require building their associated brane
configurations. It would also be very interesting to study the existence of positive energy theorems in the
lines of ref. [84].

Among the directions in the conformal manifold, the possibility of describing TsT deformations in a
consistent truncation is a three-dimensional peculiarity, as in higher-dimensions the moduli triggering those
transformations sit within higher Kaluza-Klein levels [19,56,57|. Similarly to what happens for Wilson
loop deformations, even though TsT seems to be composed of symmetry transformations of string theory
(T duality, shifts in coordinates and T duality), our results demonstrate that such deformations affect
the Kaluza-Klein spectrum. This is because the coordinate shift couples directions with non-compatible
periodicities, and therefore the transformations are not globally well defined for generic values of the
deformation parameters. It would be very interesting to study if this three-dimensional results could
provide insights on the Kaluza-Klein spectra for TsT deformations in higher dimensions.

The transformations in (2.51) do not excite RR fluxes. We took advantage of this property to describe
them as current-current couplings of the WZW worldsheet actions describing the AdSz x S3 x §3 x S and
AdS3 x S% x T4 backgrounds. This suggests that the holographically dual deformations are single-trace
JJ. It will be interesting to analyse these deformed holographic duals, and the fact that some of these
deformations preserve some supersymmetries for both left- and right-movers (see e.g. (5.34)) suggests that
some subfamilies should be amenable to the CFT analysis. Nevertheless, it would also be of interest to
study whether some new deformations could also excite RR fluxes. Given that U duality encompasses both
T and S dualities, the ExFT framework can also be used to generate transformations that excite them.
Of particular interest are the S dual rotation mapping the NS5-F1 and D1-D5 configurations, as well as
the S duality orbits of the pure NSNS deformations described above. If such deformations belong to a
three-dimensional consistent truncation to a gauged maximal supergravity, one should expect to find them
among the Egg) generators in the 128 representation of SO(8,8) in the decomposition (2.26). Describing
the uplift to ten-dimensional supergravity would then require the construction of the full dictionary between
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Eggy ExFT and type IIB supergravity, generalising eq. (3.11). Such new deformations mixing NSNS and
RR fluxes could make contact with the recent families of AdSs solutions constructed in ref. [85-87].

Given that both the AdS3 x S% x S x S' and AdS3 x S3 x T* spectra feature massless scalar modes
at higher Kaluza-Klein levels, one could wonder if these backgrounds also feature moduli outside of their
consistent truncations to 3d. This could be investigated by applying the generalised geometry techniques
developed in ref. [88-90|. Similar methods have recently been applied in EXFT to relevant deformations in
ref. [91].
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A Orthogonal Decompositions and Projectors of Egs)

This appendix brings to our notation the construction of eg(gy based on s0(8,8) and s0(16) found in [55].
In sec. A.3, we also detail some projectors used in the main text.

A.1 SO(8,8) decomposition of Egs)

Following (2.26), eg(s) is comprised by the 120 generators of s0(8, 8) together with 128 extra generators

transforming as spinors under the orthogonal group and closing back into it according to the commutators'*

[tmN, tPQ] = 2nmpPtng — 2 pNEMQ _ o MOty p 4 2 pNOMP
1 (A1)

[tMNa t.A] = §(FMN)AB tBa [tAv tB] = 7%FMN

ABEMN -

Indices are raised and lowered using the invariant metrics ny;y and n45. Here, we use a basis where the
SO(8, 8) invariant metric sy is diagonal and given by

; -0z 0
(aig) _ (077 0 A2
U ( 0 5U) (A.2)
The charge conjugation matrices are then given by
O4p94n 0 498D 0
NAB = : Nis = : (A.3)
( 0 —0ip0ap A 0 —04e98p

The discussion in this appendix applies both to the global Eg(sy in D = 3 as well as to its ExF'T counterpart, and we
have chosen to present the formulae with unbarred objects. In sec. 2.2, all indices here acquire overbars.
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under the SO(8) x SO(8) breaking

SO(8,8) D  SO(8) x SO(8)
16 - (8y,1)®
(8v,1) & (1,8y), (A1)
128,  —  (84,8c) @ (8¢, 8s),
128, —  (8s,85) @ (8, 8¢),
with indices decomposing as Xpy = {X;, X}, Ya={Y, ., Y; }and Y ={Y, Y, } for Ae1,128]

the 128, index and A, A € [1, 8] and their hatted counterparts respectlvely labelling the 8 and 8. of each
SO(8) factor.
The last ingredient in (A.1) are the generators of s0(8,8) in the 128 representation, which are
proportional to . .
MN B M C¥N B N CtM B
DYV B = (T TN P =TV T P) (A.5)
for '™ the transpose of I'M. These chiral SO(8,8) gamma matrices satisfy
FMAC’ fNCB + FNAC fMCB —9 nMN(;AB ’ (A.6)
and are conveniently parametrised in terms of SO(8) gamma matrices as
i ¢ép_ i i ¢ép _ i
Das™" = =007 46 D ip " =007 a4
A (A7)
I 0D I I CD I
D ip " = 0467 car g = 70467 BD
These chiral SO(8) gamma matrices satisfy Clifford identities analogous to (A.6) and are chosen so that
the charge conjugation matrices, n ERTY etc, are just the identity matrix. Explicit expressions fulfilling

these requirements are given by

= {4t 7], (A.8)

1J 1J
1J € 2(5 ]1 0 _ 0 ]1
7 _<—25'J e'J>’ 7+_<0 1) Vel o) (A.9)

in terms of SO(4) C SU(4) C SO(8) invariant tensors (e?)Kt = YKL and (§Y)KL = §'KsH under the
splitting T = {[lJ], +, =}, A= {l, J} and A = {l, J} with I,J € [1,4], and analogously for hatted indices.

with

For completeness, we also include expressions for the generators of s0(8,8) in the 128, representation as
well as for the other higher-order products of SO(8,8) gamma matrices that play a role in the main text:

“MN B _ 1(fPM CpnN B _§©N CpM B
DY P = (TY 6TV =T 6TV ),

A
FMNPAB _ F[MNAC FP]CB ’ fMNPAB — f[MNAC fP]CB ’ (A.lO)
FMNPQAB _ F[MNPAC PQ]CB’ fMNPQAB _ f[MNPAC fQ}CB
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In terms of these objects, the structure constants of Egg) are given by [55]

Frun,pQ™ = =860 Fnnypog™
1
fruna® = 3 (Tarw)A®, (A.11)
1
fag™ = —3 MY 45,
and the Cartan-Killing metric,
1
KMN = %fMPQfNQPa (A.12)
decomposes as
ﬁM1M27N1N2 = _217M1[N1?7N2]M2 ) HAB = nABa A 13
MM NN g Mi[Ny N Mo jAB — pAB (A.13)
A.2 SO(16) decomposition of Egs,
Eg(gy can be decomposed under SO(16) analogously to (2.26),
Eg(g) D SO<16)
248 — 120+ 128;, (A.14)

t./\/l — {t[MN]a td} )

with indices M and .7 now labelling the vector and spinorial representations of SO(16). The Egg) structure
constants in this basis are

SunpQ™® = =8y pdg™
fun,er” = %FMN@{‘@, (A.15)
faa"™ = —é ™ g,
and the Cartan-Killing form (A.12) decomposes as
KM;Ma,NiN; = —2 1My [Ny TN M 5 Kot B = Nd%B (A.16)
gMIM2 NN g M1 Nol M kTP = I

for T the SO(16) gamma matrices and the invariant metric nyy and charge conjugation matrices 7 v and
N4 given by identity matrices in the respective dimensions. For this reason, the upstairs vs downstairs
position of these indices lacks significance. The gamma matrices are most easily defined by breaking SO(16)

down to SO(8) x SO(8),

S0(16) 5 SO(8) x SO(8)
16 — (8,1) & (1,8), (A.l?)
128, — (Sv, v) @ (857 8 ) )
128, — (85, v) @ (8V7 8 ) )
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with indices decomposing as Xy = {XA’XA}’ Yo ={Y;,, Yig}tand Y ={Y;,, Y;z} Then,

A _ I A Y
D% a = 0K BA’ Dsein = —0¢n BA®

A e T A I
r IJ,KB—51K7 AB> r BO,D1—5BD7 ACH

and higher-order products follow (A.10).

(A.18)

One can finally map the SO(8,8) and SO(16) representations appearing in the decomposition (2.26) and

(A1), { X, Ya} and {X3,, YL, }, via their respective SO(8) x SO(8) breakings:

1 s 1
/ _ IJ / _ ! _ / _ 1J
Xig=—17 %t Xip=Vipr  Xip=Yis.  Xis=g7"anXu,
! / .
=Xt Yig=Yip-

A.3 Egs) projectors

Some of the representations in the product

248 ® 248 — 1 ©® 248 © 3875 & 27000 © 30380

(A.19)

(A.20)

play a prominent réle in supergravity and ExFT. The projectors onto these irreducible representations are

given by [92,37]
(P = gighan £,

(Poss) mn™F = & favp fT5,
(Paszs) ma™ = 265408 — gramn £ = 7 ™ fon?,
(Pazo00) pa™F = 255\45f/) + gk K+ L T foa©)

(P303s0) mn™" = 815,05 — gofanp fT 8

In particular, given that the embedding tensor of maximal supergravity has index structure
(248 ® 248)sym — 1 ® 3875 @ 27000,
the linear constraint on the embedding tensor alluded to in sec. 2.2 can be phrased as

(P27000X ) s1c = 0.

B D(2,1|a) vs SU(2) x SU(2|1,1) Superalgebras

(A.21)

(A.22)

(A.23)

The superalgebras SU(2) x SU(2|1,1) and D(2, 1|a) coincide as vector spaces. They are generated by

bosonic elements L,, with m = 0, %1, and A;t with ¢ = 1,2, 3, which respectively generate SL(2,R) and

two copies of SU(2), and their fermionic counterparts G¢ with r = :i:% and a = 1,2, 3,4, transforming in
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the bi-fundamental representation of SU(2)_ x SU(2);. For D(2,1|a), the super-Lie bracket is [93,66]
[Lin, Ln] = (m —n) Loy (A7, A7) = i€ Ay, (L, AF] =0,
L, G2 = (5 —7) G AF, GI] = iakiGY,

2
b b . «a ; 1
(G2, G¥Y = 269 L,y + 4i(r — s) [1 T SORAT

A7 (B.1)

with
o = 041,101 T FEia—1h-1,4 - (B.2)

For SU(2) x SU(2|1,1), only the fermionic anti-commutator is modified into

{G%, G2} = 26 L, s + 4i(r — s) a /A7, (B.3)
following the limit
lin% D(2,1|a) = SU(2|1,1) x SU(2)+ . (B.4)
a—

Therefore, SU(2|1,1) D SL(2,R) x SU(2)_ is an ideal of the non-semisimple SU(2) x SU(2|1, 1) superalgebra.

The limit (B.4) does not affect the matter content of long multiplets, whose states can be given in terms
of the weights under the bosonic subalgebras as (h, j~, j7), with h denoting the SL(2,R) dimension and
4% being half-integer spins for SU(2)+. Supermultiplets are then determined by a primary state which is
annihilated by all G§ and L;. A supermultiplet with superconformal primary (h, =, jT) will be denoted

2
[h,7,77], and its descendants can be obtained by successively applying antisymmetric products of the

G*

generators, which live in representations

N

Gy ey, G"6Y, 1,008 (1,0,1),
2 2 2
G.ghed, e 3Ly, GLLGELGP LG €(2,0,0), (B.5)
2 2 2 2 2 2 2

of SL(2,R) x SU(2)_ x SU(2)+. Applying (B.5) onto a superconformal primary with charges (h,j~,0) one
recovers the states in (A.20) of [40], whilst equation (A.17) therein applies whenever the superconformal
primary has both j~ and jT greater than one.

Shortening of the long multiplets occurs when the superconformal primaries saturate the BPS bounds

h> i+ 1255t for D(2, 1]a) -
h>j~ for SU(2|1,1) x SU(2).

The missing factor in (B.3) implies that short multiplets of SU(2|1,1) x SU(2) are shorter than those of
D(2, 1|a) with the same charges, since all states for which the SU(2)_ weight rises become null at the BPS
bound. Therefore, the breaking rules are

[Haz(™ + 0% e — 170 s+ 17 + 5,57 + 3 for D2, 1]a),

U™ +ei it —2 Ui s+ 7 + 5,07 + 3k
+[i~ — %jj* + %]S + 77,77 +1]s for SU(2|1,1) x SU(2),
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where the conformal dimensions of the short multiplets accord to (B.6) and have been omitted. Note also
that for both superalgebras the multiplet [0, 0]s is unphysical, as it has h = 0. Explicit expressions for the
state content of the short multiplets of D(2, 1|a) can be found in [18], and for SU(2|1,1) x SU(2) in [40].

In the following, we tabulate the states of a few of these multiplets for the convenience of the reader.

SL(2,R) SU(2)- x SU(2)+ SL(2,R) SU(2)_ x SU(2)+
h (0,0) h (1/2,0)
h+1/2 (1/2,1/2) h+1/2 (1,1/2) @ (0,1/2)
h+1 (1,0) @ (0,1) h+1  (Y2,1) ® (3/2,0) @ (1/2,0)
h +3/2 (1/2,1/2) h +3/2 (1,1/2) @ (0,1/2)
h+2 (0,0) h+2 (1/2,0)

Tab. 1 Long multiplet [h,0,0].

Tab. 2 Long multiplet [h, 1/2,0].

SL(2,R) SU(2)- x SU(2); SL(Z,R) SU(2)- xSU(2)+
h (1/2,1/2) h (1,0)
h+12  (1,1) & (1,0)@ (0,1) & (0,0) ht1/2 (2, 1/2) & (32, 1f2)
ht1 o (%2,1/2) ©2(1/2,1/2) & (1/2,%/2) htl (1,1)®(2,0)®(1,0)®(0,0)
h+3/2  (1,1) & (1,0) & (0,1) & (0,0) h 4+ 3/2 (1/2,1/2) & (3/2,1/2)
h+2 (1/2,1/2) h+2 (1,0)

Tab. 3 Long multiplet [h, /g, 1/2].

Tab. 4 Long multiplet [h, 170}.

D(2,1|a) SU(2[1,1) x SU(2)
(1/2,1/2) (1/2,1/2)
(1,0) @ (0,1) @ (0,1) @ (0,0)
(1/27 1/2) _
(0,0) -

Tab. 5 Short multiplet [1/2,1/2] for D(2,1]|a) and SU(2|1,1) x SU(2).

D(2,1|a) SU(2|1,1) x SU(2)
(1,1) (1,1)

(3/2,1/2) @ (Y/2,1/2) ® (Y2,3/2) @ (Y/2,1/2)
(L1) & (1,0) & (0,1) (0.1)

(1/2’ 1/2)

Tab. 6 Short multiplet [1, 1]8 for D(2,1|a) and SU(2|1,1) x SU(2).



C Details on 10d Configurations

C.1 Wilson loop deformations

For AdSs x $3 x 3 x S!, the four-axion geometry corresponding to (5.27) is given by [1§]

eézl

ds? = (3 45ds*(AdS3) + (dy")?

+d6? + cos*(9) (dp1 + x1 dy7)2 + sin®(0) (dp2 — x2 dy7)2

+ a2 (d§2 + cosz(g) (dnﬁl + a X1 dy7)2 + sin2(§) (d@g —aXo dy7)2> , (C.1)
His) = 203 45 vol(AdS3) + sin(260) do A (g1 + x1dy”) A (dp2 — x2dy”)

+ a2 sin(25) dd A (dg1 + ax1 dy7) A (dg2 — aXo dy7) ,
Gy =Gy =G =0,

and for AdS3 x S§3 x T4, it is realised by

82 = (% 45ds?(AdS3) + 62 + cos®(0) (A1 + x1dy)” + sin?(0) (dps — x2dy")?
+(dyh)? + (%)% + (dy® + Xedy™)? + (dy7)?, (C.2)
I:I(g) = 2£2AdS vol(AdSs3) + sin(26) d6 A (d(pl + X1 dy7) A (dcpg — X2 dy7) ,

Gy =Gy =Gy = 0.

C.2 TsT deformations
C.2.1 4(-family
For AdSs x 93 x §3 x §1, (5.36) uplifts to
e® = VA,
82 = £% ,qds*(AdSs) + 62 + cos?(0)de? + sin(0)de? + a2 (d52 + cos2(8)d@? + sin2(5)d@§)
— A (B cos’ (0)dir — Brsin® (B)dips + 0~ P cos? (B)d5 — o Bosin? @)z ) o)
+A <dy7 — By cos?(0)der + B sin®(0)dps — a ™ By cos?(A)d@; + a1 By sin?(6 )d@g) , |
H 5y = 203 45 vol(AdSs) + sin(260) dd A vy A vy + sin(20) dO A Ty A T,
Gy =G =G =0,
with the warping factor

! , (C.4)
I+ et (6) + Fun () + Fos(d) + Bein’(D)

A:
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and the one-forms

o= (14 AB — 52) cos”(0)) dir — A[Bady” + (8P — ) cos”(B) 21 + (8051 — uflo) sin® )22
va= (14 A3~ 53) () gz + A[Brdy” + (825 — 51) co?(@ >‘L +(5afh — BB s (B)°22)
b= (1 A - B) o) 2 ATy + (85— ) cos? (0)dor — (BaPr — 51F) sin® (0)dps)
B (1480 - B) @) 22 4 ARy’ — (BB~ 55) cos’(O)dir + (811 — BoF) sin(B)dgs]
For AdS3 x 5% x T4, its uplift reads o
e VA,
ds2 = 3 45ds®(AdS3) + d6? + cos(0)deT + sin®(0)de3 + (dy*)? + (dy®)* + (dy°)?
~ A (81 cos?(6)dir — Bsin® (B)di + Py’
+ A (a7 — Brco?(O)dgr + By sin?(O)der — Frds®) (©6)
Hypy = 26345 vol(AdSs) + A%sin(20)d0 A (14 B3 + B3)der + (851 — B1B2)dy° — Bady”)
A ((1+ 82+ B)dez = (BiPy = BoBo)dy® + Brdy”)
Gy = Gy = Gy =0,
with the warping factor now being
Ae— ! . (c.7)

1+ 82 + B2 cos?(0) + B2 sin?(0)
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C.2.2 Between S? and S°

The family (5.44) can be embedded in 10d as
e® = VA,

3% = ds*(AdS3) + (dy")? + d6? + a~2d6?

— 2 B = 2
+ A(COSz(G) cos?(f) <d<p1 + %2 dg51> + sin?(#) cos?(6) <d302 - % dg51>

2

2
+ cos?(6) sin?(6) <E4 deq + é d@g) + sin?(0) sin?(6) (Eg deg — é d(ﬁg)

.2 . Y 1 ~
+ cos?(#) sin?(8) dp? + sin?(0) sin? () dw3 + 2 cos?(8) dcp%) )

I;[(3) = 2£2AdS VOl(AdS3) (CS)
_ 45 4G
+ AZsin(20) d6 A <(1 + E4sin2(6)) dipy + Zp cos?(0) 2 + =4 5in() W)
o a
=2 i 20 = o der o m dgo
A ( (1 + E5sin?(0)) dpy — E4cos®(0) —, ~ Sesin (9) o
- 4
+ A?sin (20) d6 A ((1 + 23 cos?(0) + =3 sin®(0)) % + Zy cos?(6) dpy — Zy sin?(6) dg01>
VAN <d;fZ + =4 COSQ(Q) dp1 — =9 sin2(§) d(pg) s
Gy =G =G =0,
with 1
A= —. (C.9)

1+ (2% cos?(8) + E%sin?(0)) sin®(9)

D Uplift of 6d N' = (1,1) Supergravity

In this appendix we give a self-contained account of the consistent truncation of the NSNS sector of type 11
supergravity on a four-torus down N = (1,1) supergravity in six dimensions. The bosonic fields of the
latter comprise the metric, the dilaton, four one-forms and a two-form,

{9, ¢ Am“, Bun}, (D.1)

with indices m,n € [0,5] and a € [4,7]. The field strengths associated to the vectors and two-form are
3
ana =2 a[mAn]“ and Hmnp = 38[mBnp] - 5 5ab A[maan]b. (D.Q)
The action is given by

S = / dbz /=g (R — Omp O™ — %e_‘ﬁ Oap Fon W F™00 — 12 HmanmnP> . (D.3)

12
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This six dimensional theory can be obtained from the NSNS sector of all superstring theories. The
bosonic field content of this sector is given by a metric, a dilaton and a two-form,

{gs (D @7 Bﬁfl}’ (D4)
4 14

with indices fi, 7 € [0,9]. The field strength associated to the two-form is

A~

Hiirp = 3 0pBopy.

The action in string frame is given by
N . A 1 o
S = / Az \/—gse2? (RS +40;00"® — HﬂﬂﬁHWP> : (D.6)

To compactify on the four-dimensional torus T*, we use the index split X# = {z™,¢%}, with index
ranges as before, and drop the dependence of all fields on the internal coordinates y*. We consider the
following Kaluza-Klein Ansétze:

32 = G dz™da™ + G (dy® + AD *da™) (dy® + AV da) (D.7)
B(z) = %an dz™ A dz™ + Afl)b dz™ A (dyb + A](ﬂl)bd:):n) + %Bab (dy“ + A](n];)adxm) A (dyb i Afll)bdxn) ,

in terms of a six-dimensional metric gy, two-form By, vector fields Aﬁi)“ and Aﬁﬂ, and scalar fields
Gap = Gy and By, = —By,. From a six-dimensional perspective, upon reducing on T#, the ten-dimensional
gravity multiplet (D.4) gives rise to a six-dimensional gravity multiplet coupled to four vector multiplets

GRAV; — GRAVg ® 4 x VECg . (DS)

The reduced action can be cast in the SO(4,4)-covariant form:

) | 1 1
5= / A0 /=G e 2 (R+40,80™0 + £ O a0 M — HanFo F™° = Hy H™ ), (D.9)

with ® = & — In(det(Gyp))/2, the vector fields joined into a single SO(4,4) vector Ay,® and the scalar fields

parameterising the coset SO(4,4)/(SO(4) x SO(4)) through the SO(4,4) matrix Hag. The three-form is
given by

Hynp = 30 B 3 A For® D.10

mnp — [mPnp] — 5”&153 [m Y np] - ( : )

In a basis where the SO(4,4) invariant matrix nyy takes the form

0 &0
NAB = <5b 0 > ) (D.11)

the SO(4,4) fields are parameterised as follows in terms of the Ansétze (D.7)

AR
AM = (AE&L)’ (D.12)
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Gap — BueG@Byy, BaGP
Hap = ( b db ) . (D.13)

—_Gec Bcb Gab
If we further move to the Einstein frame by redefining gy — ggmn = e ® Jmn, then

% 2 Hyp ™).
(D.14)
To reduce (D.14) down to the minimal N' = (1, 1) theory (D.3), we need to truncate the four vector
multiplets in (D.8). Therefore, we consider the truncation to SO(4) singlets in SO(4,4). There are two
possible SO(4) factors in SO(4,4), denoted SO(4)+:"°

S = / d%z /=gr (RE — O ® ™D + %amﬂmamﬂm - %e—%mfmn‘*fmnﬁ -

SO(4)4 x SO(4)_ C SO(4,4), (D.15)

which respectively rotate £1 in the basis in which the invariant SO(4,4) metric is diagonal. Both
truncations (either to singlets of SO(4)+ or the ones of SO(4)_) leave 4 vectors in A,* and no scalar
in Hap (Hap = 0aB), thus reproducing the field content (D.1). The truncation to SO(4)_ singlets then
matches the field-strengths (D.2) and the action (D.3) upon identifying

JEmn = Ymn s D =¢. (D.16)

In the basis where np takes the off-diagonal form (D.11), Ay, and Hup are given by

1 AL
At = — mo, D.17
\/é (Amaéab) ( )
Hap = OaB, (D.18)

and the field strength (D.10) reduces to (D.2). Therefore, the embedding of the minimal N" = (1,1) theory
in 6d into ten dimensions reads

¢ =9,
dgg = Cd)gmn dz™dax" + 6ab (dy(l + % Ama d.’Em> <dyb + % Anb d.’En)a

The global SO(4) symmetry of D = 6 N' = (1,1) supergravity can then be understood as coordinate-
independent rotations preserving d.;, and thus becomes a gauge symmetry in the full ten dimensional
description.
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