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Abstract

We construct new continuous families of AdS3 × S3 ×T4 and AdS3 × S3 × S3 × S1 solutions in
heterotic and type II supergravities. These families are found in three-dimensional consistent
truncations and controlled by 17 parameters, which include TsT β deformations and encompass
several supersymmetric sub-families. The different uplifts are constructed in a unified fashion by
means of Exceptional Field Theory (ExFT). This allows the computation of the Kaluza-Klein
spectra around the deformations, to test the stability of the solutions, and to interpret them
holographically and as worldsheet models. To achieve this, we describe how the half-maximal
SO(8, 8) ExFT can be embedded into E8(8) ExFT.
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1 Introduction

In any Lorentz invariant quantum field theory in d dimensions, operators can be classified according to their
behaviour under the renormalisation group (RG), and for conformal field theories (CFTs) sitting at the
fixed points of the RG flow this behaviour can be characterised by the operator’s conformal dimension ∆.
For irrelevant operators, ∆ exceeds the spacetime dimension and the RG flow takes the theory back to the
original CFT. Conversely, relevant deformations are triggered by operators with ∆ < d and RG flow drives
the theory away from the starting point. A third class of deformations, called marginal, stay unaffected by
changes in the energy scale. Instead, these marginal operators encode the space of theories into which the
original theory can be deformed without breaking conformal invariance. This space is called the CFT’s
conformal manifold. Holographically, it corresponds to a continuous family of AdS solutions sharing the
same cosmological constant, but having different internal spaces. Although there is no systematic way of
constructing these gravity solutions from the CFT information, the AdS/CFT dictionary identifies the
marginal operators as massless modes in the bulk.

Supersymmetry is expected to be required for holographic conformal manifolds to exist, as non-
supersymmetric AdS solutions are believed to be unstable [1–3]. However, recent scrutiny [4] has revealed
AdS4 configurations that might evade this requirement, as all the standard decay channels, both perturbative
and non-perturbative, are absent for this solution. In AdS3/CFT2, the scenario could be richer and there
is a long-standing counter-example [5, 6] which is understood both in the field theory and gravity sides.
It is based on current-current deformations of the two-dimensional CFT, which are known to be exactly
marginal [7] despite possibly supersymmetry breaking. From the gravity perspective, these deformed
solutions will remain in the small curvature regime for small values of the deformation parameters, and
this assures that the deformed solution can also be studied in the supergravity approximation.

The purpose of this note is to explore the landscape of continuously connected AdS3 solutions in type
IIB and heterotic supergravities, expanding the work of [8]. The class of theories we focus on is given by
the near-horizon limit of NS5-F1 branes, and thus related by S-duality to the D1-D5 configuration [9–12]
and have been recently studied in ref. [13–15]. These latter works, together with [16,17], conjecture that
string theory on AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 are holographic duals to non-linear sigma
models on symmetric SU(2)×U(1) and T4 orbifolds, respectively. They take advantage of the absence of
RR fluxes to encode the dynamics as a supersymmetric WZW model on the worldsheet, and for the most
part focus on the tensionless string limit, where the supergravity description is not valid. The opposite
limit, where all string excitations decouple, remains largely unexplored.

Previous works have studied deformations of the AdS3 × S3 × S3 × S1 background in type IIB
supergravity [18], and its AdS3 × S3 × T4 counterpart in both the type IIB and heterotic theories [8].
This has shown very similar structures on both examples, and here we propose a generic framework to
study their deformations for both half-maximal as well as maximal theories simultaneously. We enlarge
our understanding of the landscape of deformations by exhibiting a 17-parameter family of solutions,
that include Lunin-Maldacena TsT deformations [19] and Wilson loops analogous to the recently studied
fibrations in [20–26]. The parameters generically break all supersymmetries, but in certain loci some
supersymmetry is recovered. We further study the spectra of Kaluza-Klein excitations on these solutions,
and discuss the perturbative stability of several supersymmetry breaking subfamilies. Additionally, given
the fact that the deformations do not excite any RR fluxes, the solutions stay pure NSNS and can thus be
described from a worldsheet point of view. This allows us to show that the marginal parameters induce JJ̄
operators on the worldsheet.
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The techniques we employ to obtain these large conformal manifolds are based on a convenient feature of
the AdS3×S3×T4 and AdS3×S3×S3×S1 solutions: they admit consistent truncations to three-dimensional
gauged supergravity. These are restrictions to a finite subset of modes in the Kaluza-Klein tower such that
any solution of the three-dimensional gauged supergravity defines a solution of the full set of equations of
motion in ten dimensions. Having a consistent truncation is a particularly valuable tool given that they
give access to a subsector of the higher-dimensional theory using only the lower-dimensional dynamics.
In the three-dimensional truncation, the theory for the modes retained has a scalar potential featuring
stationary points. The solution at these points correspond to AdS3 ×K solutions in ten dimensions, and in
particular, marginal deformations correspond to flat directions in the 3d potential, leading to continuous
deformations of the internal manifold K.

The existence of these consistent truncations can be exploited through the tools of Exceptional Field
Theory (ExFT) [27,28]. ExFT is a reformulation of higher-dimensional supergravity making it formally
covariant under the U duality group of the lower-dimensional theory obtained by toroidal reductions. The
higher-dimensional fields are reorganised to mimic the ones in lower dimensions, thus allowing the use of
the U duality symmetry before the compactification already. This reformulation is extremely efficient to
build and parameterise consistent truncations [29,30] and to compute Kaluza-Klein spectra [31–35] and
higher-couplings [36] around any solution in the truncation. Most prominently, these techniques also apply
to vacua preserving few or no (super)symmetries, which were beyond the reach of traditional methods. In
this note, we focus on ExFTs based on the U duality groups of maximal and half-maximal supergravities
in three dimensions, respectively given by E8(8) and SO(8, n), which were constructed in ref. [37, 38].

The rest of the paper is divided in two main parts. The first one exposes the technical tools necessary
to the study, and can be skipped by readers only interested in the main results, which are presented
in the second part. In sec. 2 we review the main features of maximal and half-maximal supergravities
in three dimensions, and explain how the half-maximal theories can be embedded in their maximal
counterparts. Sec. 3 introduces the E8(8) and SO(8, n) exceptional field theories with an emphasis on
their applications to the study of consistent truncations and Kaluza-Klein spectra. We show that SO(8, 8)

ExFT can be consistently embedded into its E8(8) analogue, and use this embedding to demonstrate that a
consistent truncation of half-maximal supergravity automatically defines a consistent truncation in maximal
supergravity. Finally, in sec. 4 we exemplify how this framework applies to the round AdS3 × S3 × S3 × S1

and AdS3 × S3 × T4 solutions in both type II and heterotic supergravity.
The second part is dedicated to the analysis of new families of marginal deformations of these solutions.

This constitutes the main result of this note. In sec. 5, we present for each family the details of the ten-
dimensional solution and explain how the deformation affects the spectrum of Kaluza-Klein modes. From
the spectrum, we deduce possible supersymmetry enhancements and discuss the perturbative stability of
the non-supersymmetric solutions by testing the masses of scalar fields against the Breitenlohner-Freedman
bound [39]. All deformed solutions we present are purely NSNS and we use this fact in sec. 6 to study them
from the point of view of the worldsheet action. This shows that these deformation parameters induce
current-current operators of the original worldsheet model, and this can be used to predict the holographic
CFT operators as combinations of JJ̄ deformations. We end in sec. 7 with some final comments and
relegate further technical details to four appendices.
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2 Gauged Supergravities in D = 3

2.1 Half-maximal theories

The first instance of AdS3 families leading to the AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 solutions
mentioned above was found in [40] as a family of vacua in half-maximal D = 3 supergravity with four
scalar multiplets. For theories containing n scalar multiplets, the global symmetry of the ungauged
theory is SO(8, n) [41], and the pure supergravity multiplet containing the graviton and eight gravitini is
supplemented by 8n scalars and spin-1/2 fermions. The former parameterise the manifold

SO(8, n)

SO(8)× SO(n)
, (2.1)

and the gravitini and spin-1/2 fields transform respectively in the spinorial and co-spinorial of the denominator
SO(8). To describe the gauging, vectors can be included in this theory that are dual to the scalar and
live in the adjoint representation of SO(8, n) [42]. The gauging of these matter-coupled supergravities
is specified by an embedding tensor ΘK̄L̄|M̄N̄ , with indices in the vector representation of SO(8, n). As
customary, apart from introducing covariant derivatives1

D = d+ΘK̄L̄|M̄N̄ AK̄L̄T M̄N̄ , (2.2)

for T M̄N̄ the generators of SO(8, n) in the relevant representation, such a gauging induces extra fermionic
couplings and a potential for the scalars, respectively linear and quadratic in the embedding tensor. The
Lagrangian of the gauged half-maximal theory reads [42,43,40]

e−1Lh.m. = R+
1

8
gµνDµM

M̄N̄DνMM̄N̄ + e−1LCS, h.m. − Vh.m. + fermions , (2.3)

with M = VVT for VM̄
N̄ the coset representative specifying the point in (2.1). The Chern-Simons kinetic

term for the vectors is given by

LCS = −εµνρΘM̄N̄ |P̄ Q̄Aµ
M̄N̄

(
∂ν Aρ

P̄ Q̄ +
1

3
ΘR̄S̄|Ū V̄ f

P̄ Q̄,R̄S̄
X̄Ȳ Aν

ŪV̄Aρ
X̄Ȳ

)
, (2.4)

with εµνρ the constant Levi-Civita density and fM̄N̄,P̄ Q̄
K̄L̄ = 4 δ[K̄

[M̄ηN̄ ][P̄ δL̄]
Q̄] the structure constants of

so(8, n) for generators normalised as

T M̄N̄
P̄
Q̄ = 2 δP̄

[M̄ηN̄ ]Q̄ . (2.5)

Consistency of the gauging requires two constraints, one linear and the other quadratic in the embedding
tensor. The linear constraint restricts the representations in which ΘK̄L̄|M̄N̄ can live. Given that it is
antisymmetric in each pair of indices and symmetric under exchange of both pairs,2 based only on its index

1In 3d, all our indices have overbars so as to distinguish them from their ExFT counterparts, introduced in sec. 3.
2We do not consider gaugings of the trombone unless otherwise stated.
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structure it includes3 (
⊗

)
sym

≃ 1⊕ ⊕ ⊕ . (2.6)

Supersymmetry of the gauged supergravity requires that not all representations in (2.6) appear in Θ. In
particular, one needs to implement the projection [43]

P Θ = 0 , (2.7)

which allows the embedding tensor to be parameterised as

ΘK̄L̄|M̄N̄ = θK̄L̄M̄N̄ +
1

2

(
ηM̄ [K̄θL̄]N̄ − ηN̄ [K̄θL̄]M̄

)
+ θ ηM̄ [K̄ηL̄]N̄ , (2.8)

in terms of totally antisymmetric, symmetric traceless and singlet tensors. The second requirement,
quadratic in the embedding tensor, is the invariance of Θ under gauge transformations generated by Θ

itself. This amounts to the vanishing of

QK̄L̄|M̄N̄ |P̄ Q̄ = −2ΘK̄L̄|[M̄
R̄ ΘN̄ ]R̄|P̄ Q̄ − 2ΘK̄L̄|[P̄

R̄ ΘQ̄]R̄|M̄N̄ , (2.9)

with indices raised and lowered with the SO(8, n) invariant tensor ηM̄N̄ . The space of non-trivial constraints
can be computed to be

QK̄L̄|M̄N̄ |P̄ Q̄ ⊂ ⊕ ⊕ 2× ⊕ . (2.10)

The scalar potential and couplings describing the dynamics of the gauged D = 3 supergravity are
determined entirely by the embedding tensor (2.8). The former, taking into consideration that the
embedding tensors we are going to consider also satisfy the quadratic relation [38]

θ[K̄L̄M̄N̄θP̄ Q̄R̄S̄] = 0 (2.11)

for them to be compatible with a generalised Scherk-Schwarz origin, is given by [44,40]

Vh.m. =
1

12
θK̄L̄M̄N̄θP̄ Q̄R̄S̄

(
M K̄P̄M L̄Q̄MM̄R̄M N̄S̄ − 6M K̄P̄M L̄Q̄ηM̄R̄ηN̄S̄

+ 8M K̄P̄ ηL̄Q̄ηM̄R̄ηN̄S̄ − 3 ηK̄P̄ ηL̄Q̄ηM̄R̄ηN̄S̄
)

+
1

8
θK̄L̄θP̄ Q̄

(
2M K̄P̄M L̄Q̄ − 2 ηK̄P̄ ηL̄Q̄ −M K̄L̄M P̄ Q̄

)
+ 4 θθK̄L̄M

K̄L̄ − 32 θ2 .

(2.12)

3We employ Young tableaux to refer to SO(N) representations. For example, dim
( )

= 1
2
(N − 1)(N + 2) and

dim
( )

= 1
12
N(N − 3)(N + 1)(N + 2).
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Critical points are those that annihilate

δVh.m. =
1

3
θK̄L̄M̄N̄θP̄ Q̄R̄S̄

(
M K̄P̄M L̄Q̄M N̄S̄ − 3M K̄P̄ ηL̄Q̄ηN̄S̄ + 2 ηK̄P̄ ηL̄Q̄ηN̄S̄

)
jM̄R̄

+
1

2

(
θM̄P̄ θN̄Q̄M

P̄ Q̄ − 1

2
θM̄N̄θP̄ Q̄M

P̄ Q̄
)
jM̄N̄ + 4 θθM̄N̄ j

M̄N̄ ,

(2.13)

for arbitrary jM̄N̄ ∈ so(8, n) ⊖ (so(8) ⊕ so(n)). The rest of the couplings can be described through the
dressed embedding tensor

TK̄L̄|M̄N̄ = (V−1)K̄
P̄ (V−1)L̄

Q̄(V−1)M̄
R̄(V−1)N̄

S̄ ΘP̄ Q̄|R̄S̄ , (2.14)

which can be decomposed into TK̄L̄M̄N̄ , TK̄L̄ and T following (2.8). Given that fermions transform as
representations of SO(8)× SO(n) in the denominator of (2.1), with the gravitini in the spinorial of SO(8)

and the spin-1/2 fields in the product of the co-spinorial of SO(8) and the vector of SO(n), it is useful to
introduce indices Ī , Ā, ¯̇A ∈ J1, 8K respectively in the vector, spinorial and co-spinorial of SO(8), and hatted
counterparts for SO(n). This way, the fermion fields are denoted by ψĀ and χ

¯̇A
¯̂
I .

In terms of the T-tensor (2.14), the bosonic masses are given by [43,45,40]

M(1)
M̄N̄

P̄ Q̄ =
(
ηK̄[M̄ηN̄ ]L̄ − δK̄[M̄δN̄ ]L̄

)
TK̄L̄|P̄ Q̄ , (2.15a)

M2
(0) M̄N̄,P̄ Q̄ j

M̄N̄jP̄ Q̄ = mM̄N̄,P̄ Q̄ j
M̄N̄ jP̄ Q̄ , (2.15b)

respectively for vectors and scalars. In the latter,

mM̄N̄,P̄ Q̄ = 4TM̄P̄ K̄L̄ TN̄Q̄R̄S̄ δ
K̄R̄δL̄S̄ +

4

3
TM̄ŪK̄L̄ TP̄ V̄ R̄S̄ δN̄Q̄ δ

Ū V̄ δK̄R̄δL̄S̄

− 4TM̄P̄ K̄L̄ TN̄Q̄
K̄L̄ − 4TM̄ŪK̄L̄ TP̄ V̄

K̄L̄δN̄Q̄ δ
Ū V̄ +

8

3
TM̄ŪK̄L̄ TP̄

ŪK̄L̄δN̄Q̄

+ 2TM̄P̄ TN̄Q̄ − TM̄N̄ TP̄ Q̄ + 2TM̄K̄ TP̄ L̄ δN̄Q̄ δ
K̄L̄

− TM̄P̄ TK̄L̄ δN̄Q̄ δ
K̄L̄ + 16T TM̄P̄ δN̄Q̄ ,

(2.16)

and the jM̄N̄ currents project adjoint indices onto the coset (2.1). The fermionic masses and couplings are
specified by the SO(8)× SO(n)-covariant fermion shifts, which read

AĀB̄
1 = − 1

12
γ ĪJ̄K̄L̄

ĀB̄ TĪJ̄K̄L̄−
1

4
δĀB̄ TĪ Ī + 2 δĀB̄ T ,

AĀ ¯̇A
¯̂
I

2 = −1

3
γ ĪJ̄K̄

Ā ¯̇A
T
ĪJ̄K̄

¯̂
I
− 1

2
γ Ī

Ā ¯̇A
T
Ī
¯̂
I
,

A
¯̇A
¯̂
I ¯̇B

¯̂
J

3 =
1

12
δ
¯̂
I
¯̂
Jγ ĪJ̄K̄L̄

¯̇A ¯̇B
TĪJ̄K̄L̄ + 2 γ ĪJ̄ ¯̇A ¯̇B

T
ĪJ̄

¯̂
I
¯̂
J
− 4 δ

¯̇A ¯̇Bδ
¯̂
I
¯̂
J T − 2 δ

¯̇A ¯̇B T ¯̂
I
¯̂
J
+

1

4
δ
¯̇A ¯̇Bδ

¯̂
I
¯̂
J TĪ Ī ,

(2.17)

as
M ĀB̄

(3/2) = −AĀB̄
1 , M

¯̇A
¯̂
I ¯̇B

¯̂
J

(1/2) = −A ¯̇A
¯̂
I ¯̇B

¯̂
J

3 . (2.18)

The SO(8) gamma matrices in (2.17) are constructed in appendix A.
Several choices for n are relevant in string theory. The theory with four scalar multiplets was shown

in [38] to arise from the truncation of D = 6 N = (1, 1) and N = (2, 0) supergravities, and the theory
with n = 8 corresponds to the NSNS sector of the superstring [46, 47]. In the following, we will review
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how half-maximal gauged supergravities based on SO(8, 8) can be embedded into maximal supergravity in
D = 3, which arises as a truncation of the type II superstrings. The addition of nv further scalar multiplets
in D = 3 corresponds to the addition of nv vector multiplets in half-maximal D = 10 supergravity, which
for nv = 16 captures the Cartan subsector of the low-energy regime of the heterotic stings [48].

2.2 Maximal theories

To make contact with type IIB supergravity, we must embed the gauged SO(8,8) half-maximal theory into
its maximal counterpart [49–51]. The matter content of this N = 16 supergravity in three dimensions is
comprised by the dreibein and 16 Majorana gravitino fields, which do not propagate degrees of freedom,
together with 128 real scalar fields and 128 Majorana fermions. The scalars are coordinates of [52]

E8(8)

SO(16)
⊃ SO(8, 8)

SO(8)× SO(8)
, (2.19)

and together with the spin-1/2 fermions they represent the two inequivalent spinorial representations of the
denominator SO(16). Despite redundant, to describe gaugings of this theory it is again useful to introduce
the one-forms dual to the scalars, which furnish the adjoint representation of E8(8).

To describe the scalar dynamics, it is again convenient to represent the coset (2.19) in terms of a
symmetric matrix

MM̄N̄ = VM̄
P̄VN̄

Q̄∆P̄Q̄ , (2.20)

with M̄ ∈ J1, 248K labelling the adjoint representation of E8(8), and ∆P̄Q̄ a matrix such that (tM̄)P̄
R̄∆R̄Q̄

is symmetric if the generator tM̄ is non-compact and anti-symmetric if compact. In terms of these fields,
the Lagrangian reads

e−1Lmax = R+ 1
240 g

µνDµM
M̄N̄DνMM̄N̄ + e−1LCS,max − Vmax + fermions . (2.21)

The gauging is specified by a symmetric embedding tensor XM̄N̄ such that covariant derivatives read

D = d+XM̄N̄ AM̄ tN̄ . (2.22)

An expression for the Chern-Simons contribution in (2.21) can be found in [49] and will not be needed in
the sequel. For the gauging to preserve maximal supersymmetry, the embedding tensor must lie in the
1⊕ 3875 representation of E8(8) and obey the quadratic relation

XR̄P̄ XS̄(M̄ fN̄ )
R̄S̄ = 0 ⇐⇒ [XM̄, XN̄ ]P̄

Q̄ = −XM̄N̄
R̄XR̄P̄

Q̄ . (2.23)

with the gauge group generator in the adjoint representation defined in terms of the E8(8) structure constants
as XM̄N̄

P̄ = −XM̄Q̄f
Q̄
N̄

P̄ [53]. Throughout, E8(8) indices are raised and lowered with the Cartan-Killing
form κM̄N̄ normalised as in equation (A.12).

For generic gaugings satisfying the above constraints, the potential and matter couplings are known in
terms of SO(16)-covariant fermions shifts [49]. The former is also known to have a formally E8(8)-covariant
expression [54] given by

Vmax = XM̄N̄XP̄Q̄

( 1

28
MM̄P̄M N̄ Q̄ +

1

2
MM̄P̄κN̄ Q̄ − 3

28
κM̄P̄κN̄ Q̄ − 2

6727
κM̄N̄κP̄Q̄

)
. (2.24)
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The embedding of half-maximal supergravity into the maximal theory then follows from4

E8(8) ⊃ SO(8,8)

248 → 120+ 128s ,

tM̄ → {t[M̄N̄ ], tĀ} ,

(2.26)

with M̄ ∈ J1, 16K labelling the vector representation of SO(8,8) as in sec. 2.1. The maximal embedding
tensor thus decomposes under SO(8, 8) into

1⊕ 3875 → 1⊕ 135⊕ 1820⊕ 1920c , (2.27)

where one can recognise the three first representations as the ones appearing in (2.8). The spinorial
representation 1920c cannot be excited in half-maximal supergravity, the SO(8, 8) and E8(8) singlets can
be identified, and the symmetric and four-fold antisymmetric tensors lie in the 3875 representation of
E8(8). The explicit breaking of the embedding tensor components is [45]

XK̄L̄|M̄N̄ = 2ΘK̄L̄|M̄N̄ , XĀB̄ = −θ ηĀB̄ + 1
48 Γ

K̄L̄M̄N̄
ĀB̄ θK̄L̄M̄N̄ . (2.28)

Details on the construction of E8(8) based on SO(8, 8) can be found in appendix A. The chiral SO(8, 8)

gamma matrices are given by (A.7) if we work in the basis in which the SO(8, 8) invariant metric assumes
the diagonal form (A.2). In this basis, the charge conjugation matrix ηĀB̄ is simply given by (A.3).

Breaking the E8(8) indices as in (2.26), the consistency condition (2.23) leads to three equations

XR̄1R̄2|P̄1P̄2
XS̄1S̄2|M̄1M̄2

fN̄1N̄2

R̄1R̄2,S̄1S̄2 = 0 , (2.29a)

XĀB̄XS̄1S̄2|M̄1M̄2
fC̄

ĀS̄1S̄2 = 0 , (2.29b)

XĀB̄XC̄D̄ fN̄1N̄2

ĀC̄ = 0 . (2.29c)

The first relation leads to (2.9), transforming into (2.10), upon the decomposition (2.28). The equations
(2.29b) and (2.29c) imply extra compatibility conditions transforming in the 35⊕ 6435c of SO(8, 8) [45]
for the half-maximal gauging to admit an embedding into the maximal theory. Moreover, for the theory to
be obtainable by Scherk-Schwarz reduction from type II/eleven-dimensional supergravity, the embedding
tensor must also satisfy [18]

XM̄N̄X
M̄N̄ +

1

1922

(
XM̄

M̄)2 = 0 . (2.30)

Supergravity vacua are solutions to the equation

δVmax =
1

14
XM̄N̄XP̄Q̄

(
M N̄ Q̄ + 7κN̄ Q̄)jM̄P̄ , (2.31)

with arbitrary jM̄P̄ ∈ e8(8)⊖so(16). For a theory fulfilling (2.29), given a solution of (2.13) it automatically

4Given the breaking (2.26), the summing rule for E8(8) indices acquires extra combinatorial factors, e.g.

UM̄VM̄ =
1

2
UM̄N̄VM̄N̄ + U ĀVĀ . (2.25)
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solves (2.31). The consistency of this truncation is guaranteed by the “fermion number” Z2 symmetry that
acts on the SO(8, 8) indices in (2.26) as

X [M̄N̄ ] 7→ X [M̄N̄ ] , XĀ 7→ −XĀ . (2.32)

Instead of using the embedding (2.19) to construct the E8(8)/SO(16) coset representatives and define
the dressed embedding tensor

T̂M̄N̄ = (V−1)M̄
P̄(V−1)N̄

Q̄XP̄Q̄ , (2.33)

one can equivalently build it as

T̂K̄L̄|M̄N̄ = 2TK̄L̄|M̄N̄ , T̂ĀB̄ = −T ηĀB̄ + 1
48 Γ

K̄L̄M̄N̄
ĀB̄ TK̄L̄M̄N̄ , (2.34)

in terms of the dressed embedding tensor in (2.14) for the half-maximal supergravity. At the different
solutions of (2.31), the masses of the bosonic modes captured in gauged supergravity sit among the
eigenvalues of

M(1)
M̄

N̄ = −
(
∆M̄P̄ + κM̄P̄

)
T̂P̄N̄ , (2.35a)

M2
(0) Ā B̄ = PĀ

M̄N̄PB̄
P̄Q̄
[
1
7 T̂M̄P̄ T̂N̄ Q̄ +

(
1
7 ∆

K̄L̄ + κK̄L̄
)
T̂M̄K̄ T̂L̄P̄ ∆N̄ Q̄

]
, (2.35b)

for vectors and scalars, respectively. In the mass matrix for the scalars, PĀ
M̄N̄ = (tĀ )P̄

M̄∆P̄N̄ are the
projectors onto the non-compact generators of (2.19), with Ā ∈ J1, 128K labelling the spinorial of SO(16).

As for the scalars, fermion mass matrices for the maximal theory are written naturally in SO(16)-
covariant form [49,50],5

Â1M̄N̄ =
16

7
θ ηM̄N̄ +

2

7
T̂M̄P̄,N̄Q̄ η

P̄Q̄ ,

Â2M̄ ¯̇A
= −2

7
ΓN̄

Ā ¯̇A
ηĀ B̄ T̂

M̄N̄ B̄
,

Â3 ¯̇A ¯̇B
= 4θ η ¯̇A ¯̇B

+
1

24
ΓM̄N̄P̄Q̄

¯̇A ¯̇B
T̂M̄N̄P̄Q̄ ,

(2.36)

with indices M̄ ∈ J1, 16K, and ¯̇A ∈ J1, 128K respectively in the vector and co-spinorial of SO(16). As
discussed in appendix A, the invariant tensors ηM̄N̄, ηĀ B̄ and η ¯̇A ¯̇B

for this signature are simply given by
identity matrices and the SO(16) components of the dressed embedding tensor follow from (2.33) under
the decomposition in (A.14).

As in the half-maximal case, the eigenvalues of these matrices also encompass non-physical modes such
as the vectors which are not gauged by the embedding tensor (and therefore sit outside the gauge group),
and massless scalars that serve as Goldstone modes for the massive vectors.

2.3 Gaugings for S3 × M4

In the following, unless otherwise stated, we will restrict ourselves to the case n = 8. As will become
apparent in sec. 3, a convenient basis to describe the SO(8, 8)-supergravities is such that the invariant

5The coefficients for the terms in θ are not tested by our solutions.
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metric ηM̄N̄ is given by

ηM̄N̄ =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 13 0 0 0 0

0 0 13 0 0 0 0 0

0 0 0 0 0 13 0 0

0 0 0 0 13 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


, (2.37)

according to the breaking

SO(8, 8) ⊃ SO(1, 1)×GL(3)×GL(3)× SO(1, 1) ,

XM̄ −→ {X 0̄, X0̄, X
m̄, Xm̄, X

ī, Xī, X
7̄, X7̄} .

(2.38)

This choice aligns the D = 3 supergravity with the coordinates that solve the section constraint in
Exceptional Field Theory. For this reason, we take the ranges of the indices above as m̄ ∈ J1, 3K and
ī ∈ J4, 6K. In this basis, the class of embedding tensors determining the half-maximal supergravities of
interest are specified by the choice

θ
0̄0̄

= −4
√

1 + α2 , θM̄N̄P̄ 0̄ = −1

2
XM̄N̄P̄ , (2.39)

with
Xm̄n̄p̄ = εm̄n̄p̄ , Xm̄

n̄p̄ = εm̄n̄p̄ , Xm̄
n̄
p̄ = εm̄n̄p̄ , Xm̄n̄

p̄ = εm̄n̄p̄ ,

Xī̄jk̄ = α ε̄ījk̄ , Xī
j̄k̄ = α ε̄ījk̄ , X ī

j̄
k̄ = α ε̄ījk̄ , X ī̄j

k̄ = α ε̄ījk̄ ,
(2.40)

and α ∈ R+ a free parameter.6 The embedding tensor described in [40] can be obtained by taking the α→ 0

limit of (2.39) and truncating SO(8, 8) down to SO(8, 4). For generic α, the half-maximal supergravity in
3d resulting from (2.39) has gauge group

Gα ̸=0 =
[
SO(3)⋉ T 3

]4 × T 2 , (2.41)

which, for α = 0, reduces to
Gα=0 =

[
SO(3)⋉ T 3

]2 × T 8 , (2.42)

with the remaining SO(4) becoming a global symmetry.
One can verify that the SO(8, 8) embedding tensor in (2.39) does verify the quadratic constraint (2.9)

and also the compatibility conditions with maximal supergravity. In fact, it satisfies the stronger relations

θM̄
P̄ Q̄R̄ θN̄P̄ Q̄R̄ = 0 , θ[K̄L̄M̄N̄ θP̄ Q̄R̄S̄] = 0 , θM̄N̄ θM̄N̄ = 0 , (2.43)

after which the others automatically follow. Upon embedding the half-maximal embedding tensor (2.39)
into its E8(8) counterpart via (2.28), these identities also guarantee that (2.30) holds, and therefore the
resulting embedding tensor can be obtained via generalized Scherk-Schwarz reduction of E8(8)-ExFT.

6The sign of α only affects the chirality of the fermionic modes, and can be taken to be positive without loss of generality.
Following the ten-dimensional uplifts, its range can in fact be restricted to [0, 1] (see eq. (5.43)).
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In the maximal theory, the gauge groups (2.41) and (2.42) are promoted into

Gα ̸=0 =
[
SO(3)4 ⋉ Σ

]
×
(
T 1
)2 (2.44)

for non-vanishing α, which reduces to

Gα=0 =
[
SO(3)2 ⋉ Σ′]× (T 1

)8 (2.45)

in the α = 0 case. Here Σ is a nilpotent subalgebra decomposing as

Σ ≃ T12 ⊕ T̂32 , (2.46)

where T12 is an abelian subalgebra transforming in the adjoint of SO(3)4, and T̂32 represents two copies
of the (12 ,

1
2 ,

1
2 ,

1
2) of SO(3)4 which close into T12. In (2.45), the nilpotent subalgebra is Σ′ ∼ T6 ⊕ T̂32

now representing the adjoint of SO(3)2 and eight copies of its bi-spinor representation, which close into
T6. The groups in (2.44) and (2.45) have the expected structure of gauged groups of three-dimensional
Chern-Simons gauged supergravity [51] (see also sec. 3.2 of ref. [55]).

2.4 Solutions

In the half-maximal theory, a family of solutions annihilating (2.13) with embedding tensor (2.39) is given
by the natural inclusion of the two-parameter locus found in the SO(8, 4) theory [40] into SO(8, 8). In
the basis (2.38) and with the generators of so(8, 8) normalised as is (2.5), it can be characterised by the
representative

V = exp
[
− ω T 3̄

3̄ −
ωζ

1− e−ω

(
T 3̄7̄ − T 3̄

7̄

)]
=



14 0 0 0 0 0 0

0 e−ω 0 eω ζ2 0 ζ −ζ
0 0 12 0 0 0 0

0 0 0 eω 0 0 0

0 0 0 0 16 0 0

0 0 0 eω ζ 0 1 0

0 0 0 −eω ζ 0 0 1


. (2.47)

All points in this family of solutions share the AdS radius

ℓ2AdS = − 2

V0
=

1

1 + α2
. (2.48)

For α ̸= 0, the preserved gauge group out of (2.41) is SO(4) × SO(2) × SO(2) at generic values of the
parameters, whilst it reduces to SO(2)× SO(2) in the α = 0 case. There are special loci where symmetry
enhances. On the line

ζ2 = 1− e−2ω , (2.49)

two more vectors become massless,7 and the gauge symmetry becomes SO(4)× SO(3)× SO(2) for α ̸= 0.
At the scalar origin, it further enhances to SO(4)× SO(4). For α = 0, one of these SO(4) factors is always

7We consider massless vectors and gravitini in spite of the fact that, together with the massless graviton, in D = 3 they
are non-propagating. We find this useful as they correspond to the unbroken (super-)symmetry of the solution.
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absent from the gauge group, and instead there is a global factor. Whenever ζ = 0, this global symmetry is
SO(4), which is broken down to SO(3)diag otherwise.

At generic points of the two-parameter family no supersymmetry is preserved. As discussed in [40], the
symmetry enhancement at (2.49) corresponds to the locus where four gravitini become massless, resulting
in N = (0, 4) preserved supersymmetry. Away from the supersymmetric locus, stability is not guaranteed,
as can already be observed at the gauged supergravity level. The modes that trigger instabilities can
already be found in the SO(8, 4) truncation with α = 0 of [40].

The family of solutions (2.47) can be embedded into the sigma model (2.19) pertaining to the maximal
theory. Following (2.26), the representative reads

VM̄
N̄ = exp

[
− ω f 3̄3̄ −

ωζ

1− e−ω

(
f 3̄7̄ − f 3̄7̄

)]
, (2.50)

with indices in the (2.38) basis. As shown in [8], for α = 0 this family can be uplifted into type IIB
supergravity on an AdS3 × S3 × T4 background, with the parameters ω and ζ controlling the squashing
of the S3 and its fibration over one of the torus directions. This intuition allows us to promote the
solution (2.50) into a 15-parameter family for generic α, with two extra moduli in the case α = 0. The
coset representative depending on these 17 parameters can be given as

VM̄
N̄ = exp

[
− ω f 3̄3̄ −

ω

1− e−ω

(
χ1 f

3̄7̄ + χ2 f3̄
7̄ + β1 f

3̄
7̄ + β2 f3̄7̄

)
− ω̃ f 6̄6̄ −

ω̃

1− e−ω̃

(
χ̃1 f

6̄7̄ + χ̃2 f6̄
7̄ + β̃1 f

6̄
7̄ + β̃2 f6̄7̄

)
− Ξ1 f

3̄6̄ − Ξ2 f
3̄
6̄ − Ξ3 f3̄

6̄ − Ξ4 f3̄6̄ − σ4 f
4̄
4̄ − σ5 f

5̄
5̄ − σ7 f

7̄
7̄

]
,

(2.51)

with σ4 and σ5 stabilised to zero in the α ̸= 0 case. This conformal manifold is entirely contained inside
SO(7, 7) ⊂ SO(8, 8) ⊂ E8(8). Despite intensive search, no solution has been found in the half-maximal
theory where excited scalars lie outside this SO(7, 7). Generically, the gauge group breaks to SO(2)4 for
α ≠ 0 and SO(2)2 for α = 0, and all supersymmetries are broken. At certain loci, partial (super-)symmetry
enhancements take place, as will be discussed for the computation of the Kaluza-Klein spectra in sec. 5. As
will also be described in that section, the solutions with non-vanishing values for the β’s and ω correspond
to TsT transformations of the undeformed background. In fact, some subfamilies uplift to the standard
Lunin-Maldecena deformations [19]. It is a remarkable characteristic of D = 3 supergravity that such β
deformations can be captured in a consistent truncation, unlike in the otherwise similar AdS4 × S7 and
AdS5 × S5 solutions [19,56,57].

From a 3d perspective, the parameters in (2.51) span R17. Nevertheless, as will be seen in sec. 5,
geometric identifications in 10d render the χi and χ̃i moduli periodic. Similarly, string theory dualities [19]
also compactify the β directions.

3 Exceptional Field Theories in 3d

3.1 Review of SO(8, n) exceptional field theory

We are interested in the SO(8, n)-covariant reformulation of half-maximal 10d supergravity, first constructed
in ref. [38], to make contact with the 3d gauged supergravity in sec. 2.1. The bosonic fields of such an
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extended field theory are
{gµν , MMN , Aµ

MN , BµMN} , (3.1)

with µ ∈ J0, 2K and M,N ∈ J1, 8+nK in the fundamental of SO(8, n). The metric gµν is a 3d metric, MMN

is the generalised metric parameterising the coset SO(8, n)/(SO(8)× SO(n)) and Aµ
MN parameterise the

gauge fields of the gauged supergravity. The gauge fields BµMN are covariantly constrained and necessary
for the gauge algebra to close, as we will review below. The internal indices of both Aµ

MN and BµMN

belong to the adjoint representation of SO(8, n). All these fields depend on 3 external coordinates xµ and
internal ones YMN in the adjoint representation of SO(8, n). Their dependence on YMN is subject to the
section constraints

∂[MN ⊗ ∂PQ] = 0, (3.2a)

ηPQ∂MP ⊗ ∂NQ = 0, (3.2b)

such that there are only 7 physical coordinates yi among YMN . The ⊗ product in eq. (3.2) means that the
derivatives act on any combination of fields or gauge parameters.

The Lagrangian of the SO(8, n) exceptional field theory is

L SO(8,n) =
√
|g|
(
R̂SO(8,n) +

1

8
DµMMN DµMMN + L

SO(8,n)
int

)
+ L

SO(8,n)
CS . (3.3)

The first term is an SO(8, n) covariantisation of the scalar curvature (see ref. [38] for more details). The
second term is the kinetic term for the generalised metric, and the Chern-Simons term, which ensures the
on-shell duality between scalars and vectors, is given by8

L
SO(8,n)
CS = 2 εµνρ

(
Fµν

MN BρMN + ∂µAν N
K ∂KMAρ

MN − 2

3
∂MN∂KLAµ

KPAν
MNAρP

L

+
2

3
Aµ

LN ∂MNAν
M

P ∂KLAρ
PK − 4

3
Aµ

LN ∂MPAν
M

N ∂KLAρ
PK
)
,

(3.4)

where Fµν
MN are the Yang-Mills field strength associated to Aµ

MN (see eq. (2.55) of ref. [38] for an
explicit expression). Finally, the potential is [35]

L
SO(8,n)
int =

1

8
∂KLMMN ∂PQMMN MKPMLQ + ∂MKMNP ∂NLMMQMPQMKL

− 1

4
∂MNMPK ∂KLMMQMP

LMQ
N − ∂MKMNK ∂NLMML

+ g−1 ∂MN g ∂KLMMKMNL +
1

4
MMKMNL g−2∂MNg ∂KLg

+
1

4
MMKMNL ∂MNgµν ∂KLg

µν .

(3.5)

Such defined, the Lagrangian (3.3) is invariant under local generalised internal diffeomorphisms, defined by
their action on a vector VM of weight λ as follows

LSO(8,n)

(Λ,Σ) V
M = ΛKL∂KLV

M + 2
(
∂KMΛKN − ∂KNΛKM + 2ΣM

N

)
V N + λ∂KLΛ

KL VM . (3.6)

8The global factor has been corrected compared to [38] by recovering the SO(8, 8) theory as a truncation of the E8(8)

ExFT reviewed in the following.
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To make sure that these generalised diffeomorphisms close into an algebra, the gauge parameters ΣMN are
subject to constraints similar to eq. (3.2),{

Σ[MN ΣPQ] = 0 ,

ηNPΣMN ΣPQ = 0 ,

{
Σ[MN ∂PQ] = 0 ,

ηNPΣMN ∂PQ = 0 .
(3.7)

The associated covariant external derivatives used in eq. (3.3) are defined as

Dµ = ∂µ − LSO(8,n)
(Aµ,Bµ)

, (3.8)

with the weights of the fields in (3.1) and the gauge parameters ΛMN and ΣMN specified as

gµν MMN AMN
µ BµMN ΛM ΣMN

λ 2 0 1 0 1 0
. (3.9)

To ensure the invariance of the action, the gauge fields Bµ must also enter constraints analogous to (3.7).
The section constraints (3.2) for the SO(8, n) theory admit two inequivalent solutions [38]. One

corresponds to the N = (2, 0) theory in six dimensions coupled to 5 self-dual and n− 3 anti self-dual tensor
fields and 5(n− 3) scalars. Such a theory cannot be oxidised to more than six dimensions. For the alternate
solution of (3.2), the theory (3.3) describes the NSNS sector of ten-dimensional supergravity coupled to
n − 8 ten-dimensional vectors. Setting n = 8 and denoting the physical internal coordinates as yi with
i ∈ J1, 7K, the constraints (3.2) are solved by breaking

SO(8, 8) ⊃ SO(1, 1)×GL(7) ,

XM −→ {X0, X0, X
i, Xi} ,

(3.10)

and restricting coordinate dependence to yi = Y i0. The ExFT indices are aligned with the ones of the
three-dimensional half-maximal theory by embedding GL(3)×GL(3)× SO(1, 1) ⊂ GL(7) as in (2.38). The
explicit dictionary between the SO(8, 8)-ExFT generalised metric and the internal components of the NSNS
fields is given by [8]

M00 = ĝ−1eΦ̂/2 ,

M0i = 1
6! M00εij1...j6 b̃j1...j6 ,

M00Mij −M0iM0j = ĝ−1ĝij ,

M00Mi
j −M0iM0

j = ĝ−1ĝik bkj ,

(3.11)

where ĝij is the purely internal block of the ten-dimensional metric in Einstein frame, and ĝ its determinant.
The ExFT fields b and b̃ do not directly embed into the ten-dimensional two-form, but determine its field
strength Ĥ = dB̂ through

Ĥ = db+ eΦ̂/8 ⋆10 db̃ , (3.12)

with the ten-dimensional Hodge star taken with respect to the Einstein-frame metric. To describe our
configuration in the string frame, the only change needed is the usual rescaling of the metric ĝs µ̂ν̂ = eϕ̂/2ĝµ̂ν̂ .

The consistent truncation of the NSNS sector of type II supergravity on S3 ×T4 and S3 × S̃3 × S1 down
to a half-maximal supergravity can be described in terms of generalised Scherk-Schwarz Ansätze, where the
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dependence on external and internal coordinates factorises. The dependence on the former is carried by
the D = 3 fields and the latter by a group-valued twist matrix U(Y ) and a scale factor ρ(Y ) of weight −1.
The precise factorisation reads [38]

gµν(x, Y ) = ρ(Y )−2gµν(x) ,

MMN (x, Y ) = UM
M̄ (Y )UN

N̄ (Y )MM̄N̄ (x) ,

Aµ
MN (x, Y ) = ρ(Y )−1(U−1)M̄

M (Y )(U−1)N̄
N (Y )Aµ

M̄N̄ (x) ,

BµKL(x, Y ) = −1

4
ρ(Y )−1UMN̄ (Y )∂KL(U

−1)M̄
M (Y )Aµ

M̄N̄ (x) ,

(3.13)

On the right-hand sides, gµν ,MM̄N̄ and Aµ
M̄N̄ are the fields of the half-maximal three-dimensional

supergravity described in sec. 2.1. The truncation to these fields is consistent if

LSO(8,n)
(UK̄L̄,ΣK̄L̄)

(U−1)M̄
M = 2ΘK̄L̄|M̄

N̄ (U−1)N̄
M , (3.14)

with
UK̄L̄

KL = ρ−1 (U−1)[K̄
K(U−1)L̄]

L, and ΣK̄L̄,KL = −1

4
ρ−1 ∂KL(U

−1)[K̄
PUPL̄], (3.15)

and a constant embedding tensor ΘK̄L̄|M̄N̄ . This tensor specifies the explicit gauging and its compo-
nents (2.8) can be expressed using the twist matrix and the scaling function as

θK̄L̄M̄N̄ = −3 ρ−1 J[K̄L̄,M̄N̄ ],

θM̄N̄ = 2 ρ−1 JK̄(M̄,N̄)
K̄ − ηM̄N̄ θ + ξM̄N̄ ,

θ = − 2

8 + n
ρ−1 JK̄L̄

K̄L̄,

(3.16)

with the SO(8, 8) currents JM̄N̄,K̄
L̄ =

(
U−1

)
M̄

M
(
U−1

)
N̄

N
(
U−1

)
K̄

K∂MNUK
L̄ and the trombone gauging

ξM̄N̄ = 2 ρ−2
(
U−1

)
M̄

K
(
U−1

)
N̄

L∂KLρ− 2 ρ−1 JK̄[M̄,N̄ ]
K̄ . (3.17)

In the following, all twist matrices will be such that ξM̄N̄ = 0, allowing for a Lagrangian formulation of
the three-dimensional supergravity. For the SO(8, n) case with n > 8 relevant to heterotic supergravity,
equations (3.13)–(3.17) generalise straightforwardly.

3.2 Review of E8(8) exceptional field theory

We can similarly employ an exceptional field theory suited to studying compactifications of maximal 10d
supergravity (and 11d supergravity) down to 3d. As detailed in sec. 2.2, the duality group is then E8(8).
The E8(8)-covariant reformulation of type IIB and 11d supergravities is E8(8) exceptional field theory [37].
Its structure is very similar to what we described in the previous section. The fields are

{gµν , MMN , Aµ
M, BµM} , (3.18)

alongside their fermionic superpartners. As before, they depend on both the external coordinates xµ and
on a set of 248 extended coordinates YM. Here and in (3.18), the index M ∈ J1, 248K is the adjoint index
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of E8(8). The dependence on the YM coordinates must be restricted by the section constraints

κMN∂M ⊗ ∂N = 0 , (3.19a)

fMN
P∂M ⊗ ∂N = 0 , (3.19b)

(P3875)MN
KL∂K ⊗ ∂L = 0 , (3.19c)

which have two inequivalent solutions. One preserves seven physical coordinates and corresponds to type
IIB supergravity, and the other has eight coordinates and is associated to M-theory. The E8(8) structure
constants fMN

P and Cartan-Killing metric κMN can be respectively found in eq. (A.11) and (A.12) in
appendix A. The components of the projector 248⊗ 248 7→ 3875 can also be found in (A.21).

The theory is invariant under gauge symmetries generated by the E8(8) generalised Lie derivative. On a
vector VM of weight λ, it acts as

LE8(8)

(Λ,Σ)V
M = ΛN∂NV

M −
(
60 (P248)

M
N

K
L∂KΛ

L − fMK
NΣK

)
V N + λVM∂NΛN , (3.20)

with (P248)
M

N
K
L in (A.21). As previously, the closure of the algebra of LE8(8)

(Λ,Σ) imposes constraints on the
gauge parameters ΣM and BµM fields similar to eq. (3.19), and the fields in (3.18) need to be assigned
weights analogously to the (3.9) assignment.

The bosonic Lagrangian, invariant under eq. (3.20), is given by [37]

L E8(8) =
√
|g|
(
R̂E8(8) +

1

240
DµMMND

µMMN + L
E8(8)

int

)
+ L

E8(8)

CS . (3.21)

We denote R̂E8(8) the E8(8)-covariantised Ricci scalar and define the E8(8)-covariant derivative as9

Dµ = ∂µ − LE8(8)

(Aµ,Bµ)
. (3.22)

The potential term L
E8(8)

int reads

L
E8(8)

int =
1

240
MMN∂MMKL∂NMKL − 1

2
MMN∂MMKL∂LMNK

− 1

7200
fNQ

Pf
MS

RMPK∂MMQK MRL∂NMSL

+
1

2
g−1∂Mg ∂NMMN +

1

4
MMN g−2∂Mg ∂N g +

1

4
MMN ∂Mgµν ∂N g

µν ,

(3.23)

and the Chern-Simons term L
E8(8)

CS has the following expression:

L
E8(8)

CS =
1

2
εµνρ

(
Fµν

MBρM − fKL
N ∂µAν

K∂NAρ
L − 2

3
fNKL ∂M∂NAµ

KAν
MAρ

L

− 1

3
fMKL f

KP
Q f

LR
S Aµ

M∂PAν
Q∂RAρ

S
)
.

(3.24)

We refer to the eq. (2.26) of ref. [37] for the expression of the covariant field strength Fµν
M of Aµ

M, which
will not be needed in the following.

9For the sake of readability, we use the same notation for the SO(8, n) and E8(8) covariant derivatives in eq. (3.8) and (3.22).

16



Within E8(8) exceptional field theory, the Scherk-Schwarz Ansatz describes consistent truncations of
type II supergravity down to maximal D = 3 gauged supergravities. It is expressed in term of a twist
matrix UM

M̄ ∈ E8(8) and a scaling function ρ, and parallels eq. (3.13) [53,58]:

gµν(x, Y ) = ρ(Y )−2gµν(x) ,

MMN (x, Y ) = UM
M̄(Y )UN

N̄ (Y )MM̄N̄ (x) ,

Aµ
M(x, Y ) = ρ(Y )−1(U−1)M̄

M(Y )Aµ
M̄(x) ,

BµM(x, Y ) =
ρ(Y )−1

60
fM̄

P̄Q̄ (U−1)P̄P(Y )∂M(U−1)Q̄
P(Y )Aµ

M̄(x) .

(3.25)

The fields gµν ,MM̄N̄ and Aµ
M̄ now belong to the maximal three-dimensional supergravity described in

sec. 2.2. The truncation to these fields is consistent if the following condition for generalised parallelisability
is satisfied:

LE8(8)

(UM̄,ΣM̄) UN̄
M = XM̄N̄

P̄ UP̄
M, (3.26)

where
UM̄

M = ρ−1 (U−1)M̄
M, ΣM̄M =

1

60
ρ−1 fM̄

P̄Q̄(U−1)P̄P∂M(U−1)Q̄
P , (3.27)

and with constant torsion [18]

XM̄N̄
P̄ = −ρ−1 JM̄N̄

P̄ + ρ−1 f P̄ N̄ Q̄f
Q̄K̄

L̄ JK̄M̄
L̄ − 1

60
ρ−1 f P̄K̄

N̄ fM̄L̄
Q̄ JK̄Q̄

L̄

− 1

2
ρ−1 f P̄ N̄ Q̄f

Q̄K̄
M̄ JR̄K̄

R̄ +

(
δM̄

K̄δN̄
P̄ − 1

2
fM̄

L̄K̄fN̄ L̄
P̄
)
ξK̄ ,

(3.28)

which can be identified with the embedding tensor of the three-dimensional gauged supergravity. Here we
have introduced the E8(8) current JM̄N̄

P̄ = (U−1)M̄
K(U−1)N̄

L∂KUL
P̄ and the trombone gauging

ξM̄ = 2 (U−1)M̄
N∂Nρ

−1 + ρ−1 ∂N (U−1)M̄
N . (3.29)

As before, we will always consider ξM̄ = 0. This consistency condition is most nicely expressed once
projected on the adjoint representation

XM̄N̄ = −2 ρ−1 J(M̄N̄ ) − ρ−1 JK̄(M̄
L̄ fN̄ )L̄

K̄, (3.30)

with
XM̄N̄ = 1

60 XM̄P̄Q̄ fN̄
P̄Q̄ and JM̄N̄ = 1

60 JM̄P̄Q̄ fN̄
P̄Q̄ . (3.31)

3.3 ExFT matryoshka

We embed the SO(8, 8) exceptional field theory into its E8(8) counterpart by breaking the latter group as
in eq. (2.26):

E8(8) −→ SO(8, 8) ,

XM −→
{
X [MN ], XA} .

(3.32)
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The SO(8, 8)-ExFT coordinates YMN of sec. 3.1 are identified with the components in the 120 of the E8(8)

coordinates YM, and all fields and parameters are independent of Y A,

YMN ⊂ YM and ∂A = 0 . (3.33)

The fields of the two theories can also be related through (3.32). The relevant sigma models are identified
through the inclusion (2.19), and the vectors in the adjoint of SO(8, 8) are identified in the two theories:

AE8(8)
µ

MN = 2ASO(8,8)
µ

MN and BE8(8)

µMN = 4BSO(8,8)
µMN . (3.34)

The remaining components are identified with the Ramond-Ramond fields of maximal supergravity. From
an SO(8, 8) perspective, the consistency of the truncation to the NSNS sector follows from the projection
in (2.32).

In the following, we describe how the E8(8) section constraints and generalised Lie derivatives are related
to their SO(8, 8) counterparts. For configurations that admit a generalised Leibniz parallelisation in the
SO(8, 8) theory, we detail how to build a twist matrix UM

M̄ from UM
M̄ in such a way that the embedding

tensors in the corresponding consistent truncations are related as in (2.28).

Section constraints For the adjoint coordinate dependence (3.33), the E8(8) section conditions (3.19)
follow from the SO(8, 8) ones (3.2). This can be seen explicitly using the SO(8, 8) decomposition of the E8(8)

structure constants given in (A.11). For the conditions (3.19a) and (3.19b), the non-trivial components are

κMN∂M ⊗ ∂N = −1

8
∂MN ⊗ ∂MN ,

fMN,PQ
RS ∂MN ⊗ ∂PQ = −4 ∂[R

T ⊗ ∂S]T ,
(3.35)

which vanish as a consequence of eq. (3.2b). Concerning the last condition (3.19c), let us first note that it
is equivalent to eq. (3.19a) and (3.19b) together with

fMKRf
N

L
R ∂M ⊗ ∂N − 2 ∂(K ⊗ ∂L) = 0 . (3.36)

The only non trivial components of this equation are

fMMN,Rf
N

PQ
R ∂M ⊗ ∂N − ∂MN ⊗ ∂PQ − ∂PQ ⊗ ∂MN = − 6 ∂[MN ⊗ ∂PQ] ,

fMARf
N

B
R ∂M ⊗ ∂N = − 1

16

(
ΓIJΓKL

)
AB ∂IJ ⊗ ∂KL .

(3.37)

They both vanish thanks to the SO(8, 8) section condition (3.2) and(
ΓMNΓPQ

)
AB = ΓMNPQ

AB + 2 ηM [PΓ
Q]N
AB − 2 ηN [PΓ

Q]M
AB − 2 ηM [P ηQ]N ηAB . (3.38)

For the solution of the section constraint in (3.10), the dictionary between the E8(8)-ExFT generalised
metric and the internal components of the NSNS fields is obtained by further splitting SO(8, 8) under
SO(1, 1) × GL(7) and using eq. (3.11). The internal components of the RR fluxes could be computed
similarly through the components of the E8(8)-ExFT generalised metric in the 128 of SO(8, 8). However,
as the deformations of the AdS3 × S3 × T4 and AdS3 × S3 × S̃3 × S1 solutions we consider do not excite
those fluxes, this part of the dictionary will not be needed in here.
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Generalised Lie derivative With the coordinates (3.33), the E8(8) generalised Lie derivative (3.20)
decomposes as

LE8(8)

(Λ,Σ)V
MN = LSO(8,8)

(Λ̂,Σ̂)
VMN +

1

8

(
ΓMNΓKL

)
AB V

A∂KLΛ
B − 1

2

(
ΓMN

)A
BΣAV

B ,

LE8(8)

(Λ,Σ)V
A = LSO(8,8)

(Λ̂,Σ̂)
V A − 1

2

(
ΓPQ

)A
BV

B∂KQΛ
K

P +
1

16

(
ΓPQΓKL

)A
BVPQ∂KLΛ

B

+
1

4

(
ΓKL

)AB
(ΣBVKL +ΣKLVB) ,

(3.39)

where (Λ̂MN , Σ̂MN ) = (12Λ
MN , 14ΣMN ), in accordance with eq. (3.34), and V A is considered a set of

SO(8, 8) scalars. Restricting all the objects to have vanishing components in the spinorial representation of
the orthogonal group, the generalised Lie derivative of the E8(8) theory can be observed to reduce to the
one for the SO(8, 8) ExFT.

Uplift An E8(8) twist matrix satisfying the consistency condition (3.26) can be constructed from an
SO(8, 8) twist matrix satisfying the condition (3.14). We identify the scale factors ρ and define10

UM
M̄ =

(
2U[M

M̄UN ]
N̄ 0

0 UA
Ā

)
, (3.40)

where UA
Ā is a 128s representation of UM

M̄ ,

UA
Ā = exp

(
1

2
uMN ΓMN

)
A

Ā, (3.41)

where the matrix u is such that UM
M̄ = exp

(
uPQ T

PQ
)
M

M̄ , with T M̄N̄ the generators of so(8, 8) normalised
as in eq. (2.5). Then, using the decomposition (3.39) of the generalised Lie derivative, the E8(8) generalised
parallelisability condition (3.26) has the following non-vanishing components:

LE8(8)

(UM̄N̄ ,ΣM̄N̄ ) UK̄L̄
MN = 4ΘM̄N̄ |[K̄

[P̄ δL̄]
Q̄] UP̄ Q̄

MN ,

LE8(8)

(UM̄N̄ ,ΣM̄N̄ ) UĀ
A =

1

2
ΘM̄N̄ |K̄L̄

(
ΓK̄L̄

)
Ā

B̄ UB̄
A,

LE8(8)

(UĀ,ΣĀ) UB̄
MN =

1

4

(
− θ ηĀC̄ +

1

48
ΓP̄ Q̄R̄S̄

ĀC̄ θP̄ Q̄R̄S̄

) (
ΓM̄N̄

)C̄
B̄ UM̄N̄

MN ,

LE8(8)

(UĀ,ΣĀ) UM̄N̄
A =

1

2

(
− θ ηĀB̄ +

1

48
ΓP̄ Q̄R̄S̄

ĀB̄ θP̄ Q̄R̄S̄

)
(ΓM̄N̄ )B̄C̄ UC̄

A,

(3.42)

where we used SO(8, 8) consistency equation (3.16). Hence, the consistency of the E8(8) Ansatz (3.25)
is ensured by the one of the SO(8, 8) Ansatz (3.13). The components of the resulting E8(8) embedding
tensor read

XM̄N̄,P̄ Q̄ = 2ΘM̄N̄,P̄ Q̄ , XĀB̄ = − θ ηĀB̄ +
1

48
ΓM̄N̄P̄ Q̄

ĀB̄ θM̄N̄P̄ Q̄ , XM̄N̄,Ā = 0 . (3.43)

10The coefficients in eq. (3.40) are different from those in ref. [8] to match the summing convention (2.25).
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The relation between the embedding tensors reproduces the three-dimensional embedding tensor (2.28).
Thus, a twist matrix UM

M̄ ∈ SO(8, 8) and a scale factor ρ satisfying the consistency condition (3.14)
will both give a consistent truncation of half-maximal ten-dimensional supergravity down to N = 8

three-dimensional supergravity through eq. (3.13) and a consistent truncation of IIB supergravity down to
N = 16 supergravity in 3d through eq. (3.25) and (3.40). In sec. 4, we describe the pairs (ρ, UM

M̄ ) suited
to the reductions on S3 × S̃3 × S1 and S3 × T4.

3.4 Kaluza-Klein spectroscopy

On Leibniz parallelisable solutions of exceptional field theory, the Kaluza-Klein spectrum can be obtained
by extending the Scherk-Schwarz factorisations in (3.13) and (3.25) to include the linearised perturbations.
These linear perturbations have a natural tower structure when expanded in terms of the harmonics of
the most symmetric configuration homeomorphic to the relevant background [31, 32]. In fact, only the
scalar harmonics are needed and the levels are not mixed by the mass operators, a feature that turns the
computation of the Kaluza-Klein masses into a diagonalisation problem for a set of mass matrices. In the
following we will discuss how to compute the Kaluza-Klein spectrum on any solution that uplifts from 3d
supergravity using these ExFT techniques.

3.4.1 SO(8, n) mass matrices

For the modes arising from the 10d metric, dilaton, Kalb-Ramond field, and possibly extra ten-dimensional
vector multiplets, it suffices to extend the Scherk-Schwarz Ansatz (3.13) in analogy with [35]. Starting
from a background specified by three-dimensional SO(8, n)-supergravity fields

{gµν , MM̄N̄ , A
M̄N̄
µ } = {ḡµν , ∆M̄N̄ , 0} , (3.44)

we consider the expansion

gµν(x, Y ) = ρ(Y )−2
(
ḡµν(x) + hµν

Λ(x)YΛ(Y )
)
,

MMN (x, Y ) = UM
M̄ (Y )UN

N̄ (Y )
(
∆M̄N̄ + jM̄N̄

Λ(x)YΛ(Y )
)
,

Aµ
MN (x, Y ) = ρ(Y )−1(U−1)M̄

M (Y )(U−1)N̄
N (Y )Aµ

M̄N̄ Λ(x)YΛ(Y ) ,

BµKL(x, Y ) = −1

4
ρ(Y )−1UMN̄ (Y )∂KL(U

−1)M̄
M (Y )Aµ

M̄N̄ Λ(x)YΛ(Y ) ,

(3.45)

extending (3.13). Here, Λ denotes a possibly composite Kaluza-Klein index which will depend on the
topology of the background solution. These harmonics lead to the definition of T̊M̄N̄

ΛΣ as the constant
representation matrix encoded in the SO(8, n) twist matrix as

ρ−1(U−1)M̄
M (U−1)N̄

N∂MNYΛ = −2 T̊M̄N̄
ΛΣYΣ . (3.46)

The properties of the twist matrix (3.16) guarantee that the T̊M̄N̄
ΛΣ represent the gauge algebra, with the

commutator normalised as [35][
T̊M̄N̄ , T̊P̄ Q̄

]
= −ΘM̄N̄ |[P̄

K̄ T̊Q̄]K̄ +ΘP̄ Q̄|[M̄
K̄ T̊N̄ ]K̄ . (3.47)

To describe backgrounds corresponding to other points of the scalar manifold, it is convenient to dress
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this tensor analogously to eq. (2.14),

TM̄N̄ = (V−1)M̄
K̄(V−1)N̄

L̄T̊K̄L̄ . (3.48)

Then, the Kaluza-Klein mass matrices are those presented in [35, 40], which we reproduce here in the
present notation. The mass matrices corresponding to the bosonic Kaluza-Klein modes read

M2
(2)

ΣΩ = − 2 δM̄P̄ δN̄Q̄TM̄N̄
ΣΓTP̄ Q̄

ΓΩ , (3.49a)

M(1)
M̄N̄

P̄ Q̄
ΣΩ =

(
ηK̄[M̄ηN̄ ]L̄ − δK̄[M̄δN̄ ]L̄

)(
TK̄L̄|P̄ Q̄δ

ΣΩ + 4 TK̄[P̄
ΣΩηQ̄]L̄

)
, (3.49b)

M2
(0) M̄N̄,P̄ Q̄

ΣΩ jM̄N̄,ΣjP̄ Q̄,Ω =
(
mM̄N̄,P̄ Q̄ δ

ΣΩ +m′
M̄N̄,P̄ Q̄

ΣΩ
)
jM̄N̄,ΣjP̄ Q̄,Ω , (3.49c)

where mM̄N̄,P̄ Q̄ is given in eq. (2.16) and

m′
M̄N̄,P̄ Q̄

ΣΩ = 8TM̄P̄ R̄K̄ δN̄
R̄δK̄L̄ TQ̄L̄

ΣΩ + 8TM̄P̄ R̄K̄ δQ̄
R̄δK̄L̄ TN̄L̄

ΣΩ

− 8 ηM̄P̄ TN̄Q̄K̄L̄ δ
K̄R̄δL̄S̄ TR̄S̄

ΣΩ + 8 ηM̄P̄ TN̄Q̄K̄L̄ T K̄L̄ΣΩ

+ 8 (TM̄P̄ + T ηM̄P̄ ) TN̄Q̄
ΣΩ + 2 ηM̄P̄ ηN̄Q̄ δ

K̄R̄δL̄S̄ TK̄L̄
ΣΛTR̄S̄

ΛΩ

+ 16 δM̄P̄ δ
K̄L̄ TQ̄L̄

ΣΛTN̄K̄
ΛΩ − 4 δM̄

K̄δP̄
L̄ TQ̄L̄

ΣΛTN̄K̄
ΛΩ

+ 16 TM̄P̄
ΣΛTN̄Q̄

ΛΩ .

(3.50)

In turn, the mass matrices for the fermionic fields are11

M(3/2)
ĀB̄,ΛΣ = −AĀB̄

1 δΛΣ + 2 γ ĪJ̄ ĀB̄ TĪJ̄ΛΣ , (3.51a)

M(1/2)

¯̇A
¯̂
I ¯̇B

¯̂
J,ΛΣ = −A ¯̇A

¯̂
I ¯̇B

¯̂
J

3 δΛΣ − 2 γ ĪJ̄ ¯̇A ¯̇B
δ ¯̂
I
¯̂
J
TĪJ̄ΛΣ + 8 δ ¯̇A ¯̇B

T ¯̂
I
¯̂
J
ΛΣ , (3.51b)

in terms of the shift tensors in (2.17) and the SO(8)× SO(8) components of TM̄N̄
ΛΣ.

As in previously studied 3d Kaluza-Klein spectra [35,40], all the eigenvalues of the graviton and gravitino
mass matrices correspond to physical modes in the spectrum (on the proviso remarked in footnote 7), and
one must take into account that each of the eigenvalues of (3.49a) in fact corresponds to two states of
opposite spin. The eigenvalues of the remaining matrices include the Goldstone modes which are absorbed
by massive gravitons, gravitini and vectors in the super-BEH mechanism upon taking into account the
off-diagonal couplings between modes of different spin. Ignoring these couplings, the eigenvalues to be
discarded can be identified given the masses of the gravitons and gravitini [59, 40]. The relevant relations
in D = 3 are [40]

(m(1)ℓAdS)goldstone = ± 2

√
1 + (m(2)ℓAdS)

2 ,
(
m(1/2)ℓAdS

)
goldstino

= 3m(3/2)ℓAdS , (3.52)

for goldstinos and goldstone vectors. Out of the eigenvalues of the scalar mass matrix (3.49c), one must
also remove the usual massless fields corresponding to longitudinal polarisations of massive vectors, as well

11This corrects a sign in eq. (4.13) of [40]
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as two values for every massive graviton. One of them is always zero and the other is given by(
m(0)ℓAdS

)2
goldstone

= −3 (m(2)ℓAdS)
2 . (3.53)

3.4.2 E8(8) mass matrices

For the spectrum of the full type II supergravity, we need to consider a deformation of (3.25) for E8(8)

ExFT. Around the background specified by 3d fields

{gµν , MM̄N̄ , A
M̄
µ } = {ḡµν , ∆M̄N̄ , 0} , (3.54)

the fluctuation Ansatz is [8]

gµν(x, Y ) = ρ(Y )−2
(
ḡµν(x) + hµν

Σ(x)YΣ(Y )
)
,

MMN (x, Y ) = UM
M̄(Y )UN

N̄ (Y )
(
∆M̄N̄ + jM̄N̄

Σ(x)YΣ(Y )
)
,

Aµ
M(x, Y ) = ρ(Y )−1(U−1)M̄

M(Y )Aµ
M̄,Σ(x)YΣ(Y ) ,

BµM(x, Y ) =
ρ(Y )−1

60
fM̄

P̄Q̄ (U−1)P̄P(Y )∂M(U−1)Q̄
P(Y )Aµ

M̄,Σ(x)YΣ(Y ) . (3.55)

The scalar fluctuations are parametrised as jM̄N̄
Σ = 2PĀ ,M̄N̄ ΦĀ ,Σ, where PĀ ,M̄N̄ is the projector onto

the coset (2.19). The scalar harmonics satisfy

ρ−1(U−1)M̄
M∂MYΣ = − T̂M̄ΣΩ YΩ, (3.56)

such that the constant matrices T̂M̄ΣΩ define the algebra[
T̂M̄, T̂N̄

]
= X[M̄N̄ ]

K̄T̂K̄ . (3.57)

As in eq. (2.33) and (3.48), these matrices can be dressed to describe backgrounds corresponding to other
points of the scalar manifold.

With the twist matrix (3.40) and the physical coordinates embedded in YMN as in eq. (3.33), the
matrices T̂M̄ΣΩ have as only non-vanishing components

T̂M̄N̄ = 2 T̊M̄N̄ , (3.58)

where T̊MN is the SO(8, 8) tensor in (3.46).
Inserting the Ansatz (3.55) into the ExFT action (3.21), one can read off the bosonic mass matrices

M2
(2)

ΣΩ = −∆M̄N̄ T̂M̄ΣΓT̂N̄ΓΩ , (3.59a)

M(1)
M̄Σ

N̄
Ω = −

(
∆M̄P̄ + κM̄P̄

)(
XP̄N̄ δΣΩ + fP̄N̄

Q̄ T̂Q̄ΣΩ
)
, (3.59b)

M2
(0)Ā

Σ
B̄

Ω = δΣΩ PĀ
M̄N̄PB̄

P̄Q̄
(
1

7
XM̄P̄XN̄ Q̄ +XM̄K̄

(
1

7
∆K̄L̄ + κK̄L̄

)
XL̄P̄ ∆N̄ Q̄

)
+ 2

(
XM̄Ā B̄ − 2X[Ā B̄]M̄

)
∆M̄N̄ T̂N̄ΣΩ + 2XM̄Ā B̄ κM̄N̄ T̂N̄ΣΩ (3.59c)
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−
(
T̂M̄T̂N̄

)ΣΩ
∆M̄N̄κĀ B̄ + 2

(
T̂M̄T̂N̄

)ΣΩ
∆P̄Q̄fĀ P̄

N̄ fB̄Q̄
M̄ − 2

(
T̂B̄T̂Ā

)ΣΩ
.

Upon considering the supersymmetric completion of (3.21) in [53] and the expansions [33]

ψµ
M(x, Y ) = ρ−1/2(Y )δMM̄ψµ

M̄Λ(x)YΛ(Y ) , χ
˙A (x, Y ) = ρ1/2(Y )δ

˙A ¯̇A χ
¯̇A Λ(x)YΛ(Y ) , (3.60)

for the ExFT gravitini and spin-1/2 fields, their mass matrices can also be found to be

M(3/2)
M̄Σ,N̄Ω = −Â1

M̄N̄δΣΩ − 4
(
V−1

)
M̄N̄

M̄T̂M̄ΣΩ ,

M(1/2)

¯̇A Σ,
¯̇BΩ = −Â3

¯̇A ¯̇BδΣΩ − ΓM̄N̄
¯̇A ¯̇B

(
V−1

)
M̄N̄

M̄T̂M̄ΣΩ ,
(3.61)

in terms of the shift matrices in eq. (2.36). The mass matrices (3.59) and (3.61) also contain unphysical
Goldstone modes that need to be removed using (3.52) and (3.53) and decoupled vectors.

4 The Round S3 × S3 × S1 and S3 × T4 Solutions

In this section we show how the techniques discussed in sec. 3 apply to the consistent truncations on the
round AdS3×S3×S3×S1 and AdS3×S3×T4 solutions, and how can be used to compute their associated
Kaluza-Klein spectra.

4.1 Scherk-Schwarz factorisation

Twist matrix for S3 × S3 × S1 The relevant pair (ρ, UM
M̄ ) which makes contact with the embedding

tensor (2.39) can be constructed out of two copies of the SO(4,4)-ExFT parallelisation discussed in [40] as

(U−1)M̄
M =



ρ 0
√
1 + α2 ξ̊m 0

√
1 + α2˚̃ξi 0 0

0 ρ−1 0 0 0 0 0

0 −ρ−1
√
1 + α2Zm̄mξ̊

m Km̄
m Zm̄m 0 0 0

0 −ρ−1
√
1 + α2Zm̄

mξ̊
m Km̄m Zm̄

m 0 0 0

0 −ρ−1
√
1 + α−2 Z̃īi

˚̃
ξi 0 0 α K̃ī

i α−1Z̃īi 0

0 −ρ−1
√
1 + α−2 Z̃ ī

i
˚̃
ξi 0 0 α K̃īi α−1Z̃ ī

i 0

0 0 0 0 0 0 12


, (4.1)

in terms of the SO(8, 8) ⊃ SO(1, 1)×GL(3)×GL(3)× SO(1, 1) breaking of both flat and curved indices
such that

XM = {X0, X0, X
m, Xm, X

i, Xi, X
7, X7} , (4.2)

following eq. (2.38). The objects appearing in eq. (4.1) are constructed from the Killing vectors on the
round S3’s,

Kαβm = Y[α|∂mY|β] , K̃α̃β̃ i = Y[α̃|∂ iY|β̃] , (4.3)

with Yα and Y α̃ the harmonics that embed the spheres in R4 as δαβYαYβ = 1 and likewise for tilded
indices. The fiducial unit-radius metrics on the round S3’s can be recovered from the Killing vectors as

g̊mn = 2KαβmKγδ nδ
αγδβδ , ˚̃gij = 2K̃α̃β̃ iK̃γ̃δ̃ jδ

α̃γ̃δβ̃δ̃ , (4.4)
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and the vectors can then be split into SO(4) ≃ SO(3)L × SO(3)R as
Lm̄

m =

(
K4m̄ n +

1

2
ε4m̄n̄p̄Kn̄p̄ n

)
g̊nm ,

Rm̄
m =

(
K4m̄ n − 1

2
ε4m̄n̄p̄Kn̄p̄ n

)
g̊nm ,

(4.5)

normalised so that

LLm̄Ln̄ = εm̄n̄p̄ Lp̄ , LLm̄Rn̄ = 0 , LRm̄Rn̄ = −εm̄n̄p̄Rp̄ , (4.6)

and analogously for the tilded counterparts.
The different blocks in the twist matrix (4.1) are then given by the SO(3, 3) ⊂ SO(4, 4) vectors

Km̄
m = Lm̄

m +Rm̄
m ,

Km̄m = (Rn̄
m − Ln̄

m) δn̄m̄ ,
(4.7)

and one-forms
Zm̄m = δm̄n̄Kn̄ng̊nm − 2

√
g̊Km̄

n εmnp ξ̊
p ,

Zm̄
m = δm̄n̄Kn̄

ng̊nm − 2
√
g̊Km̄n εmnp ξ̊

p ,
(4.8)

with ξ̊ a vector satisfying ∇̊mξ̊
m = 1 with respect to the Levi-Civita connection associated to the metric (4.4).

The analogous objects K̃ī
i, K̃īi, Z̃īi, Z̃ ī

i and ˚̃
ξi are defined similarly for S̃3.

Together with the scaling function
ρ = α3 g̊

−1/2˚̃g
−1/2 , (4.9)

these objects recover the embedding tensor (2.39) via eq. (3.16). Moreover, if we parameterise the ExFT
coordinates Y i,0 in (3.10) as

Y m,0 : Y 1,0 = cos(θ) cos(φ1) , Y 2,0 = cos(θ) sin(φ1) , Y 3,0 = sin(θ) cos(φ2) ,

Y i,0 : Y 4,0 = cos (θ̃) cos (φ̃1) , Y 5,0 = cos (θ̃) sin (φ̃1) , Y 6,0 = sin (θ̃) cos (φ̃2) ,

Y 7,0 = y7 ,

(4.10)

with
0 ≤ θ, θ̃ ≤ π

2
, 0 ≤ φi, φ̃i ≤ 2π , 0 ≤ y7 ≤ 1 , (4.11)

with i ∈ {1, 2}, and use the dictionary in (3.11), we can write the AdS3 × S3 × S̃3 × S1 solution as

eΦ̂ = 1 ,

dŝ2 = ℓ2AdS ds
2(AdS3) + dθ2 + cos2(θ) dφ2

1 + sin2(θ) dφ2
2 + α−2

(
dθ̃2 + cos2(θ̃) dφ̃2

1 + sin2(θ̃) dφ̃2
2

)
+ (dy7)2 ,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + 2 sin(θ) cos(θ) dθ ∧ dφ1 ∧ dφ2 + 2α−2 sin (θ̃) cos (θ̃) dθ̃ ∧ dφ̃1 ∧ dφ̃2 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 , (4.12)

both in the string and Einstein frames owing to the vanishing dilaton. Here and throughout, ds2(AdS3)
denotes the unit-radius metric on AdS3, ℓAdS is the AdS length in (2.48), and vol(AdS3) its associated
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volume form. For later convenience, we will choose a gauge such that the local two-form potential leading
to the internal part of the Kalb-Ramond three-form in (4.12) is given by

B̂(2) = sin(θ)2dφ1 ∧ dφ2 + α−2 sin (θ̃)2dφ̃1 ∧ dφ̃2 . (4.13)

Twist matrix for S3 × T4 The twist matrix for S3 × T4 can be similarly parameterised as

(U−1)M̄
M =


ρ 0 2 ξ̊m 0 0

0 ρ−1 0 0 0

0 −2ρ−1Zm̄mξ̊
m Km̄

m Zm̄m 0

0 −2ρ−1Zm̄
mξ̊

m Km̄m Zm̄
m 0

0 0 0 0 18

 . (4.14)

in terms of the K, Z and ξ̊ tensors above, and the scaling function

ρ = g̊−1/2 . (4.15)

Embedding the S3 × T4 coordinates in ExFT as

Y 1,0 = cos(θ) cos(φ1) , Y 2,0 = cos(θ) sin(φ1) , Y 3,0 = sin(θ) cos(φ2) , Y a,0 = ya , (4.16)

the AdS3 × S3 × T4 solution reads

eΦ̂ = 1 ,

dŝ2 = ℓ2AdS ds
2(AdS3) + dθ2 + cos2(θ) dφ2

1 + sin2(θ) dφ2
2 + δab dy

adyb ,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + 2 sin(θ) cos(θ) dθ ∧ dφ1 ∧ dφ2 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(4.17)

with the coordinates now ranging as

0 ≤ θ ≤ π

2
, 0 ≤ φ1, φ2 ≤ 2π , 0 ≤ ya ≤ 1 , (4.18)

and the local two-form potential simply given by

B̂(2) = sin(θ)2dφ1 ∧ dφ2 . (4.19)

4.2 Sphere harmonics

For the products of spheres under consideration, the composite index Λ in (3.45) and (3.55) labels
representations in the infinite-dimensional towers

S3 × T4 :
⊕

pa∈Z
⊕∞

m=0

(
m
2 ,

m
2

)
(p4, p5, p6, p7)

of SO(4)× SO(2)4 ,

S3 × S̃3 × S1 :
⊕

p7∈Z
⊕∞

m=0

⊕∞
m̃=0

(
m
2 ,

m
2 ;

m̃
2 ,

m̃
2

)
p7

of SO(4)× SO(4)× SO(2) ,
(4.20)
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and the corresponding harmonics factorise as

YΛ = YΛ e2πi
∑

paya for S3 × T4 ,

YΛ = YΛ Y Λ̃ e2πip7y7 for S3 × S̃3 × S1 ,
(4.21)

with each one-cycle having length 1. The SO(4) harmonics,

YΛ =
{
1, Yα, Y{αYβ}, . . .

}
, α ∈ J1, 4K , (4.22)

and similarly for Y Λ̃, correspond to symmetric-traceless products of the level-one harmonics for the round
S3’s, which we choose as

Yα =
{
y1, y2, y3,

√
1− (y1)2 − (y2)2 − (y3)2

}
. (4.23)

and analogously for Y α̃.
Following (4.21) the matrices in (3.46) can in turn be decomposed as (c.f. S5 × S1 S-fold solutions

in [20,22])

T̊M̄N̄
(pa)ΛΣ = T̊M̄N̄

ΛΣ + δΛΣ T̊M̄N̄
(pa) for S3 × T4 ,

T̊M̄N̄
(p7)ΛΛ̃ΣΣ̃ = δΛ̃ Σ̃ T̊M̄N̄

ΛΣ + δΛΣ T̊M̄N̄
Λ̃ Σ̃ + δΛΣδΛ̃ Σ̃ T̊M̄N̄

(p7) for S3 × S̃3 × S1 .
(4.24)

analogously for their maximal counterparts in (3.56).
For the S3 × T4 background (4.14), the SO(4) matrix T̊M̄N̄

ΛΣ has non-vanishing components

T̊ m̄0̄
αβ = δ

[α
4 δ

β]
m̄ , T̊ m̄

0̄
αβ =

1

2
εm̄4αβ , (4.25)

when acting on the level m = 1 harmonics in eq. (4.23). Similarly, in the S3 × S̃3 × S1 case we have

T̊ m̄0̄
αβ = δ

[α
4 δ

β]
m̄ , T̊ m̄

0̄
αβ =

1

2
εm̄4αβ , T̊ m̄0̄

α̃β̃ = α δ
[α̃
4 δ

β̃]
m̄ , T̊ m̄

0̄
α̃β̃ =

α

2
εm̄4α̃β̃ , (4.26)

At higher levels, the tensors T̊M̄N̄
ΛΣ can be constructed recursively from (4.25) and (4.26) as

(T̊M̄N̄ )α1...αm
β1...βm = m(T̊M̄N̄ ){α1

{β1δβ2
α2
. . . δ

βm}
αm} , (4.27)

and analogously for T̊M̄N̄
Λ̃ Σ̃. Similarly, the SO(2) blocks are simply given by

T̊ ā0̄
(pa) = −πi pa . (4.28)

In this conventions, the matrices in (4.24) are complex, and hermitian conjugations need to be introduced
in the mass matrices. Equivalently, we could have used manifestly real objects at the price of introducing a
two-fold degeneracy in the eigenvalues.

4.3 Spectra on the round solutions

As the AdS3 isometry group SO(2, 2) ≃ SL(2,R) × SL(2,R) is not simple, the superisometry group of
AdS3 background is in general a direct product of simple supergroups G = GL × GR. The spectrum of
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such backgrounds organises into representations of G, with conformal dimension ∆ = ∆L +∆R built from
the conformal dimensions of each GL,R factor. The spacetime spin s of a field in a given representation is
then given by s = ∆R −∆L. In the following, we use the ExFT spectroscopy of sec. 3.4 to compute the
masses m(s) of each Kaluza-Klein tower of spin s, and identify the corresponding conformal dimensions
from [60–65] {

∆(0)

(
∆(0) − 2

)
=
(
m(0)ℓAdS

)2
,

∆(1) = 1 + |m(1)ℓAdS|,
and

{
∆(1/2) = 1±m(1/2)ℓAdS,

∆(3/2) = 1 + |m(3/2)ℓAdS|,
(4.29)

where the masses are normalised by the AdS length ℓAdS.

The Kaluza-Klein spectrum on the round S3× S̃3×S1 solution of type II supergravity, recently revisited
in [18], organises into supermultiplets of

Gα ̸=0 = D(2, 1|α)L × D(2, 1|α)R ×U(1), (4.30)

with D(2, 1|α) the large N = 4 supergroup in three dimensions. The even part of (4.30),

SO(2, 2)× SO(4)× S̃O(4)×U(1), (4.31)

now corresponds to the isometries of AdS3 × S3 × S̃3 × S1, with SO(2, 2) ≃ SL(2,R)L × SL(2,R)R,
SO(4) ≃ SU(2)L × SU(2)R and similarly for the tilded counterparts. The long multiplets of each D(2, 1|α)
can be labelled as [h, j+, j−] [66] (see appendix B for a review), and the complete spectrum of type II
supergravity then reads [66]

S =
⊕
ℓ, ℓ̃≥0
p7∈Z

([
h0, ℓ, ℓ̃

]
⊗
[
h0, ℓ, ℓ̃

])
p7
,

(4.32)

with p7 the U(1) integer charge and

h0 = −1

2
+

1

2

√
1 +

4 ℓ
(
ℓ+ 1

)
+ 4α2 ℓ̃

(
ℓ̃+ 1

)
+ (2π p7)2

1 + α2
. (4.33)

The dimension of the superconformal primary of
([
h0, ℓ, ℓ̃

]
⊗
[
h0, ℓ, ℓ̃

])
p7

is then ∆ = 2h0. For these

multiplets, shortening occurs when p7 = 0 and ℓ = ℓ̃ following equation (B.6) of appendix B.
The case of the heterotic string can be described using the half-maximal supergravity of sec. 2.1. Given

the 16 vector fields coupled to the NSNS fields in ten-dimensions, the three-dimensional supergravity arising
from compactification to three dimensions has a coset space in the class of eq. (2.1),

SO(8, 24)

SO(8)× SO(24)
. (4.34)

The heterotic gauged supergravity is then obtained by embedding theSO(8, 8) tensors of sec. 2.3 in SO(8, 24).
All vacua of the SO(8, 8) theory are vacua from the SO(8, 24) theory. The supergroup organising the
spectrum at the scalar origin is

SL(2,R)L × SU(2)L × S̃U(2)L × D(2, 1|α)R ×U(1)× SO(16). (4.35)
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The bosonic isometries of the background are built similarly as in the maximal case, with an additional
SO(16) factor for the heterotic vector fields. The spectrum can be described based on that in eq. (4.32).
For each term in the sum, the left factor [h0, ℓ, ℓ̃] breaks into

SL(2,R) SU(2)L × S̃U(2)L

h0
(
ℓ, ℓ̃
)

1 + h0
(
ℓ+ 1, ℓ̃

)
⊕
(
ℓ, ℓ̃− 1

)
⊕
(
ℓ, ℓ̃
)
⊕
(
ℓ, ℓ̃
)
⊕
(
ℓ− 1, ℓ̃

)
⊕
(
ℓ, ℓ̃+ 1

)
2 + h0

(
ℓ, ℓ̃
) (4.36)

and the spectrum is supplemented at each level by 16 copies of the multiplet((
1 + h0, ℓ, ℓ̃

)
⊗
[
h0, ℓ, ℓ̃

])
p7
, (4.37)

transforming as a vector of SO(16).

Regarding the spectrum of the round S3 × T4 solution, it abides by the supergroup

Gα=0 =
[
S̃U(2)L ⋉ SU(2|1, 1)L

]
×
[
S̃U(2)R ⋉ SU(2|1, 1)R

]
×U(1)4, (4.38)

where SU(2|1, 1) is the small N = 4 supergroup in three dimensions. The even part of the superisometry
corresponds to the isometries of AdS3 × S3 × T4,

SO(2, 2)× SO(4)×U(1)4, (4.39)

where SO(2, 2) ≃ SL(2,R)L × SL(2,R)R and SO(4) ≃ SU(2)L × SU(2)R correspond to the AdS3 × S3

isometries, together with an extra global S̃O(4) ≃ S̃U(2)L × S̃U(2)R factor corresponding to relabelling
of the torus angles. We denote [∆, j+, j−] the long multiplets of SU(2)− ⋉ SU(2|1, 1)+ and pa the U(1)4

charges. See appendix B for a review of the multiplet content of this superalgebra. The spectrum is then
given by

S =
⊕
ℓ≥0

pa∈Z4

([
h0, ℓ, 0

]
⊗
[
h0, ℓ, 0

])
p4,p5,p6,p7

, (4.40)

where

h0 = −1

2
+

1

2

√
1 + 4 ℓ

(
ℓ+ 1

)
+
∑
a

(2π pa)2 . (4.41)

The conformal dimension of the primary of each factor is then ∆ = 2h0. The unitary bound (B.6) is
saturated for p4 = p5 = p6 = p7 = 0, and the multiplets get shortened according to (B.7). Therefore, at
levels with ℓ = 0 equation (4.40) must be interpreted as a shorthand of([

1
2 ,

1
2

]
S
⊕
[
0, 1
]
S

)
⊗
([

1
2 ,

1
2

]
S
⊕
[
0, 1
]
S

)
⊕

⊕
pa∈Z4\{0}

([
∆L, 0, 0

]
⊗
[
∆R, 0, 0

])
p4,p5,p6,p7

. (4.42)

In the heterotic case, the supergroup organising the spectrum is[
SL(2,R)L × S̃U(2)L × SU(2)L

]
×
[
S̃U(2)R ⋉ SU(2|1, 1)R

]
×U(1)4 × SO(16). (4.43)
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The spectrum can again be described based on that in eq. (4.40). The left factor
[
h0, ℓ, 0

]
of each term

breaks into
∆L SU(2)L × S̃U(2)L

h0
(
ℓ, 0
)

1 + h0
(
ℓ, 1
)
⊕
(
ℓ+ 1, 0

)
⊕
(
ℓ, 0
)
⊕
(
ℓ− 1, 0

)
2 + h0

(
ℓ, 0
) (4.44)

with h0 given in (4.41), and 16 additional copies of the multiplet((
1 + h0, ℓ, 0

)
⊗
[
ℓ, 0
])

p4,p5,p6,p7
(4.45)

adds up to each level.

5 Deformations

The three-dimensional solutions in (2.51) can be uplifted to ten dimensions as deformations of the round
S3 × T4 and S3 × S̃3 × S1 configurations reviewed in the previous section. For clarity, we will refrain
from presenting the entire 17-parameter family, and focus instead on some subfamilies that best exemplify
different phenomena. We discuss only the solutions in type IIB, but all of them have vanishing RR fluxes
so the heterotic case follows easily.

Given that all the moduli in (2.51) belong to SO(7, 7)/SO(7)× SO(7), it is interesting to analyse the
solutions from a generalised geometry perspective in terms of a generalised metric

H =

(
ĝs − B̂ ĝ−1

s B̂ B̂ ĝ−1
s

−ĝ−1
s B̂ ĝ−1

s

)
, (5.1)

with ĝs and B̂ the internal components of the string frame metric and two-form. The deformed solu-
tions (2.51) can be described as transformations of the undeformed solution by a constant SO(7, 7) element
that depends on the marginal parameters,

Hdef = Γ · Hround · Γt , (5.2)

with Γ ∈ SO(7, 7). This element can be written as products of TsT transformations T , GL(7,R) ones G
and constant shifts of the B field B, where

T =

(
1 0

β 1

)
, G =

(
ρ 0

0 ρ−t

)
, B =

(
1 s

0 1

)
, (5.3)

with

ρ ∈ GL(7,R), β, s ∈
2∧
R7. (5.4)

In the following, we choose to represent the SO(7, 7) elements as

Γ = T · G · B . (5.5)
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These elements will be expressed in the bases

{dθ,dφ1, dφ2,dθ̃,dφ̃1,dφ̃2,dy
7} for AdS3 × S3 × S̃3 × S1 ,

{dθ,dφ1, dφ2,dy
4, dy5, dy6,dy7} for AdS3 × S3 × T4 .

(5.6)

5.1 Uplift of the (ωχβ)-family

The two-parameter family of AdS3 × S3 solutions in six-dimensional N = (1, 1) supergravity found in [40]
through the uplift of (2.47) can be further lifted into the NSNS sector of type IIB supergravity. See app. D
for a direct account on how to construct this Ansatz for AdS3 × S3 × T4. More generally, using ExFT we
can obtain its embedding both in AdS3 × S3 × S̃3 × S1 and AdS3 × S3 × T4 [8], which reads

eΦ̂ =
√
∆,

dŝ2s = ℓ2AdS ds
2(AdS3) + dθ2 + eω∆

(
cos2θ dφ2

1 + (ζ2 + e−2ω) sin2θ dφ2
2

)
+ ds2(M̃3)

+ 2 eωζ∆dy7
(
cos2θ dφ1 − sin2θ dφ2

)
+ (dy7)2,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + 2H(α) vol(M̃3) + sin(2θ)∆2e2ωdθ ∧ (dφ1 + ζdy7) ∧
(
(ζ2 + e−2ω)dφ2 − ζdy7

)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(5.7)
with

ds2(M̃3) =

α−2
(
dθ̃2 + cos2 θ̃ dφ̃2

1 + sin2 θ̃ dφ̃2
2

)
, for AdS3 × S3 × S̃3 × S1 ,

δij dy
idyj , for AdS3 × S3 × T4 ,

(5.8)

the function
∆ =

e−ω

1 + (ζ2 + e−2ω − 1) cos2θ
, (5.9)

and H(α) a Heaviside function with H(0) = 0. The angles parameterising this manifold range as in (4.11)
and (4.18). The moduli (ω, ζ) define a perturbatively stable solution if all scalars within the spectrum
satisfy the Breithenlohner-Freedman (BF) bound (mℓAdS)

2 ≥ −1 [39]. This restricts the parameters as

e−ω ≤ 2√
3
, ζ2 ≥

√
3

2
e−ω − e−2ω . (5.10)

See fig. 1 for a graphical representation. At the locus (2.49), where supersymmetric enhancement takes
place, the configuration (5.7) becomes [8]

Φ̂ = −ω
2
,

dŝ2s = ℓ2AdS ds
2
(
AdS3

)
+ ds2

(
CP1

)
+ e−2ω η2 + ds2(M̃3) +

(
dy7 +

√
1− e−2ω η

)2
,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + 2H(α) vol(M̃3) + 2η ∧ J + 2
√
1− e−2ω J ∧ dy7 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(5.11)

with
η = cos2θ dφ1 − sin2θ dφ2 , J = 1

2dη . (5.12)
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ζ

e−ω

0

2/
√
3

√
3/2

1

1−1

SUSY loci:

N = (0, 4)

N = (4, 4)

Instability area

Fig. 1 The solution (5.7) is perturbatively stable for any couple of parameters outside of the instability
area, as given by eq. (5.10). The dashed line represents eq. (2.49), where N = (0, 4) supersymmetries
are preserved. At ω = ζ = 0 supersymmetry further enhances to N = (4, 4).

In terms of the SO(7, 7) transformations in (5.5), the family of solutions in (5.7) is described by

β = −ζ dφ1 ∧ dy7 + (e−ω − 1) dφ1 ∧ dφ2 ,

ρ =


1 0 0 0

0 eω 0 0

0 0 14 0

0 eωζ 0 1

 , s = 0 .
(5.13)

As apparent from (5.13), the family of solutions (5.7) cannot be generated via pure TsT transformations [19],
since there is no value of the moduli ω and ζ for which both G and B reduce to the identity and T remains
non-trivial. Nevertheless, we can achieve this by uncoupling the parameters χ1 and β1 in (2.51). If we
consider

VM̄
N̄ = exp

[
− ω f 3̄3̄ −

ω

1− e−ω

(
χ1 f

3̄7̄ + β1 f
3̄
7̄

)]
, (5.14)

the type IIB supergravity solution is

eΦ̂ =
√
∆,

dŝ2s = ℓ2AdS ds
2(AdS3) + ds2(M3) + dθ2

+ eω∆

[
cos2θ

(
dφ1 + χ1 dy

7
)2

+ sin2θ
(
β1 dφ2 + dy7

)2
+ e−2ω sin2θ dφ2

2 + e−2ω cos2θ (dy7)2
]
,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + 2H(α) vol(M̃3) + sin(2θ)∆2e2ωdθ ∧
(
dφ1 + χ1 dy

7
)
∧
((
β21 + e−2ω

)
dφ2 + β1 dy

7
)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(5.15)
with

∆ =
e−ω

1 +
(
β21 + e−2ω − 1

)
cos2θ

. (5.16)

The deformation generically breaks the SO(4) factor in (4.31) and (4.39) to the Cartan subalgebra
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U(1)L × U(1)R and all supersymmetries. The relevant SO(7, 7) transformation to construct (5.15) is given
by

β = β1 dφ1 ∧ dy7 + (e−ω − 1) dφ1 ∧ dφ2 ,

ρ =


1 0 0 0

0 eω 0 0

0 0 14 0

0 eωχ1 0 1

 , s = 0 .
(5.17)

Therefore, the deformation is the combination of a coordinate redefinition coupling the angles φ1 and y7 and
a rescaling of the φ1 coordinate, both described by the GL(7,R) transformation, and TsT transformations
between φ1 and y7 on one hand, and φ1 and φ2 on the other. For this reason, the modulus χ1 is periodic,
and taking spinors into account its period can be shown to be χ1 ∼ χ1 +4π.12 We can describe a pure TsT
transformation by turning off ω and χ1 while keeping a non-vanishing β1. To the best of our knowledge,
this is the first example of such a Lunin-Maldacena deformation captured among the modes of a consistent
truncation down to a gauged maximal supergravity.

Before analysing generalisations of this solution, let us discuss its complete Kaluza-Klein spectrum. It
can be obtained by shifting the dimensions (4.33) and (4.41) of each physical mode in (4.32) and (4.40) as

(2π p7)
2 −→

(
2π p7 +

1

2
(qL + qR) (χ1 + β1)

)2

+
e2ω

4

(
(qL−qR)+(qL+qR)

(
e−2ω − χ1β1

)
−4π p7 β1

)2
−q2L ,
(5.18)

for qL and qR the integer-normalised charges under the bosonic Cartan subalgebra sitting in the superalgebra,
taking values

j →
2j⊕
k=0

2(k − j) , under SU(2) ⊃ U(1) . (5.19)

Under a shift χ1 → χ1 + 4π, the conformal dimensions following (5.18) map back to themselves modulo a
shift of the p7 number, as expected from the periodicity of the solution (5.15). For pure TsT deformations
the spectrum reads

(2π p7)
2 −→

(
2π p7 +

1

2
(qL + qR)β1

)2

+
1

4

(
2qL − 4π p7 β1

)2
− q2L . (5.20)

Even though it is not apparent from the Kaluza-Klein spectrum, the construction of this family using
SO(7, 7) transformations also indicates that the parameter β1 is compact in the full string theory.

Conversely, for ω = β = 0 eq. (5.18) reduces to

2π p7 −→ 2π p7 +
1

2
(qL + qR)χ1 , (5.21)

following the pattern of other Wilson loop deformations in S-fold compactifications [20,22,23,25].
The spectrum (5.18) can be used to determine potential supersymmetry enhancements within the

three-dimensional moduli space, as well as the stability of the solutions. Supersymmetry enhancement
points corresponds to combinations of the moduli such that some gravitini become massless, i.e. ∆(3/2) = 3/2.
This can first happen within the 3d consistent truncation, by leaving the modes with ∆(3/2) = 3/2 unchanged.

12See ref. [4] for an anologous discussion.
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For the (ω, χ1, β1) deformation, it occurs along the lines{
χ1 = ±

√
1− e−2ω,

β1 = ∓
√
1− e−2ω,

and

{
χ1 = ±

√
1− e−2ω,

β1 = ±
√
1− e−2ω,

(5.22)

where supersymmetry is enhanced to N = (0, 4) and N = (4, 0), respectively. Both cases reproduce the
solution (5.11), with η as in (5.12) or η = cos2θ dφ1 + sin2θ dφ2, respectively. We further find back the
round N = (4, 4) solution at the origin ω = β1 = χ1 = 0. Alternatively some gravitini, originally massive,
can become massless under the deformation. This happens here when{

χ1 = 4π q ±
√
1− e−2ω,

β1 = ∓
√
1− e−2ω,

or

{
χ1 = 4π q ±

√
1− e−2ω,

β1 = ±
√
1− e−2ω,

q ∈ Z. (5.23)

There are then four massless gravitini, two of them belonging to the multiplets ℓ = ℓ̃ = p4,5,6 = 0 and
p7 = q of (4.32) and (4.40), and the two others in the multiplet with opposite charges. Supersymmetry is
then enhanced to N = (0, 4) or N = (4, 0). The existence of these additionnal enhancement lines reflects
the 4π-periodicity in χ1.

Concerning the stability of the solutions, in both cases it is guaranteed if

e−ω ≤ 2√
3
, and (χ1 + π p7)

2 ≥ 3

4
(
1 + e2ωβ21

) − e−2ω, ∀p7 ∈ Z. (5.24)

There are such wide volumes inside the 3-dimensional parameter space inside which the perturbative
stability of the deformations is ensured (see fig. 2). This is for example the case if

e−ω ≤ 2√
3
,

β21 ≥ 3

4
− e−2ω,

(5.25)

and χ1 arbitrary.
The moduli space of this deformation is governed by the metric

ds2Zam. = dω2 +
1

2
e2ω
(
dβ21 + dχ2

1

)
, (5.26)

which corresponds to the leading order in the large-N limit of the Zamolodchikov metric of the holographic
conformal manifold. Therefore, there are no infinite distances inside the family (5.14), and we have neither
found them in its further genelisation in (2.51)

In the following, we describe two four-parameter families of solution mixing S3×M3 coordinates with y7.
The first family generalises the χ1 deformations in (5.17), whilst the second contains pure TsT deformations
mixing S3 ×M3 and S1 for both topologies. Later on, we also discuss deformations that mix S3 with
M3 = S̃3.
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Instability volume
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Fig. 2 Instability volume (5.24) for the (ω, β1, χ1) deformations at level p7 = 0. Supersymmetry is
enhanced along dashed lines, following eq. (5.22). Within the χ1 = −β1 plane (in blue), this reproduces
fig. 1 for the (ω, ζ) family. For p7 ̸= 0, similar instability volumes are repeated with π shifts along the χ
axis. Those excluded volumes do not intersect.

5.2 Wilson loop deformations

Based on the previous example, we are now led to consider the representative

VM̄
N̄ = exp

[
− χ1 f

3̄7̄ − χ2 f3̄
7̄ − χ̃1 f

6̄7̄ − χ̃2 f6̄
7̄
]
. (5.27)

The corresponding 10d configuration on S3 × S̃3 ×S1 can be found in (C.1), and can be described in terms
of (5.5) as

β = 0 , ρ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 χ1 −χ2 0 α χ̃1 −α χ̃2 1


, s = 0 , (5.28)

whilst the S3 × T4 configuration can be found in (C.2) and is described by

β = 0 , ρ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 χ1 −χ2 0 0 χ̃2 1


, s = 0 , (5.29)

which shows that the parameter χ̃1 in (5.27) is pure gauge in the S3 × T4 reduction. In both cases, the
deformation consists only in local coordinate redefinitions coupling the angles φi, φ̃i and y6 with y7. They
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can be interpreted as Wilson loops along the S1 with coordinate y7. Generically, the only remaining
isometries are

SO(2, 2)×U(1)L ×U(1)R × Ũ(1)L × Ũ(1)R ×U(1) for AdS3 × S3 × S̃3 × S1 ,

SO(2, 2)×U(1)L ×U(1)R ×U(1)4 for AdS3 × S3 × T4 ,
(5.30)

and all supersymmetries are broken. The deformed S3× S̃3×S1 background can be identified with equation
(6.10) in [18].

The spectrum for these solutions is deformed out of (4.32) through the replacement

2π p7 −→ 2π p7 −
1

2

[
(qL + qR)χ1 + (qL − qR)χ2 + α (q̃L + q̃R) χ̃1 + α (q̃L − q̃R) χ̃2

]
(5.31)

in the S3 × S̃3 × S1 case, and out of (4.40) through

2π p7 −→ 2π p7 −
1

2

[
(qL + qR)χ1 + (qL − qR)χ2

]
− 2π p6 χ̃2 (5.32)

in the S3 × T4 one. They are invariant under{
χi → χi + 4π qi,

χ̃i → χ̃i + 4α−1π q̃i,
for AdS3 × S3 × S̃3 × S1

and

{
χi → χi + 4π qi,

χ̃2 → χ̃2 + q̃2,
for AdS3 × S3 × T4 ,

(5.33)

with qi, q̃i ∈ Z. Given the form of the deformations (5.31) and (5.32), both spectra are bounded from below
by the masses of the round solutions, and pertubative stability is ensured for the entire 4-dimensional
family of deformations.

The moduli space of the deformed S3×S̃3×S1 solutions enjoys numerous supersymmetry enhancements,
as described in ref. [18]. The possible enhancements within the three-dimensional truncation are the
following:

N = (2, 0) : χ2 = χ1 ± α(χ̃1 − χ̃2), N = (0, 2) : χ2 = −χ1 ± α(χ̃1 + χ̃2)

N = (4, 0) :

{
χ2 = χ1,

χ̃2 = χ̃1,
N = (0, 4) :

{
χ2 = −χ1,

χ̃2 = −χ̃1,

N = (2, 2) :

{
χ1 = ±αχ̃1,

χ2 = ±αχ̃2,
N = (2, 2) :

{
χ1 = ±αχ̃2,

χ2 = ±αχ̃1,

N = (4, 2) :

{
χ1 = χ2 = ±αχ̃1,

χ̃2 = χ̃1,
N = (2, 4) :

{
χ1 = −χ2 = ±αχ̃1,

χ̃2 = −χ̃1.

(5.34)

SUSY enhancements at higher levels in the p7 tower can be obtained from the periodicities (5.33). For the
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T 4 background, supersymmetry is enhanced from N = (0, 0) to N = (4, 0) and N = (0, 4) when

χ2 = 4π q + χ1, and χ2 = 4π q − χ1, q ∈ Z, (5.35)

respectively. There are then two massless gravitini at level p7 = q and two other at level p7 = −q, all other
charges and SU(2) spins vanishing.

5.3 TsT deformations

The deformation
VM̄

N̄ = exp
[
− β1 f

3̄
7̄ − β2 f3̄7̄ − β̃1 f

6̄
7̄ − β̃2 f6̄7̄

]
(5.36)

recovers a family previously obtained in [18]. From a 10d perspective, this family can be shown to uplift to
a type IIB solution which can be constructed through the SO(7, 7) transformation in (5.5), with

β = β1 dφ1 ∧ dy7 + αβ̃1 dφ̃1 ∧ dy7 − β2 dφ2 ∧ dy7 − αβ̃2 dφ̃2 ∧ dy7 ,

ρ =



1 0 0 0 0 0

0 1 0 0 0 −β2
0 0 12 0 0 0

0 0 0 1 0 −α−1 β̃2
0 0 0 0 1 0

0 0 0 0 0 1


, s = 0 ,

(5.37)

on the S3 × S̃3 × S1 background, and

β = β1 dφ1 ∧ dy7 − β2 dφ2 ∧ dy7 + β̃2 dy
6 ∧ dy7 ,

ρ =



1 0 0 0 0 0

0 1 0 0 0 −β2
0 0 1 0 0 0

0 0 0 12 0 0

0 0 0 0 1 −β̃1
0 0 0 0 0 1


, s = 0 ,

(5.38)

in the S3 × T4 case. The detailed D = 10 solutions can be respectively found in (C.3) and (C.6). Again,
the remaining isometries are those of eq. (5.30) and N = (0, 0) for generic values of the parameters. These
deformations consist in couplings between the angles φi, φ̃i and y6 with y7, and TsT transformations
between those same angles. Pure TsT deformations are obtained for the couples of cycles (φ1, y

7) and
(φ̃1, y

7) when β2 = β̃2 = 0 in the S̃3 × S1 case and similarly when β2 = β̃1 = 0 for T4. Alternatively, the
solutions can be generated from the SO(7, 7) transformation in (5.5), with

β = β1 dφ1 ∧ dy7 − β2 dφ2 ∧ dy7 + αβ̃1 dφ̃1 ∧ dy7 − αβ̃2 dφ̃2 ∧ dy7 ,

ρ =


12 0 0 0 0

0 1 0 0 β1
0 0 12 0 0

0 0 0 1 α−1 β̃1
0 0 0 0 1

 , s = −dφ1 ∧ φ2 − α−2 dφ̃1 ∧ φ̃2 ,
(5.39)
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on S3 × S̃3 × S1, and

β = β1 dφ1 ∧ dy7 − β2 dφ2 ∧ dy7 + β̃2 dy
6 ∧ dy7 ,

ρ =


12 0 0 0 0

0 1 0 0 β1
0 0 12 0 0

0 0 0 1 −β̃1
0 0 0 0 1

 , s = −dφ1 ∧ φ2 ,
(5.40)

on S3 ×T4, giving rise to pure TsT when β1 = β̃1 = 0. These two solutions differ from (5.37) and (5.38) by
the gauge choice for the undeformed 2-form in (4.13) and (4.19), respectively. The shift s would be absent
in (5.39) and (5.40) if the sin2 θ and sin2 θ̃ would have been replaced by − cos2 θ and − cos2 θ̃ in (4.13)
and (4.19).

The spectrum of these deformations of S3 × S̃3 × S1 can be obtained from eq. (4.32) and (4.33) by
shifting

(2π p7)
2 −→ (2π p7)

2
(
1 + β21 + β22 + β̃21 + β̃22 + (β1β2 + β̃1β̃2)

2
)

− 2π p7

(
(1 + β1β2 + β̃1β̃2)

(
qL (β1 + β2) + α q̃L (β̃1 + β̃2)

)
+ (−1 + β1β2 + β̃1β̃2)

(
qR (β1 − β2) + α q̃R (β̃1 − β̃2)

))
+

1

4

(
β1(qL + qR) + β2(qL − qR) + α β̃1(q̃L + q̃R) + α β̃2(q̃L − q̃R)

)2
.

(5.41)

Similarly, the spectrum for the deformed S3×T4 background follows from eq. (4.40) and (4.41) by replacing

(2π p7)
2 −→

(
1

2

(
(qL + qR)β1 + (qL − qR)β2

)
− 2π p6 β̃2

)2

+ (2π p7)
2
(
1 + β21 + β22 + β̃21 + β̃22 + (β1β2 + β̃1β̃2)

2
)

− 2π p7

(
qL (β1 + β2) (1 + β1β2 + β̃1β̃2) + qR (β1 − β2) (−1 + β1β2 + β̃1β̃2)

)
+ 8π2 p6p7

(
β̃1 + β1β2β̃2 + β̃1β̃

2
2

)
.

(5.42)

For p7 = 0, these turn out to be the exact same spectra as the ones for the χ’s in sec. 5.2 up to
matching χi → βi and χ̃i → β̃i. The solutions then enjoy the same supersymmetry enhancements as the χ
deformations restricted to the 3d consistent truncation, see eq. (5.34) and (5.35) (for q = 0).

For β̃1 = β̃2 = 0, the solution is stable for any value of β1 and β2. The converse is not true, however,
with instabilities present when β1 = β2 = 0 and β̃1 and β̃2 are non-vanishing. This apparent inequity is not
in tension with the interchangeability between the two spheres, given that is a symmetry of the equations
of motion only if the S1 is also rescaled, as can be seen in (4.12). This rescaling can be parameterised by
the modulus σ7 in (2.51), and the configuration is then invariant under the transformation

βi 7→ β̃i , β̃i 7→ βi , e−σ7 7→ α−1e−σ7 . (5.43)

The precise stability range when the four βs are turned on needs further study, but perturbative stability
is guaranteed in certain subregions by the existence of the supersymmetric loci.
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5.4 Mixing of S3 and S̃3

We now analyse the deformation

VM̄
N̄ = exp

[
− Ξ2 f

3̄
6̄ − Ξ4 f3̄6̄

]
. (5.44)

On the S3 × T4 background, this is analogous to the deformations in sec. 5.2 and 5.3 up to relabelling of
the torus coordinates. On the other hand, on the S3 × S̃3 × S1 background it corresponds to mixing the
coordinates on the two spheres through the SO(7, 7) transformation (5.5) with

β = α (−Ξ2 dφ1 + Ξ4 dφ2) ∧ dφ̃2, ρ =



1 0 0 0 0 0 0

0 1 0 0 0 αΞ4 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 α−1 Ξ2 −α−1 Ξ4 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, s = 0, (5.45)

involving in particular TsT transformations coupling each φi with φ̃2. The explicit solution in D = 10

can be found in eq. (C.8). Generically, the isometries are broken down to (5.30) and there is no remaining
supersymmetry. At the points

Ξ2 = −Ξ4 = ± 2

α
and Ξ2 = Ξ4 = ± 2

α
, (5.46)

SUSY enhances to N = (2, 0) and N = (0, 2), respectively. This can be observed from the deformed
spectrum, given by eq. (4.32) and (4.33) by shifting

(2π p7)
2 −→(2π p7)

2 +
1

4

(
qL (Ξ2 + Ξ4) + qR (Ξ4 − Ξ2)

)2
+
α2

4
(q̃L − q̃R)

(
q̃L (Ξ4 − Ξ2)

2 − q̃R (Ξ2 + Ξ4)
2 + (q̃L − q̃R) (Ξ2Ξ4)

2
)

− α

2
qL (Ξ2 + Ξ4) ((q̃L − q̃R)Ξ2Ξ4 − 2 q̃R)−

α

2
qR (Ξ4 − Ξ2) ((q̃L − q̃R)Ξ2Ξ4 − 2 q̃L) .

(5.47)

Regarding the perturbative stability of these deformations, analysis of the lowest Kaluza-Klein levels
indicates that the region in parameter space with tachyonic modes can get arbitrary close to the SUSY
lines (5.46). This feature is not apparent at low Kaluza-Klein levels (ℓ + ℓ̃ < 1/2), but already at level
(1/2, 1/2) we find modes whose region of instability ends on the SUSY enhancement lines, where the modes
saturate the BF bound. This can be observed in fig. 3. This analysis is not conclusive about the region of
stability around the origin Ξ1 = Ξ2 = 0.

6 Worldsheet and Holographic Descriptions

The above solutions are JJ̄ deformations of N = 1 superconformal WZW models with target spaces [13,14]

SL(2,R)× SU(2)×U(1)4 for AdS3 × S3 × T4,

SL(2,R)× SU(2)× S̃U(2)×U(1) for AdS3 × S3 × S̃3 × S1.
(6.1)
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Fig. 3 Parameter space for the deformation (5.44) with Ξ1 = Ξ2 = Ξ. Supersymmetry is enhanced
to N = (2, 0) along the dashed line (see eq. (5.46)) and totally broken otherwise for non-vanishing Ξ.
There are subregions of the parameter space for which some modes become unstable, as presented at
levels (ℓ, ℓ̃) = (1/2, 1/2) and (1/2, 3/2) for p7 = 0. At the border of these regions, the modes have masses
saturating the BF bound. At level (1/2, ℓ̃), the potentially unstable modes are those arising from the
deformation of the SO(4)× S̃O(4) scalars (3/2, ℓ̃, 1/2, ℓ̃+1) and (1/2, ℓ̃+1, 1/2, ℓ̃+1) with extremal charges.

The undeformed WZW action at level k ∈ N for each factor is given by [67,68]

S =
k

4π

∫
Σ
Tr
(
∂g ∂̄g−1

)
+

k

6π

∫
Ω
d3xϵijk Tr

[
(g−1 ∂ig)(g

−1 ∂jg)(g
−1 ∂kg)

]
, (6.2)

with Ω such that Σ = ∂Ω. The entire model is superconformal if the levels of the different factors in (6.1)
are related as

1

k0
=

1

k
+

1

k̃
(6.3)

for k0 the SL(2,R) level and k, k̃ corresponding to the spheres. The AdS3 × S3 × T4 case is given by the
limit 1/k̃ = 0, which in terms of the geometric radii

k0 = 4π2ℓ2AdS , k = 4π2ℓ2S3 , k̃ = 4π2ℓ2
S̃3 = 4π2α−2ℓ2S3 , (6.4)

corresponds to the limit α→ 0. With these identifications, the level matching condition (6.3) reproduces
the supergravity result (2.48) with normalisation ℓS3 = 1.

As the deformations we consider preserve the conformal algebra, in the following we will omit the
SL(2,R) factors. We parameterise the SU(2) elements in terms of Euler angles as

g = ei(φ1+φ2)σ3/2eiθσ1ei(φ1+φ2)σ3/2 , (6.5)

with σi the Pauli matrices, and similarly for S̃U(2) in terms of the tilded angles on S̃3. For the circle
directions, the representative is simply

ga = e2πiy
a
. (6.6)

The angles are here understood as fields on the worldsheet depending on the coordinates z, z̄. In the
SU(2)×U(1)4 case, eq. (6.2) reads

SSU(2)×T4 =
k

2π

∫
Σ
∂θ∂̄θ + cos2θ ∂φ1∂̄φ1 + sin2θ ∂φ2∂̄φ2 + δab∂y

a∂̄yb + sin2θ
(
∂φ1∂̄φ2 − ∂φ2∂̄φ1

)
. (6.7)
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Besides the translations in ya, this action is invariant under SU(2)× SU(2), generated by currents

jL1 + ijL2 = [2∂θ − i sin 2θ(∂φ1 + ∂φ2)]e
i(φ1+φ2) , jL3 = 2

(
cos2θ∂φ1 − sin2θ∂φ2

)
,

jR1 + ijR2 = [2∂̄θ + i sin 2θ(∂̄φ1 − ∂̄φ2)]e
−i(φ1+φ2) , jR3 = 2

(
cos2θ∂̄φ1 + sin2θ∂̄φ2

)
,

(6.8)

which, upon using the equations of motion, satisfy

∂̄jLi = ∂jRi = 0 , ∂jLi = ϵijkjLj ∧ jLk , ∂̄jRi = ϵijkjRj ∧ jRk . (6.9)

Similarly, for SU(2)× S̃U(2)×U(1), the action reads

SSU(2)2×U(1) =
k

2π

∫
Σ
∂θ∂̄θ + cos2θ ∂φ1∂̄φ1 + sin2θ ∂φ2∂̄φ2 + sin2θ

(
∂φ1∂̄φ2 − ∂φ2∂̄φ1

)
+

k̃

2π

∫
Σ
∂θ̃∂̄θ̃ + cos2θ̃ ∂φ̃1∂̄φ̃1 + sin2θ̃ ∂φ̃2∂̄φ̃2 + sin2θ̃

(
∂φ̃1∂̄φ̃2 − ∂φ̃2∂̄φ̃1

)
+

1

2π

∫
Σ
∂y7∂̄y7 .

(6.10)
with now, besides the y7 translations, a group SU(2)2 × S̃U(2)2 worth of symmetries generated by (6.8)
and their tilded counterparts. In both eq. (6.7) and (6.10), the internal components of the metric and B
field can be read off from

S =

∫
Σ
∂yi∂̄yj Eij , (6.11)

with Eij = (ĝs)ij + B̂ij .

6.1 Deformations around generic points

For every solution in sec. 5, the worldsheet action is defined by eq. (6.11). Let us now show that infinitesimal
deformations around generic points of the families discussed in that section are current-current deformations
of this worldsheet action. The currents generating the Cartan subalgebra of the preserved symmetry group
can be expressed in terms of Eij as [69]

jj = kiEij , j̄i = Eij k̄
j , (6.12)

where ki and k̄i are Killing vectors of the metric in the bases (5.6). For φ1,2, φ̃1,2 and the angles on the
tori, the isometries are just shifts and therefore the Killing vectors reduce to derivatives of the angles. For
the deformed solutions in sec. 5, the Eij matrix can be read off from (5.1) and (5.2). For instance, for the
three-parameter family of solutions in (5.15) the deformed currents include

j2 =
2
(
∂φ1 + (χ1 + β1)∂y

7
)
cos2 θ − 2 sin2 θ ∂φ2

1 +
(
e−2ω + β21 − 1

)
cos2 θ

,

j̄2 =
2
(
∂̄φ1 + (χ1 − β1)∂̄y

7
)
cos2 θ + 2 sin2 θ ∂̄φ2

1 +
(
e−2ω + β21 − 1

)
cos2 θ

,

j7 =

(
1 +

(
e−2ω + χ2

1 − 1
)
cos2 θ

)
∂y7 + (χ1 − β1)

(
cos2 θ ∂φ1 − sin2 θ ∂φ2

)
1 +

(
e−2ω + β21 − 1

)
cos2 θ

,

j̄7 =

(
1 +

(
e−2ω + χ2

1 − 1
)
cos2 θ

)
∂̄y7 + (χ1 + β1)

(
cos2 θ ∂̄φ1 + sin2 θ ∂̄φ2

)
1 +

(
e−2ω + β21 − 1

)
cos2 θ

,

(6.13)
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which respectively reduce to jL3 , jR3 , ∂y7 and ∂̄y7 in (6.8) when ω = β1 = χ1 = 0.
Infinitesimal variations of the marginal parameters around the deformed solutions can be expressed in

terms of the currents in (6.12). For the family in (5.15), the results at (ω + δω, β1 + δβ1, χ1 + δχ1) and
(ω, β1, χ1) are related as

δE = 1
2(e

−2ωδω − χ1δχ1) j2 ⊗ j̄2 +
1
2(δχ1 − δβ1) j2 ⊗ j̄7 +

1
2(δχ1 + δβ1) j7 ⊗ j̄2 (6.14)

to linear order in (δω, δβ1, δχ1) and for both cases in (6.1). Regarding the ten-dimensional dilaton, it
changes as a compensator of the variation of the metric so as to keep the generalised dilaton d̂ = Φ̂− 1

4 log ĝs
invariant under the deformations, as required by marginality [70,68]. This can be checked to happen for all
deformations in sec. 5.

Similarly, for the 4χ and 4β families in (5.27) and (5.36) the infinitesimal variations read

δE = 1
2(δχ1 + δχ2) j2 ⊗ ∂̄y7 + 1

2(δχ1 − δχ2) ∂y
7 ⊗ j̄2

+ 1
2αδχ̃1 (j5 ⊗ ∂̄y7 + ∂y7 ⊗ j̄5)− 1

2αδχ̃2 (j6 ⊗ ∂̄y7 + ∂y7 ⊗ j̄6) , (6.15)

δE = −1
2(δβ1 + δβ2) j2 ⊗ j̄7 +

1
2(δβ1 − δβ2) j7 ⊗ j̄2

− 1
2α(δβ̃1 + δβ̃2) j5 ⊗ j̄7 +

1
2α(δβ̃1 − δβ̃2) j7 ⊗ j̄5 − 2(β2δβ2 + β̃2δβ̃2)j7 ⊗ j̄7 (6.16)

for the AdS3 × S3 × S̃3 × S1 topology, and13

δE = 1
2(δχ1 + δχ2) j2 ⊗ ∂̄y7 + 1

2(δχ1 − δχ2) ∂y
7 ⊗ j̄2 + δχ̃2 (j6 ⊗ ∂̄y7 + ∂y7 ⊗ j̄6) , (6.17)

δE = −1
2(δβ1 + δβ2) j2 ⊗ j̄7 +

1
2(δβ1 − δβ2) j7 ⊗ j̄2

− (δβ̃1 + δβ̃2) j6 ⊗ j̄7 − (δβ̃1 − δβ̃2) j7 ⊗ j̄6 − 2(β2δβ2 + β̃1δβ̃1)j7 ⊗ j̄7 (6.18)

for the AdS3×S3×T4. In (6.15) and (6.17), the forms ∂y7 and ∂̄y7 are given by the following combinations
of currents

∂y7 = j7 − 1
2χ1j2 +

1
2χ2j3 − χ̃2j6 for AdS3 × S3 × T4,

∂y7 = j7 − 1
2χ1j2 +

1
2χ2j3 − 1

2 χ̃1j5 +
1
2 χ̃2j6 for AdS3 × S3 × S̃3 × S1,

(6.19)

and gauge transformations of the B field have been omitted. Finally, the Ξ deformation (5.44) gives rise to

δE = (δΞ2 + δΞ4) (j2 − αΞ4 j6)⊗ (α j̄5 + Ξ4 j̄3) + (δΞ2 − δΞ4) (j̄2 − αΞ4 j̄6)⊗ (α j5 + Ξ4 j3)

− 2Ξ2 δΞ2 (j2 − αΞ4 j6)⊗ (j̄2 − αΞ4 j̄6) ,
(6.20)

up to gauge transformations of B.

6.2 Deformations around the origin and CFT dual

Interestingly, around the origin the deformations in (6.14)–(6.18) simplify drastically. For the (ω, β1, χ1)

family, we get

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 +
1
2δω j

L
3 ⊗ jR3 + 1

2(δχ1 − δβ1) j
L
3 ⊗ ∂̄y7 + 1

2(δχ1 + δβ1) ∂y
7 ⊗ jR3 . (6.21)

13Note that the actual expressions for j5 and j6 in terms of the coordinates depend on the topology.
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Concerning the 4χ and 4β solutions, the simplifications read

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 +
1
2(δχ1 + δχ2) j

L
3 ⊗ ∂̄y7 + 1

2(δχ1 − δχ2) ∂y
7 ⊗ jR3

+ 1
2α

−1(δχ̃1 + δχ̃2) j̃
L
3 ⊗ ∂̄y7 + 1

2α
−1(δχ̃1 − δχ̃2) ∂y

7 ⊗ j̃R3 , (6.22)

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 − 1
2(δβ1 + δβ2) j

L
3 ⊗ ∂̄y7 + 1

2(δβ1 − δβ2) ∂y
7 ⊗ jR3

− 1
2α

−1(δβ̃1 + δβ̃2) j̃
L
3 ⊗ ∂̄y7 + 1

2α
−1(δβ̃1 − δβ̃2) ∂y

7 ⊗ j̃R3 , (6.23)

for AdS3 × S3 × S̃3 × S1, and

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 +
1
2(δχ1 + δχ2) j

L
3 ⊗ ∂̄y7 + 1

2(δχ1 − δχ2) ∂y
7 ⊗ jR3

+ δχ̃2 (∂y
6 ⊗ ∂̄y7 + ∂y7 ⊗ ∂̄y6) , (6.24)

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 − 1
2(δβ1 + δβ2) j

L
3 ⊗ ∂̄y7 + 1

2(δβ1 − δβ2) ∂y
7 ⊗ jR3

− δβ̃1(∂y
6 ⊗ ∂̄y7 + ∂y7 ⊗ ∂̄y6) , (6.25)

in the AdS3 × S3 × T4 case. For each topology, these expressions match at the linearised level up to a
straightforward redefinition of the parameters given by

δχ1 7→ −δβ2 , δχ2 7→ −δβ1 , δχ̃1 7→ −δβ̃2 , δχ̃2 7→ −δβ̃1 . (6.26)

The Ξ deformation (5.44) also simplifies to

(dŝ2s + B̂(2)) = (dŝ2s + B̂(2))0 +
1
4α

−1(δΞ2 + δΞ4) j
L
3 ⊗ j̃R3 + 1

4α
−1(δΞ2 − δΞ4) j̃

L
3 ⊗ jR3 . (6.27)

For all these cases, the deformations are described by products of (anti-)holomorphic currents, and are
thus exactly marginal [7]. This is not apparent for the deformations around generic points discussed in
sec. 6.1. In these cases, to check exact marginality one would need to compute the three-point functions for
the Kaluza-Klein modes following ref. [36] so as to study the vanishing of the beta-functions in conformal
perturbation theory [71]. We plan to return to this question in the future.

From a holographic perspective, the identification of the WZW currents in (6.21)–(6.27) allows us to
conjecture that the marginal operators in the holographic conformal field theories are also of jj̄ type. In
the symmetric orbifold theories,

SymN (M4) , (6.28)

one can identify two SU(2) factors corresponding to the left- and right-moving currents associated to the
R-symmetry, and extra flavour symmetries realised on every copy of M4 = U(1)4 or M4 = SU(2)×U(1).
The relevant “single trace” operators [72] on the orbifold are given by the projection

O ∼
N∑
k

(jj̄)k , (6.29)

with k an index on each of the copies.
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7 Discussion

This note focused on the construction and study of new marginal deformations of the AdS3 × S3 × S3 × S1

and AdS3 × S3 × T4 solutions of heterotic and type IIB supergravities using exceptional field theory.
These solutions are of particular relevance for the AdS3/CFT2 correspondence and we built a general
framework that unifies the description of those backgrounds in both theories. The rich structure of marginal
deformations thus revealed is in sharp contrast with what happens in higher dimensions. These deformations
include Lunin-Maldacena TsT transformations and Wilson loops among more general deformations. However,
our search of moduli is far from being exhaustive and needs to be generalised, for example to include mixing
of TsT transformation between the sphere and multiple directions on the torus, or couplings between TsT
and Wilson loop deformations. The integrability of the WZW models describing the round solutions [73]
allow to describe our deformed solutions as Yang-Baxter deformations along the lines of [74]. Integrability
could provide powerful tools to study these solutions in more detail.

All the deformation parameters we considered belong to three-dimensional consistent truncations. This
makes it possible to use the ExFT’s Kaluza-Klein spectrometer to compute the effect of the deformations
on the full Kaluza-Klein tower of excitations. We used these deformation-dependent spectra to study
the perturbative stability of some non-supersymmetric vacua, and demonstrated that there is a vast
subregion of parameter space where the solutions are free from perturbative instabilities. The complete
stability of these solutions has to be tested against potential non-perturbative decay channels, as brane-jet
instabilities [75–77] and nucleations of bubbles [78–83]. This would require building their associated brane
configurations. It would also be very interesting to study the existence of positive energy theorems in the
lines of ref. [84].

Among the directions in the conformal manifold, the possibility of describing TsT deformations in a
consistent truncation is a three-dimensional peculiarity, as in higher-dimensions the moduli triggering those
transformations sit within higher Kaluza-Klein levels [19, 56, 57]. Similarly to what happens for Wilson
loop deformations, even though TsT seems to be composed of symmetry transformations of string theory
(T duality, shifts in coordinates and T duality), our results demonstrate that such deformations affect
the Kaluza-Klein spectrum. This is because the coordinate shift couples directions with non-compatible
periodicities, and therefore the transformations are not globally well defined for generic values of the
deformation parameters. It would be very interesting to study if this three-dimensional results could
provide insights on the Kaluza-Klein spectra for TsT deformations in higher dimensions.

The transformations in (2.51) do not excite RR fluxes. We took advantage of this property to describe
them as current-current couplings of the WZW worldsheet actions describing the AdS3 × S3 × S3 × S1 and
AdS3 × S3 ×T4 backgrounds. This suggests that the holographically dual deformations are single-trace
JJ̄ . It will be interesting to analyse these deformed holographic duals, and the fact that some of these
deformations preserve some supersymmetries for both left- and right-movers (see e.g. (5.34)) suggests that
some subfamilies should be amenable to the CFT analysis. Nevertheless, it would also be of interest to
study whether some new deformations could also excite RR fluxes. Given that U duality encompasses both
T and S dualities, the ExFT framework can also be used to generate transformations that excite them.
Of particular interest are the S dual rotation mapping the NS5-F1 and D1-D5 configurations, as well as
the S duality orbits of the pure NSNS deformations described above. If such deformations belong to a
three-dimensional consistent truncation to a gauged maximal supergravity, one should expect to find them
among the E8(8) generators in the 128 representation of SO(8, 8) in the decomposition (2.26). Describing
the uplift to ten-dimensional supergravity would then require the construction of the full dictionary between
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E8(8) ExFT and type IIB supergravity, generalising eq. (3.11). Such new deformations mixing NSNS and
RR fluxes could make contact with the recent families of AdS3 solutions constructed in ref. [85–87].

Given that both the AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 spectra feature massless scalar modes
at higher Kaluza-Klein levels, one could wonder if these backgrounds also feature moduli outside of their
consistent truncations to 3d. This could be investigated by applying the generalised geometry techniques
developed in ref. [88–90]. Similar methods have recently been applied in ExFT to relevant deformations in
ref. [91].
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A Orthogonal Decompositions and Projectors of E8(8)

This appendix brings to our notation the construction of e8(8) based on so(8, 8) and so(16) found in [55].
In sec. A.3, we also detail some projectors used in the main text.

A.1 SO(8, 8) decomposition of E8(8)

Following (2.26), e8(8) is comprised by the 120 generators of so(8, 8) together with 128 extra generators
transforming as spinors under the orthogonal group and closing back into it according to the commutators14

[tMN , tPQ] = 2 ηMP tNQ − 2 ηNP tMQ − 2 ηMQtNP + 2 ηNQtMP ,

[tMN , tA] =
1
2(ΓMN )A

B tB , [tA, tB] = −1
2Γ

MN
AB tMN .

(A.1)

Indices are raised and lowered using the invariant metrics ηMN and ηAB. Here, we use a basis where the
SO(8, 8) invariant metric ηMN is diagonal and given by

η(diag) =

(
−δÎĴ 0

0 δIJ

)
. (A.2)

The charge conjugation matrices are then given by

ηAB =

(
δABδȦḂ 0

0 −δȦḂδAB

)
, ηȦḂ =

(
δACδBD 0

0 −δȦĊδḂḊ

)
, (A.3)

14The discussion in this appendix applies both to the global E8(8) in D = 3 as well as to its ExFT counterpart, and we
have chosen to present the formulae with unbarred objects. In sec. 2.2, all indices here acquire overbars.
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under the SO(8)× SO(8) breaking

SO(8, 8) ⊃ SO(8)× SO(8)

16 → (8v,1)⊕ (1,8v) ,

128s → (8s,8c)⊕ (8c,8s) ,

128c → (8s,8s)⊕ (8c,8c) ,

(A.4)

with indices decomposing as XM = {XÎ , XI}, YA = {Y
ÂḂ
, Y ˆ̇AB

} and YȦ = {Y
ÂB
, Y ˆ̇AḂ

} for Ȧ ∈ J1, 128K
the 128c index and A, Ȧ ∈ J1, 8K and their hatted counterparts respectively labelling the 8s and 8c of each
SO(8) factor.

The last ingredient in (A.1) are the generators of so(8, 8) in the 128s representation, which are
proportional to

ΓMN
A
B = 1

2

(
ΓM

A
Ċ Γ̄N

Ċ
B − ΓN

A
Ċ Γ̄M

Ċ
B) , (A.5)

for Γ̄M the transpose of ΓM . These chiral SO(8, 8) gamma matrices satisfy

ΓM
A
Ċ Γ̄N

Ċ
B + ΓN

A
Ċ Γ̄M

Ċ
B = 2 ηMNδA

B , (A.6)

and are conveniently parametrised in terms of SO(8) gamma matrices as

ΓÎ
ÂḂ

ˆ̇CḊ = −δḂḊ γ
Î

Â ˆ̇C
, ΓÎ

ˆ̇AB

ĈD = δBD γ
Î

Ĉ ˆ̇A
,

ΓI
ÂḂ

ĈD = δÂĈ γ
I
CȦ , ΓI

ˆ̇AB

ˆ̇CḊ = −δ ˆ̇A ˆ̇C
γIBḊ .

(A.7)

These chiral SO(8) gamma matrices satisfy Clifford identities analogous to (A.6) and are chosen so that
the charge conjugation matrices, η

AB
, η ˆ̇A ˆ̇B

, etc, are just the identity matrix. Explicit expressions fulfilling
these requirements are given by

γI = {γIJ, γ+, γ−} , (A.8)

with

γIJ =

(
ϵIJ 2δIJ

−2δIJ ϵIJ

)
, γ+ =

(
1 0

0 −1

)
, Γ− =

(
0 1

1 0

)
, (A.9)

in terms of SO(4) ⊂ SU(4) ⊂ SO(8) invariant tensors (ϵIJ)KL = ϵIJKL and (δIJ)KL = δI[KδL]J under the
splitting I = {[IJ], +, −}, A = {I, J} and Ȧ = {I, J} with I, J ∈ J1, 4K, and analogously for hatted indices.

For completeness, we also include expressions for the generators of so(8, 8) in the 128c representation as
well as for the other higher-order products of SO(8, 8) gamma matrices that play a rôle in the main text:

Γ̄MN
Ȧ
Ḃ = 1

2

(
Γ̄M

Ȧ
C ΓN

C
Ḃ − Γ̄N

Ȧ
C ΓM

C
Ḃ) ,

ΓMNP
A
Ḃ = Γ[MN

A
C ΓP ]

C
Ḃ , Γ̄MNP

Ȧ
B = Γ̄[MN

Ȧ
Ċ Γ̄P ]

Ċ
B ,

ΓMNPQ
A
B = Γ[MNP

A
Ċ ΓQ]

Ċ
B , Γ̄MNPQ

Ȧ
Ḃ = Γ̄[MNP

Ȧ
C Γ̄Q]

C
Ḃ .

(A.10)
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In terms of these objects, the structure constants of E8(8) are given by [55]

fMN,PQ
RS = −8 δ[M

[RηN ][P δQ]
S] ,

fMN,A
B =

1

2
(ΓMN )A

B ,

fAB
MN = −1

2
ΓMN

AB ,

(A.11)

and the Cartan-Killing metric,

κMN =
1

60
fMP

QfNQ
P , (A.12)

decomposes as
κM1M2,N1N2 = −2 ηM1[N1

ηN2]M2
, κAB = ηAB ,

κM1M2,N1N2 = −2 ηM1[N1ηN2]M2 , κAB = ηAB .
(A.13)

A.2 SO(16) decomposition of E8(8)

E8(8) can be decomposed under SO(16) analogously to (2.26),

E8(8) ⊃ SO(16)

248 → 120+ 128s ,

tM → {t[MN], tA } ,

(A.14)

with indices M and A now labelling the vector and spinorial representations of SO(16). The E8(8) structure
constants in this basis are

fMN,PQ
RS = −8 δ[M

[RηN][PδQ]
S] ,

fMN,A
B =

1

2
ΓMNA

B ,

fA B
MN = −1

2
ΓMN

A B ,

(A.15)

and the Cartan-Killing form (A.12) decomposes as

κM1M2,N1N2 = −2 ηM1[N1
ηN2]M2

, κA B = ηA B ,

κM1M2,N1N2 = −2 ηM1[N1ηN2]M2 , κA B = ηA B ,
(A.16)

for ΓM the SO(16) gamma matrices and the invariant metric ηMN and charge conjugation matrices ηA B and
η ˙A Ḃ given by identity matrices in the respective dimensions. For this reason, the upstairs vs downstairs
position of these indices lacks significance. The gamma matrices are most easily defined by breaking SO(16)

down to SO(8)× SO(8),
SO(16) ⊃ SO(8)× SO(8)

16 → (8c,1)⊕ (1,8s) ,

128s → (8v,8v)⊕ (8s,8c) ,

128c → (8s,8v)⊕ (8v,8c) ,

(A.17)
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with indices decomposing as XM = {X ˆ̇A
, X

A
}, YA = {YÎJ , YÂḂ} and Y ˙A = {YÂI , ŶĴḂ}. Then,

Γ
ˆ̇A
ÎJ,B̂K = δJK γ Î

B̂ ˆ̇A
, Γ

ˆ̇A
B̂Ċ,ÎḊ = −δĊḊ γ

Î

B̂ ˆ̇A
,

ΓA
ÎJ,K̂Ḃ = δÎK̂ γJAḂ , ΓA

B̂Ċ,D̂I = δB̂D̂ γ
I
AĊ ,

(A.18)

and higher-order products follow (A.10).

One can finally map the SO(8, 8) and SO(16) representations appearing in the decomposition (2.26) and
(A.14), {XMN , YA} and {X ′

MN, Y
′
A }, via their respective SO(8)× SO(8) breakings:

X ′
ˆ̇A ˆ̇B

= −1

4
γ ÎĴ ˆ̇A ˆ̇B

XÎĴ , X ′
ˆ̇AB

= −Y ˆ̇AB
, X ′

ÂḂ
= YÂḂ , X ′

AB =
1

4
γIJABXIJ ,

Y ′
ÎJ

= −XÎJ , Y ′
ÂḂ

= YÂḂ .
(A.19)

A.3 E8(8) projectors

Some of the representations in the product

248⊗ 248 → 1⊕ 248⊕ 3875⊕ 27000⊕ 30380 (A.20)

play a prominent rôle in supergravity and ExFT. The projectors onto these irreducible representations are
given by [92,37]

(P1)MN
KL = 1

248κMN κKL ,

(P248)MN
KL = 1

60fMNPf
PKL ,

(P3875)MN
KL = 1

7δ
K
(MδLN ) − 1

56κMN κKL − 1
14f

P
M

(KfPN
L) ,

(P27000)MN
KL = 6

7δ
K
(MδLN ) +

3
217κMN κKL + 1

14f
P
M

(KfPN
L) ,

(P30380)MN
KL = δK[MδLN ] − 1

60fMNPf
PKL .

(A.21)

In particular, given that the embedding tensor of maximal supergravity has index structure

(248⊗ 248)sym → 1⊕ 3875⊕ 27000 , (A.22)

the linear constraint on the embedding tensor alluded to in sec. 2.2 can be phrased as

(P27000X)M̄K̄ = 0 . (A.23)

B D(2, 1|α) vs SU(2) ⋉ SU(2|1, 1) Superalgebras

The superalgebras SU(2) ⋉ SU(2|1, 1) and D(2, 1|α) coincide as vector spaces. They are generated by
bosonic elements Lm with m = 0,±1, and A±

i with i = 1, 2, 3, which respectively generate SL(2,R) and
two copies of SU(2), and their fermionic counterparts Ga

r with r = ±1
2 and a = 1, 2, 3, 4, transforming in
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the bi-fundamental representation of SU(2)− × SU(2)+. For D(2, 1|α), the super-Lie bracket is [93, 66]

[Lm, Ln] = (m− n)Lm+n , [A±
i , A

±
j ] = iϵijkA

±
k , [Lm, A

±
i ] = 0 ,

[Lm, G
a
r ] =

(m
2

− r
)
Ga

r , [A±
i , G

a
r ] = iα±i

abG
b
r ,

{Ga
r , G

b
s} = 2δabLr+s + 4i(r − s)

[ α2

1 + α2
α+i
abA

+
i +

1

1 + α2
α−i
abA

−
i

]
, (B.1)

with
α±i
ab = ±δi+1,[aδb]1 +

1
2ϵi,a−1,b−1,4 . (B.2)

For SU(2)⋉ SU(2|1, 1), only the fermionic anti-commutator is modified into

{Ga
r , G

b
s} = 2δabLr+s + 4i(r − s)α−i

abA
−
i , (B.3)

following the limit
lim
α→0

D(2, 1|α) = SU(2|1, 1)⋊ SU(2)+ . (B.4)

Therefore, SU(2|1, 1) ⊃ SL(2,R)×SU(2)− is an ideal of the non-semisimple SU(2)⋉SU(2|1, 1) superalgebra.
The limit (B.4) does not affect the matter content of long multiplets, whose states can be given in terms

of the weights under the bosonic subalgebras as (h, j−, j+), with h denoting the SL(2,R) dimension and
j± being half-integer spins for SU(2)±. Supermultiplets are then determined by a primary state which is
annihilated by all Ga

1
2

and L1. A supermultiplet with superconformal primary (h, j−, j+) will be denoted

[h, j−, j+], and its descendants can be obtained by successively applying antisymmetric products of the
Ga

− 1
2

generators, which live in representations

Ga
− 1

2

∈ (12 ,
1
2 ,

1
2) , G

[a

− 1
2

G
b]

− 1
2

∈ (1, 1, 0)⊕ (1, 0, 1) ,

G
[a

− 1
2

Gb
− 1

2

G
c]

− 1
2

∈ (32 ,
1
2 ,

1
2) , G1

− 1
2

G2
− 1

2

G3
− 1

2

G4
− 1

2

∈ (2, 0, 0) , (B.5)

of SL(2,R)× SU(2)− × SU(2)+. Applying (B.5) onto a superconformal primary with charges (h, j−, 0) one
recovers the states in (A.20) of [40], whilst equation (A.17) therein applies whenever the superconformal
primary has both j− and j+ greater than one.

Shortening of the long multiplets occurs when the superconformal primaries saturate the BPS bounds

h ≥ 1
1+α2 j

− + α2

1+α2 j
+ for D(2, 1|α) ,

h ≥ j− for SU(2|1, 1)⋊ SU(2) .
(B.6)

The missing factor in (B.3) implies that short multiplets of SU(2|1, 1)⋊ SU(2) are shorter than those of
D(2, 1|α) with the same charges, since all states for which the SU(2)− weight rises become null at the BPS
bound. Therefore, the breaking rules are

[ 1
1+α2 (j

− + α2j+) + ϵ, j−, j+] −−→
ϵ→0

[j−, j+]s + [j− + 1
2 , j

+ + 1
2 ]s for D(2, 1|α) ,

[j− + ϵ, j−, j+] −−→
ϵ→0

[j−, j+]s + [j− + 1
2 , j

+ + 1
2 ]s

+[j− − 1
2 , j

+ + 1
2 ]s + [j−, j+ + 1]s for SU(2|1, 1)⋊ SU(2) ,

(B.7)
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where the conformal dimensions of the short multiplets accord to (B.6) and have been omitted. Note also
that for both superalgebras the multiplet [0, 0]s is unphysical, as it has h = 0. Explicit expressions for the
state content of the short multiplets of D(2, 1|α) can be found in [18], and for SU(2|1, 1)⋊ SU(2) in [40].

In the following, we tabulate the states of a few of these multiplets for the convenience of the reader.

SL(2,R) SU(2)− × SU(2)+

h
(
0, 0
)

h+ 1/2
(
1/2, 1/2

)
h+ 1

(
1, 0
)
⊕
(
0, 1
)

h+ 3/2
(
1/2, 1/2

)
h+ 2

(
0, 0
)

Tab. 1 Long multiplet
[
h, 0, 0

]
.

SL(2,R) SU(2)− × SU(2)+

h
(
1/2, 0

)
h+ 1/2

(
1, 1/2

)
⊕
(
0, 1/2

)
h+ 1

(
1/2, 1

)
⊕
(
3/2, 0

)
⊕
(
1/2, 0

)
h+ 3/2

(
1, 1/2

)
⊕
(
0, 1/2

)
h+ 2

(
1/2, 0

)
Tab. 2 Long multiplet

[
h, 1/2, 0

]
.

SL(2,R) SU(2)− × SU(2)+

h
(
1/2, 1/2

)
h+ 1/2

(
1, 1
)
⊕
(
1, 0
)
⊕
(
0, 1
)
⊕
(
0, 0
)

h+ 1
(
3/2, 1/2

)
⊕ 2
(
1/2, 1/2

)
⊕
(
1/2, 3/2

)
h+ 3/2

(
1, 1
)
⊕
(
1, 0
)
⊕
(
0, 1
)
⊕
(
0, 0
)

h+ 2
(
1/2, 1/2

)
Tab. 3 Long multiplet

[
h, 1/2, 1/2

]
.

SL(2,R) SU(2)− × SU(2)+

h
(
1, 0
)

h+ 1/2
(
1/2, 1/2

)
⊕
(
3/2, 1/2

)
h+ 1

(
1, 1
)
⊕
(
2, 0
)
⊕
(
1, 0
)
⊕
(
0, 0
)

h+ 3/2
(
1/2, 1/2

)
⊕
(
3/2, 1/2

)
h+ 2

(
1, 0
)

Tab. 4 Long multiplet
[
h, 1, 0

]
.

D(2, 1|α) SU(2|1, 1)⋊ SU(2)(
1/2, 1/2

) (
1/2, 1/2

)(
1, 0
)
⊕
(
0, 1
)
⊕
(
0, 0
) (

0, 1
)
⊕
(
0, 0
)(

1/2, 1/2
)

−(
0, 0
)

−

Tab. 5 Short multiplet
[
1/2, 1/2

]
s

for D(2, 1|α) and SU(2|1, 1)⋊ SU(2).

D(2, 1|α) SU(2|1, 1)⋊ SU(2)(
1, 1
) (

1, 1
)(

3/2, 1/2
)
⊕
(
1/2, 1/2

)
⊕
(
1/2, 3/2

) (
1/2, 3/2

)
⊕
(
1/2, 1/2

)(
1, 1
)
⊕
(
1, 0
)
⊕
(
0, 1
) (

0, 1
)(

1/2, 1/2
)

−

Tab. 6 Short multiplet
[
1, 1
]
s

for D(2, 1|α) and SU(2|1, 1)⋊ SU(2).
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C Details on 10d Configurations

C.1 Wilson loop deformations

For AdS3 × S3 × S̃3 × S1, the four-axion geometry corresponding to (5.27) is given by [18]

eΦ̂ = 1 ,

dŝ2s = ℓ2AdSds
2(AdS3) + (dy7)2

+ dθ2 + cos2(θ)
(
dφ1 + χ1 dy

7
)2

+ sin2(θ)
(
dφ2 − χ2 dy

7
)2

+ α−2
(
dθ̃2 + cos2(θ̃)

(
dφ̃1 + α χ̃1 dy

7
)2

+ sin2(θ̃)
(
dφ̃2 − α χ̃2 dy

7
)2)

,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + sin(2θ) dθ ∧
(
dφ1 + χ1 dy

7
)
∧
(
dφ2 − χ2 dy

7
)

+ α−2 sin(2θ̃) dθ̃ ∧
(
dφ̃1 + α χ̃1 dy

7
)
∧
(
dφ̃2 − α χ̃2 dy

7
)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 ,

(C.1)

and for AdS3 × S3 × T4, it is realised by

eΦ̂ = 1,

dŝ2s = ℓ2AdSds
2(AdS3) + dθ2 + cos2(θ)

(
dφ1 + χ1dy

7
)2

+ sin2(θ)
(
dφ2 − χ2dy

7
)2

+ (dy4)2 + (dy5)2 +
(
dy6 + χ̃2dy

7
)2

+ (dy7)2 ,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + sin(2θ) dθ ∧
(
dφ1 + χ1 dy

7
)
∧
(
dφ2 − χ2 dy

7
)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0 .

(C.2)

C.2 TsT deformations

C.2.1 4β-family

For AdS3 × S3 × S̃3 × S1, (5.36) uplifts to

eΦ̂ =
√
∆,

dŝ2s = ℓ2AdSds
2(AdS3) + dθ2 + cos2(θ)dφ2

1 + sin2(θ)dφ2
2 + α−2

(
dθ̃2 + cos2(θ̃)dφ̃2

1 + sin2(θ̃)dφ̃2
2

)
−∆

(
β1 cos

2(θ)dφ1 − β2 sin
2(θ)dφ2 + α−1β̃1 cos

2(θ̃)dφ̃1 − α−1β̃2 sin
2(θ̃)dφ̃2

)2
+∆

(
dy7 − β2 cos

2(θ)dφ1 + β1 sin
2(θ)dφ2 − α−1β̃2 cos

2(θ̃)dφ̃1 + α−1β̃1 sin
2(θ̃)dφ̃2

)2
,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + sin(2θ) dθ ∧ v1 ∧ v2 + sin(2θ̃) dθ̃ ∧ ṽ1 ∧ ṽ2 ,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0,

(C.3)

with the warping factor

∆ =
1

1 + β21 cos
2(θ) + β22 sin

2(θ) + β̃21 cos
2(θ̃) + β̃22 sin

2(θ̃)
, (C.4)
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and the one-forms

v1 =
(
1 + ∆

(
β22 − β21

)
cos2(θ)

)
dφ1 −∆

[
β2dy

7 + (β1β̃1 − β2β̃2) cos
2(θ̃)

dφ̃1

α
+ (β2β̃1 − β1β̃2) sin

2(θ̃)
dφ̃2

α

]
,

v2 =
(
1 + ∆

(
β21 − β22

)
sin2(θ)

)
dφ2 +∆

[
β1dy

7 + (β2β̃1 − β1β̃2) cos
2(θ̃)

dφ̃1

α
+ (β1β̃1 − β2β̃2) sin

2(θ̃)
dφ̃2

α

]
,

ṽ1 =
(
1 + ∆

(
β̃22 − β̃21

)
cos2(θ̃)

) dφ̃1

α
−∆

[
β̃2dy

7 + (β1β̃1 − β2β̃2) cos
2(θ)dφ1 − (β2β̃1 − β1β̃2) sin

2(θ)dφ2

]
,

ṽ2 =
(
1 + ∆

(
β̃21 − β̃22

)
sin2(θ̃)

) dφ̃2

α
+∆

[
β̃1dy

7 − (β2β̃1 − β1β̃2) cos
2(θ)dφ1 + (β1β̃1 − β2β̃2) sin

2(θ)dφ2

]
.

(C.5)
For AdS3 × S3 × T4, its uplift reads

eΦ̂ =
√
∆,

dŝ2s = ℓ2AdSds
2(AdS3) + dθ2 + cos2(θ)dφ2

1 + sin2(θ)dφ2
2 + (dy4)2 + (dy5)2 +

(
dy6)2

−∆
(
β1 cos

2(θ)dφ1 − β2 sin
2(θ)dφ2 + β̃2dy

6
)2

+∆
(
dy7 − β2 cos

2(θ)dφ1 + β1 sin
2(θ)dφ2 − β̃1dy

6
)2

,

Ĥ(3) = 2ℓ2AdS vol(AdS3) + ∆2 sin(2θ)dθ ∧
((

1 + β22 + β̃22
)
dφ1 + (β2β̃1 − β1β̃2)dy

6 − β2dy
7
)

∧
((

1 + β21 + β̃22
)
dφ2 − (β1β̃1 − β2β̃2)dy

6 + β1dy
7
)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0,

(C.6)

with the warping factor now being

∆ =
1

1 + β̃22 + β21 cos
2(θ) + β22 sin

2(θ)
. (C.7)
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C.2.2 Between S3 and S3

The family (5.44) can be embedded in 10d as

eΦ̂ =
√
∆,

dŝ2 = ds2(AdS3) + (dy7)2 + dθ2 + α−2dθ̃2

+∆

(
cos2(θ) cos2(θ̃)

(
dφ1 +

Ξ2

α
dφ̃1

)2

+ sin2(θ) cos2(θ̃)

(
dφ2 −

Ξ4

α
dφ̃1

)2

+ cos2(θ) sin2(θ̃)

(
Ξ4 dφ1 +

1

α
dφ̃2

)2

+ sin2(θ) sin2(θ̃)

(
Ξ2 dφ2 −

1

α
dφ̃2

)2

+ cos2(θ) sin2(θ̃) dφ2
1 + sin2(θ) sin2(θ̃) dφ2

2 +
1

α2
cos2(θ̃) dφ̃2

1

)
,

Ĥ(3) = 2 ℓ2AdS vol(AdS3)

+ ∆2 sin(2θ) dθ ∧
((

1 + Ξ4
2 sin

2(θ̃)
)
dφ1 + Ξ2 cos

2(θ̃)
dφ̃1

α
+ Ξ4 sin

2(θ̃)
dφ̃2

α

)
∧
((

1 + Ξ2
2 sin

2(θ̃)
)
dφ2 − Ξ4 cos

2(θ̃)
dφ̃1

α
− Ξ2 sin

2(θ̃)
dφ̃2

α

)
+∆2 sin (2θ̃) dθ̃ ∧

((
1 + Ξ2

2 cos
2(θ) + Ξ2

4 sin
2(θ)

) dφ̃1

α
+ Ξ2 cos

2(θ) dφ1 − Ξ4 sin
2(θ) dφ1

)
∧
(
dφ̃2

α
+ Ξ4 cos

2(θ) dφ1 − Ξ2 sin
2(θ̃) dφ2

)
,

Ĝ(1) = Ĝ(3) = Ĝ(5) = 0,

(C.8)

with
∆ =

1

1 +
(
Ξ2
2 cos

2(θ) + Ξ2
4 sin

2(θ)
)
sin2(θ̃)

. (C.9)

D Uplift of 6d N = (1, 1) Supergravity

In this appendix we give a self-contained account of the consistent truncation of the NSNS sector of type II
supergravity on a four-torus down N = (1, 1) supergravity in six dimensions. The bosonic fields of the
latter comprise the metric, the dilaton, four one-forms and a two-form,

{gmn, ϕ, Am
a, Bmn}, (D.1)

with indices m,n ∈ J0, 5K and a ∈ J4, 7K. The field strengths associated to the vectors and two-form are

Fmn
a = 2 ∂[mAn]

a and Hmnp = 3 ∂[mBnp] −
3

2
δabA[m

aFnp]
b. (D.2)

The action is given by

S =

∫
d6x

√−g
(
R− ∂mϕ∂

mϕ− 1

4
e−ϕ δab Fmn

aFmn b − 1

12
e−2ϕHmnpH

mnp

)
. (D.3)
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This six dimensional theory can be obtained from the NSNS sector of all superstring theories. The
bosonic field content of this sector is given by a metric, a dilaton and a two-form,

{ĝs µ̂ν̂ , Φ̂, B̂µ̂ν̂}, (D.4)

with indices µ̂, ν̂ ∈ J0, 9K. The field strength associated to the two-form is

Ĥµ̂ν̂ρ̂ = 3 ∂[µ̂B̂ν̂ρ̂]. (D.5)

The action in string frame is given by

S =

∫
d10x

√
−ĝs e−2Φ̂

(
R̂s + 4 ∂µ̂Φ̂∂

µ̂Φ̂− 1

12
Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂

)
. (D.6)

To compactify on the four-dimensional torus T4, we use the index split X µ̂ = {xm, ya}, with index
ranges as before, and drop the dependence of all fields on the internal coordinates ya. We consider the
following Kaluza-Klein Ansätze:

dŝ2s = g̃mn dx
mdxn +Gab

(
dya +A(1) a

m dxm
)(
dyb +A(1) b

n dxn
)
, (D.7)

B̂(2) =
1
2Bmn dx

m ∧ dxn +A
(2)
m b dx

m ∧
(
dyb +A(1) b

n dxn
)
+ 1

2Bab

(
dya +A(1) a

m dxm
)
∧
(
dyb +A(1) b

n dxn
)
,

in terms of a six-dimensional metric g̃mn, two-form Bmn, vector fields A(1) a
m and A

(2)
m a, and scalar fields

Gab = Gba and Bab = −Bba. From a six-dimensional perspective, upon reducing on T4, the ten-dimensional
gravity multiplet (D.4) gives rise to a six-dimensional gravity multiplet coupled to four vector multiplets

GRAV10 → GRAV6 ⊕ 4×VEC6 . (D.8)

The reduced action can be cast in the SO(4,4)-covariant form:

S =

∫
d6x

√
−g̃ e−2Φ

(
R̃+ 4 ∂mΦ ∂

mΦ+
1

8
∂mHAB∂

mHAB − 1

4
HABFmn

AFmnB − 1

12
HmnpH

mnp
)
, (D.9)

with Φ = Φ̂− ln(det(Gab))/2, the vector fields joined into a single SO(4, 4) vector Am
A and the scalar fields

parameterising the coset SO(4, 4)/(SO(4)× SO(4)) through the SO(4, 4) matrix HAB. The three-form is
given by

Hmnp = 3 ∂[mBnp] −
3

2
ηABA[m

AFnp]
B . (D.10)

In a basis where the SO(4, 4) invariant matrix ηMN takes the form

ηAB =

(
0 δa

b

δba 0

)
, (D.11)

the SO(4, 4) fields are parameterised as follows in terms of the Ansätze (D.7)

Am
A =

(
A

(1) a
m

A
(2)
m a

)
, (D.12)
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HAB =

(
Gab −BacG

cdBdb BacG
cb

−GacBcb Gab

)
. (D.13)

If we further move to the Einstein frame by redefining g̃mn → gEmn = e−Φ g̃mn, then

S =

∫
d6x

√−gE
(
RE − ∂mΦ ∂

mΦ+
1

8
∂mHAB∂

mHAB − 1

4
e−ΦHABFmn

AFmnB − 1

12
e−2ΦHmnpH

mnp
)
.

(D.14)
To reduce (D.14) down to the minimal N = (1, 1) theory (D.3), we need to truncate the four vector

multiplets in (D.8). Therefore, we consider the truncation to SO(4) singlets in SO(4, 4). There are two
possible SO(4) factors in SO(4, 4), denoted SO(4)±:15

SO(4)+ × SO(4)− ⊂ SO(4, 4) , (D.15)

which respectively rotate ±1 in the basis in which the invariant SO(4,4) metric is diagonal. Both
truncations (either to singlets of SO(4)+ or the ones of SO(4)−) leave 4 vectors in Am

A and no scalar
in HAB (HAB = δAB), thus reproducing the field content (D.1). The truncation to SO(4)− singlets then
matches the field-strengths (D.2) and the action (D.3) upon identifying

gEmn = gmn , Φ = ϕ . (D.16)

In the basis where ηAB takes the off-diagonal form (D.11), Am
A and HAB are given by

Am
A =

1√
2

(
Am

a

Am
aδab

)
, (D.17)

HAB = δAB, (D.18)

and the field strength (D.10) reduces to (D.2). Therefore, the embedding of the minimal N = (1, 1) theory
in 6d into ten dimensions reads

Φ̂ = ϕ,

dŝ2s = eϕgmn dx
mdxn + δab

(
dya + 1√

2
Am

a dxm
)(

dyb + 1√
2
An

b dxn
)
,

B̂(2) =
1
2 Bmn dx

m ∧ dxn + 1√
2
δabAm

a dxm ∧ dyb . (D.19)

The global SO(4) symmetry of D = 6 N = (1, 1) supergravity can then be understood as coordinate-
independent rotations preserving δab, and thus becomes a gauge symmetry in the full ten dimensional
description.
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