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Abstract

Simulating long-range interacting systems is a challenging task due to its computational
complexity that the computational effort for each local update is of order O(N), where
N is the size of the system. In this work, we introduce the clock factorized quantum
Monte Carlo method, an efficient technique for simulating long-range interacting quan-
tum systems. The method is developed by generalizing the clock Monte Carlo method
for classical systems [Phys. Rev. E 99 010105 (2019)] to the path-integral representation
of long-range interacting quantum systems, with some specific treatments for quantum
cases and a few significant technical improvements in general. We first explain how
the clock factorized quantum Monte Carlo method is implemented to reduce the com-
putational overhead from O(N) to O(1). In particular, the core ingredients, including
the concepts of bound probabilities and bound rejection events, the recursive sampling
procedure, and the fast algorithms for sampling an extensive set of discrete and small
probabilities, are elaborated. Next, we show how the clock factorized quantum Monte
Carlo method can be flexibly implemented in various update strategies, like the Metropo-
lis and worm-type algorithms. Finally, we demonstrate the high efficiency of the clock
factorized quantum Monte Carlo algorithms using examples of three typical long-range
interacting quantum systems, including the transverse field Ising model with long-range
z-z interaction, the extended Bose-Hubbard model with long-range density-density in-
teractions, and the XXZ Heisenberg model with long-range spin interactions. We expect
that the clock factorized quantum Monte Carlo method would find broad applications in
statistical and condensed-matter physics.
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1 Introduction20

Markov-chain Monte Carlo methods (MCMC) are highly valuable tools across numerous fields21

of science and engineering [1–8], particularly for estimating high-dimensional integrals. These22

methods rely on statistical sampling approaches that generate a large number of random con-23

figurations of the system being studied. Each configuration has a stationary distribution or24

weight, which is usually a Boltzmann distribution. The generation of subsequent configu-25

rations depends on the resulting changes in energy. These configurations are then used to26

estimate the properties of the system, such as its energy and other observables.27

Despite a long history, the founding Metropolis algorithm remains the most successful and28

influential MCMC method due to its generality and ease of use. It is a family of MCMC meth-29

ods that adopt local update strategies and the so-called Metropolis acceptance filter. Quantum30

Monte Carlo (QMC) methods using local updating schemes are a powerful tool for study-31

ing quantum systems and have continued to evolve with the development of numerous algo-32

rithms, such as path-integral Monte Carlo (PIMC), variational Monte Carlo (VMC), diffusion33

Monte Carlo (Diffusion MC), determinant Monte Carlo (detMC), Diagrammatic Monte Carlo34

(DiagMC) and so on. QMC has been successfully applied to various systems, including the35

Hubbard model, t − J model, the polaron model, Ising, XY , and the Heisenberg model.36

Despite the significant advancements made, there remain several challenges that are yet37

to be overcome in computational simulations. The core challenging problem in computational38

simulations is so-called the exponential wall. One example of this problem in classical systems39

is to simulate spin-glass systems, where the free energy landscape of the systems is character-40

ized by a large number of local minima, or energy valleys, separated by high energy barriers,41

leading to exponentially increasing computational cost as the system size increases. As the42

system is cooled to lower temperatures, it becomes increasingly difficult to escape from these43

local minima and find the true ground state. In the quantum case, a similar problem is the44

sign problem, which arises when QMC algorithms have to generate negative weights for certain45

configurations, leading to inaccurate estimates of the expectation value of observables.46

2



SciPost Physics Submission

The second challenge lies in simulations experiencing critical slowing-down as they ap-47

proach phase transitions, where nearby samples can be highly correlated, and simulation ef-48

ficiency decreases rapidly as the system size increases. Enormous effort has been devoted to49

circumventing this limitation. Various efficient update strategies have been designed, includ-50

ing the cluster [9,10], direct-loop [11], event-chain [12], and worm algorithms [13].51

Another challenge is the computational complexity associated with simulating systems52

with long-range interactions, which can require calculating the induced total energy change53

for each attempted move and lead to expensive computational costs of up to O(N) per lo-54

cal attempt, where N is the system size. Several techniques are also available to reduce the55

computational complexity of specific algorithms and systems. In the worm algorithm with56

DiagMC [14], the attractive part of the pairwise potential energy is expanded into diagram-57

matic contributions, which affords a complete microscopic account of the long-range part of58

the potential energy while keeping the computational complexity of all updates independent59

of the size of the simulated system. In the cluster-updates scheme [15], an efficient sampling60

procedure is to place occupied bonds, rather than visiting each bond sequentially and throw-61

ing a random number to decide its status. The event-chain Monte Carlo method combines the62

factorized Metropolis filter and Walker’s alias and has primarily been successfully utilized in63

the fields of physics and chemistry [12,16–18].64

Recently, Ref [19] proposed a generic clock Monte Carlo method for classical systems, us-65

ing the factorized Metropolis filter to reduce the computational complexity to O(1) and offers66

significant benefits in terms of simulation efficiency. The basis of the clock Monte Carlo method67

is the so-called factorized Metropolis filter proposed in Ref [20]. Unlike the Metropolis filter68

where the acceptance probability PMet is determined by the total induced energy change, the69

factorized Metropolis filter factorizes the acceptance probability as Pfac =
∏

P j , where factor70

P j is given by the induced energy change for the associated interaction term j . Namely, all71

interaction terms are treated independently, and each of them contributes a factor to the over-72

all acceptance probability Pfac. As a consequence, in the stochastic determination of the fate73

(acceptance or rejection) of the attempted move, any single rejection from one of the factors,74

P j , would be sufficient to reject the attempted move. Making use of the independence of these75

factors, one can define a set of first-rejection events and design a random process for sampling76

these first-rejection events. However, direct sampling of these events is computationally ex-77

pensive because P j depends on the local configuration associated with the interaction term j .78

This obstacle is addressed by the clock technique which samples a set of bound first-rejection79

events independent of configurations and utilizes a resampling procedure to recover the orig-80

inal probability distribution for first-rejection events [19]. Note that there exist efficient algo-81

rithms for sampling configuration-independent discrete probability distributions with O(1) or82

O(log N) computational efficiency, e.g., Walker’s alias method or the thinning method. Thus,83

unlike the standard Metropolis filter of O(N) computational complexity, the factorized filter84

combined with the clock technique may lead to a sampling process of dramatically reduced85

effort. In short, thanks to the factorized Metropolis filter, the fate of an attempted move can be86

efficiently determined by a sampling process of first-rejection events, leading to a significant87

increase in simulation efficiency. The clock Monte Carlo method demonstrates O(1) compu-88

tational complexity on several classical long-range interacting systems [19].89

In this work, inspired by the clock Monte Carlo method for classical systems, we adopt the90

factorized Metropolis filter to the PIMC method and propose a generic Monte Carlo scheme91

for simulating long-range interacting quantum systems, which we call the clock factorized92

quantum Monte Carlo method.93

First, we introduce the concept of the recursive clock sampling scheme, which can con-94

sidered as a generalization of the aforementioned clock technique. It can be interpreted as a95

recursive sampling process on a tree structure. We further show that the factorized Metropolis96
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filter and the recursive clock sampling technique can be properly applied to generic configura-97

tion weights and non-symmetric proposal probability. Moreover, implementing the recursive98

clock sampling scheme using the dynamic thinning method [21] is discussed in detail. We also99

note that, with the dynamic thinning method, the Luijten-Blöte cluster method can be signifi-100

cantly improved [22], of which the formulation becomes very simple and generic. In addition,101

there is no need to build a lookup table or use discrete cumulative probability integration102

approximations to sample bond generation events.103

Second, we apply the recursive clock sampling method to the path-integral representa-104

tion of quantum systems. Note that our method allows for the factorization of the non-105

diagonal term and the proposal probability associated with the update. Hence, the recursive106

clock sampling process can be integrated with various update strategies, including conven-107

tional Metropolis-type local updates, cluster updates, worm-type updates, etc, and it can deal108

with long-range interactions (diagonal terms) as well as long-range hopping amplitudes (non-109

diagonal terms). For the diagonal term, the dynamic thinning method can be applied when110

utilizing recursive clock sampling for the long-range interaction terms. For the non-diagonal111

term, when the dynamic thinning method is not directly applicable, we can combine Walker’s112

alias method to increase the overall acceptance rate. Particularly, we consider three typical113

systems and apply the recursive clock sampling process in various update schemes: (i) the114

transverse field Ising model with long-range z-z interactions using local Metropolis-type up-115

date, (ii) the extended Bose-Hubbard model with long-range density-density interaction using116

worm update, and (iii) the long-range XXZ Heisenberg model using worm update with long-117

range hopping. We perform extensive benchmark simulations on systems of various sizes L in118

both two dimensions (2D) and three dimensions (3D) and achieve the expected O(1) com-119

putational efficiency. In particular, we demonstrate the overall efficiency improvement from120

O(N) to O(1), which takes into account the enhancement of computational complexity and121

the decrease of acceptance probability.122

Finally, we mention that, in comparison with the standard Metropolis filter, the factorized123

Metropolis filter has a smaller acceptance probability, since the energy compensation between124

different interaction terms is absent in the latter. This price is probably why the latter was125

proposed about 60 years later than the former. For a system that satisfies the absolute en-126

ergy extensively, both the acceptance probabilities, PMet and Pfac, are of O(1), thus the price127

is minor [19]. However, for some frustrated systems with slowly-decaying interactions, the128

factorized probability Pfac may decrease as system size increases. To (partially) overcome this129

problem, one can group several interactions that are likely to have energy compensation into130

a single factor such that their total induced energy change would benefit from energy compen-131

sation and lead to a higher acceptance probability. This trick is called the box technique [19].132

The standard Metropolis filter is recovered in the limiting case that all the interaction terms133

are in a single box.134

The clock factorized QMC method is expected to have wide-ranging applications in the135

field of physics with long-range interactions. For example, the Coulomb interaction between136

charged particles is a long-range interaction that plays a fundamental role in electrostatics.137

This interaction is responsible for many phenomena in physics, including the behavior of138

plasma and the formation of crystals [23,24]. Another essential interaction is the magnetic or139

electronic dipolar interaction, which plays an important role in the behavior of ferromagnetic140

materials [25–27]. In addition to these examples, long-range interactions can also have im-141

portant effects on fluid dynamics. For instance, the van der Waals force between molecules is a142

long-range interaction that can cause fluids to condense into a liquid or solid phase [28]. The143

long-range Ising model with trapped-ion quantum simulators is another type of long-range in-144

teraction, which has the potential to advance our understanding of fundamental physics and to145

pave the way for new technologies such as quantum computing [29,30]. Understanding these146
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interactions is essential for comprehending many physical phenomena and developing new147

technologies. Our algorithm can be applied to various physical systems that involve long-range148

interactions, enabling researchers to obtain accurate and reliable results within a reasonable149

computational time in their simulations.150

The rest of this paper is organized as follows. In Section 2, we present the basic idea151

of the recursive clock sampling. In Section 3, we present the implementation of a recursive152

clock sampling scheme. Section 4 contains the clock factorized quantum Monte Carlo (clock153

factorized QMC) algorithms. Section 5 discusses more possible implementations of the clock154

factorized QMC method and concludes the paper.155

2 Clock Sampling for proposed updates156

2.1 Metropolis Filter and Computational Complexity157

Markov Chain Monte Carlo (MCMC) methods are powerful computational tools for simulating158

complex systems in diverse scientific fields [1–8]. They can efficiently sample complex, high-159

dimensional probability distributions that are difficult to generate directly. In physical simula-160

tions, MCMC generates a chain of configurations whose equilibrium distribution approximates161

the thermodynamic ensemble of the physical model. New configurations are generated via a162

Markov process in which the transition probability of the next configuration depends only on163

the preceding one. In order for MCMC to reach equilibrium, two conditions must be met:164

ergodicity and the global balance condition. Ergodicity demands that MCMC can eventually165

explore all possible configurations of the system, while the global balance condition requires166

the total flow into a configuration must equal the total flow out of it,167

∑

S′
π (S)P
�

S → S′
�

=
∑

S′
π
�

S′
�

P
�

S′→ S
�

, (1)

where π (S) (π (S′)) is the probability weight of configuration S (S′), and P (S → S′) repre-168

sents the transition probability from configuration S to S′. In practice, instead of Eq. (1), the169

detailed balance condition is much more often imposed, which requires the flows between any170

two configurations to be equal,171

π (S)P
�

S → S′
�

= π
�

S′
�

P
�

S′→ S
�

. (2)

It is stronger than the global balance condition since it guarantees that the transitions between172

states are reversible, ensuring proper convergence to the target distribution.173

The Metropolis algorithm. Among various MCMC methods, the Metropolis algorithm is174

probably the most successful and influential one. First introduced by Metropolis et al. in175

1953 [31], this algorithm has significantly impacted numerous fields, including physics [1],176

computational chemistry [32], and Bayesian inference [33]. In the Metropolis algorithm, each177

elemental Markov step is executed in two sub-steps: proposal of a local update and stochastic178

determination of the fate (acceptance or rejection) of the proposed update. In a transition from179

configuration S, the algorithm proposes a new state S′ and then decides whether to accept or180

reject the update based on an acceptance probability. The proposal sub-step exhibits both lo-181

cality and symmetry. The locality implies that the new configuration S′ is selected from a finite182

range of configurations in the proximity of the initial configuration S. Meanwhile, symmetry183

means that the likelihood of choosing S′ from S is identical to that of S from S′. Consider a184

physical system whose configurations obey Boltzmann distribution π (S) = exp (−βE), where185

β denotes the inverse temperature and E is the total energy of the configuration. The accep-186
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tance probability for an update from S to S′ is187

PMet =min
�

1,
π(S′)
π(S )

�

= exp
�

−β [∆Etot]
+� , (3)

with [x ]+ ≡ max (0, x ) and ∆E = E (S′) − E (S) being the total energy difference between188

the two configurations. This expression, known as the Metropolis filter, satisfies the detailed189

balance condition in Eq. (2). In practice, the proposed update is accepted if a uniform random190

number ran ∈ [0,1) satisfies ran < PMet. Otherwise, it is rejected.191

The Metropolis-Hastings algorithm is a generalized Metropolis algorithm by introducing a192

priori proposal distribution A(S → S′) [34]. The new configuration S′ is proposed from S193

according to A(S → S′) and the transition probability becomes P(S → S′) = A(S → S′)194

×P (S → S′). The acceptance probability is given by,195

PM-H =min
�

1,
A(S′→ S)
A(S → S′)

π(S′)
π(S )

�

(4)

This algorithm allows more flexibility in proposal distribution, making it more efficient when196

sampling complex systems. In some cases, minor modifications in the algorithm, arising from197

a proper choice of A, may lead to O(1) but significant improvement of efficiency.198

Computational Complexity. Despite its success in various domains, the Metropolis algo-199

rithm encounters a significant computational bottleneck when dealing with long-range in-200

teractions. Consider a long-range interacting classical system with N sites, where each site201

interacts with the remaining N − 1 sites, resulting in a total of N(N − 1)/2 interacting pairs.202

At each step of the Metropolis algorithm, one randomly selects a site i and updates its state.203

The induced total energy change is the sum of energy difference due to N−1 involved pairwise204

interactions between site i and j , ∆Etot ≡
∑

j ∆E j . The acceptance probability for the local205

update is,206

PMet = exp



−β





∑

j

∆E j





+

 (5)

Despite the simple form of Eq. (5), implementing the Metropolis filter requires calculating the207

total energy change for N−1 interaction pairs, resulting in an expensive O(N) computational208

overhead. Consequently, long-range interactions can lead to significant performance issues,209

rendering the algorithm impractical for large-scale simulations.210

This issue is even worse in the path-integral Monte Carlo (PIMC) methods when simulat-211

ing long-range interacting quantum systems. PIMC methods involve mapping a d-dimensional212

quantum model onto a (d + 1)-dimensional classical system upon a specific expansion basis.213

The additional dimension is the imaginary-time (τ) direction, where continuous worldlines214

represent the state of each lattice site. In the path-integral formulation, the partition func-215

tion of the quantum model can be seen as the weighted sum over all possible configurations216

in (d + 1)-dimensional space-time. By sampling these configurations, the PIMC method can217

accurately determine the thermodynamic properties of the quantum model.218

Given an expansion basis, the Hamiltonian of a quantum model can be divided into a diag-219

onal term and a non-diagonal term, H = K̂ + Û . Consider a long-range interacting quantum220

model with N site and pairwise long-range interactions in the diagonal term, H = K̂+
∑

i, j Ûi j .221

The probability weight of a configuration S can be expressed as:222

W (S) = K (S)exp [−U (S)] . (6)
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Here, K (S) is the weight factor due to off-diagonal terms, and U (S) is the total potential223

energy of long-range diagonal interactions,224

U (S) =
∑

i, j

∫ β

0

Ui j(τ)dτ (7)

Ui j(τ) is interaction energy between site i and j at imaginary-time τ.225

The Metropolis algorithm can be used in PIMC. Consider a local update S → S′ that only226

changes the potential energy of the configuration. The state on the i-th site within a certain227

imaginary-time interval [τ1,τ2] is modified. The Metropolis filter of this update is,228

PMet = exp



−





∑

j

∆U j





+

 (8)

where ∆U j =
∫ τ2

τ1

�

Unew
i j
(τ)−Uold

i j
(τ)
�

dτ, is the energy change induced by the interaction229

between worldline i and j within the time interval [τ1,τ2]. As in the classical case, imple-230

menting Eq. (8) requires evaluating the total energy difference, which has a computational231

complexity of O(N). One must search for the states between τ1 and τ2 on worldlines that232

interact with the i-th site and perform N−1 integrations. However, the need for state searches233

and integrations makes this process more computationally demanding than the classical case.234

This computational complexity underscores the need for more efficient approaches to handling235

long-range systems in PIMC simulations to advance further our understanding of the behavior236

of many-body quantum systems.237

2.2 Factorized Metropolis filter238

Although using the Metropolis filter in various MCMC simulations has long been a conven-239

tional practice, physicists developed acceptance probability of other forms, such as the heat-240

bath algorithm [35]. A recent work by M. Manon et al. [36] introduces a new type of accep-241

tance probability, named the factorized Metropolis filter, by factoring the Metropolis filter. It is242

the foundation of the event-chain Monte Carlo (ECMC) method [36–38], an irreversible and243

rejection-free MCMC algorithm. Instead of the detailed balance, the maximal global balance244

is fulfilled in this algorithm, where the probability flow between two configurations is unidi-245

rectional, and the flow back to the same configuration is forbidden. The factorized Metropolis246

filter offers a more flexible interpretation of the sampling process and opens up new possibili-247

ties for designing efficient MCMC algorithms.248

In a long-range interacting classical system with N sites, a local update on the i-th site is249

subject to the Metropolis filter described in Eq. (5). By factoring out the summation of pairwise250

energy changes, one obtains the factorized Metropolis filter for this update,251

Pfac =
∏

j

exp
�

−β
�

∆E j
�+� ≡
∏

j

P j (9)

This acceptance probability, which is the product of independent factors P j ≡ exp
�

−β
�

∆E j
�+�

,252

also fulfills the detailed balance condition.253

To determine the fate of a proposed update using the factorized Metropolis filter, one can254

straightforwardly compute the value of Pfac and decide whether to accept the update based on255

it; however, this method requires exactly N−1 energy evaluations, which offers no advantages256

over the original Metropolis filter. Furthermore, it might result in a lower overall acceptance257

rate due to the lack of compensation between different ∆E j terms.258
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Instead of considering Eq. (9) as a single trial with only acceptance or rejection, one can259

view the factorized filter as a series of N − 1 independent trails with probability P j . Factor260

P j is the probability of accepting the update by the energy change ∆E j resulting from the261

interaction between site i and j . A slightly cleverer method, as shown in algorithm 1, takes262

advantage of the independence of factors: for a proposed update, one performs sequential263

tests on all P j and rejects the update if any of the tests fail. The proposed update is accepted if264

and only if all the factors give permission, known as the consensus rule. This method requires265

more random numbers but allows for on-the-fly energy calculation of ∆E j . Since the first266

rejected factor will reject the entire update, the number of ∆E j evaluated for rejection is less267

than or equal to N −1. Nevertheless, one must still compute all ∆E j to accept an update, and268

the average complexity of this implementation remains O(N).269

Although the factorized Metropolis filter does not immediately solve the computational270

complexity overhead, it provides a more flexible interpretation of the sampling process of271

an update’s fate, which enables us to develop an efficient sampling scheme for long-range272

interacting systems.273

2.3 Recursive clock sampling274

In this subsection, we extend the clock sampling [19] to long-range interacting quantum mod-275

els. The term recursive clock sampling is adopted to better elaborate the sampling process.276

This process is used to determine the fate of the attempted update, which substantially re-277

duces the computational overhead arising from long-range interactions. Rather than employ-278

ing the Metropolis filter with only binary outcomes (acceptance or rejection), the clock sam-279

pling scheme determines an update’s fate using the factorized Metropolis filter by sampling280

from a probability distribution of clocks. These clocks describe the possible outcomes of the281

factorized Metropolis filter. They are efficiently sampled by formulating them into a tree-like282

structure, enabling the sampling process to be largely configuration-independent and circum-283

venting costly energy evaluations.284

In the remainder of this section, we elucidate the recursive clock sampling scheme for pro-285

posed updates within the PIMC framework. To simplify the explanation, let us consider a local286

update on the i-th worldline in a long-range interacting quantum system that only changes287

the configuration’s diagonal potential energy. The acceptance probability of the update is gov-288

erned by the factorized Metropolis filter,289

Pfac =
∏

j

exp
�

−
�

∆U j
�+� ≡
∏

j

P j , (10)

where P j ≡ exp
�

−
�

∆U j
�+�

is the j -th factor defined as the probability of the update being290

accepted by the j -th energy difference ∆U j . Here, j = 1, 2, . . . N −1 represents the indices of291

the neighboring worldlines that interact with the i-th worldline, and ∆U j denotes the corre-292

sponding energy changes induced by the update.293

Algorithm 1: Factorized Metropolis Filter

for j = 1 to N − 1 do
Evaluate P j ;
if ran > Pj then

return False; // Rejection
end

end
return True; // Acceptance

8
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(b)
𝐶0 1

𝐶0 2

𝐶0 𝑋1

𝐶0 𝑁 − 1

1 − 𝑝𝑋1,𝑟𝑒𝑙

𝑝𝑋1,𝑟𝑒𝑙

1 − 𝑝𝑛 ,𝑟𝑒𝑙

𝑝𝑛 ,𝑟𝑒𝑙
Recursive 

Clock
Sampling

Accept Reject

Not checked

(a)

Figure 1: (a) In the clock sampling process, one determines the fate of a proposed
update by sampling clocks from the probability distribution C(X), X ∈ [0, N]. Each
clock represents a possible outcome of the factorized Metropolis filter. The first N−1
clocks is the first rejection events and the clock hand points the first rejecting fac-
tor. The last clock is the acceptance events where all factors permit the update. (b)
Schematic illustration of the recursive sampling process of the first-bound-rejection
events on a tree structure.

The clock sampling scheme comprises two major components: firstly, the acceptance-294

rejection of an update is identified as a set of first-rejection events, and then a recursive295

sampling scheme is formulated to sample the probability distribution formed by these events296

efficiently.297

First-rejection events. In order to map the acceptance-rejection of a proposed update to a298

set of events, we observe that Eq. (10) has a production form. Thus, P j can be seen as the299

probability of the successful outcome of an independent Bernoulli trial associated with the300

interaction between i and j . In this context, a Bernoulli trial refers to a random experiment301

with two possible results: “acceptance" and “rejection". In other words, in the factorized302

Metropolis filter, each interaction can independently determine whether to accept or reject the303

update according to the corresponding P j . Hence, instead of a single trial with probability Pfac,304

we can perform a sequence of N − 1 independent trials, each with acceptance probability P j ,305

with in total 2N−1 possible outcomes. Pfac can be defined as the probability of the acceptance306

event where all N − 1 experiments give “acceptance". Meanwhile, the update is rejected if307

any of the experiments fail. Since the trails are performed sequentially, we can then define308

the first-rejection event, where the X -th factor in the factorized Metropolis filter is the first to309

reject the update. Once a first-reject event is identified, the update is rejected, regardless of310

the remaining trails. The probability of the first rejection event at the j -th factor is given by,311

Prej( j) = h j

j−1
∏

k=1

(1− hk) (11)

Here, h j is the hazard rate of Prej( j) [39], and we identify the hazard rate h j ≡ 1 − P j as312

the probability of the update being rejected by the j -th factor. Within this formulation, the313
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probability of the acceptance event is,314

Pacc =
N−1
∏

k=1

(1− hk) (12)

The rejection and acceptance events can be clearly illustrated using the clocks in Fig. 1(a). The315

j -th index on the clock dial symbolizes the j -th factor P j . The hand of a clock points to the first-316

rejecting factor, where all preceding factors permit the updates, and those following it are not317

checked. When there is no clock hand, all factors accept the update, and the clock represents318

the acceptance events. In this context, the term clock alludes to the potential outcomes of the319

factorized Metropolis filter. Instead of sequentially checking each factor, the clock sampling320

process aims to sample the probability distribution formed by these clocks directly:321

C(X) =
¨

Prej(X), if 1 ≤ X ≤ N − 1

Pacc, if X = N
(13)

If the sampled clock alarms a first-rejecting event, then the update is rejected immediately,322

while if the acceptance clock is generated, the update will be directly accepted.323

In conclusion, through the above mapping, we convert the sampling of factorized Metropo-324

lis filter in Eq. (10) into the task of sampling the discrete probability distribution C(X) of size325

N with hazard rate h j .326

The recursive clock sampling scheme. The straightforward sampling scheme of distribution327

C(X) involves sequential tests of each hazard rate h j . However, it is worth noting that the328

rejection probabilities h j for long-distance interactions decay algebraically with the system329

size, making rejections for long-range interactions very unlikely to occur. Additionally, as330

the system size increases, the leading term of C(X) also exhibits a power-law decay. This331

implies that first-rejection events are most likely to occur for interactions in the proximity of332

the updated worldline and there is no need to test for all factors in the tail. Instead, we can333

sample the distribution of C(X) directly.334

Various methods exist for sampling a discrete probability distribution, such as the inver-335

sion method and Walker’s alias method [40, 41]. However, these methods cannot be directly336

applied because C(X) is configuration-dependent, as the hazard rates h j are calculated from337

the configurations S and S′, which vary during the MC simulation. Consequently, any method338

that requires the knowledge of all N − 1 hazard rates will have at least O(N) complexity and339

will not be more efficient than the original Metropolis method.340

To address this limitation and circumvent expensive energy evaluations, we demonstrate341

the recursive clock sampling process where configuration-independent distributions are sam-342

pled recursively to sample the target distribution of the clock. First, let us introduce a con-343

figuration-independent probability ĥ j ≥ h j for each factor, named bound hazard rate. This344

probability is determined by considering the “worst possible" local configuration that can lead345

to the largest energy change ∆Û j after applying the update. A two-step process is used to346

determine whether a factor j accepts the update. The first step is a bound trial with a re-347

jection probability of ĥ j . The outcome can be either bound acceptance or bound rejection.348

A bound acceptance means that the update is accepted in this trial for the worst case, and349

thus, it implies a true trial acceptance, with no need to examine the associated local config-350

uration. In contrast, when a bound trial rejection occurs, one has to compute the actual and351

configuration-dependent rejection probability h j , and sample the true rejection with relative352

probability,353

p j ,rel = h j/ĥ j (14)

There are three potential outcomes at each factor j :354
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1. Bound acceptance: the update is accepted with 1− ĥ j .355

2. Relative acceptance: the update is first bound rejected with ĥ j and then accepted with356

relative probability 1− p j ,rel.357

3. True rejection: the update is rejected with both ĥ j and p j ,rel.358

Both bound acceptance and relative acceptance contribute to the overall acceptance of factor359

j , so the acceptance probability of factor j is still 1 − ĥ j + ĥ j(1 − p j ,rel) = 1 − h j . Mean-360

while, the true-rejection event is equivalent to the original rejection event with probability,361

ĥ j × p j ,rel = h j . Since the individual acceptance-rejection probability of each factor remains362

unchanged, one can conclude that introducing the bound hazard rate does not change the363

final fate of the update.364

A vital characteristic of this two-step sampling scheme is that the hazard rate h j is evalu-365

ated when the update is bound rejected at factor j . Therefore, we can define a non-homogeneous366

Bernoulli process with hazard rate ĥ j to generate bound-rejection events and determine whether367

these factors truly reject the update. For a bound-rejection event at factor j , the correspond-368

ing relative probability is computed to test if this factor genuinely rejects the update. If it is369

not a true rejection event (i.e., the update is accepted with relative probability 1− p j ,rel), the370

process has to continue to sample the next bound-rejection events. Let us define C̃X ′ (X) as the371

probability of the next bound-rejection event occurring at factor X provided that the current372

bound-rejection event occurs at factor X ′:373

C̃X ′ (X) = ĥX

X−1
∏

j=X ′+1

(1− ĥ j) (15)

The corresponding bound-acceptance event is then,374

C̃X ′,acc =
N−1
∏

j=X ′+1

(1− ĥ j) (16)

Similar to the first-rejection event case, these events form a probability distribution of size375

N−X ′. By recursively sampling these distributions and the corresponding relative probability,376

one can efficently sample the target distribution C(X).377

As demonstrated in Fig. 1 (b), the recursive clock sampling scheme can be viewed as a sam-378

pling process on a tree structure. Starting at the first level, one generates a bound-rejection379

event at factor X1 according to the configuration-independent distribution C̃0 (X1) and performs380

the rejection test with probability pX1,rel. If factor X1 does not truly reject the update, one goes381

to the next level and generates the next bound-rejection event relative to X1. This process is382

recursively performed, generating a series of bound-rejection events at factor {X1, X2, X3, · · · },383

and until the first actual rejection occurs at specific Xrej or the update is accepted by all P j . The384

bound rejection does not change the actual rejection probability at each factor; therefore, this385

sampling scheme yields the same probability distribution for the first-rejection event C(X). At386

each level, the energy evaluation is performed only once, making the computation complexity387

C the average number of levels during the sampling process. We define the bound consensus388

probability PB =
∏

(1− ĥ j) as in Ref. [19], and the complexity scales as C ∼O(ln PB/ ln Pfac).389

If the bound consensus probability PB scales with N as Pfac, the clock sampling scheme has a390

computational complexity of O(1). Moreover, C̃X ′ (X) is configuration-independent distribu-391

tion at each level, and several techniques exist to sample it efficiently. Consequently, the clock392

sampling scheme substantially reduces the computational complexity of long-range interac-393

tions.394
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Algorithm 2: Recursive Clock Sampling Scheme

j ← 1;
while j ≤ N do

Generate the next bound-rejection event at j ′ according to Eq. (15);
j ← j ′;
if ran < p j ,rel then

return Reject; // Rejection
end

end
return Accept; // Acceptance

Off-diagonal weights and general proposal probabilities. In the preceding discussion, we395

focus on a simple scenario where the proposed update only changes the diagonal long-range396

interaction term of the configuration weight, assuming a symmetrical proposal distribution.397

However, in the path-integral representation, it is essential for an ergodic update scheme to398

modify off-diagonal terms of the configuration as well. Furthermore, the proposal probabilities399

of updates are typically asymmetrical and non-trivial. Therefore, it is crucial to generalize the400

clock sampling to accommodate such cases.401

Without loss of generality, let’s consider an update that changes the off-diagonal terms of402

the configuration weight, K(S) → K(S′) and has a proposal distribution A(S → S′). The403

acceptance probability of such an update is given by,404

PM-H =min
�

1,
A(S′→ S)K(S′)
A(S → S′)K(S)

exp (−∆U)
�

, (17)

with ∆U =
∑

j U j . Therefore, by further factoring out the proposal probabilities and the405

off-diagonal weights, we obtain the factorized filter:406

Pfac = PA

N−1
∏

j=1

P j (18)

In this factorization, an additional factor PA is introduced to account for the off-diagonal407

weights and the proposal distribution of the update, which is given by,408

PA =min
�

1,
A(S′→ S)K(S′)
A(S → S′)K(S)

�

(19)

Furthermore, the factor PA can be formulated with great flexibility. One can incorporate the409

local diagonal terms of the Hamiltonian into PA, such as on-site potentials, so that PA re-410

sembles the original acceptance probability excluding the energy changes due to long-range411

interactions.412

It can be challenging to determine a configuration-independent bound hazard rate ĥA for413

PA since it relies on the specific details of the update scheme. One possible approach to address414

this issue is to conduct an initial trial with acceptance probability PA at the beginning of the415

clock sampling. If this preliminary trial fails, the update is rejected immediately. Otherwise,416

one proceeds to generate bound rejection events for P j factors. This strategy effectively treats417

PA as the first factor in the sampling process and set ĥA = 1. By employing this strategy, the418

clock sampling can be seamlessly integrated with different update schemes, thereby enhancing419

the overall efficiency of the algorithm.420
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Box Technique. A side effect of using a factorized Metropolis filter is that the overall accep-421

tance probability may decrease due to factorization. This can be observed from the following422

inequality:423





∑

j

∆U j





+

≤
∑

j

�

∆U j
�+

(20)

As a result, the overall acceptance probability of the factorized Metropolis filter is always less424

than that of the Metropolis filter. However, this is not a problem in most cases, except in glassy425

systems where ∆U j can cancel each other dramatically. In such situations, the box technique426

can help alleviate the problem. The boxing technique takes advantage of the fact that the427

factorized Metropolis filter can be constructed with considerable flexibility: each factor P j428

may contain an arbitrary number of interactions. For instance, interactions can be grouped429

into Nb boxes with tunable sizes Bb, and the filter becomes:430

PBox
fac =

Nb
∏

b=1

exp



−





Bb
∑

j=1

∆U j





+

 (21)

When Nb = 1, the factorized Metropolis filter reduces to the original Metropolis filter since431

all interactions are in a single factor. The detailed balance condition will always be satisfied432

regardless. This leads to new optimization possibilities, which can be particularly useful in the433

case of glassy systems.434

In summary, the recursive clock sampling process is an efficient sampling scheme to deter-435

mine the fate of an attempted update in a long-range quantum system. It offers three major436

benefits: (i) Reduced computational complexity: The clock sampling process dramatically re-437

duces the computational complexity per update from O(N) to O(Nκ) (0 ≤ κ ≤ 1). In most438

cases, O(1) update complexity can be achieved. (ii) Flexible update scheme: the clock sam-439

pling process is not limited to any specific update scheme. It can be integrated with various440

update strategies to enhance algorithm performance. (iii) Box technique: the clock sampling441

process can be constructed in various ways enabling further optimization for specific models.442

The interactions in the Hamiltonian can be grouped into boxes of tunable sizes to increase443

the overall acceptance rate. By reducing the computational complexity of the Metropolis fil-444

ter’s long-range interaction terms, the proposed clock sampling scheme allows for the efficient445

exploration of a diverse array of fascinating physical phenomena in long-range interacting446

systems.447

3 Efficient Implementation of Recursive Clock Sampling448

This section delves into the implementation of the recursive clock sampling scheme. Specifi-449

cally, we focus on efficiently generating the bound-rejection events from a probability theory450

perspective. As discussed in the previous section, the recursive clock sampling process relies on451

recursively sampling a tree structure of bound-rejection events, significantly reducing compu-452

tational complexity. At each iteration, one generates the next bound-rejection event at factor453

X according to the configuration-independent distribution given by Eq. (15). Hence, to obtain454

an optimized implementation of the clock sampling scheme, we seek an efficient and robust455

method capable of generating these events.456

In the context of probability theory, this is the famous problem of discrete random variate457

generation, which has been studied for many years [39,42]. A discrete random variate X takes458
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only integer values in a finite set, such as k ∈ 1, 2, . . . ,n. Its distribution follows the probability459

mass function (PMF) denoted as p(k) = P(X = k), where P(X = k) is the probability of X460

taking the value k. In the subsequent discussion of this section, we define X as a discrete461

random variable that describes the next bound-rejection events, with its value being indices462

of the factor where the next bound-rejection occurs, and its corresponding PMF p(k) satisfies463

Eq. (15).464

Various algorithms exist to sample discrete random variates. However, p(k) exhibits two465

special intrinsic features. First, p(k) changes during the simulation to ensure optimal perfor-466

mance. Although p(k) is configuration-independent, the bound hazard rate should be chosen467

based on the detail of the update, such as the update’s range in the τ-direction. In addition,468

the distribution of bound rejection events is also different at each level of a clock sampling469

process. Secondly, p(k) is a distribution whose probability is not known explicitly. For a given470

update, ĥ j can be directly computed for any index j , while the probability of a particular471

bound-rejection event is difficult to calculate. We identify ĥ j as the hazard rate function of472

distribution p(k) from the definition. Thus, p(k) is a distribution with known hazard rates.473

When sampling p(k), these two properties must be considered.474

This section briefly introduces a class of algorithms suitable for sampling p(k), named the475

thinning methods. Lastly, we thoroughly explain our implementation of the clock sampling476

scheme using the thinning method and provide pseudocode for added clarity.477

Thinning Method. The bound rejection event is described by a distribution p(k) with478

known hazard rate ĥk .479

p(k) =

¨

ĥk
∏k−1

j

�

1− ĥ j
�

, if k ∈ [1, N − 1]
∏N−1

j=1

�

1− ĥ j
�

, if k = N
(22)

A straightforward algorithm to sample the above distribution is the sequential test method [21,480

39]. One starts from k = 0 and sequentially tests if the random variable can take the values481

0, 1, 2, . . . , N. It is equivalent to a series of non-homogeneous Bernoulli trials with failure482

probability ĥk . Similar to the inversion method by sequential search, this method has a time483

complexity of O(N). However, the sequential test method requires one uniform random vari-484

able per iteration.485

In 1985 Shanthikumar observed that for discrete hazard rates ĥk with supremum ρ < 1,486

the sequential test method can be accelerated by jumping ahead more than 1 in each iteration.487

Based on this observation, the discrete thinning method is proposed [21]. The method’s basic488

idea is to generate a sample from a distribution with a dominating rate gk ≥ ĥk and then thin489

it down to the desired distribution by rejecting some of the events.490

Consider a constant dominating rate gk = ρ, for all ĥk ≤ ρ. Such a dominating distribu-491

tion is simply a geometric distribution with parameter p = ρ, which can be easily generated492

using the inversion method, described in A.1. The discrete thinning method works as follows:493

one starts with X ← 0. At every iteration, one generates a geometric distributed random494

number k, updating the value X ← X + k, and then rejects the event with probability ĥX/ρ.495

This process repeats until a sample X is accepted. The resulting random number X follows496

the target distribution. The expected number of iterations for the discrete thinning method is497

ρE(X) since the average jump size is 1/ρ. The method reduces to the sequential test method498

in the ρ = 1 limit. Consequently, when sampling a given distribution, the smaller ρ, the more499

dramatic the improvement. Therefore, the discrete thinning method can be advantageous in500

clock sampling where only the hazard rate of the bound rejection events ĥ j is known.501

In the clock sampling, we are interested in whether a given update is eventually accepted.502

Thus, the order of factors in Eq. 9 is irrelevant. One can sort the factors by their bound haz-503

ard rate, such that ĥ j is decreasing. Then the new distribution has a decreasing hazard rate,504

referred to as a DHR distribution, which can be initialized before the actual simulation. The505
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I

II

III

Figure 2: A schematic diagram of one level of the clock sampling. The blue box rep-
resents the hazard rate h j of factors, and the gray box represents the corresponding
bound hazard rate ĥ j . Starting from the j -th factor, the first step (I) generates a jump
to the j ′-th factor using a geometric random number with parameter ρ. The second
step (II) is to accept j ′ as a bound-rejection event with relative probability ĥ j ′/ρ. If
j ′ is rejected, then one goes back to (I). Otherwise, if j ′ is indeed a bound-rejection
event, then one goes to the third step (III) to check if factor j ′ truly rejects the update
with h j ′/ĥ j ′

performance of the thinning method for a DHR distribution can be further improved by dynam-506

ically lowering the constant dominating rate ρ. This method is formally named the dynamic507

thinning method [21]. For the bound rejection events that follow a discrete distribution p(k)508

with decreasing hazard rate, ĥ0 > ĥ1 > . . . ĥN−1. One starts with X ← 0. At every iteration,509

one generates a geometrically distributed random number k and updates the value X ← X+k.510

Then one attempts to accept this value with probability ĥX/ρ. If so, a sample is successfully511

generated. Otherwise, the upper bound ρ is lowered to equal the hazard rate value of the512

subsequent factor ĥX+1. The process repeats until a sample X is accepted. Therefore, the513

dynamical thinning method allows for larger jump sizes in the tail of the DHR distribution,514

thereby improving the sampling process’s performance.515

The bound hazard rates ĥ j are generally very small except for those corresponding to516

short-range interactions because the value of ĥ j depends on the strength of the corresponding517

long-range interaction, which decays algebraically with the distance. This property makes518

the bound rejection event hardly occurs for interactions in the tail of the distribution. More519

importantly, it implies that the distribution has a long but small tail, where the dominating520

rate ρ of the dynamic thinning method can also be very small, ensuring the high efficiency of521

the algorithm.522

Furthermore, the dynamic thinning method can compute ĥ j on-the-fly, provided that the523

order of ĥ j is known in advance. Therefore, if one can select a sequence of ĥ j whose order524

remains constant throughout the simulation, it is necessary to sort the ĥ j only once before the525

actual simulation. This order can then be stored and used in the dynamic thinning method,526

thereby eliminating the need for additional initialization procedures for different values of ĥ j .527

In conclusion, given its high efficiency and streamlined operations, the dynamic thinning528

method is an optimal choice for generating bound rejection events within the clock sampling529

scheme.530

Implementation of recursive clock sampling. We demonstrate one possible implementation531

of recursive clock sampling using the dynamic thinning technique to generate the bound-532

rejection events. The pseudocode is given in Alg. 3, and the schematic diagram is shown533

in Fig. 2. For a long-range interacting system of size N, one first identifies and reorders the534
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Algorithm 3: Clock Sampling with Dynamic Thinning
Input: A proposed update S → S′
Output: The update is accepted or rejected
Initialization: Identify and reorder the bound hazard rates of all factors
ĥ1 > ĥ2 > · · · > ĥN−1.

j ← 0;
while j < N do
ρ ← ĥ j+1;
Generate random variate u ∈ [0, 1);

j ← j + ⌈ log(u)
log(1−ρ)⌉;

if j ≥ N then
break

end
Generate random variate v ∈ [0, 1);

if v <
ĥ j

ρ then
Evaluate h j = 1− P j ;
Generate random variate w ∈ [0, 1);
if w < p j ,rel then

return False;
end

end
end
return True;

bound hazard rates ĥ j of all factors, denoted as ĥ1 > ĥ2 > · · · > ĥN−1. The bound hazard535

rates are selected based on the properties of the model to be studied. To determine the fate of536

a proposed update S → S′, one starts with j ← 0. One increments j via a geometric random537

number with parameter ρ = ĥ j+1,538

j ← j + ⌈
log (ran)

log(1− ĥ j+1)
⌉ (23)

where u ≡ ran is a uniform random variable, and ⌈x ⌉ is the ceiling function that returns539

the smallest integer larger than or equal to x . One then tests if this new j is truly a bound540

rejection event with probability ĥ j/ρ. One repeats this process until a bound rejection event541

is successfully generated at j -th factor. The next step is to check whether the bound rejection542

is an actual rejection with probability p j ,rel = h j/ĥ j . In this step, the energy difference is543

evaluated to obtain h j . The sampling terminates when a true rejection is found; otherwise,544

one goes to the next level and generates new bound rejection events. The process continues545

until the update is accepted, which occurs when j ≥ N.546

The algorithm integrates the dynamic thinning method and the clock sampling scheme for547

a proposed update. To initialize the algorithm, one needs to store the order of ĥ j , which can be548

determined before the simulation begins. This approach is both straightforward and efficient,549

making it ideal for large-scale simulations of long-range interacting systems.550
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4 Clock factorized quantum Monte Carlo Algorithms551

In this section, we introduce a class of Monte Carlo algorithms that utilize clock sampling552

to determine the fate of an attempted update, which we call the clock factorized quantum553

Monte Carlo (clock factorized QMC) method. Specifically, we demonstrate three different554

clock factorized QMC algorithms in the path-integral formulation to simulate typical quantum555

systems with long-range interaction in condensed matter physics. Firstly, we designed a clock556

factorized Metropolis algorithm that employs a local Metropolis-type update scheme to sim-557

ulate the long-range transverse field Ising model (LRTFIM). Secondly, integrating the clock558

sampling with the worm update, we develop a clock factorized worm algorithm to simulate559

the extended Bose-Hubbard model (EBHM). Finally, we enhanced the clock factorized worm560

algorithm using additional efficient long-range hopping updates. We utilized this improved561

algorithm to simulate the long-range XXZ Heisenberg model (LRXXZ) by first mapping the562

model to a hardcore Bose-Hubbard model with both long-range density-density interaction563

and long-range hopping.564

When constructing a clock factorized QMC algorithm, careful consideration must be given565

to two crucial elements. The first element is the box technique introduced in the previous566

section, where long-range interaction terms are grouped into boxes to increase the overall ac-567

ceptance rate. This study does not cover systems with glassy long-range interactions where568

the box technique can significantly affect the algorithm’s performance, so we set the box size569

to 1 for simplicity, i.e., each factor contains only one pairwise interaction. The second element570

is the proper choice of the bound hazard rate, denoted as ĥ j . As previously discussed, the571

value of ĥ j governs the average step size of the clock sampling, thus significantly affecting572

the algorithm’s performance. However, once these steps have been completed, the design and573

implementation of the clock factorized QMC algorithm for a given model is typically straight-574

forward. The approach involves selecting a state-of-the-art update scheme for the model and575

integrating the clock sampling process with the updates. This implementation process requires576

only minimal modifications of an existing code by replacing the Metropolis filter of the original577

algorithm with a clock sampling step, while the proposal of updates and the actual update op-578

erations remain unchanged. Therefore, in the following description to clock factorized QMC579

algorithms, we shall focus on the vital ingredients of a clock factorized QMC algorithm, such580

as deriving an expression for bound hazard rate ĥ j , while we only briefly describe the update581

schemes without diving into the details.582

To evaluate the efficiency of the clock factorized QMC algorithm, we measure the average583

number of energy evaluations for each MC step, denoted as the algorithm’s complexity C . The584

complexity of the conventional Metropolis filter is C = N −1, while the clock factorized QMC585

algorithms have substantially lower complexity. Simulations of these models are performed586

on both 2D square lattices and 3D cubic lattices of various sizes, represented as L. The com-587

plexities of the new algorithm for each model are shown in Fig. 3 and 4. To demonstrate the588

practical advantages of the new algorithm, we also conduct several controlled performance589

benchmarks. To ensure consistency and minimize variations in performance measurements,590

these benchmarks are executed on a uniform hardware setup, comprising an Intel Core i7-591

12700K CPU and 16 GB of DDR4-3200 dual-channel RAM. The evaluation focused not only592

on computational complexity but also entailed a direct comparison between the computation593

time per sweep denoted as τ, and the acceptance ratio. These quantities are compared for594

these models using the proposed clock factorized QMC algorithms and the algorithms with the595

conventional Metropolis filter. The benchmark results are presented in Fig. 5, 6 and 7. The596

results suggest that the new algorithms provide an efficient approach to large-scale simulation597

of long-range interacting systems, allowing accurate investigation of the physical properties of598

3D long-range quantum models, which was previously hindered by substantial computational599
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Figure 3: Average complexity of Monte Carlo update of 2D models. (a) long-range
transverse field Ising model using Metropolis update, (b) extended Bose-Hubbard
model using worm update, (c) long-range XXZ model using worm update with long-
range hopping.

demands.600

4.1 Clock Factorized Metropolis Algorithm601

The transverse field Ising model (TFIM) is one of the most famous quantum spin models. The602

competition between ferromagnetic spin exchange interaction and transverse field can lead603

to rich physics. It has been studied extensively using various numerical methods, such as604

quantum Monte Carlo and density matrix renormalization group. For the 1D case, an exact605

solution is also available. It serves as a simplified model for many physical systems, including606

spin chains and superconducting qubits.607

In contrast to the conventional TFIM, in the long-range transverse field Ising model, the608

interactions between Ising spins are not restricted to nearest-neighbor pairs; instead, there is609

a power-law decay of the coupling strength with distance. The Hamiltonian of the long-range610

transverse field Ising model (LRTFIM) is given by,611

H = −
∑

i, j

J

rα
i j

σz
i σ

z
j − h

N
∑

i=1

σx
i (24)

Here, J > 0 is the ferromagnetic coupling strength along the z-direction, and the power α612

determines the range of interactions between spins. The summation
∑

i, j is over all pairs of613

spins i and j on the lattice. The symbols σz
i

and σx
i

are Pauli matrices acting the i-th Ising614

spin, h is the transverse magnetic field strength, and N is the total number of spins in the615

system. The model reduces to the nearest-neighbor model in the limit α→∞, while in the616

limit α→ 0, all spins are coupled equally, and the model is a transverse field Ising model on617

a complete graph.618

For the path-integral formulation of LRTFIM, we choose the spin state in z-direction |σ1,σ2, . . .〉619

as the basis, where σi = ±1 represents the up/down spin state on the i-th site. The configu-620

ration of the LRTFIM consists of N worldlines made of segments. Each segment represents an621

imaginary time interval where the spin state remains unchanged, and the interface between622

two different segments is called a cut. When there is only one segment on a worldline, the623

segment can be considered as a ring without any cuts. In this expansion basis, the statistical624
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Figure 4: Average complexity of Monte Carlo update of 3D models. (a) long-range
transverse field Ising model using Metropolis update, (b) extended Bose-Hubbard
model using worm update, (c) long-range XXZ model using worm update with long-
range hopping.

weight of a configuration S is given by,625

WS =

� N
∏

k=1

dτk

�

hN exp

(

∑

i, j

∫ β

0

J

rα
i j

σi (τ)σ j (τ)dτ

)

(25)

where N is the number of cuts, and σi (τ) is the spin state at a space-time point (i;τ). The626

state of a worldline flips at imaginary time τk with (k = 1, . . . ,N ).627

We employ a standard Metropolis-type update scheme for LRTFIM. The term “Metropolis-628

type" means that the update operations are local, i.e., modify only one segment at each MC629

step. This update scheme consists of two pairs of operations. (a) Create/delete segment. The630

first pair of operations manipulates the configuration by inserting a new segment or deleting631

an existing segment. To create a new segment, one randomly picks an existing segment from632

the configuration and then flips the spin state between the two uniformly chosen points in633

the segment. Conversely, the “delete segment" update is the reverse process of the “create634

segment" update. This procedure randomly chooses an existing segment and flips its spin635

state to remove it from the configuration. These operations change the number of segments636

in the configuration. (b) Move cut. The second operation moves the temporal location of an637

existing cut without altering the number of segments. To do this, one randomly chooses a cut638

and shifts it to a new position in the range bounded by its next and previous cuts. The move639

segment operation is the reverse process of itself. Using these local update operations, we can640

efficiently explore the configuration space of the long-range Ising model. These operations641

are then combined with the clock sampling process to obtain the clock factorized Metropolis642

algorithm. In this update scheme, both operations are local updates that modify the spin state643

within an imaginary time interval during which the spin state remains constant. Hence, it is644

possible to consider an update that flips a segment between τ1 and τ2 on the i-th site, and645

the initial spin state in this interval is represented by σi . The factorized Metropolis filter of646

this update is P f ac = PA
∏

j P j . Here PA is a factor that depends on the detail of an update,647

as discussed in Section 2. Here, we take the create segment operation as an example:648

Pcrea
A =min

¨

1,
Nsegh2

N′segu(τ1,τ2)

«

(26)

where Nseg (N′seg) is the number of segments before (after) the creation of a new segment.649

Imaginary time positions τ1, τ2 are chosen with the uniform probability density u(τ1,τ2)650
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= 2/ (τmax − τmin)
2, where τmax (τmin) is the starting (ending) time of the selected segment.651

On the other hand, the factors P j , which are the key components of clock sampling, have a652

general form,653

P j = exp

¨

−

�

2Ji jσi

∫ τ2

τ1

σ j (τ)dτ

�+«

(27)

Here, Ji j is the interaction strength between spins i and j given by Ji j = J/rα
i j

.654

To derive the bound hazard rate of P j , one should first identify the factor’s “worst back-655

ground". In this context, the term “background" refers to the portion of unchanged configu-656

ration that interacts with the segment to be updated. In this example, the background is the657

spin state between τ1 and τ2 on the j -th worldline, represented by σ j (τ) with τ ∈ [τ1,τ2].658

Hence, the “worst background" refers to a certain possible formation of background that can659

induce the most significant energy change after the update. This worst possible background660

depends solely on the characteristics of the model to be studied, thus making the bound haz-661

ard rate ĥ j independent of the actual configuration. In the LRTFIM, σ take the value of ±1662

and Ji j is positive; thus, the worst background of P j is that case where the state between τ1663

and τ2 on j is same to that on the i-th worldline: σ j(τ) = σi for τ ∈ [τ1,τ2]. Consequently,664

the largest possible energy change is 2Ji j |τ2 − τ1|, and the bound hazard rate is given by,665

ĥ j = 1− exp
�

−2Ji j |τ2 − τ1|
�

(28)

It is evident that ĥ j has a configuration-independent expression and can be adopted in the666

clock sampling process.667

The clock sampling method also requires that the bound hazard rate for an update must668

be arranged in decreasing order. This is achieved by computing all N−1 interaction strengths669

Ji j for the i-th site at the beginning of the simulation, sorting them in decreasing order, and670

then using this sorted list for all updates. For a given local update, the value of |τ2 − τ1| is671

constant, resulting in ĥ j being a function of the interaction strength Ji j . By using the sorted672

list of interaction strengths, the bound hazard rate is automatically ordered for any update,673

eliminating the need to explicitly sort ĥ j for each update. This approach ensures that the674

bound hazard rate is efficiently evaluated and arranged, meeting the requirement of clock675

sampling.676

Simulations with various exponents of the long-range interaction and system sizes are con-677

ducted to comprehensively test the efficiency and robustness of the clock factorized Metropolis678

algorithm. The computational complexities of the long-range transverse field model for differ-679

ent exponents are compared, and the complexities of the clock factorized Metropolis algorithm680

of the LRTFIM on both 2D square and 3D cubic lattices are shown in Fig. 3(a) and Fig. 4(a),681

respectively. The simulations are conducted near the critical point of the corresponding short-682

range model, h = 3.04433 for the 2D square lattice [43, 44] and h = 5.158129 for the 3D683

cubic lattice [44]. The inverse temperature is fixed at β = 10. The almost constant computa-684

tional complexity observed for different system sizes demonstrates a significant improvement685

in simulation efficiency achieved by the clock sampling algorithm. In Fig. 5, we present the686

result of performance benchmarks on the LRTFIM on a 2D square lattice. The model param-687

eters are set at α = 4.0 and β = 10, with h = 5.2011, which is near the critical point of688

the model [45]. The result demonstrates a near O(N) reduction of time per sweep for the689

clock factorized QMC algorithm compared with the conventional Metropolis scheme, approx-690

imately in the same order as the reduction of the computational complexity per update. In691

addition, the acceptance ratios of both algorithms do not show noticeable size dependence.692

Compared with the conventional scheme, the acceptance ratio of the new algorithm decreased693

by a constant ratio γ ≈ 27%, from Pacc ≈ 0.51 to 0.37, thus the overall autocorrelation of the694
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Figure 5: Performance benchmark of the clock factorized Metropolis algorithms
compared with the conventional algorithm with Metropolis filter for 2D LRTFIM at
α = 4.0, h = 5.2011 and β = 10. Panel (a) shows the average time per sweep τ in
milliseconds (ms) for both algorithms: τ of conventional algorithms scales approx-
imately as L4, while τ of clock factorized QMC algorithm scales as L2. Notably, the
CPU time per sweep for L = 128 by the clock factorized algorithm is comparable to
that for L = 16 by the conventional Metropolis scheme. The inset presents the av-
erage acceptance ratio. Compared with the Metropolis scheme, the acceptance ratio
of the new algorithm drops by a constant ratio γ ≈ 20%, from 0.51 to 0.37. Panel
(b) displays the computational complexity per update for each case. The clock fac-
torized Metropolis algorithm exhibits a O(1) computational complexity in contrast
to the O(N) complexity of conventional QMC algorithm.

new algorithm increases by 27% because the two algorithms have identical physical dynam-695

ics [19]. Therefore, despite the slight increase of autocorrelation time for the clock factorized696

Metropolis algorithm, the overall improvement of update efficiency is O(N).697

4.2 Clock Factorized Worm Algorithm698

The extended Bose-Hubbard model is a fundamental theoretical framework used in the field of699

condensed matter physics to describe the behavior of interacting bosonic particles in a periodic700

lattice potential. The model considers a system of bosonic particles that are confined to a lattice701

and interact with each other, where the interaction can be both short-range and long-range.702

The extended Bose-Hubbard model has been extensively studied in both theoretical [46–54]703

and experimental settings [55–61], with particular attention paid to the effects of long-range704

interactions due to their relevance in ultracold experiments.705

The Hamiltonian of EBHM is given by:706

H =− t
∑

〈i, j〉

�

b†
i
b j + h.c.
�

+ V
∑

i< j

1

rα
i j

nin j (29)

+
U

2

∑

i

(ni − 1)ni +
∑

i

µni

Here, b†
i

(bi) is the bosonic creation (annihilation) operator on i-th site, and ni ≡ b†
i
bi is707

the bosonic particle number operator. The Hamiltonian is a sum of several terms. The first708

term describes the nearest-neighbor hopping of bosons, where t is the hopping strength. The709

second term sums over all pairwise long-range density-density interactions, controlled by the710

interaction strength V and an exponent α. ri j is the distance between i-th and j -th sites. The711
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third term is the on-site repulsion with strength U , and the fourth term controls the filling712

fraction via the chemical potential µ.713

One of the state-of-the-art methods for simulating the extended Bose-Hubbard model is the714

worm algorithm, which is a highly successful PIMC algorithm for studying systems without the715

sign problem [13,62,63]. It is based on the path-integral representation of the partition func-716

tion, a weighted summation of all possible configurations where the trajectories of particles717

are closed loops. These configurations form the Z configuration space. The worm algorithm718

works in an enlarged G configuration space by introducing an open-ended worldline called a719

“worm". The worm’s “head" and “tail" correspond to b and b† operators, respectively. Conven-720

tionally, the b-point is called ira, and the b†-point is called masha. Through local updates of721

ira and masha, the algorithm efficiently samples the configuration of the partition function and722

the Green’s function of the model. Although the worm algorithm uses a local update scheme,723

it generally has a smaller dynamical critical exponent than the Metropolis-type updates; thus,724

it can be more efficient near a phase transition. It is a versatile algorithm that can be applied725

to various models, including the extended Bose-Hubbard model [13].726

In this work, we integrated the clock sampling technique with the worm algorithm and727

developed the clock factorized worm algorithm to simulate EBHM. The algorithm adopts the728

standard path-integral representation of EBHM, where the basis of Fock states is used as the729

computational basis. The Fock states are defined as the set of all occupation numbers on each730

lattice site, |n1, n2, . . .nN〉 , where the occupation number ni on the i-th site can take any731

positive integer value ranging from 0 to∞. The trajectories of the bosons form closed loops732

in the configuration, and the points in imaginary time where the system changes occupation733

number are called kinks. We adopted a standard worm update scheme for EBHM consisting734

of four types of updates: (a) create/delete worm, (b) move worm head, (c) insert/delete kink735

before the worm head, (d) insert/delete kink after the worm head [62]. The first pair of736

operations creates a worm or deletes the worm, switching configuration between the Z space737

and G space. The move worm head operation works in the G space. It shifts one worm head in738

the imaginary time direction. The insert/delete kink operation inserts/deletes one kink before739

or after the worm head and changes the spatial position of the worm head. The worm creation740

is the only possible update when the system is in Z space, while in the G space, updates are741

chosen randomly according to an a priori probability distribution. The detailed description of742

the worm update scheme can be found in Ref. [62].743

Similar to the clock factorized Metropolis algorithm, these updates are local updates, and744

we use the clock sampling process to handle the long-range interaction terms. The factorized745

Metropolis filters of all these updates have the standard form P f ac = PA
∏

j P j , where PA746

depends on specific details of the update and P j is universal for all types of updates. Updates747

(a) and (b) change the occupation number within a segment on a single site i. Since the long-748

range interaction strength V is positive in this model, only updates that increase the occupation749

number are relevant in the factorized Metropolis filter. On the other hand, in updates (c) and750

(d), the worm head jumps to another site, thus changing the segments on both the starting751

site and the destination. Although kink operations change two segments simultaneously, the752

factorized Metropolis filter can have the same form as updates (a) and (b). This is because,753

after a kink operation, the occupation number of one segment increases while the occupation754

number of the other segment decreases. The long-range interactions between the segment755

with decreasing occupation number and the segment on other sites always lead to an energy756

decrease, regardless of the configuration; thus, their corresponding factors will not affect the757

sampling process with P j = 1. Therefore, only the interaction terms related to the segment758

with the increased occupation number should be considered in the factorized Metropolis filter.759

Here, as a simple illustration, we present the PA for creating worm update and inserting760

kink before worm head.761
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Figure 6: Performance benchmark of the clock factorized worm algorithm compared
with the conventional worm algorithm for 2D EBHM at α = 3.0, U/t = 10, V/t = 7,
µ/t = 0 and β = 10. Panel (a) plots the average time per sweep τ in milliseconds
for both algorithms, with an inset presenting the average acceptance ratio. Panel (b)
displays the computational complexity per update for both cases.

Create worm. To create a worm, one randomly selects an existing segment on the i-th762

worldline. The selected segment spans from τmin to τmax and has an occupation of n. Then763

one uniformly draws two points τ1, τ2 within the segment as the positions for inserting ira and764

masha. The worm deletion is the reverse process of worm creation, which is only possible when765

ira and masha are on the same worldline, and there are no kinks between them. Therefore766

the PA for worm creation update is given by,767

Pcrea
A =min
�

1, NsegωG pdel (τmax − τmin)
2 (30)

×K(S → S′)exp [−∆Uloc]
	

where Nseg is the number of segments in the configuration, ωG is a free parameter to control768

the relative weight between Z space and G space, pdel is the probability of choosing the delete769

worm update. The K(S → S′) is the off-diagonal weight ratio due to ira and masha and∆Uloc770

is the local energy difference caused by on-site repulsion and chemical potential.771

Insert kink before ira. Assuming ira is on the i-th worldline, we select one of its neighboring772

worldline j and identify the first kink on the j that is before ira, with τmin < τi r a. One773

randomly select a point τk between τmin and τi r a, and inserts a new kink c
i
c†

j
at τk. I r a is774

then shifted to the j -th worldline. The PA of this update is then given by,775

PA =min
�

1, Nnn ti j (τi r a − τmin) (31)

×K(S → S′)exp [−∆Uloc]
	

Here, Nnn is the number of nearest neighbors, and ti j ≡ t is the hopping strength between776

worldline i and j . The K(S → S′) is the off-diagonal weight ratio due to the insertion of kink777

and spatial-shift of ira, while ∆Uloc is the local energy difference caused by on-site repulsion778

and chemical potential.779

As stated above, while the PA depends on the update, P j has a general form. Consider a780

general transition that increases the occupation between τ1 and τ2 on the i-th site, the factors781

P j has the form,782

P j = exp

¨

−

�

Vi j∆ni

∫ τ2

τ1

n j (τ)dτ

�+«

(32)
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Here, Vi j is the interaction strength between spins i and j given by Vi j = V/rα
i j

and∆ni = +1.783

The bound hazard rate is then given by,784

ĥ j = 1− exp
�

−Vi jnmax|τ2 − τ1|
	

(33)

This corresponds to the situation that the segment on the j -th site is maximally occupied,785

where nmax is the largest segment occupation in the current configuration. In theory, an ar-786

bitrary number of bosons can occupy one site; thus, the value of nmax is not bounded. In787

practice, one can impose an upper limit on the occupation number of a segment as long as788

this upper limit covers the Hilbert space being studied. This allows one the determine the789

bound hazard rate and perform clock sampling. However, using a constant nmax will decrease790

the algorithm’s performance. In this implementation, we use a histogram to keep tracking the791

maximal occupation number of the current configuration. At the beginning of the simulation,792

a histogram is created to record the frequency distribution of the segment occupation number793

and keep it updated during the simulation. When a new segment is added to the configura-794

tion, the histogram records its occupation number, while if a segment with occupation ni is795

removed, the corresponding bin in the histogram decreases by one. Therefore, one can keep796

track of the actual largest segment occupation of the current configuration and ensure the best797

performance of the clock sampling.798

Simulations are conducted using the clock factorized worm algorithm to test the efficiency799

and robustness of the algorithm for the Extended Bose-Hubbard Model. Various exponents of800

the long-range interaction and system sizes are explored, and the computational complexities801

are compared. The results are shown in Fig. 3(a) and Fig. 4(a) for 2D square and 3D cubic802

lattices, respectively. The simulations are conducted U/t = 10, µ/t = 0, and V/t = 7 with803

the inverse temperature fixed at β = 10. The observed computational complexity for different804

system sizes increases much slower than Ld , demonstrating a significant improvement in the805

simulation efficiency of the clock factorized worm algorithm. Fig. 6 illustrates the performance806

benchmarks on the EBHM on a 2D square lattice with α = 3.0, U/t = 10, V/t = 7, µ/t = 0807

and β = 10. Similar to the LRTFIM case, the result demonstrates a near O(N) reduction of808

time per sweep τ for the clock factorized worm algorithm, approximately in the same order809

as the reduction of the computational complexity. Moreover, the acceptance ratios of both810

algorithms are almost independent of system sizes, dropping from Pacc ≈ 0.23 to 0.18. Hence,811

for EBHM, the overall efficiency improvement of the new algorithm is O(N).812

4.3 Clock Factorized Worm Algorithm with Long-range Hopping813

The long-range XXZ Heisenberg Model is a theoretical model used in condensed matter physics814

to describe the behavior of interacting spins in a lattice structure. The model is an extension of815

the XXZ Heisenberg model, which includes both nearest-neighbor and next-nearest-neighbor816

spin interactions. In the long-range XXZ Heisenberg model, the spin interactions can be long-817

range and exhibit power-law decay with distance. This model has been widely studied in both818

theoretical [64–67] and experimental contexts [68] due to its relevance in describing the prop-819

erties of spin systems in a variety of physical systems, including magnetism, superconductivity,820

and quantum computing. The long-range XXZ Heisenberg Model has proven to be a valuable821

tool for understanding the complex behavior of interacting spin systems in lattice structures822

and has led to important insights into the nature of quantum phase transitions and critical823

phenomena.824

The Hamiltonian of the LRXXZ model is given by,825

H = −
∑

i< j

1

rα
i j

�

J x
�

Sx
i Sx

j + Sy
i
Sy

j

�

− J zSz
i Sz

j

�

(34)
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where Sβ
i
(β = x , y, z) is the quantum-spin operators attached to each site. J x is in-plane826

ferromagnetic interactions leading to a sign-positive model, while J z is the amplitude for Sz
i
Sz

j
827

interactions. The LRXZZ model can be mapped to a hard-core boson model by using the828

transformation Sx
i
+ iSy

i
= b†

i
and Sz

i
= ni − 1/2. The Hamiltonian describes the mapped829

model,830

H = −t
∑

i< j

1

rα
i j

�

b†
i
b j + h.c.
�

(35)

+V
∑

i< j

1

rα
i j

nin j −
∑

i

µni

where t = −J x/2, V = J z and µ = J z/2
∑

j>0 1/rα
0 j

. A constant term is dropped after the831

mapping. For the hard-core boson model, the occupation number is restricted to only 0 and 1.832

The hard-core boson model can also be simulated using the clock factorized worm algorithm833

by setting a hard limit on the max occupation number. Any updates that result in a segment834

with an occupation number larger than 1 are rejected.835

The update scheme and clock sampling process are identical to the previous algorithm,836

except that now we allow additional long-range hopping terms, i.e., the destination of kink837

operation is not limited to nearest-neighboring sites. For example, consider a spatial shift838

of ira by inserting a new kink before ira. For long-range hopping cases, the destination j839

of the hopping can be selected from all the rest of the worldlines according to a probability840

distribution A(i → j). The PA of this update is similar to Eq. (32):841

PA =min
�

1,
ti j

A(i → j)
(τi r a − τmin) (36)

×K(S → S′)exp [−∆Uloc]
	

Suppose the hopping destination is uniformly chosen from all possible sites, i.e., A(i → j) =842

1/(N − 1). For long-range hopping strength with the form ti j = t/rα
i j

with ri j being the843

distance between site i and site j , the acceptance probability of a kink-insertion update will844

also decay algebraically with the distance of hopping. In that case, the long-range hopping845

update will hardly be accepted, significantly hindering the algorithm’s efficiency.846

Our solution to this problem is to propose the hopping destinations j according to a prob-847

ability distribution of the distance of the hopping,848

A (i → j) = c
t

rα
i j

, (37)

where c is a normalization constant such that,849

c
∑

j ̸=i

t

rα
i j

= 1, (38)

where the sum goes over all possible neighbors. The probability of proposing hopping with850

longer displacement is algebraically suppressed. This distribution A (i → j) can cancel the ti j851

term in the expression of PA up to a constant c; thus, this distribution increases the overall852

acceptance ratio of long-range hopping updates in the worm algorithm. Since A (i → j) only853

depends on the lattice and the long-range hopping, one can compute all the elements of the854

distribution before the simulation and sample it using Walker’s alias method, as described855

in A.2. With this technique, the algorithm can efficiently handle diagonal and off-diagonal856

long-range interactions.857
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Figure 7: Performance benchmark of the clock factorized QMC algorithm compared
with the conventional QMC algorithm for 2D LRXXZ model atα = 3.0 and Jz/Jx = 9.
Panel (a) shows the average time per sweep τ in milliseconds for both algorithms,
with an inset presenting the average acceptance ratio. Panel (b) displays the compu-
tational complexity per update for both cases.

Simulations are conducted for the long-range XXZ Model to test the efficiency of the clock858

factorized worm algorithm with long-range hopping. Various exponents of the long-range in-859

teraction and system sizes are explored, and the computational complexities are compared.860

The results are shown in Fig. 3(a) and Fig. 4(a) for 2D square and 3D cubic lattices, respec-861

tively. The simulations are conducted with J x/J z = 1 and the inverse temperature fixed862

at β = 10. The observed computational complexity for different system sizes increases much863

slower than Ld , demonstrating a significant improvement in simulation efficiency. Fig. 7 shows864

the performance benchmarks on the LRXXZ on a 2D square lattice with α = 3.0, Jz/Jx = 9,865

and β = 10 [69]. Similar to previous cases, the result demonstrates a near O(N) reduction866

of time per sweep τ for the clock factorized worm algorithm with long-ranged hopping. The867

average acceptance ratio of the new algorithm drops from PAcc ≈ 0.15 to 0.05. The accep-868

tance ratio seems to increase slightly for the larger system sizes, which should mitigate the869

increase in autocorrelation time. Therefore, the overall performance improvement in this case870

is roughly O(N).871

5 Discussion and Outlook872

In summary, we develop the clock factorized quantum Monte Carlo method which is both873

efficient and generic for simulating long-range interacting quantum systems. We formulate874

three efficient clock factorized Monte Carlo algorithms with various update schemes tailored875

specifically for the LRTFIM, EBHM, and LRXXZ. Extensive benchmarks show that, compared876

with the conventional Metropolis algorithms, there is a significant efficiency improvement877

for these novel algorithms. For non-frustrated systems, incorporating bound rejection and878

introducing first-bound-rejection events on a tree structure can lead to significant acceleration879

with computational complexity scaling as A ∼O(N) for strictly extensive systems, A ∼O(Nκ)880

(0 < κ < 1) for sub-extensive systems, and O(N/(lnN2)) < (A)margin < O(N/ln(N)) for881

marginally extensive systems. For frustrated systems, the clock factorized QMC technique882

combined with the box technique is a useful method for reducing computational complexity883

in frustrated systems, with only a slight reduction in acceptance ratio.884

Our method is not only efficient but also flexible and independent of the update scheme.885

26



SciPost Physics Submission

Besides the local update and worm updates, the recursive clock sampling technique can be886

applied to the cluster Monte Carlo method, because the bond activation events are intrinsically887

independent from each other. Notably, its recent application to the 2D classical O(n) spin888

model with long-range coupling [70,71] demonstrates both the efficiency and versatility of the889

algorithm. The extended cluster algorithms for long-range interacting spin systems [22, 72]890

can be understood as specific cases of the recursive clock sampling method. Moreover, the891

recursive clock sampling method is a more general technique than the Metropolis method,892

with the latter being a limiting case of the former. This implies that the clock factorized QMC893

method is at least as effective as the Metropolis method in terms of performance.894

It is worth clarifying that the efficiency of measuring observables is generally independent895

of update strategies in QMC simulations. Therefore, improving update efficiency is always896

worth the effort. Due to critical slowing down near the critical point, the autocorrelation897

between consecutive measurements is generally large. To generate effectively independent898

samples, many updates are required between two measurements. Therefore, improving the899

efficiency of updates in long-range interacting systems is crucial. While measuring certain900

quantities in the long-range interacting system has an O(N2) algorithmic complexity, regard-901

less of the update strategies, not all required physical quantities necessitate this level of mea-902

surement. For example, in the study of magnetism, the order parameter and related quantities903

are only at an O(N) level, thus do not introduce additional computational cost. Moreover, in-904

troducing long-range interactions does not necessarily increase the measurement complexity905

for many observables, such as the correlation functions, which can still be measured within906

a O(N) algorithmic complexity. Furthermore, certain update schemes allow for the defini-907

tion of improved estimators, enabling the efficient measurement of these quantities. In cases908

where energy-like physical quantities are essential, one can measure quantities such as nearest-909

neighbor energy and specific heat, which should exhibit similar scaling behavior near the criti-910

cal points. For comprehensive energy measurements, optimized methods utilizing fast Fourier911

transformation (FFT) can be employed to reduce the computational cost [73]. These meth-912

ods are generally independent of update strategies, emphasizing the importance of developing913

efficient algorithms for Monte Carlo updates.914

Considering the recent active studies on long-range interacting systems that heavily rely915

on Monte Carlo simulations and recent focus on the development of efficient classical Monte916

Carlo methods [74], the clock factorized QMC method, due to its simplicity and ease of use, can917

provide a readily available tool to explore the rich physics of these systems and is a promising918

candidate for studying long-range interacting systems in various fields of physics. The Rydberg919

atom array is a crucial platform for studying quantum computation [75] and exploring exotic920

phases like quantum spin liquids [76]. Despite recent advancements in both theory and exper-921

iments [76–79], numerical simulations of these systems remain challenging due to long-range922

interactions [80, 81]. The clock factorized QMC method enables large-scale simulations of923

Rydberg atom arrays without truncating van der Waals interactions or other approximations,924

allowing for an unbiased investigation of the system. This could offer valuable insights and925

guide future theoretical and experimental developments of the Rydberg system [82]. Another926

potential application is to combine the recursive clock sampling technique with the worm al-927

gorithm of the continuous-space path-integral Monte Carlo method [83], the state-of-the-art928

method for studying long-range interacting bosonic gases, such as dipolar bosonic gas system,929

which is closely related to AMO experiments. The worm head update in this algorithm can be930

sampled using the recursive clock sampling technique to efficiently account for the long-range931

interactions, allowing for simulations of the system with larger particle numbers.932
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A Related Algorithm938

A.1 Inversion method939

Inverse transform sampling, or inversion method, is one of the most simple and universal940

techniques for generating random numbers from a discrete probability distribution given its941

cumulative distribution function. For a discrete random variable X with PMF p(k), the cumu-942

lative distribution function (CDF) quantifies the likelihood that a random variable does not943

exceed the k: F(k) =
∑k

i=1 p(i). The inversion method generates the random number X via944

the corresponding inverse of CDF:945

X = F−1(u) =min{k : F(k) ≥ u}, (39)

where u ≡ ran is a uniform random variable and min is the minimum function that returns the946

smallest k that satisfies the condition. Hence, once the inverse CDF of the target distribution is947

known, one can generate X using one uniform random number. However, obtaining a simple948

closed form of F−1(u) is difficult except for a few classes of discrete distributions. One of the949

most useful discrete distributions that can be easily generated via inverse CDF is the geometric950

distribution which is also relevant to clock sampling.951

Consider a long-range interaction model on a complete graph, where every site interacts952

with all other sites with identical strength J . One can define a constant bound hazard rate ĥ for953

all factors; thus, the distribution of the bound rejection events follows a geometric distribution954

P(X = k) = p(1 − p)k−1, with parameter p ≡ ĥ. The CDF of the geometric distribution is955

F(k) = 1− (1− p)k . The inverse CDF function is then given by,956

F−1(u) =min{k : 1− (1− p)k ≥ u} (40)

=min{k : k ≥ log(1− u)/ log(1− p)}

= ⌈
log (u)

log(1− p)
⌉,

where ⌈x ⌉ is the ceiling function that returns the smallest integer larger than or equal to x .957

Therefore, the random variable X = F−1(ran) is geometrically distributed.958

This method is particularly important because, at each level of clock sampling, geometric959

distribution can be used to sample the bound rejection events by setting a constant bound960

hazard rate ĥ for all P j factors of the current tree level. The original clock technique for long-961

range interacting classical systems can be viewed as a clock sampling process using geometric962

random numbers to sample bound rejection events at each level of the tree [19].963

Although the analytical form of F−1(u) is generally inaccessible for an arbitrary discrete964

distribution, the inversion method allows one to evaluate F−1(u) by solving the inversion965

inequality:966

F(X − 1) < u ≤ F(X) (41)
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Generating a random variable using the inverse CDF is equivalent to solving X for the above967

inequality, with u being a uniform random number. An exact solution of the inversion in-968

equality always exists and can be found in finite time [39]. This property of the inversion969

method makes it universally applicable for generating random numbers from a wide range of970

distributions, even if their inverse CDF cannot be expressed in a closed analytical form.971

There exist various algorithms to solve the inversion inequality. One of the simplest meth-972

ods is the sequential search, where the solution of inversion inequality is searched sequentially973

starting from 0. In this method, one generates a uniform random number u and evaluates974

the CDF function on the fly until the first k value satisfies F(k) >= u. The expected num-975

ber of iterations is E(X) + 1, where E(X) is the expectation of random number X . Thus, the976

performance of the sequential search algorithm depends on the tail of the target distribution977

p(k). The performance of the sequential search algorithm can be improved using several978

techniques, such as a binary search or a table-aided search method [39, 42]. However, these979

algorithms usually have a slow setup process and, therefore, are not optimal for generating980

bound rejections whose distribution varies during the simulation.981

A.2 Walker’s alias method.982

Besides the inversion method, another commonly employed algorithm for efficient sampling983

from discrete probability distributions is Walker’s alias method, which was originally devised984

by A. J. Walker in 1974 [40, 41]. Like the inversion method through sequential search, the985

alias method requires a slow setup, rendering it suboptimal for generating the bound rejection986

events. Nevertheless, we include it for the sake of completeness, and more importantly, it987

proves to be valuable when handling long-range off-diagonal interactions, as will be discussed988

in section 4.989

Algorithm 4: Alias Table Setup
Input: Discrete probability pk , k ∈ 0, 1, 2, . . . , N
Output: Alias array a(k) and probability array q(k)
for k = 1, 2, · · · , N do

q(k)← N ∗ p(k) and a(k)← k;
end
Initialize Rich = {q (k) ≥ 1} and Poor = {q (k) < 1};
while Poor and Rich are not empty do

Randomly pick ℓ ∈ Poor and h ∈ Rich;
Set alias a(ℓ)← h;
Remove element ℓ from the Poor array;
Set q(h)← q(h)− (1− q(ℓ));
if q(h) < 1 then

Move h from Rich to Poor.
end

end
for any remaining element k in Poor or Rich do

Set q(k)← 1
end

Given a discrete probability distribution p(k) with k ∈ {1, 2, · · · , N}, let probabilities be990

amplified by a factor of N so that the averaged probability is now 1, instead of 1/N. Then,991

one split the elements of the probability distribution into three classes: for each element k,992

label it as “poor” if pk < 1, as “rich” if pk > 1, or as “average” if pk = 1. The basic idea of993
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Alias Table
Target Distribution

Figure 8: An example of the alias method for a discrete distribution of 4 elements.
For a target distribution p(k), a possible alias table is shown.

setting up Walker’s alias method is the “Robin Hood Rule": taking from the “rich" to bring the994

“poor" up to average [84]. Specifically, one takes the probability of a “rich" element, h, and995

gives it to some “poor" element, say ℓ to bring it up to the averaged value 1, i.e., the amount996

of probability taken is δℓ = 1− pℓ. For the “poor" to record its donor, its corresponding alias997

index is set to aℓ ← h. In addition, the remaining probability of element h is recorded as998

q(h) ← q(h) − δℓ. After the donation, the “poor" element ℓ is labeled as “average", while999

the “rich" element, with a remaining amount ph − δℓ, might become below the average and,1000

if so, it is re-labeled as “poor”. This process is repeated until no “rich” or “poor” element is1001

left. If either the “rich” or “poor” category empties before the other, q(k) of the remaining1002

entries are set to 1 with negligible error [85]. Notice that in each step, the size of “average”1003

elements increases at least by one; thus, the setup process has a time complexity of O(n). The1004

pseudocode code for setting up the alias table is described in Alg. 4.1005

After building up the alias table, one can easily sample the target distribution p(k) in1006

two steps: firstly, one uniformly draws an entry i from the alias table. Then one generate1007

an uniform random number ran, if ran < q(i), return i; otherwise, return its alias a (i).1008

The resulting random number conforms to the target distribution p(k). Sampling a discrete1009

distribution via the alias method has a time complexity of O(1) because it only involves a1010

single comparison and less than two table accesses.1011

In conclusion, Walker’s alias method provides an efficient algorithm for sampling from dis-1012

crete probability distributions. By employing an alias table, random numbers can be generated1013

with O(1) time complexity. The setup of the alias table can be accomplished using the Robin1014

Hood Rule, redistributing probabilities from “rich" to “poor" elements. Overall, Walker’s alias1015

method offers a valuable approach for efficient sampling and has been widely used in Monte1016

Carlo simulations and other probabilistic algorithms.1017
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