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Abstract

Investigating the behavior of noninteracting fermions subjected to local dephasing, we
reveal that quasi-particle dephasing can induce superdiffusive transport. This superdif-
fusion arises from nodal points within the momentum distribution of local dephasing
quasi-particles, leading to asymptotic long-lived modes. By studying the dynamics of the
Wigner function, we rigorously elucidate how the dynamics of these enduring modes give
rise to Lévy walk processes, a renowned mechanism underlying superdiffusion phenom-
ena. Our research demonstrates the controllability of dynamical scaling exponents by
selecting quasi-particles and extends its applicability to higher dimensions, underlining
the pervasive nature of superdiffusion in dephasing models.
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1 Introduction

Transport properties of particles, energy, and information in nonequilibrium quantum many-
body systems have garnered significant attention [1-12]. The emergence of anomalous trans-
port, which deviates from the classical diffusion characterized by linear growth in mean square
displacement over time, challenges established principles in quantum many-body dynamics.
This anomaly includes superdiffusion [13] and subdiffusion [14], where particle spreading
occurs faster or slower than classical expectations.

Notably, the one-dimensional Heisenberg model has exhibited superdiffusion [ 15-22] with
a dynamical exponent of g = 3/2 and a scaling function within the Kardar-Parisi-Zhang (KPZ)
universality class [23-25]. This superdiffusive behavior extends to a broader class of integrable
models with non-Abelian symmetries [26-31], with transitions to diffusive behavior observed
when integrability or symmetry is perturbed [32-35]. Superdiffusion has also been identified
in systems with long-range interactions [36-41] and short-range interacting systems subject
to quasiperiodic potentials [42,43], albeit with some controversies [44].

So far, the study of superdiffusion mainly focuses on closed systems since it is generally
believed that coupling a system to the environment results in bulk dissipation, leading to dif-
fusion. A well-studied example is the free fermion chain subject to local particle dephas-
ing [45-52]. In this context, dephasing introduces finite lifetimes to the original free modes,
resulting in a mean free path beyond which particle motion resembles a Gaussian random
walk.

In contrast, our study identifies a superdiffusive transport in noninteracting fermion sys-
tems by generalizing the onsite dephasing to “quasi-particle" dephasing. The “quasi-particles"
are defined as superpositions of fermions near position x:

ax =Zdaéx+a: (D
a

where the vector d, is assumed to be local near the origin. The momentum distribution char-
acterizing these quasi-particles is

di = ) dge™. @)
a

Remarkably, our investigation unveils a direct link between the nodal structure of d;. and the
occurrence of superdiffusion:

1. When d; possesses a nodal point at generic momentum k, (with nonzero velocity vy, # 0)
characterized by |di| ~ (k —k,)", particle transport exhibits a ballistic front, and the
dynamical scaling exponent is given by 2, = (2n + 1)/(2n);

2. In cases where d;, features a higher-order nodal point at zero-velocity point k,, described
as |di| ~ (k —k,)™ where n > 2, the particle transport exhibit a superdiffusive front,
and the dynamical exponent is 2, = (2n + 1)/(2n —1).

We demonstrate the superdiffusion in dephasing models by analyzing the dynamics of the
Wigner function [51,52]. This approach develops an effective description of transport behavior
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across extended temporal and spatial scales. The Wigner function framework translates the
many-body transport problem into a single-particle random walk process. In this context, the
presence of nodal points signifies the existence of long-lived modes with diverging mean free
paths. The probabilistic distribution characterizing these mean free paths exhibits a heavy-
tailed nature, a hallmark of the Lévy walk [53], a well-established model of superdiffusive
processes.

Significantly, the dynamical exponent of the charge transport is intricately linked to the
nodal structure of the dephasing quasi-particle. In instances where certain symmetries are
present, the presence of nodal points becomes generic, leading to a robust manifestation of
superdiffusion characterized by exact dynamical exponents. Besides, fine-tuning the nodal
structure of quasi-particles enables the systematic generation of a spectrum of dynamical expo-
nents. Our analytical approach extends naturally to higher-dimensional systems, underscoring
the universality of our findings in the context of dephasing models.

2 Quasi-Particle Dephasing Model

Consider the dynamics of a dephasing model governed by the Lindbladian:
A o 7y A ’r A A A
ap ——z[H,p]—EZ[Lx,[LX,p]], (3)

where the Hamiltonian H represents a basic noninteracting fermion chain, given by

A=Y Elen+¢,8), @
i

characterized by a group velocity v;, = 2sink. The jump operator L, = &1&)( captures the
dephasing process affecting the quasi-particles d,. In the previous studies, particularly in the
context of both monitored [51] and open systems [46], the case where d, = &, has been
well-explored, resulting in a clear demonstration of diffusive particle transport.

We first focus on the scenario involving quasi-particles with time-reversal and spatial-
reflection symmetry. Specifically, we examine a scenario involving a three-site quasi-particle

configuration:
1

c"ix = ————(xm1 —aly + Exy1), (5)
VY2 +a2
where a is a real parameter. The corresponding momentum distribution is
2cosk—a
d, = 2884 ©)
VY2 +a2

In the range —2 < a < 2, d;. exhibits two nodal points, ks = + arccos(a/2), around which dj.
is linearly dispersed. Upon reaching a = %2, these two nodal points merge into a higher-order
nodal point at k = 0 or k = 7 with quadratic dispersion: dj o< sin?(k/2). For values |a| > 2,
d;. does not possess any nodal point.

Starting from a half-filling domain wall state

lY,) =|1...10...0), )

we study the evolution of the particle density (fi;); = (éjéi)t as well as the transported charge
C(t) = D};>1(fi;)¢ by computing the dynamics of the two-point correlation function (é;'éj)
under Eq. (3). The Lindbladian with quadratic Hermitian jump operator I satisfies a closed
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Figure 1: Numerical simulations of the particle transport of the dephasing Lindbla-
dian Eq. (3), with d, defined according to Eq. (5). Subplots are presented for dif-
ferent parameters, namely (al)(a2) for a = V2, (b1)(b2) for a = 2, and (c1)(c2)
for a = 3. Subplots (al)(b1)(cl) display the density evolution of systems with dif-
ferent dephasing quasi-particles. The system sizes are fixed to L = 256, and the
dephasing strength is ¥ = 0.5. The dynamics are initiated from the domain-wall
state |3,) =|1...10...0), and feature either (al) a ballistic wavefront, (b1) a su-
perdiffusive wavefront, or (c1) a diffusive wavefront. Subplots (a2)(b2)(c2) shows
the charge transport C(t) for different dephasing quasi-particles. The system size
for this simulation is fixed to L = 3000. For exact Lindbladian simulation, in the
short time regime (t < 1), the transport behaviors deviate from the Wigner function
dynamics results, following a C(t) o< t2 scaling. After t > 1, the Lindbiadian result
approaches the Wigner function dynamics, which exhibits a crossover from ballistic
(z = 1) to (a2) superdiffusive with dynamical exponent 2 = 3/2, (b2) superdiffu-
sive with dynamical exponent z = 5/3, and (c2) diffusive with dynamical exponent
z2=2.
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hierarchy [54-56]. In this case, the evolution equation of (é;réj) is closed (see Appendix A
for deriving the correlation function dynamics). Therefore, we can numerically simulate the
charge transport for system size up to L = 3000. For different choices of a, there are three
distinct transport behaviors.

a = +/2 case From Fig. 1(al), we see the density evolution features a ballistic front. The
charge transport shows a scaling behavior (after t > 1):

rC(t) ~ f(rt), 8
wherein the scaling function exhibits asymptotic behavior:
f(x)~ x2? as x — oo.

This behavior indicates a dynamical exponent converging to

Z=§ (9)

in the long-time regime. Note that the scaling function does not conform to the KPZ univer-

sality class.

a = 2 case As shown in Fig. 1(b1l), the density evolution exhibits a superdiffusive front
instead. After t > 1, the transport converges to the form [displayed in Fig. 1(b2)]

rC(t) ~ g(rt), (10)

with a different scaling function
g(x)~x®°

in the large x limit, indicating a dynamical exponent of

z=-. (11

a =3 case As demonstrated in Fig. 1(c1) [and in Fig. 1(c2) regarding the dynamical expo-
nent], the transport displays apparent diffusive scaling in the long-time regime.

This observation underscores the close relationship between the nodal structure of the
dephasing quasi-particle and the dynamical scaling of the transport.

3 Theoretical Prediction of the Dynamical Exponent

3.1 Wigner dynamics

In Refs. [51, 52], the authors introduced a Wigner dynamics framework tailored for free
fermion systems characterized by quadratic jump operators. The particle motion in the free
fermion system is captured by the Wigner distribution [57]:

n(x,k,t)= Zeiks <éi+s/zéx—s/2>t . (12)
S
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This quantity essentially represents the particle density at position x with momentum k and
offers a semiclassical perspective that accurately captures the system’s dynamics in a coarse-
grained sense. In Appendix B, we formally prove the exact Lindblad equation (3) leads to the
following Wigner function dynamics:

2 ) d
R (x, k, t) = —2sink ——(x, k, t) — plde2n(x, k, £) + 7l | 2ldgPn(x,q,t). (13)
at dx 27

This equation describes a statistical process wherein a wave packet with momentum k has a
probability proportional to |dy|? to shift to a different momentum. The probability distribution
of the new momentum g follows the distribution |d,|?. Note that the steady state solution to
the equation of motion is n(x, k) = const., which correspond to the original Lindblad equaiton
Eq. (3) is unital and therefore admit the solution in each particle number sector Hy (the
subspace spanned by N-particle states):

) 1
= 3 . 14
PxEss dimHy &, 1) (¢l (14)

We proceed to solve this linear equation employing the Green’s function method:

n(x,k,t) =(Gxn,)(x,k,t) = f G(y,k, t)ny(x —y,k)dy. (15)

Taking the initial state as a domain wall configuration, i.e., n,(x, k) = 08(—x), this expression
simplifies to

with the initial condition G(x, k,0) = 6(x). The Green’s function G(x, k, t) can be efficiently
simulated via a random walk approach [51] involving the following steps:

1. The velocity is determined by momentum: x’(t) = v[K(t)] = 2sin K(t).

2. The quantity K(t) remains constant within each interval [tg, t;),[t;1, t2),- -, with each
interval being independent and following an exponential distribution with an average
value of t; 1 —t; =y~ |di| 2.

3. The momenta K;,; are randomly distributed with a probability p(k) proportional to
|dz|2.

4. The probability density p(x, k, t) corresponds to the Green’s function G(x, k, t), which
can be determined numerically by sampling various random trajectories.

By employing this method and sampling multiple random trajectories, we obtain access to the
scaling exponent in the long-time regime with high accuracy.

For the specific dephasing model involving quasi-particles in Eq. (5), Fig. 1(a2)(b2)(c2)
showcase comparisons of charge transport between the exact Lindbladian dynamics on a 1D
lattice and the Wigner dynamics. Initially distinct, the Lindblad dynamics gradually converges
to the Wigner dynamics beyond t > 1. In Appendix C, we demonstrate an agreement in the dy-
namics of density profiles obtained through both methods, particularly evident in the long-time
regime. This agreement supports the accuracy of the Wigner function description. Leveraging
this validation, we extend our numerical simulation using Wigner dynamics, pushing the sim-
ulation time to t > 107. As shown in Fig. 2, this extension enables a precise showcase of the
convergence of the dynamical scaling a(t) towards 2/3 and 3/5.

6
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Figure 2: The dynamical exponent a(t) = dlogC(t)/dlog(t) of the charge trans-
port for Wigner dynamics (13) with y = 0.1. These results are obtained from the
random walk simulations with 5 x 10® samples. The exponents a;(t), as(t), and
a5(t) correspond to the cases a = ¥/2, a = 2, and a = 3 respectively.

3.2 Lévy walk

In the random walk picture, we show that the nodal point in the momentum distribution leads
to the phenomenon of Lévy walk [53]. In stark contrast to the Gaussian characteristics defining
Brownian motion and standard diffusion, a Lévy walk constitutes a stochastic process dictated
by a heavy-tailed probability distribution p (1) governing step length I of each transition. In
the I — oo limit, this distribution conforms to a power-law behavior:

p(D~177%, (17)

where 1 < 2z < 2 is the Lévy exponent. When each step takes equal time, the cumulative
displacement conforms to an asymptotic behavior:

X(t)=|21i|~tz. (18)

Hence, the dynamical exponent governing the system’s behavior aligns with the Lévy exponent,
confirming that a Lévy walk implies superdiffusion.
In systems where time-reversal and reflection symmetries are preserved, we define an in-
dicator as
v=dyd,, (19)

which indicates a nontrivial condition when v < 0. For quasi-particles in Eq. (5), this corre-
sponds to the range —2 < a < 2. A nontrivial ¥ < 0 implies the existence of a nodal point at
k, € (0, ). We refer to this nodal point as a “generic nodal point." By introducing q = |k—k,]|,
in the vicinity of q = 0, the mean free path exhibits the asymptotic behavior:

I ~ Tp ~ |dg[ 2 ~q 2. (20)

As q approaches zero, the mean free path diverges. A change of variable (g — [) in the
probabilistic distribution results in:

1= f p(q)dq ~ J q’dq ~ f ) ~ J 175241,
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leading to a free path distribution p(1) ~ [~5/2. Since the average time step is constant:

_ 1
thy1—th = f p(k)'rk =
k T

this random walk behavior aligns with a Lévy walk, characterized by an exponent of z = 3/2,
consistent with our numerical simulations in Fig. 1(a2).
When v = 0, dj possesses a nodal point at one of the high symmetry points, k,, with a
vanishing velocity
Vi ~ |k —ko| =q.

The symmetry condition requires the dispersion of dj. to be at least quadratic: d; ~ q2. As a
result, the mean free path scales as

-3
L ~ VT ~q .

Then a change of variable (g — 1) leads to

1 =Jp(q)dq ~ f qtdq ~ J *3d (1713) ~ f 178341,

which yields p(1) ~ 178/3. The dynamical scaling exponent becomes z = 5/3, in accordance
to Fig. 1(b2).

In cases where v > 0, there is typically no nodal point in dy., resulting in a bounded mean
free time: T < Tmay, and subsequently, a finite mean free path I < [, resulting in ordinary
diffusive behavior with z = 2, as shown in Fig. 1(c2).

4 Spectrum of Exact Dynamical Critical Exponents

4.1 Fine-tuning the dephasing quasi-particles

Beyond the symmetric setting, we can also leverage specific fine-tuned dephasing quasi-particles
to attain higher-order dispersion near the nodal points. This diversity in dispersion yields var-
ious dynamical scaling behaviors.

Let us begin by considering a model with a single nodal point:

|di| ~ sin™ [(k —k,)/2].
This type of dispersion can be realized by selecting the following form for &x:

1

n
3 — —iak,
dx p— Z e °Cx+a-
v Nn a=0
where N, is the normalization factor, with the explicit form

n 2 1
4"T(n+ 3)
N, = Z (n) = —2, I'(x) is the Gamma function.
= \a J/7l(n)

In this case, &x possesses a nodal point at k,, exhibiting n-th order dispersion. Following
similar derivations, the mean free path for momentum-k wave packet is given by I ~ g2,
and the distribution takes the form:

p(l) ~ l—l%(l—l/ZH) — l—l—(2n+l)/2n.

8
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Figure 3: Numerical simulations of the (a) density evolution and the (b) particle
transport of the quasi-particle dephasing system Eq. (3), with d, defined according
to Eq. (22). (a) the density evolution features a ballistic wavefront for the left part
and a superdiffusive front for the right part. Due to the difference in wavefront
velocities, by t = 100, the left front has already reached the boundary, whereas the
right front has not. (b) charge transport shows superdiffusive scaling with z = 3/2.

The dynamical scaling exponents that can be tuned in this scenario are given by

2n+1
= . 21
o (21)

Zn

One simplest example is when k, = /2 and n = 1, in this case the dephasing quasiparticle is

- |
d, = E(Cx _lcx+1)- (22)

Note that since the dephasing quasi-particle has no reflection symmetry, the left and right
wavefronts are different, as displayed in Fig. 3(a). This behavior was previously observed in a
monitored free fermion system [58], which shows a special skin effect in the steady state when
adding certain feedback operations. The charge transport for this system shows superdiffusion
with g = 3/2.

On the other hand, if we set k, = 0 (or equivalently k, = 7), the velocity v; ~ k, resulting
in

lk ~NViTe ™ k—(Zn—l).

Consequently, the probability distribution becomes:

p(l) ~ l—l—(2n+1)/(2n—1)’

which leads to the dynamical scaling exponent

_2n+1
T on—1"

Zn (23)

Note that the derivation is valid only for n > 2. In the n = 1 case, there would be usual
diffusive transport.

4.2 Higher Dimensional Cases

The analysis extends to higher dimensions, where nodal structures can also be nodal lines and
surfaces. To begin, the Wigner dynamics Eq. (13) naturally generalize to D-dimensions with
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200 slight modifications:

dP
IR t)] .

(24)
201 We refer to Appendix B for the proof. For simplicity, we assume the systems to be square/cubic
202 lattices with nearest-neighbor hopping Hamiltonians, with dispersion relation

an _ - D .
E(x,k,t)=—2§sm(ki) i

) - -
n (i)k; t)—’)’ldﬁlz I:n(ic" ks t)_f
axi

vi = 2(sink; +sink,) and vi = 2(sink; +sink, + sinks)

203 respectively.

204 2D systems If the dephasing quasi-particle has the time-reversal and reflection symmetry,
205 dy. is a real function on the Brillouin zone. We can then similarly define three independent
206 indicators:

1 =d(0,0d(r,0), Y2 = d(0,0)d(0,n)> and v3 = d(0,0)d(z,n)-
207 A negative value for these indicators indicates a nodal line ﬁO(O) in the Brillouin zone parametrized
208 by @ € [0,1). In proximity to this nodal line, we expect consistent behavior with by ~ ki,

200 Wwhere k| represents the local variable orthogonal to the ko curve. The asymptotic probabilistic
210 distribution p(k, ) can be approximated by integrating out k;:

1= f p(k)dkdk, ~ J k2dk; .

211 Thatis, p(k;) ~ sz_". The mean free path is then [ ~ kIzn, indicating a 2D Lévy walk with a
212 dynamical scaling exponent given by
2n+1

By = . 25
" 2n (25)

213 The nodal line intersects with a high-symmetry point if any indicator yields zero. The transport
214 properties remain unchanged as they are determined by the segment of the curve with nonzero
215 momentum.

216 When we relax the symmetry restriction on dy, dy. becomes a complex function on k. Even
217 in this case, nodal lines can exist without fine-tuning. Consider the winding number

d-
WI[C] =ff £ (26)
C |d1‘c|

218 of a contractible loop C in the Brillouin zone. A nonzero winding number signifies the presence
210 of a nodal point k, within the loop. For this analysis, we assume

p(k) ~ [k — K, |*" = 1§ |*"

20 in the vicinity of the nodal point. For a generic nodal point k, # 0, the mean free path is given
221 by

Iy ~ 3 ~ 1§,

222 and the probability distribution becomes:

1=fp(q)dqz~ J q*"qdq ~ J =27

10
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Consequently, the dynamical exponent is

n+1
2, = o 27)

If the nodal point is situated at one of the high-symmetry points, the mean free path becomes
I ~ vimg ~ (g7,

and the probability distribution can be expressed as

1= J p((-l')dqz ~ f 1_2_3/(2n_1)dl.

The dynamical exponent in this case is

_2n+2
T 2n—1"

Zn (28)
For superdiffusion in this context, n > 3 is required; a smaller value of n results in diffusive
transport.

3D systems If time-reversal and reflection symmetry are present, we can similarly define
seven indicators, which are the product of dy and &'ﬁ at one of seven high-symmetry points
in the Brillouin zone. A negative sign in these indicators implies the presence of a nodal
surface. Assuming that the dispersion near the nodal surface is proportional to the orthogonal
component: dy ~ kz, a similar calculation yields a dynamical exponent of

_2n+1
2n

Zn (29)
Without the symmetry constraint, we can similarly define winding number W[C] for a con-
tractible loop C; a non-zero winding implies a nodal line. Assuming the dispersion relation
dy ~ kI near the curve, we obtain a dynamical exponent of

+1
5, = (30)
n

5 Conclusion

This study uncovered a straightforward yet profound mechanism that leads to superdiffusive
transport within noninteracting fermion systems subjected to local dephasing. Our findings
demonstrate that we can fundamentally alter the system’s behavior by extending the onsite
particle dephasing to the dephasing of local quasi-particles featuring nodal points. The dy-
namics of a momentum-k wave packet in this setting resemble the diffusive particle but with
a unique feature: its mean free paths I diverge when the momentum approaches the nodal
point:
- = In

li~|k—ko| . (31)
By studying the Wigner dynamics of the Lindbladian, we have rigorously mapped the system’s
behavior to that of a random walk. Notably, this random walk manifests as a Lévy walk, a well-
established model of superdiffusion in physics. This mapping not only elucidates the physical
underpinnings of the observed superdiffusion but also enables us to determine the dynamical
exponent governing the system’s behavior precisely.

11
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Furthermore, it empowers us to design and engineer models with different exact dynamical
exponents, broadening our grasp of the phenomenon. It is worth noting that this superdiffusive
transport extends naturally to higher dimensions. This generality underscores the universality
of the mechanism, offering valuable insights that can be applied across a spectrum of quantum
many-body systems.

In this work, the initial state of the dynamics is consistently set to the domain wall state

o) =1---10---0).

However, the phenomenon of superdiffusion is not confined to this specific initial state. Ac-
cording to the random walk argument, superdiffusive charge transport should also be present
in a generic, imbalanced configuration and in the infinite temperature ensemble. Notably,
further research [59] demonstrates that the model presented in this paper exhibits superdif-
fusion, with the same dynamical exponent, in a boundary driving setup, which is considered
indicative of infinite-temperature transport [1, 60].

Additionally, the concept of nodal points in quasi-particles provides a general strategy for
achieving superdiffusion. This concept also leeds to new anomalous transport phenomena in
disordered systems [61,62]. In Refs. [63,64], it is demonstrated that nodal impurities lead to
new types of superdiffusive behaviors.

Acknowledgements
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package DifferentialEquation. jl1 [65].

A Closed Hierarchy of the Correlation Function

In this section, we will show that the dynamics governed by a Lindbladian consisting of free
fermion Hamiltonian and Hermitian quadratic jump operators can be efficiently simulated due
to a closed hierarchy [54-56] of the correlation function. Specifically, the dynamics of the two-
point correlation function can be formulated as a differential equation that is linear in itself
and does not involve any multi-point correlations.

We first consider the Lindblad equation for operators:

8,0 =i[A, 01— = D [L[L,, 01], (A1)

where each jump operator is a Hermitian fermion bilinear:

a _ * A'i' A — AT A _ *
Lx = Zdadbcx+aCX+b = ZAx’ijCi Cj, Ax,ij = di—xdj_x' (AZ)
ab ij

Since we concern only the two-point correlation G;; = {c!c;), we can choose O;; = ¢ c;. Using
ij i€ ij = %%
T

the commutation relation [c:cj, c;:cl] = 5jkc3cl —diic,

¢j, we know the following identity:

Nlaweie,ele]= D [Awele; — el aan]. (A.3)
kl k

12



280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

SciPost Physics Submission

We can use the identity to calculate the commutator of two fermion bilinears and obtain the
following:

iZHkl[é;iél’ 61]] = lekl(sllélé] —51ké:él) = l[HT . é - 6 'HT]ij.
kl kl
Similarly, the double commutation in the second term is:
Y A ora oA Y Aa A
—5 Dolhalle, 0311 =—2 D [(A)7- 0+ 0 (47)° — 247 0 - A7].
X X
Together, the EOM of the two-point correlation function is

8G=X"-G+G-X+71 ) AL G-AL = L[G], (A.4)
X

where X = —iH*—1 3 (A%)2.
Note that the right-hand side of Eq. (A.4) is linear in G, the evolution of G can be formally
written as
G(t) = e~ [G,]. (A.5)

To obtain the trajectory in the numerical simulation, simply implement the £[-] action and
insert the linear operator into a numerical solver for the differential equation.

B Wigner Function Dynamics

In this appendix, following Refs. [51,52], we derive the Wigner dynamics of quasi-free Lindbia-
dian for general d-dimension. The Hamiltonians are supposed to be the simplest free fermion
model on the square lattice:

H=>Y e +é;é,;. (B.1)
(%5)
The Lindblad equation for operator O has the form:
U ¢ f a A
8.0 = i[A, 01— 2 > [La[Ly, 01 (B.2)

n

We are considering the evolution of the operator

A, k)= Zei“é‘“

S

é. s, (B.3)

The Wigner function is then obtained by taking the expectation value: n(%, k, t) = (A(%, k)),.

Hopping Hamiltonian We first consider the Hamiltonian part of the Lindbladian. Using the
identity
&8 = 8jé & — 6,8 ¢, (B.4)

[H,ele1=D (el &5+l &5 —&le54q,—Elé54,), (B.5)

13
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where €; is the unit vector for each direction and thus

s - 5 o -~ 5 -~ 5
5 i=1 x+§+e, x+§—el x+§ x+§
D é; é
— | - A — 1 7
=2 E sm(k,)[n(x+—,k)—n(x——,k)]
—~ 2 2

In the coarse-grained

3. g . 9 -
n(k""%:k;t)_n(i_e_ljk)t)’v_n(i’k’t)’ (B.6)

So the Hamiltonian part of the dynamics is

dn(%, k, t)——ZZsm(k) (x k,t)dt. (B.7)

Dissipation Here, we consider the dephasing of the local quasi-particle at y,

Ly = didye], &y (B.8)
ab
We denote Agp = ddp, the commutator [f.y, A(x,k)]is

[Ly e, 0] = 3 ™A [ €], 8y, E, s

+_
s,ab 2

_ iks AT oA _ AT A
- Z e Agp I:By—x+b,gcy+acx—% 5x—y—a,gcx+%CJ’+b:|

s,ab

_ —2ik(x y—b)Ar A _ +21k(x—y—a) T ]
- ZAab [ y+a62x—y—b e 2x—y—ac}'+b

Using the fact
1 . 1 . . . .
_ —ipan — ip(s—a)at a _ 5. &t A At a
E e n(x = E E e ¢' . C._s= E ¢' ¢ s=¢ _,C_a
N4 (x,p) N £ 4 x+3 X732 > S x4y X2 x+5 XT3’
the result is

[i. ,h(x, k) ZA e tp(a-Db)

ab,p

x [e—zi(k—p)(x—y—b)ﬁ (x L ; b, p) o F2ilk—p)(x—y—a) (x _ a;b, p)] .

For the double commutator [f.y, [i,y, Aa(x, k)]], we need to replace the Wigner distribution in
the right-hand side with [f,y, ﬁ] There are four terms involved:

[ty, [i:y,ﬁ.(x,k)]] = Sl + 82 + Sg + S4,

where $; and S, come from

i(x+5520) = [Loa(x+55200))s
9 >P Yo 9 »P )

14
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300 the S3 and S4 come from

A(x=257p) = [Lei(x= 250
5P Vs 5P|

s10 In the following, we will simplify the expression term by term. For the first term Sy,

1 i i i i ab a—b+c—d
s, = ST AupAgge OB DRk B Rilp-a)xt oy (x La—bte=d q)

N2

abced,pq,y 2
2iy(k—q) a— — —
_1 s (Z u) Ay A, gePEb)miale—d)=2ilk—p)(x—b)p=2i(p—0)x+ T~ (x a—bte—d q)
N abed,pqg \ ¥ N 2
_1 ST GrqAapAcge PEBIiae D2 p)xD) 20—+ 5 —d) 5 ( xpi—bte—d q)
N abced,pq 2
1 ip(a—b)ik(c—d) . 2i(k—p)( L —d) A a—b+c—d
= Z ZAabAcde ip(a—b)—ik(c—d)o2i(k—p)(Z—d)p (x + — k)
abced P
= Z 1 Z e2P@) | 4 4 piklarb—c—d)y (x + 2= b+c—d ) k)
N 2
abced p
; b—c
= Z(Az)d,e’k(b_”)ﬁ (x - ,k) .
5 2
(4
s11  The calculation for Sy is similar to Sy:
Si= iz ST AgpAge Pl Dgtkopey - 2G-Sy (x _azbtc—d )
abced,pq,y 2
1 —ip(a—b)—iq(c—d) ,2i(k—p)(x—a) ,2i(p—q)(x—52—c) a—btc—d
= — Z 5k,qAabAcde e e 2 n|{x— T,q
abced,pq
-1 Z AgpAngePlabIik(e—d)gilp—k)(a+b—2) (x _a—b+c—d ’ k)
abced,p 2
. a—b+c—d
_ Z By AgpAnge—iklarb——Dpg (x _azbte=d k)
’ 2
abced

; —d
= (A% gqe e Ds (x - ,k) .
2
ad

312 Since i,y is a particle number operator, f,f, = f,y, i.e., A2 = A. Moreover, in the coarse-grained
313 limit, we can approximate fi(x —(b—c)/2, k) and fi(x —(a—d)/2, k) with 7i(x, k). Therefore,

S;=8,= Zd;e—i’w Zdbeikbﬁ(x, k) = |di |27 (x, k).
a b

314 Now we consider the S, part:

1 . . . . ab
Spmmme D) AgpAcge PO Gy D2 (e 00 (x +

a—b—c+d
b q
abed,pq.y

2

1 e2iy(k—2p+q) ST ab_ . a—b—c+d
SEEESS (ZT Ay Ay ge—iPa-bIiale—d)-2ilk—p)(x—b) 21 (p—a)(x+ 2 —c)y (,H_—’q)

N abced,pq Yy 2

1 ; ; ; a—b—c+d
- Z AubAcde—lp(a—b)—1(2p—k)(c—d)el(k—p)(a+b—2c)ﬁ (x +—— 7" op— k)

abced,p 2
e~2ip(la—d) ; a—b—c+d

.y (z P (=

abed \ P N 2

; 1 ; a—b—c+d

= — Z AabAcdelk(b_c)_ Ze_lq(a_d)ﬁ (x + —;Q) .

abcd N q 2

Using the coarse-graining approximation and replacing the momentum sum with the integral,
316 We have:

3

ey
o

; dPq ) dPq
~ — * lk(b—C) * —lq(a—d) A —_ 2 2 A
S22 dodce J s 2udadae™ O, ) =l J Gyp a0, ).
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Figure 4: Comparison of the Lindblad equation (C.1) and the Wigner dynamics (B.9)
at T = 0.5,1,2, with a = ¥/2 and y = 0.5. The markers show the results from the
Lindblad equation, and the solid line represents the results of Wigner dynamics.

317 Straightforward calculation shows S5 2~ S,:

S3 = _iz Z AgpAqe PaD)—ia(c=d) o 2i(k=p)x—y @) 2P+ —y—d)py (x - #, )
abced,pq,y
= D 602p-kAapAcqe POl 2N =2ip —e— -0y (x - w’ )
abced,pq ’ 2
== 3 A Ageikared) f 429 2ipo-o (x _azb-ctd _k)
abed (27)P 2

D
== S AgpAggeikaD 440 (x _ w’q)
abed (27-;)D 2

dPq .
~ —|dk|2f Gy a0, a)-

s1s  Therefore, we have proved that the dynamics of the Wigner distribution is

D
L= . L= L= d°q I
atn(x,k)=—ZZsm(ki)Bxin(x,k)—yldﬁlzn(x,k)+T|d,-clzf |dq|2n(x,q). (B.9)

i=1 (27-;)D

10 G Comparison between Exact Lindblad and Wigner Dynamics

s20 In this appendix, we compare the exact Lindblad dynamics

dp _ ..~ TNOTATA At
E =—l[H,p]— Eg[d;dx:[d;'cdx:p]] (C.I)

321 with the Wigner dynamics Eq. (B.9).

16



322

323

324

325

326

327

328

329

330

331

332

333

334

335

SciPost Physics Submission

1.0 TR ||||IIHmﬂﬂﬂﬁiii“::::nmmnm ||||| + T=20
> W“wmwh + T=40
2 05+ ‘ + ;I/'v=.60
] —_— Iigner
2

0.0 1 . . ...

-100 -50 0 50 100
1.0 NI
+ T=20
> Wt + T=40
B o5 . + T=60
] L, —— Wigner
o '“lu...“""
0.0 A r wﬁ::::"!!!!!!'"n ...............
—-100 =50 0 50 100
1.0
+ T=20
ET + T=40
2 05+ + $v=.60
] -_— Igner
©
0.0 1

—-100 -50 0 50 100
site

Figure 5: Comparison of the Lindblad equation (C.1) and the Wigner dynamics (B.9)
at T = 20,40, 60, with a = v2 (top), a = 2 (middel), a = 3 (bottom), and y = 0.5.
The markers show the results from the Lindblad equation, and the solid line repre-
sents the results of Wigner dynamics.

In terms of the dynamics of the density, we first notice that at short times, as shown in ig. 4
for quasiparticle

A 1/, . .
d, = > (cx_l - ﬁcx + cx+1) , (C.2)

There are certain disagreements between the Lindblad dynamics and the Wigner dynamics.
However, as time grows, the disagreements become less prominent.
The comparison at later times (t = 20,40, 60), as displayed in Fig. 5 for quasiparticles

A 1
dx — (éx—l _aéx + éx+1)’ a= ‘/5’ 2,3 (C-B)

Y2+ a2

discussed in the main text shows good agreement.
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