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Abstract1

At asymptotically late times ultrametricity can emerge from the persistent2

slow aging dynamics of the glass phase. We show that this suffices to re-3

cover the breaking of replica symmetry in mean-field spin glasses from the4

late time limit of the time evolution using the Keldysh path integral. This5

provides an alternative approach to replica symmetry breaking by connecting6

it rigorously to the dynamic formulation. Stationary spin glasses are thereby7

understood to spontaneously break thermal symmetry, or the Kubo-Martin-8

Schwinger relation of a state in global thermal equilibrium. We demonstrate9

our general statements for the spherical quantum p-spin model and the quan-10

tum Sherrington-Kirkpatrick model in the presence of transverse and longi-11

tudinal fields. In doing so, we also derive their dynamical Ginzburg-Landau12

effective Keldysh actions starting from microscopic quantum models..13
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1 Introduction36

The characteristic property of glasses is their slow evolution. As the system approaches37

the equilibrium state, its evolution becomes increasingly restricted by barriers in the free38

energy landscape [1–4] that take more and more time to overcome. As the time since the39

quench increases, relaxation slows down – the system ‘ages’. One finds that accompanying40

this behavior is an ultrametric structure in the time dependence of correlations [5, 6].41

Because the dynamic constraints depend on the age of the glass, contrary to most other42

systems, it develops a sufficiently strong long-term memory for the age of the system43

to forever remain a relevant time scale [7]. Consequently, aging precludes glasses from44

reaching thermal equilibrium on accessible time scales [8–13].45

Simultaneously, the analysis of the putative equilibrium state in systems with quenched46

disorder has brought forth many surprises, most prominently the breaking of replica sym-47

metry [14–16], indicating the fragmentation of configuration space into disconnected en-48

ergetically equivalent regions separated by insurmountable free energy barriers [2, 17, 18].49

This fragmentation of the phase space breaks ergodicity [19] and gives rise to an ultra-50

metric structure, observable in correlations [20].51

Although theoretical research has focused largely on the simplest models exhibiting52

glassy behavior, namely spin systems with infinite-ranged interactions and quenched dis-53

order, a connection to fragile glasses exists in mode coupling theory [21–24]. Although54

lacking a rigorous derivation, numerical [25–28] and experimental evidence [29] support55

its conclusion that the characteristic properties of mean-field spin glasses carry over to56

systems with short-ranged interactions and annealed disorder in finite dimensions.57

From the previous arguments, it is clear that aging dynamics and the absence of58

ergodicity are related phenomena [17]. In fact, in mean-field spin glasses, several attempts59

to formalize this relation have been made [30–34]. Nevertheless, despite decades of intense60

research, it remains unclear how, or even if, the equilibrium solution is connected to the61

dynamics [13,35,36].62

We aim to make this similarity more concrete by showing that after a quench, at63

infinitely late times, the dynamic description eventually reproduces the equilibrium results.64

It is important to point out that the infinite-time limit is taken at the beginning and the65

equilibrium result is not necessarily smoothly connected to any results obtained at finite66

times. In particular, we do not claim that the evolution ever reaches the equilibrium state.67

We present our main result in Sec. 2. There, we show that the algebraic properties68

of Parisi matrices, characterizing the fragmentation of configuration space, are recovered69

in the Keldysh formalism under the assumption of a strong hierarchy of time scales. The70

result then is applied in Sec. 3 to the quantum Sherrington-Kirkpatrick model in a longi-71

tudinal field and to the spherical quantum p-spin model in Sec. 4. Our approach exposes72

the spontaneous breaking of thermal symmetry (or the Kubo-Martin-Schwinger relation of73

a state in thermodynamic equilibrium) as the origin of replica symmetry breaking. This,74

however, is independent of the breaking of time-translation invariance as emphasized in75

Sec. 5. There we also apply constraints to the potential quantum critical scaling at zero76

temperature. In Sec. 6, we conclude with an outlook discussing the connection to glasses77
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of a finite age and to the zero-temperature limit.78

2 Equivalence of ultrametric Keldysh dynamics and replica79

symmetry breaking80

The proposal of a connection between replicas and the classical Langevin theory of spin81

glasses goes back to the classic early work of Sompolinsky and Zippelius [7, 30, 37]. They82

proposed that replica symmetry breaking was associated with multiple exponentially long83

time scales which diverged as the thermodynamic limit was taken. Later, Cugliandolo and84

Kurchan [5, 6, 38, 39] showed that the classical equations exhibited ‘aging’ dynamics [40]85

in which the time scales remained finite, although exponentially long, even in the ther-86

modynamic limit: they established an explicit connection between the aging equations87

and the replica symmetry breaking of the static problem. The aging dynamics was ex-88

tended to quantum p-spin spherical models [36, 41, 42] and large Ms SU(Ms) quantum89

Heisenberg spin models [43] with one-step replica symmetry breaking using the Keldysh90

formalism: in the slow dynamics regime, the Keldysh equations became identical to the91

classical Langevin equations. The important case of the quantum Sherrington-Kirkpatrick92

Ising model, i.e. the Ising spin glass in a transverse field, was briefly discussed by Kennett93

et al. [44, 45].94

This section will present a general and model-independent discussion of the connection95

between replicas and glassy dynamics. The results apply to quantum and classical spin96

glasses with possibly full replica symmetry breaking, including the recently studied quan-97

tum Ising spin glass in both transverse and longitudinal fields with an Almeida-Thouless98

transition [46], and the SU(2) quantum Heisenberg spin glass [47]. A related connection99

between supersymmetry and thermal symmetry in the paramagnetic phase of spin glasses100

was previously found by Kurchan [48].101

We connect the Parisi spin-glass order parameter characterized by the function p(u),102

0 ≤ u ≤ 1, in Eq. (1) to the effective time-dependent (half) inverse temperature X(t),103

defined by Eq. (10). The deviation of X(t) from its equilibrium value β/2 measures104

the breaking of the fluctuation-dissipation relation by the glassy dynamics. For each105

u < 1, there is a t which is determined by the solution of Eq. (15), where β is the inverse106

temperature; smaller u corresponds to larger t, with u = 1 mapping to t = 0 (X(0) = β/2),107

and u = 0 mapping to t = ∞ (X(∞) = 0).108

The analogy between the two approaches is complete in the sense that the algebra of109

ultrametric matrices in Eqs. (3), (4) and (5) is recovered by real-time the Dyson-Keldysh110

equations in the glassy limit under the assumption of ultrametricity in Eqs. (13), (18) and111

(20).112

2.1 Replica formulation113

On the replica side of the correspondence, we need to recall the algebraic relations satisfied114

by Parisi matrices, which we then aim to recover in the late-time limit of the dynamical115

equations.116

For completeness, we begin by introducing the Parisi matrix Pab and the equivalent117

Parisi function p(u) u ∈ [0, 1]. Consider some model with N replicas. Its equilibrium118

correlation functions are N -dimensional square matrices in replica space with an intriguing119

structure in the physical limit N → 0. To capture this structure, we define that the120

N -dimensional symmetric matrix P is called a Parisi matrix if a sequence of integers121

N = {n1, n2, . . . , nL−1} with n1 = 1 exists such that Pab = pi for
[
a−1
mi

]
̸=
[
b−1
mi

]
, but122
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[
a−1
mi+1

]
=
[

b−1
mi+1

]
, where mi =

∏i
j=1 nj and mL = N . Furthermore, we fix the diagonal123

to Paa = p0. Simply put, a Parisi matrix consists of a hierarchy of block matrices placed124

along the diagonal such that each block itself is again a Parisi matrix (see Fig. 1(g)).125

If P is identified with the correlation function, it describes the formation of clusters in126

replica space. If the pi form a decreasing sequence, different realizations of the system127

within a cluster are more strongly correlated with each other, than with replicas from128

other clusters. Thus, unless the sequence N contains only one element, the Parisi matrix129

describes the breaking of ergodicity.130

The simple structure of P allows it to be rewritten in terms of the equivalent Parisi131

function132

p(u) = pi if mi < u < mi+1 (1)

with p(1) = p0. Since m1 = 1 and mL = N , with all other values in between, in the133

replica limit N → 0 one has u ∈ [0, 1], see Fig. 1(f). Note, that due to the limit N → 0134

smaller values of u correspond to terms farther from the diagonal of P . Thus, inverting135

(1), (dp(u)/du)−1 gives the probability of finding the value p in the Parisi matrix. Again,136

if P is interpreted as a correlation function, this determines the probability distribution137

of correlations between different realizations.138

We define an ultrametric space as a metric space M in which the triangle inequality139

is replaced by the strong triangle inequality140

dab ≤ max{dac, dcb} ∀c, a, b ∈ M . (2)

This implies that there are no points between a and b, meaning that all points closer141

to a than b are at least a distance dab from b. The space M thus appears fractured142

into a hierarchy of clusters, such that on each level every point is a member of only one143

cluster [17]. If the pi are a decreasing sequence, replica space with the Parisi matrix P as144

a measure of the inverse distance is ultrametric, meaning P satisfies (2) with dab = 1/Pab.145

The hierarchical structure and the ultrametric condition can then both be read off in146

Fig. 1(g).147

With these definitions, it immediately follows that the Hadamard (or component-wise)148

product of two Parisi matrices A and B is again a Parisi matrix C with149

c(u) = a(u)b(u) . (3)

Following some algebra (for a detailed derivation, see for example [49]), one finds that the150

same is true for matrix multiplication, for which one finds in the limit N → 0151

c(u) =a(u)b(1) + a(1)b(u)− ua(u)b(u)

−
∫ 1

u
dv (a(u)b(v) + a(v)b(u))−

∫ u

0
dva(v)b(v).

(4)

Specifically, for the diagonal in replica space, the result simplifies to152

c(1) = a(1)b(1)−
∫ 1

0
dva(v)b(v) . (5)

Some intuition for the interpretation of the Parisi function can be gained by considering153

the unmagnetized ergodic case without replica symmetry breaking. In this case, the Parisi154

matrix P is diagonal and therefore p(u) ∼ δ1u, with δij the Kronecker delta. In Fig. 1,155

this corresponds to the case with p1 = p2 = p3 = 0. This is to be compared with a156

ferromagnetic or magnetized phase for which all pn>0 are identical but non-zero. We157
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point out that this ergodic solution preserves replica symmetry as P is invariant under158

permutations of its indices. Hence, although indistinguishable in terms of the Edwards-159

Anderson order parameter [50] pEA ≡ p(1−) ≡ p1 alone, this gives a clear differentiation160

between the ferromagnetic and the spin-glass phase.161

In general, Parisi functions are not continuous, and for practical purposes, it is often162

useful to write p(u) = ps(u) + pfδ1u, where ps(u) is continuous in the limit of u → 1. In163

particular, p0 = p1 + pf , ps(1) = p1, i.e., both p0 and ps(1) involve the order parameter164

p1. Due to the absence of aging in the ergodic phase, it is natural to expect at late165

times a relation between the off-diagonal terms ps(u) in replica space with the slow aging166

component of the evolution. Simultaneously, there should be a connection between the167

replica diagonal pf and the fast evolution that at late times becomes independent of the168

age of the system. In the following, we will show under which conditions these relations169

can be made rigorous.170

2.2 Dynamic theory171

We now show that the same rules of computing the Hadamard (or component-wise) prod-172

uct and the matrix multiplication of two Parisi matrices are also obtained from a dynamical173

approach under the assumption of ultrametricity.174

Let us therefore turn our attention to the dynamics following a quench, which is de-175

scribed in terms of Green’s functions and self-energies in Keldysh space (for an introduction176

see [51])177

G =

(
GK GR

GA 0

)
and Σ =

(
0 ΣA

ΣR ΣK

)
. (6)

In general, these are two-point functions that depend on two times. However, as we send178

the time passed since the quench to infinity, the center-of-mass time becomes but an overall179

scale that drops out. This will become clear in Sec. 3. For example, for the correlation180

function of Ising spins, we write181

⟨s(t1)s(t2)⟩ ≡ GK(t1, t2) = GK(T, t) −→
T→∞

GK(t) , (7)

with a coarse-grained real scalar variable s. In the second step we have transformed to182

Wigner coordinates, i.e., to center-of-mass and relative time T = (t1+t2)/2 and t = t1−t2183

(see Fig. 1(a)). We then split the the Green’s functions into a fast part that equilibrates184

at late times, and a slow part that describes aging185

G(t) =Gs(t) +Gf (t) ≡
∫ Λ/b

−Λ/b
dωe−iωtG(ω)

+

∫ Λ

Λ/b
dωe−iωtG(ω) +

∫ −Λ/b

−Λ
dωe−iωtG(ω)︸ ︷︷ ︸

=Gf (t)

.
(8)

Here Λ is a high-frequency cutoff. From the view of the scales of the aging variables (index186

s) b ≪ 1, whereas b can be sent to 1 from the view of the fast variables (this makes sense187

particularly when the scale separation between aging and stationary field diverges with188

T → ∞). By this construction, the fast field has support in the time domain on scales189

1/Λ ≤ |t| ≤ b/Λ, and the slow one varies with time for |t| ≥ b/Λ, while it is constant190

for |t| ≤ b/Λ. We therefore identify b/Λ = τerg as the time scale up to which correlations191

are ergodic. Furthermore, we anticipate Gf and Gs for t ∼ b/Λ to correspond to pf and192
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p1 for the appropriate Parisi function p(u). The emergence of the scale τerg for finite T193

implying imperfect separation between Gf and Gs is shown in Fig. 1(b). The boundary194

value GK(t = 2T ) vanishes as T → ∞.195

Next, we address the response to an external (longitudinal) field h which is given by196

the retarded Green’s function197

GR(t1, t2) =
δ⟨s(t2)⟩
δh(t1)

. (9)

Since the advanced Green’s function for real scalar theories can be expressed asGA(t1, t2) =198

GR(t2, t1), the dynamic theory can be formulated in terms of the two real functions199

GR(t1, t2) and GK(t1, t2). Due to causality, the former vanishes for negative relative200

times t < 0. In the limit T → ∞, it can therefore be written in the form of a generalized201

thermal ansatz [6]202

GR
s (t) = −X(t)θ(t)∂tG

K
s (t) = GA

s (−t) , (10)

where θ(t) is the Heaviside function and X(t) plays the role of a time-dependent inverse203

temperature in the high-temperature expansion of the fluctuation-dissipation relation204

GR(t) = −θ(t) tan

(
β

2
∂t

)
GK(t)

= −θ(t)
β

2
∂tG

K(t) +O(β2) .

(11)

We emphasize that this interpretation becomes particularly meaningful at late times when205

the characteristic time scales of the evolution satisfy ∆t ≫ β, which justifies the expansion206

in powers of the inverse temperature β.207

From its definition (7), it is clear that GK(t1, t2) is symmetric under exchange of t1 and208

t2. Without loss of generality, the dynamic theory can therefore be restricted to t > 0. At209

short relative times (t < τerg), all correlations have equilibrated, which fixes the boundary210

condition X(0) = β/2. But at large values of t that diverge as the inverse infrared cutoff211

T is sent to infinity, the system becomes increasingly fragmented and thus unresponsive.212

Hence, we expect the correlations to decay slowly in t and X to be a decreasing function213

of t, see Fig. 1(b). The ansatz (10) is consistent with that of Ref. [6] and a generalization214

of the one used in Ref. [35]. From the expansion (11) it also follows that the ansatz (10)215

corresponds to a restriction of the Parisi function to the first Matsubara frequency in the216

equilibrium approach. Due to the exceedingly slow dynamics in the aging regime, following217

the same argument as in the expansion in Eq. (10) this ansatz becomes exact in the limit218

T → ∞ at any finite temperature.219

Finally, we make the assumption of strong hierarchy [30], which is to say that correla-220

tions vary so slowly in time that GK
s (t) < GK

s (t′) requires limT→∞ t/t′ = 0. This implies221

that correlations are ultrametric since222

GK
s (t+ t′) = GK

s (max(t, t′)) (12)

satisfies the strong triangle inequality GK
s (t) ≥ min{GK

s (t − τ), GK
s (τ)} ∀τ ∈ R. Each223

value of GK
s can be assigned to a characteristic time scale. In case of infinitely many time224

scales Eq. (12) is also the only dependence on relative time t in the limit of T → ∞ that225

is consistent with aging dynamics [6]. Conversely, if only a finite number of time scales226

emerges, this is not expected to hold true for the late-time dynamics [5]. We will see below227

in Sec. 4, that this implies that in the thermodynamic limit a quench in the spin-glass228

phase of the spherical p-spin model never reaches the equilibrium.229
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Time evolution Replica formalism

Figure 1: Illustration of the structural similarity between the dynamical theory
at asymptotically late times and replica theory. (a) For the time domain, we
work in Wigner coordinates T, t. (b) Correlation function GK and dynamical
temperature X along a cut with fixed T . We parametrize the fields into fast
Gf (gray shaded area) and slow fields Gs, for short and long relative times t.
(c) The monotonic function X(t), defined in Eq. (10), is used to map time to a
compact domain. Since X(t) is decreasing, small values of u correspond to large
t. (d) As the number of time scales τn are sent to infinity, GK(u) becomes a
smooth function. (e),(f) In the limit T → ∞, GK(u) is structurally identical to
a Parisi function obtained in the limit N → 0 from a Parisi matrix. (g) Parisi
matrix for N = 12 in the specific case with m2 = 3, m3 = 6 and m4 = N .
We show the case of 2-step replica symmetry breaking, except for (d) and (e),
which demonstrate the extension to full replica symmetry breaking corresponding
to an infinite number of time scales or equivalently layers in the Parisi matrix.
In this case, the asymptotic correlation functions are ultrametric, such that the
equilibrium result is indeed eventually reached by the dynamics. This is in general
not the case for n-step replica symmetry breaking with n finite. Although GK(u)
in (c) reproduces the Parisi function p(u) in (f), the absence of ultrametricity
means that they do not satisfy the same algebra. This is indicated by the gray
arrow between (c) and (f).
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replica theory ultrametric Keldysh theory

Aab AK(t)
Aaa = a(1) = as(1) + af AK(t = 0) = AK

s (0) +AK
f (0)

AabBab AK(t)BK(t)
(A ·B)ab (AK ◦BA +AR ◦BK)(t)

Table 1: Translation table between replica formalism and ultrametric Keldysh
theory. Here, A and B are Parisi matrices evaluated in the limit N → 0. The
corresponding Parisi functions are a(u) and b(u) with u ∈ [0, 1]. AK/R(t) etc., are
the associated ultrametric correlation/response functions in relative time t and ◦
denotes their convolution.

With these preparations, we can now consider the product of two Green’s functions in230

the time domain and focus on the Keldysh component231

CK(t) = AK(t)BK(t) = AK
s (t)BK

s (t) +AK
f (t)BK

f (t) . (13)

In the examples below, we will show how these products enter the equation of motion232

for the Keldysh Green’s function as a result of memory effects. We identify the equal-233

time expression CK(t = 0) with the replica diagonal, i.e. equilibrated, part of the Parisi234

function c(1), and the slow component CK
s (t) with the off-diagonal parts describing replica235

symmetry breaking c(u) with u ∈ [0, 1[. The product of two Keldysh Green’s functions in236

the time domain is therefore equivalent to the Hadamard product of two Parisi matrices237

(see Table 1, which summarizes our key results).238

We next show that this correspondence also extends to convolutions. To do so, we239

consider the convolution between a Green’s function and a self-energy C = Σ ◦ G =240 ∫
t′(Σf + Σs)(t − t′)(Gf + Gs)(t

′) 1. The non-zero off-diagonal of C in Keldysh space241

describes the evolution of the correlation function. It reads ΣK ◦GA + ΣR ◦GK . This is242

also the form of the collision integral that accounts for memory effects in the time evolution243

of GK [51].244

We first consider the product of the slow components245

1The same structure also emerges from the product of two Green’s functions as it appears for example
in the action C = G1σ

1G2σ
1, with σ1 the first Pauli matrix.
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ΣK
s ◦GA

s +ΣR
s ◦GK

s =−
∫ t

0
dt′ΣK

s (t+ t′)X(t′)∂t′G
K
s (t′)−

∫ ∞

t
dt′ΣK

s (t+ t′)X(t′)∂t′G
K
s (t′)

−
∫ t

0
dt′GK

s (t− t′)X(t′)∂t′Σ
K
s (t′)−

∫ ∞

t
dt′GK

s (t− t′)X(t′)∂t′Σ
K
s (t′)

=

∫ X(t)

X(0)
dX ′ΣK

s (X(t))GK
s (X ′)− ΣK

s (X(t))X(t)GK
s (X(t))

+

∫ X(t)

X(0)
dX ′GK

s (X(t))ΣK
s (X ′)−GK

s (X(t))X(t)ΣK
s (X(t))

+ ΣK
s (X(t))X(0)GK

s (X(0)) +GK
s (X(t))X(0)ΣK

s (X(0))

+ ΣK
s (X(t))X(t)GK

s (X(t)) +

∫ 0

X(t)
dX ′ΣK

s (X ′)GK
s (X ′)

=
β

2

[
−
∫ 1

u
dvΣK

s (u)GK
s (v)− uΣK

s (u)GK
s (u) + ΣK

s (u)GK
s (1)

−
∫ 1

u
dvGK

s (u)ΣK
s (v) +GK

s (u)ΣK
s (1)−

∫ u

0
dvΣK

s (v)GK
s (v)

]
.

(14)

In the first equality, we have used the generalized thermal ansatz. It implies that the246

glass phase becomes stiff as T → ∞: Since GK
s (t) decays on a time scale t ∼ T , the247

derivative scales as ∂t ∼ 1/T and compensates the divergence of the integration domain248

∼ T . This behavior is illustrated in Fig. 2. We point out that this stiffness property249

of the classical ansatz (10) ensures a weak long-term memory and thus convergence of250

the convolutions even in the aging regime. A more responsive, i.e. more slowly decaying251

GR, would imply a stronger memory and divergent convolutions in Eq. (14) while for252

a less responsive ansatz the integrals vanish thereby precluding glassy behavior. The253

second equality in Eq. (14), which compactifies time, follows from ultrametricity and254

partial integration. It is important to point out that due to this change of variables, the255

information on time scales is lost. In the last step, we have introduced the dimensionless256

variable u ∈ [0, 1] as257

X(t) = βu/2 (15)

with the boundary conditions X(0) = β/2 and X(∞) = 0. The same relation holds be-258

tween v and X ′. X(t) is a decreasing function. Consequently, small values of u correspond259

to late times t and while the system equilibrates at short relative times, X(∞) = 0 implies260

a maximally unresponsive infinite temperature state at large relative times.261

As a consequence of the stiffness implied by the generalized fluctuation-dissipation262

relation (10) with X(t) ≤ β/2 the slow retarded Green’s function decays faster than the263

slow Keldysh component and can therefore be neglected at sufficiently late times t (see264

also Fig. 2). Consequently, one finds265

ΣK
f ◦GA

s +ΣR
s ◦GK

f = 0 , (16)

while the other term mixing fast and slow parts is finite266

ΣK
s ◦GA

f +ΣR
f ◦GK

s =

∫
t

[
GR

f (t)Σ
K
s (u) + ΣR

f (t)G
K
s (u)

]
=

β

2

[
GK

f (1)ΣK
s (u) + ΣK

f (1)GK
s (u)

]
.

(17)

9



SciPost Physics Submission

Figure 2: Stiffness of the glass phase. We show a logarithmic plot of typical
correlation and response functions GK(t) and GR(t) at intermediate center-of-
mass times T . In the aging regime t > τerg the correlation function GK(t) varies
slowly, such that the generalized thermal ansatz Eq. (10) implies that GR(t ≳
τerg) ≲ 1/T vanishes as T → ∞. The arrows indicate this behavior of the response
function as T is increased. For times t < τerg the system is in thermal equilibrium.
The boundary effects for t ≈ T that cause GR to rise quickly become irrelevant
as T → ∞.

The first line follows from the condition of strong hierarchy: The slow parts are constant267

on the scale on which the fast functions decay. To obtain the simplified expression in268

the second line, we have used the high-temperature expansion of the standard fluctuation-269

dissipation relation Eq. (11) to linear order in β for the fast field, which makes the analogy270

to the replica formalism more apparent. It will therefore be used throughout this article.271

We emphasize, however, that it is not essential to the argument. Combining all terms, we272

find273

ΣK ◦GA +ΣR ◦GK

=
β

2

[
ΣK
s (u)GK(1) +GK

s (u)ΣK(1)− uΣK
s (u)GK

s (u)

−
∫ 1

u
dv
(
ΣK
s (u)GK

s (v) +GK
s (u)ΣK

s (v)
)
−
∫ u

0
dvΣK

s (v)GK
s (v)

]
,

(18)

which is to be compared with Eq. (4). In Eq. (18) that fast fields Gf and Σf enter only274

via GK(u = 1) and ΣK(u = 1) in the first two terms as is the case for the replica diagonal275

in Eq. (4).276

We are left with the task of evaluating the time diagonal in the Keldysh formulation.277
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Sending t → 0 and using the same arguments as above, we find278

ΣK
f ◦GA

s +GK
f ◦ ΣR

s

∣∣∣∣
t=0

= 0 ,

ΣK
f ◦GA

f +GK
f ◦ ΣR

f

∣∣∣∣
t=0

=
β

2
ΣK
f (1)GK

f (1) ,

ΣK
s ◦GA

s +GK
s ◦ ΣR

s

∣∣∣∣
t=0

=
β

2

[
ΣK
s (1)GK

s (1)−
∫ 1

0
dvΣK

s (v)GK
s (v)

]
,

ΣK
s ◦GA

f +GK
s ◦ ΣR

f

∣∣∣∣
t=0

=
β

2

[
GK

f (1)ΣK
s (1) + ΣK

f (1)GK
s (1)

]
.

(19)

Putting everything together, this gives for the time-diagonal279

ΣK ◦GA +ΣR ◦GK

∣∣∣∣
t=0

=
β

2

[
ΣK(1)GK(1)−

∫ 1

0
dvΣK

s (v)GK
s (v)

]
. (20)

Comparison with Eq. (5) shows that the matrix multiplication in Keldysh formalism at280

asymptotically late times using ultrametricity and a generalized thermal ansatz in the281

classical limit is identical to the matrix multiplication in the replica formalism.282

As has previously been reported by Cugliandolo and Kurchan [5], this approach also283

gives an interpretation of the replica average in equilibrium theory. For example, the284

averaged correlation function285

Q∞ =

∫ 1

0
duq(u) , (21)

with q(u) the Parisi function of the replica matrix Qab = ⟨sai sbi⟩, is related to the integrated286

response function287

Q∞ = 1 +

∫ ∞

0
dtX(t)∂tQ

K(t) = 1−
∫ ∞

0
dtQR(t) . (22)

In summary, we have shown that, under the assumption of ultrametricity, the Keldysh288

component of convolution integrals in time Σ◦G reproduces the algebra of replica matrices289

in the limit N → 0.290

3 Application: The Quantum Sherrington-Kirkpatrick model291

We now turn our attention to the most general case of replica symmetry breaking, known as292

full RSB and realized by the Sherrington-Kirkpatrick model. We begin with the derivation293

of the Landau action valid near the critical point. The procedure can be understood as294

the out-of-equilibrium version of the Landau theory presented in Ref. [46]. Our approach295

is similar in spirit to that of Sompolinsky and Zippelius [7, 30, 37] that culminated in the296

analytical solution of the late-time relaxation obtained by Cugliandolo and Kurchan [6].297

Despite several attempts at recovering the results of replica theory from the dynamical298

equations at late times [30–33], discrepancies remain [48]. The problem arises from the299

order of limits. If one considers a finite system at infinitely late times and eventually300

sends the system size to infinity [30], the system is time-translation invariant, but must301

also obey the fluctuation-dissipation relation [52], as at infinite times, any finite system302

is fully equilibrated [13]. Consequently, a violation of the fluctuation-dissipation relation303

in this limit contradicts the underlying assumptions. In the opposite limit considering an304
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infinite system before sending the time to infinity [6] time-translation invariance is always305

broken because the equilibration time is determined by the system size and therefore the306

largest time scale in the problem. Our approach avoids these problems by measuring time307

in terms of the inverse temperature of the generalized fluctuation-dissipation relation.308

Therefore, by construction, we have access to all relevant time scales even though the309

system size is taken as infinite from the outset.310

Recent experimental development have resulted in renewed interest in spin glasses.311

In particular, the precise positioning of large numbers of Rydberg atoms with tweezers312

provides an avenue towards the realization of spin glasses with long-ranged interactions313

[53–58]. The idea is as follows, lasers are used to drive the Rabi transition between314

ground-state atoms and a highly excited long-lived Rydberg state. As no other states get315

occupied, it is sufficient to describe the atoms as two level systems that interact via van-316

der Waals interactions only when in the large and therefore highly polarizable Rydberg317

state. By positioning the atoms at random but fixed sites using tweezers, the strength of318

the interactions are randomized [54]. Finally, the occupation of the Rydberg states can be319

controlled by adjusting the detuning δ of the driving laser, which leads to a longitudinal320

field h = δ in the effective spin model [59]321

H =
∑
ij

Jijσ
3
i σ

3
j −

∑
i

σ1
i − h

∑
i

σ3
i . (23)

Here the Rabi coupling has been set to one and Jij denotes the van-der Waals interaction322

between atoms i and j.323

We point out that other experimental schemes such as Rydberg dressing which uses324

lasers far detuned from the Rabi transition to increase the lifetime at the expense of325

weaker interactions or microwave coupling between different Rydberg states leading to326

longer-ranged interactions ∼ R−3 result in the same Hamiltonian [59, 60]. Furthermore,327

random long-range interactions can be achieved with quantum simulators based on su-328

perconducting qubits [61] or by trapping atoms in a confocal cavity [62, 63]. Although,329

in the latter case the driven-dissipative cavity prevents the system from reaching thermal330

equilibrium, significant similarities with the classical Sherrington-Kirkpatrick model have331

been found in theory [64,65] and experiment [66].332

3.1 Effective action333

An important distinction between the new platforms and classical glasses is the finite334

lifetime of the excited states due to spontaneous emission. It is therefore important to335

develop a minimal dynamical description applicable to late but finite times. We will336

achieve this by deriving the effective Ginzburg-Landau action of the random Ising model337

in a longitudinal and a transversal field as defined in (23). The quenched disordered338

coupling strengths Jij are drawn from a Gaussian distribution independent of the site339

indices i and j. Hence, this model first introduced in Ref. [67], is effectively infinite-340

dimensional and described by mean-field theory. Its equilibrium Landau action has been341

studied in Ref. [68], with aging dynamics analyzed in Ref. [45] and previously based on342

the approach of Sompolinsky and Zippelius [7, 37] in Ref. [6]. Near the phase transition,343

we can average the spins over a small domain, such that the discrete spins are replaced by344

a real bosonic variable Si. Integrating out the disordered coupling strengths Jij , the site345
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index can be dropped, and the effective action is given by [45]346

s[S] = s0[S] + su[S] + sκ[S] + sh[S] ,

s0[S] = −1

2

∫
t

∑
σ

σSσ(t)[∂
2
t +m2]Sσ(t) ,

sh[S] =

∫
t

∑
σ

σhσ(t)Sσ(t) ,

su[S] = −u

2

∫
t

∑
σ

σS4
σ(t) ,

sκ[S] = i
κ

4

∫
t1,t2

Sσ(t1)σ
3
σρSρ(t1) Sσ′(t2)σ

3
σ′ρ′Sρ′(t2).

(24)

Here, the quartic term su provides a soft constraint for the spin length and the transverse347

field gives rise to the inertial dynamic term in s0. The disorder is encoded in the term348

sκ, with κ = J̄2
ij the variance of the Gaussian distribution P(Jij). The dynamical theory349

requires a doubling of the time contour. Following the standard procedure of the Keldysh350

path-integral (for an introduction see [51, 69]), we therefore introduce Greek indices that351

take the values {+,−} to denote the branch of the contour.352

Due to the infinite range of the random couplings Jij , the site index in (24) is irrelevant353

and will be suppressed in the following.354

It is convenient to introduce the spin bilinear qαβ ≡ qρρ′(t1, t2) = Sσ(t1)σ
3
σρSρ′(t2).355

Here and in the following α and β denote multi-indices incorporating the Keldysh index356

and time. We now decouple the disorder-induced non-linearity by a Hubbard-Stratonovich357

transformation with358

saux[S,Q] =
i

4κ
Tr
[
(RQσ1R− iκq)2

]
, (25)

where R = (σ1 + σ3)/
√
2. We have furthermore introduced the trace Tr over the multi359

index, i.e. Tr[A2] =
∫
t,t′ Aσρ(t, t

′)Aρσ(t
′, t). Rewriting the soft constraint su in terms of360

a functional derivative with respect to a source field K, we can perform the remaining361

Gaussian integral over Sσ. Rotating the result to the R/A/K basis, we define classical362

and quantum fields as hc =
∑

σ hσ/
√
2 and hq =

∑
σ σhσ/

√
2. Although external fields363

are classical, we keep the notation symmetric and express the Keldysh partition function364

as365

Z =

∫
DQeisu[

δ
δK ]e−

i
2
(K⊤+h⊤)σ1[G−1

0 +Q]−1σ1(K+h)

× e−
1
4κ

Tr[Qσ1Qσ1]− 1
2
Tr log(1+G0Q)+const.

∣∣∣∣
K=0

.

(26)

Here, ⊤ denotes the transpose in Keldysh space. Finally, the bare spin propagator can be366

expanded in powers of m−2
367

G0(t1, t2) = −δ(t1 − t2)σ
1
(
∂2
t2 +m2

)−1

≈ δ(t1 − t2)σ
1

(
− 1

m2
+

1

m4
∂2
t2

)
.

(27)

Due to the saddle point condition368

0 = −2iκ
δsaux
δQαβ

= (σ1Qσ1 − iκσ1RqR)βα (28)
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the average of Q can be given a physical interpretation in terms of the full spin propagator369

G =
(
G−1

0 +Q
)−1

370

1

κ
⟨Qαβ⟩ = i⟨RqRσ1⟩αβ = −(σ1Gσ1)αβ . (29)

It is however not a valid order parameter as it does not vanish at the critical point.371

We arrange for this property by a shift operation, which can also be viewed as a UV372

renormalization operating on short time distances. Thereby, we fix the value of the critical373

coupling strength via the requirement that the renormalized order parameter vanishes374

at the transition, which will be verified explicitly below. To this end, we decompose375

Q(t, t′) =
(
(m2 − m̃2)σ1 +QEA

)
δ(t − t′) + Q̃(t, t′) ≡ Q0(t, t

′) + Q̃(t, t′) into a UV shift376

Q0(t, t
′) with QEA = iqEA(1−σ3)/2 and a small field Q̃. We also define G̃−1

0 = G−1
0 +Q0,377

use again the exact relation Eq. (29), and expand in powers of Q̃378

1

κ

[
σ1
(
Q0 + Q̃

)
σ1
]
αβ

− i
[
G̃0σ

1(hh⊤)σ1G̃0

]
αβ

= −
[
(G̃−1

0 + Q̃)−1
]
αβ

≈
[
−G̃0 + G̃0Q̃G̃0 − G̃0Q̃G̃0Q̃G̃0 + . . .

]
αβ

.

(30)

We approximate G̃0 ≈ −m̃−2σ1δ(t − t′) everywhere except for the zero-order term in Q̃,379

where we also expand in the time derivative to leading order. Furthermore, we make use of380

the fact that the magnetic field is classical and time-independent. With this, the term due381

to the magnetic field simplifies to i[G̃0σ
1(hh⊤)σ1G̃0]αβ = ih2G̃R

0 G̃
A
0 δα1δβ1 ≈ ih2

m̃4 δα1δβ1.382

Most importantly, we notice, that both the magnetic field and the order parameter qEA383

only affect the Keldysh component of the matrix equation (30). This is an exact statement,384

that follows from the causal structure of the Green’s function. It implies that the magnetic385

field can be absorbed into qEA.386

Explicitly, upon Fourier transformation, the Keldysh and retarded components of387

Q̃ =

(
Q̃V Q̃A

Q̃R Q̃K

)
(31)

satisfy the equations388

(m2 − m̃2) + Q̃R = − κ

ω2 − m̃2 + Q̃R

≈ κ

m̃2
+

κ

m̃4
(ω2 + Q̃R) +

κ

m̃6

[
Q̃R
]2

2πiqEAδ(ω) + Q̃K = κ
2πi

(
qEA + h2

)
δ(ω) + Q̃K

|ω2 − m̃2 + Q̃R|2
.

(32)

Causality of the spin response function requires Q(t, t′) ∼ θ(t− t′). Furthermore, we have389

used that Q̃A(ω) is the complex conjugate of Q̃R(ω) and that Q̃V vanishes due to the390

normalization of the partition function Z = 1. Clearly, in the first equation, the linear391

term in Q̃R disappears for m̃4 = κ, independent of h (because u = 0 here). We conclude392

Q̃R(ω) = −
√

−
√
κ [(ω + i0+)2 − r] , (33)

which is causal in the paramagnetic phase and gives rise to a phase transition when393

r = m2 − 2
√
κ vanishes at κ = m4/4.394
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The second equation evaluated at ω = 0 fixes the order parameter (we demand that395

Q̃K is a continuous function). Multiplying both sides with GRGA, inserting the retarded396

and advanced Q̃R/A and keeping only the leading term in r one finds397

qEA =
h2κ1/4

2
√
r

. (34)

As expected, in the paramagnetic phase, the magnetization is linear in the longitudinal398

field m ∼ S ∼ h and the Hubbard-Stratonovich field Q ∼ S2 is proportional to h2.399

Furthermore, at the critical point, the system is gapless and has a divergent response to400

the external field, signified by qEA ∼ r−1/2.401

Below we obtain the Landau action by expanding in the small field Q̃ near the critical402

point. The above ensures that there will be no contribution ∼ Q2 =
∫
t′ Q(t1, t

′)Q(t′, t2)403

to the Landau action.404

In the following, we will exclusively work with Q̃, G̃0, and m̃ and therefore drop the405

tilde from here on.406

3.2 Paramagnetic phase407

Having established the proper order parameter field, we can now expand the action in the408

soft constraint su. For the discussion of the paramagnetic phase, an expansion to first409

order in u is enough to obtain stable results known from equilibrium theory. On the other410

hand, an expansion to second order in u is necessary to recover the spin glass phase [68].411

Following the discussion above, we expand in small fields Q to find the unconstrained412

action413

is0[Q] =− 1

2κ

∫
t,t′

(
∂2
t + r

)
tr(σ1Q(t, t′)

∣∣
t=t′

)

+
i

2κ

∫
t,t′
h⊤(t)Q(t, t′)h(t′)− 1

6κ3/2
Tr
[
(σ1Q)3

]
.

(35)

To first order in u, the constraint on the spin length contributes a Hartree term414

i∆su[Q] =
3iu

2

∫
t

(
GK +GV

)
(t, t)

(
GR +GA

)
(t, t)

≈ − 3iu

2κ2

∫
t

(
QK +QV

)
(t, t)

(
QR +QA

)
(t, t) .

(36)

to the Landau action, which then reads415

s[Q] =s0[Q] + ∆su[Q] . (37)

To highlight the temporal structure of this action, it is useful to consider its diagrammatic416

representation shown in Fig. 3. We observe that the disorder gives rise to a term ∼ Q3 that417

relates the order-parameter fields at different times. As we will see below, it corresponds to418

a memory that for sufficiently large κ causes the order parameter to become stiff, thereby419

excluding its relaxation at large relative times that is characteristic of the paramagnetic420

phase.421

To find the critical disorder strength where the paramagnet freezes, we consider the422

equations of motion for Q obtained from the saddle point condition423

0
!
=

δis[Q]

δQ(t1, t2)
≈− 1

2κ
σ1δ(t1 − t2) (r + ∂t2) +

1

2κ3/2

∫
t
σ1Q(t1, t)σ

1Q(t, t2)σ
1

+
i

2κ
h(t1)h

⊤(t2) +
δi∆su[Q]

δQ(t1, t2)

(38)
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with424

δi∆su[Q]

δQσ̄ρ̄(t1, t2)
= −3iu

2κ
QK(t1, t1)δ(t1 − t2)δσ̄ρ , (39)

where σ̄ denotes the opposite of σ.425

Figure 3: Diagrammatic representation of the Landau action (37) at linear order
in the soft-spin constraint u. For simplicity, we have suppressed the Keldysh
structure. The inverse bare spin propagator for Q = 0 reading 1/(2κ)σ1δ(t1 −
t2)(r + ∂2

t2) is depicted as open rectangle. Q is shown as a straight line, h is
represented by a cross, the vertex iu

2κ2 as a dot, and G0 as open circle.

Following the general procedure outline in Sec. 2.2, we split the order parameter field426

into fast and slow components Q = Qf + Qs, where the evolution of Qs slows down427

indefinitely for T → ∞. Looking for a paramagnetic solution, we require Qs = 0 and428

make a time-translation invariant ansatz Q(t, t′) = Q(t − t′). The equations of motion429

(38) therefore become diagonal in frequency space. Due to the absence of scattering430

at the current level of approximation, there is only one non-trivial equation of motion.431

Expanding for h = 0 in small frequencies ω, one finds432

ω2 +
1

κ1/2
[
QR
]2

(ω) = r − 3iu

κ

∫
ν
QK(ν) , (40)

which has the thermal paramagnetic solution433

QR(ω) = −κ1/4
√

∆2 − (ω + i0+)2,

QK(ω) = 2κ1/4 coth
β|ω|
2

√
∆2 − ω2 θ (|ω| − |∆|)

(41)

with the shifted mass ∆2 = r − 3iu
κ

∫
ν Q

K(ν).434

This reproduces the form of results from the analytically continued replica theory435

for h = 0 (up to relabelling of coefficients) developed in [68] and in [45] in the Keldysh436

framework. In particular, for small u we reach a critical point ∆(rc0) = 0, with437

rc0 = − 6u

κ3/4

∫
ω
ω coth

βω

2

β→∞−→ 6u

κ3/4

∫
ω
|ω| (42)

as well as Q(ω = 0) = 0, which verifies the assumption that the shifted Q is an order438

parameter for the Landau theory. After crossing the phase transition, we expect that ∆439

remains pinned to zero and that this can be achieved by introducing an Edwards-Anderson440

order parameter into the occupation function component, QK
EA(ω) = QK(ω)+2πiqEAδ(ω),441

qEA > 0. Indeed, inserting this ansatz into the equation of motion (40) we reproduce the442

known results [45,46]443

QR(ω) = iκ1/4 ω,

qEA = i

∫
ν
QK(ν)

∣∣∣
∆=0

− κ

3u
r =

κ

3u
(rc0 − r),

QK(ω) = 2iκ1/4 ω coth
βω

2
.

(43)

16



SciPost Physics Submission

In particular, there is a gapless, damped mode.444

3.3 Landau action to order u2
445

The discussion of the spin glass phase requires a more careful discussion of the memory446

terms. In particular, beyond the critical point the disorder term ∼ Q3 renders the Landau447

action in Eq. (37) unstable. It is therefore necessary to continue the perturbative expansion448

in the soft-spin constraint u to second order. As is shown in Fig. 4, there is only one term449

in the effective action that is of order u2 and two-particle irreducible. It involves time-non-450

local fields and thus gives rise to memory effects that are essential for the stability of a spin451

glass. All other diagrams ∼ u2 are either disconnected or not two-particle irreducible and452

thus constitute at most a quantitative correction to the Hartree shift already discussed in453

the previous section. We therefore exclusively focus on the memory term at this order454

i∆su2 [Q]

=−3u2

4κ4

∫
t,t′

[
(tr(Q(t, t′)Q(t′, t))tr(Q(t, t′)σ1Q(t′, t)σ1)

+tr(Q(t, t′)Q(t′, t)σ1)tr(Q(t, t′)σ1Q(t′, t))
]
.

(44)

Terms of this form are known as the primary cause of relaxation and thermalization in455

quench dynamics, see for example [70]. For the stability of the spin-glass it is therefore456

important to investigate the competition between the terms ∼ u2 that favor ergodicity457

and the disorder term ∼ Q3 that favors freezing.458

Figure 4: Diagrammatic representation of the second order contribution of the
soft-spin constraint u to the effective action. The first diagram is not one-particle
irreducible and corresponds to quantitative corrections to the tadpole diagram
in Fig. 3. The second diagram is disconnected and therefore cancels against the
normalization of the partition function. Consequently, we only retain the last
contribution, which involves time-non-local fields and thus introduces a memory
to the equation of motion that competes with the disorder term in the spin glass
phase.

Expanding the trace-log as before, we find the Landau action of the Sherrington-459

Kirkpatrick model with longitudinal and transversal fields460

s[Q] =s0[Q] + ∆su[Q] + ∆su2 [Q] . (45)

This action is the dynamical equivalent of the result recently reported in Ref. [46].461
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3.4 Asymptotic solution in the glass phase462

In the previous section, we have found the Keldysh action corresponding to the equilibrium463

Landau action in replica theory. We will now consider the limit of late times and apply464

the general results of Sec. 2 to show how full replica symmetry breaking is recovered in465

the time domain.466

In the limit of late times T = (t1 + t2)/2 → ∞ the forward evolution scale drops out.467

This does exclude the spontaneous breaking of time translation invariance globally. Time468

translation invariance can, however, be broken in a scale-dependent way, as suggested by469

the reparametrization invariance of the aging action [6].470

We thus bring the action into a form in which time translation invariance is used:471

Q(t1, t2) = Q(t = t1 − t2). To this extent, one performs a Wigner expansion of the action472

(45) and drops all derivatives ∂T . In all terms of the action the length of the time domain,473

T , factors out474

is[Q]/T =− 1

2κ

(
∂2
t + r

)
tr[σ1Q(t)]

∣∣∣∣
t=0

+
ih2c
2κ

∫
t
QV (t)

+
1

6κ3/2

∫
t,t′

tr
[
Q(t)σ1Q(t′)Q⊤(t+ t′)

]
+

3iu

2κ2
[
tr(Q(t = 0))tr(σ1Q(t = 0))

]
− 3u2

4κ4

∫
t

[
tr(Q(t)Q⊤(t))tr(Q(t)σ1Q⊤(t)σ1) + tr(Q(t)Q⊤(t)σ1)tr(Q(t)σ1Q⊤(t))

]
.

(46)

Following the procedure of Sec. 2, we split the field Q in a slow and a fast component475

and similarly divide the action into a ’spin glass’ part ssg that involves the slow field and476

a quantum part sq that describes the equilibration at short relative times. Since Qf (t)477

approaches zero for large arguments, we require qEA = −iQK
s (t = 0). In analogy to the478

paramagnetic phase, in sq the terms ∼ u2 are not important at small frequencies, so we479

will neglect these by writing sq = sq,0 + O(u2). Since in the following, we will mostly480

concern ourselves with the slow field, we will drop its index from now on and simply refer481

to it as Q (i.e. Q ≡ Qs). One then has482

s[Q] ≈ssg[Q] + sq,0[Q] ,

issg[Q]/T =−
∫
t
tr[R1Q(t)Q⊤(t)σ1] +

ih2c
2κ

∫
t
QV (t) +

R2

3

∫
t,t′

tr[Q(t)σ1Q(t′)Q⊤(t+ t′)]

− R3

3

∫
t

{
tr[Q(t)Q⊤(t)]tr[σ1Q(t)σ1Q⊤(t)] + tr[Q(t)Q⊤(t)σ1]tr[Q(t)σ1Q⊤(t)]

}
,

isq,0[Q]/T =
1

2κ

∫
ω
(ω2 − r)tr[σ1Qf (ω)]−

ih2c
2κ

tr[Qf (ω = 0)]

+
R2

3

∫
ω
tr[σ1Qf (ω)σ

1Qf (ω)σ
1Qf (ω)] + iR2qEAQf 11(ω = 0)tr[σ1Qf (ω = 0)]

+
3iu

2κ2

∫
ω,ω′

tr[Qf (ω) + 2πδ(ω)QEA]tr[σ
1(Qf (ω

′) + 2πδ(ω′)QEA)] ,

(47)

with483

R1 = − 1

2κ3/2
σ1Qf (ω = 0)σ1 ≡

(
RK

1 RR
1

RA
1 RV

1

)
, R2 =

1

2κ3/2
, R3 =

9u2

4κ4
, (48)

where RA
1 = RR

1 . The saddlepoint of ssg and sq,0 with respect to Q and Qf respectively484

gives the coupled dynamical equations of the aging and ergodic components. Since we485
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are looking for the qualitative form of the slow component Q, it is enough to consider486

δssg[Q]/δQ, which gives487

0 =2RR
1 Q

R(t)−R2

∫
t′
QR(t′)QR(t− t′) +

2R3

3

[
QR2

(t) + 3QK2
(t)
]
QR(t) ,

0 =RK
1

[
QR(t) +QA(t)

]
+ 2RR

1 Q
K(t)− i

h2

2κ

−R2

(∫ T+t/2

0
dt′QK(t− t′)QR(t′) +

∫ 0

t/2−T
dt′QK(t− t′)QA(t′)

)

+
2R3

3

[
QK2

(t) + 3
(
QR2

(t) +QA2
(t)
)]

QK(t) ,

(49)

where we have kept the integration boundaries explicit, even though we have not done488

so before. The reason is, that, although we expect that the integration boundaries are489

irrelevant when we send T → ∞, we want to show so explicitly in the following.490

As is the case for the replica formulation, Eq. (49) has a ferromagnetic solution. In491

equilibrium, it can be shown that this solution is thermodynamically unstable [71], with492

the exact solution instead given by the Parisi function with full replica symmetry breaking493

[72,73]. When considering quench dynamics on the other hand, one has to fix a boundary494

condition for Q at large values of |t|. The difference between a system that exhibits aging495

and more conventional spontaneous symmetry breaking has to be encoded in the time496

scale on which the order parameter qEA recovers from the perturbation at the boundary.497

Here, we will only discuss the equivalent of the spin glass solution, not the (im)possibility498

of a ferromagnetic phase.499

Following the discussion of Kurchan [74], we expect Q(t) to vary increasingly slowly500

as t grows. In fact, each value of QK(t) corresponds to a time scale on which the system501

thermalizes to an effective inverse temperature X(t). This time scale is much longer than502

those of all previous (larger) values of QK(t′ < t). We can exploit this to simplify e.g.503

integrals of the form
∫ t
0 dt

′Q(t′)Q(t − t′). Specifically, for all values of t′ on the scale of t504

one has QK(t′) = QK(t), while for t− t′ ∼ t one has QK(t− t′) = QK(t). In other terms,505

the correlation QK is ultrametric. At the same time, the generalized thermal response506

function QR(t) = iX(t)∂tQ
K(t) vanishes much more quickly than QK(t). This justifies507

the classical approximation of the general scheme in Sec. 2. In Eqs. (49) we therefore508

only keep the memory terms ∼ R3 with the highest power in QK and drop the term509

proportional to RK
1 .510

Following these preparations, the second equation in (49) only involves time-local or511

Hadamard products of Keldysh Green’s functions as well as the Keldysh component of512

causal convolutions. Both have been discussed in Sec. 2. Applying the partial integration513

Eq. (14), we find514

0 =− 2RR
1 q(u) +

h2

2κ
+

2R3

3
q(u)3

−R2β

(
2q(u)

∫ 1

u
dvq(v) +

∫ u

0
dvq(v)2 + uq(u)2 − 2qEAq(u)

)
.

(50)

Since X(t = 0) = β/2 is fixed by the temperature of the equilibrated part, we have515

parametrized X(t) = βu/2 with u ∈ [0, 1] and QK(X(t)) = −iq(u). We thereby exactly516

recover the replica result [46] 2. Consequently, the Keldysh structure for T → ∞ derives517

2The only difference between their result and ours is the addition of 2βqEAq(u) in Eq. (50). This is a
consequence of the replica diagonal of the Parisi matrix being removed. It exactly compensates for the
difference in the definition of R1
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the rules of the replica limit. Physically, we can say that replica symmetry breaking518

corresponds to the inability of the system to fully thermalize to a single global inverse519

temperature β even at arbitrarily late times/the steady state. The assumption of the520

replica off-diagonal being independent of Matsubara frequency (hence including only the521

zeroth Matsubara frequency) is equivalent to the classical limit involving only the time-522

local generalized FDR (10).523

Exploiting the analogy to the known solution from replica theory, it is easy to show524

that525

q(u) =


qh = 1

2(
3

κR3
h2)1/3 u ≤ qh

qEA
x

qEA
u
x

qh
qEA

x < u < x

qEA x ≤ u

(51)

with q2EA = RR
1 /R3 and x = 2R3qEA

R2β
> 0. Consequently,526

X(q) =


0 q < qh
R3
R2

q qh < q < qEA
β
2 q = qEA

, (52)

which is consistent with the solution of Ref. [6]. We point out that x > 0 requires527

QR(ω = 0) > 0, which, as we saw in Sec. 3.2, requires the disorder strength to exceed the528

critical value κ > κc = m4/4.529

What is left is to show that this is also a solution to the classical limit of the first530

equation in (49). This can be seen by integrating that equation with respect to t and531

exploiting that with QK(t) also X(t) is an ultrametric function. One then finds532

0 =2R1

∫ q

qEA

dq′X(q′) +R2

(∫ q

qEA

dq′X(q′)

)2

− 2R3

∫ q

qEA

dq′q′2X(q′) , (53)

which is indeed solved by (52).533

4 Application: The spherical p-spin model534

Our second application is the spherical p-spin model. We begin with a brief derivation535

of its effective action in the Keldysh formalism. The procedure is analogous to that536

of Ref. [46] with minor modifications owed to the doubling of the time contour in the537

Keldysh approach. We then apply the generalized thermal ansatz to the ultrametric aging538

component of the spin correlations. This procedure is then shown to reproduce the results539

known from replica formalism.540

4.1 Effective action541

The spherical p-spin model was first introduced in Ref [75] with the Ising counterpart542

discussed in Ref [76]. It is known to exhibit 1-step replica symmetry breaking in thermal543

equilibrium [77]. Additionally, the transition between the paramagnetic and glass phase544

changes from second to first order at low temperatures. There, the dynamical equations of545

motion predict a higher critical field strength than the equilibrium theory [35]. It therefore546

poses a critical test to the general arguments of Sec. 2.547

The following discussion follows closely that of Ref. [46]. In fact, it can be seen as a548

translation of their discussion to the Keldysh formalism.549
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The spherical p-spin model is given by the Hamiltonian550

Hint =
∑

1≤i1<12<···<ip≤N

Ji1i2...ipσi1σi2 . . . σip (54)

with Ising spins σi = ±1, p ≥ 3 and the global spherical constraint
∑N

i=1 σ
2
i = N . As551

for the Sherrington-Kirkpatrick model, we allow for longitudinal and transverse fields to552

couple to the spins (but neglect all commutators). The coupling constants Ji1i2...ip are553

chosen randomly with a Gaussian distribution554

P(Ji1...ip) ∝ exp

(
−Np−1

p!

Ji1...ip
J2

)
. (55)

Averaging the spins over some small regions, the Keldysh partition function555

Z =

∫
DJi1...ipP(Ji1...ip)

∫
DSeis[S] (56)

can be written in terms of the continuous bosonic variable Sσ,i, where the Latin index556

indicates the lattice site and the Greek index σ ∈ {+,−} denotes the branch of the557

Keldysh contour (see for example [69]). Due to the transverse field, the averaged spins558

obtain a massive dispersion. Hence, we can write the action as559

s[S] =s0[S] + sh[S] + sκ[S] ,

s0[S] =− 1

2

∫
t

∑
σ,i

σSσ,i

(
∂2
t +m2

)
Sσ,i(t) ,

sh[S] =

∫
t

∑
σ,i

σhσ,i(t)Sσ,i(t) ,

sκ[S] =− i

∫
dt
∑
σ

∑
1≤i1<···<ip≤N

σJi1...ipSσ,i1 . . . Sσ,ip ,

(57)

where the second term describes the coupling to the longitudinal external field and sκ560

accounts for the effect of the disorder Hamiltonian Hint.561

Averaging over the Gaussian distribution of the coupling constants Ji1...ip the disorder562

term is simplified to563

sκ[S] =

∫
t,t′

iJ2

p!Np−1

∑
i1<···<ip

(∑
σ

σSσ,i1 . . . Sσ,ip

)2

=
iκ

4

∫
t,t′

1

Np−1

∑
σµ

σµ

(
N∑
i=1

Sσ,i(t)Sµ,i(t
′)

)p (58)

with κ = J2. The global spherical constraint can be included using an auxiliary field zσ(t)564

as565

Z =

∫
DSDz eis[S,z] (59)

with566

s[S, z] = s[S] +

∫
t

∑
σ

σzσ
(
S2
σ,i −N

)
. (60)
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At this point, the action has become purely local in the site index i. Without loss of567

generality, we may thus focus only on a single site, dropping the irrelevant site index.568

Next, we introduce the bilocal field Q̃σµ(t, t
′) as569

1 =

∫
DQ̃ δ

[
Q̃σµ(t, t

′)− Sσ(t)Sµ(t
′)
]

=

∫
DQ̃Dλ exp

(
i

2

∫
t,t′

∑
σµ

λσµ(t, t
′)
[
Q̃σµ(t, t

′)− Sσ(t)Sµ(t
′)
])
,

(61)

such that the disorder term becomes570

sκ[Q̃] =
iκ

4

∫
t,t′

∑
σµ

σµ Q̃p
σµ(t, t

′) . (62)

We can then perform the Gaussian integral over the averaged spin fields S, which gives571

Z =

∫
DQ̃DλDz eis[Q̃,λ,z] ,

s[Q̃, λ, z]=
1

2

∫
t,t′

∑
σµ

σµhσ(t)Gσµ(t, t
′)hµ(t

′)−
∫
t

∑
σ

σzσ(t) +
1

2
Tr
(
λQ̃
)

+
iκ

4

∫
t,t′

∑
σµ

σµQ̃p
σµ(t, t

′)− i

2
Tr ln (G) ,

(63)

where the trace is performed over time and the contour index alike, and we have introduced572

the inverse spin propagator573

G−1(t, t′) =δ(t− t′)
[
−
(
∂2
t +m2

)
σ3 + 2diag(z+,−z−)

]
−
(
λ11 λ12

λ21 λ22

)
(t, t′) . (64)

We now turn our attention to the saddle point equations of the action s[Q̃, λ, z]. As574

these are most conveniently written in the R/A/K basis, we introduce zc/q = z+±z− such575

that in the new basis576

G−1(t, t′) =δ(t− t′)
[(
−∂2

t −m2 + zc(t)
)
σ1 + zq(t)1

]
−
(
λV λA

λR λK

)
(t, t′) . (65)

4.2 Late-time solution577

We assume a constant longitudinal field hc = h = (h+ + h−)/2, use that at the saddle578

point quantum fields vanish, and remember that GR(t, t)+GA(t, t) = 0 to write the saddle579

point equations580

0
!
=

δs

δzq(t)
= −1 +

i

2
GK(t, t) +

h2

2

∫
t′,t′′

GR(t′, t)GA(t, t′′) ,

0
!
=

δs

δzc(t)
= 0 ,

0
!
=

δs

δQ̃R/K(t, t′)
=

1

2
λR/K(t, t′) +

iκ

4
p
[
Q̃p−1

]R/K
(t, t′) ,

0
!
=

δs

δλA(t, t′)
=

1

2
Q̃R(t, t′)− i

2
GR(t, t′) ,

0
!
=

δs

δλV (t, t′)
=

1

2
Q̃K(t, t′)− i

2
GK(t, t′)− h2

2

∫
t′′,t′′′

GR(t′′, t)GA(t′, t′′) .

(66)
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Here
[
Q̃p
]R/K

refers to the retarded/Keldysh component of the p-th power of the matrix581

Q̃. These equations are to be compared with Eq. (3.17) in Ref. [46].582

To simplify these equations even further, we specify p = 3. Furthermore, we introduce583

the real fields QR(t, t′) = iQ̃R(t, t′) and QK(t, t′) = Q̃K(t, t′), which then satisfy584

QK(t, t) = 2

QR(t, t′) =
[
δ(t− t′)

(
∂2
t +m2 − zc(t)

)
− ΣR(t, t′)

]−1

QK(t, t′) =

∫
t′′,t′′′

QR(t, t′′)ΣK(t′′, t′′′)QA(t′′′, t′)

(67)

with the self-energies585

ΣR(t, t′)=3κQR(t, t′)QK(t, t′)

ΣK(t, t′)=
3κ

2

([
QK
]2
(t, t′)−

[
QR
]2
(t, t′)−

[
QA
]2
(t, t′)

)
+ h(t)h(t′) ,

(68)

which are both real and in the case of ΣK non-negative.586

Following the arguments of Sec. 2, we distinguish between fast and slow fields Qf/s(t)587

in the time-translation invariant ansatz Q(t) = Qf (t) +Qs(t). We then once again make588

a generalized thermal ansatz QR
s (t) = −X(t)θ(t)∂tQ

K
s (t). Since the slow field varies on589

a time scale that diverges as T → ∞ this implies that the retarded Green’s function590

decays more quickly than the Keldysh component. Consequently, the Keldysh self-energy591

simplifies as follows592

ΣK
s (t) =

3κ

2

([
QK

s

]2
(t)−

[
QR

s

]2
(t)−

[
QA

s

]2
(t)
)

=
3κ

2

[
QK

s

]2
(t) .

(69)

From this, it follows immediately that the self-energy satisfies the generalized fluctuation-593

dissipation relation ΣR
s (t) = −X(t)∂tΣ

K
s (t). Similarly, the most slowly decaying contribu-594

tion to the Keldysh component QK
s must involve ΣK

s such that we can write595

QK
s = QR ◦ ΣK

s ◦QA . (70)

It is now more convenient to rewrite the equations of motion of the slow field in the more596

conventional form597 [
QR

f

]−1 ◦QR
s = ΣR

s ◦QR , (71)

598 [
QR

f

]−1 ◦QK
s = ΣK

s ◦QA +ΣR
s ◦QK

s . (72)

In the case of dissipative dynamics, these equations coincide with those derived by Som-599

polinsky and Zippelius [7, 37] and solved by Cugliandolo and Kurchan [5]. As has been600

noted before [21], we find that these equations of motion satisfied by the p-spin model are601

surprisingly similar to those derived from mode coupling theory in the context of structural602

glasses [22].603

Assuming ultrametricity, we satisfy all conditions required for the general argument604

of Sec. 2, where we showed that the matrix multiplication in replica space is identical to605

the Keldysh component of the product of functions in Keldysh space. From the general606
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matrix multiplication follows the same statement also for matrix inversion. Hence, we607

conclude that the equation for the Keldysh component of the expression608

Q(t) =
[
δ(t)σ1(∂2

t +m2 − zc)− Σ(t)
]−1

(73)

or equivalently the solution to (72) is similar to that obtained in replica formalism (see609

for example Eq. (3.17) in Ref. [46], which differs in the conventions for mass and coupling610

strength).611

In summary, we find612

QK
s (u) =

q0 = − qfσ0(σf−2z)

(σf+x(σ1−σ0)−2z)2
u < x

q1 = q0 −
qf (σ1−σ0)

σf+x(σ1−σ0)−2z u > x
. (74)

with the shorthand notation613

ΣK
s (u) =

3κ

2

[
QK

s

]2
(u) + h2 =

{
σ0 u < x

σ1 u > x
. (75)

Furthermore, the fast field satisfies614

GK
f (t) = GR

f ◦ ΣK
f ◦GA

f ,

ΣK
f (t) =

3κ

2
(QK

f (t) + 2q1)Q
K
f (t) ,

(76)

which we abbreviated above as qf = QK
f (t = 0) and σf = ΣK

f (t = 0). Finally, the615

Lagrange parameter z = (zc −m2)/β is fixed by the additional constraint616

QK(u = 1) ≡ q1 + qf ≡ QK
s (t = 0) +QK

f (t = 0)
!
= 2 . (77)

Conversely to Eq. (74), the effective inverse temperature mirrors the structure of 1-step617

RSB618

X(q) =


0 q < q0
βx
2 q0 < q < q1
β
2 q = q1

. (78)

Note, that once again, it is not possible to reconstruct QK
s (t) because the information619

on the time-dependence was lost during the change of variables t → X(t) in Eq. (14).620

Furthermore, the breakpoint x has to be determined by an additional criterion, requiring621

either marginal stability or minimization of the free energy [35,46].622

Due to the equivalence between the ultrametric Keldysh and the replica formalism, we623

conclude that our approach finds the same critical point and one-step RSB as reported624

in Ref. [46], provided the same condition for x is used. On the other hand, at any finite625

time T , ultrametric relations must be violated and an analysis similar to that of Ref. [22]626

shows that on a finite time interval in the one-time formulation, the spin glass phase is627

indistinguishable from a ferromagnet.628

The comparison between ultrametric Keldysh and replica formalism for the p-spin629

model has already been addressed by Crisanti et al. some 31 years ago [35]. Although630

they use a slightly different ansatz for the generalized fluctuation-dissipation relation in631

the aging regime632

QR(t) = −xθ(t)∂tQ
K(t) , (79)
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where x ∈ [0, 1] corresponds to the position of the discontinuity in the replica formalism.633

In the case of 1-step RSB without a longitudinal field, this ansatz also reproduces the634

replica equations. The reported difference between the dynamical and equilibrium critical635

temperature is related in part to the different conditions used to fix x. In the dynamical636

case, matching with the fast dynamics implies a marginal stability condition as opposed637

to a minimization of the free energy in equilibrium. Furthermore, as we had anticipated638

below Eq.(12) for models with a finite number of replica symmetry breaking steps, the639

Keldysh Green’s function of the spherical p-spin model does not become ultrametric at late640

times [5]. Consequently, the aging dynamics of the spherical p-spin model never reaches641

equilibrium.642

An intuitive explanation of this observation can be given using the Thouless-Anderson-643

Palmer free energy [78]. One finds that the dynamics of the spherical p-spin model gets644

stuck in local minima that are separated from the equilibrium solution by energy barri-645

ers that diverge in the thermodynamic limit. For comparison, the slow evolution of the646

Sherrington-Kirkpatrick model is explained by an entropic effect: As the system relaxes,647

it evolves through a series of saddle points with an ever decreasing number of unstable648

directions resulting in long, but finite escape times [17].649

5 Discussion650

The results presented in this article rely on the existence of a finite temperature to which651

the system equilibrates on short relative times t < τerg, see Fig. 1(b). Specifically, as we652

send the center-of-mass time T → ∞, the ultrametric solutions (52)(78) are parametrized653

by the inverse temperature β. However, in a spin glass, no global equilibrium is reached.654

We identify the absence of a global temperature as the characteristic property of the655

ultrametric spin glass. This is independent of the breaking of time translation invariance656

at finite center-of-mass times T . We also address to which extent these conclusions apply657

to quantum critical quenches at zero temperature.658

5.1 Spontaneous breaking of thermal symmetry659

The non-analytic behavior of the ultrametric solution at x emerges in the temporal ther-660

modynamic limit T → ∞ (in space, the mean-field system is assumed to be in the thermo-661

dynamic limit by construction). The ultrametric solution corresponds to a spontaneous662

breaking of the thermal (or Kubo-Martin-Schwinger, KMS) symmetry [79–82]663

Sσ,i(t) → Sσ,i(−t+ iσβ/2), i → −i, h → −h , (80)

which is present in the stationary state of an ergodic system with a time-independent664

Hamiltonian generator of dynamics characterized by an inverse temperature β. Via our665

construction, replica symmetry breaking thus gets stringently tied to the spontaneous666

breaking of thermal symmetry – or more physically speaking, of ergodicity.667

We emphasize that, since T drops out of the equations of motion at asymptotically668

late times, which can be seen explicitly in Eq. (46), all microscopic details of the quench669

protocol disappear from the problem. The time-translation invariant discussion presented670

here is, therefore, independent of the details of the aging process. It instead extracts671

solely the universal property common to all classical glasses: The spontaneous breaking of672

thermal symmetry. The emergence of this broken symmetry at finite times was previously673

anticipated by Kurchan [74].674

For glasses, it is found that a weak long-term memory is necessary to preclude ther-675

malization on all scales. Although this implies that time translation symmetry remains676
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broken at any finite time T following a quench, our time translation invariant approach677

clarifies that the persistence of broken time translation invariance, and thus aging, should678

not be equated to ergodicity breaking in the stationary state. Instead, the emergence of679

reparametrization invariance lifts this connection at asymptotically late times [5, 6].680

5.2 Zero temperature limit681

The finite temperature spin glasses discussed here are solved by the classical ansatz682

GR(t) ∼ β∂tG
K(t) with different scaling dimensions for response and correlation func-683

tions. The classical scaling, therefore, requires the existence of a time scale that enters the684

asymptotic solution as inverse temperature. For a quench through the quantum critical685

point at zero temperature, one, therefore, expects one of two options: Either β emerges686

as a result of the finite energy density imposed upon the system during the quench, or the687

absence of a fixed time scale suggests quantum scaling688

GR
s ∼ GK

s . (81)

In the following, we will address the implications of quantum scaling. With Eq. (81), it is689

not possible to expand the equations of motion in powers of GR. Furthermore, the failure690

of the generalized thermal ansatz indicates the necessity of a dynamic Parisi function.691

The characteristic observable feature of a glass is aging, which implies that correlations692

GK
s (t) decay infinitely slowly as T → ∞. In the quantum regime, assuming the above693

scaling, the same must apply to the response function GR
s , and thus the self-energy ΣR

s .694

Hence, as the infrared cutoff T−1 is sent to zero, memory integrals of the form ΣR
s ◦ GK

s695

diverge. We emphasize the similarity of this argument to the Mermin-Wagner theorem696

that prevents spontaneous symmetry breaking due to infrared fluctuations – here, these697

fluctuations prevent the ergodicity breaking identified in the classical case above, upon698

removing the infrared cutoff T → ∞. Consequently, the quantum regime characterized699

by Eq. (81) is always transient and bounded by the energy density imparted upon the700

system by the initial quench. According to this argument, at asymptotically late times,701

spin glasses are necessarily classical (see also [41, 83]) with a temperature determined by702

the energy density after the quench.703

We re-emphasize, however, that the argument here relies on the assumption of a com-704

mon scaling of retarded and Keldysh Green’s functions. This raises the question of whether705

more general forms of ergodicity breaking could be realized at zero temperature.706

Recent experiments are performed at very low temperatures and finite times [53–58].707

In addition to possible asymptotic symmetry-breaking phenomena, weak quenches at zero708

temperature could also display interesting intermediate-time dynamical phenomena related709

to their quantum mechanical microscopic physics.710

At the current level of the analysis presented here, it is not possible to recover the711

time scales associated with the effective temperature X, which hinders the investigation712

of transient regimes. However, by continuing the Wigner expansion, it is possible to713

systematically restore corrections due to the boundary at t = 2T and derivatives with714

respect to the center-of-mass time. It is then possible to work backward from the latest715

times to recover the explicit time dependence of the aging solution, including a potential716

transient quantum critical regime.717

6 Outlook718

Recent realizations of spin glasses with Rydberg atoms are affected by decoherence due719

to dephasing caused by fluctuations in the external fields (i.e. lasers) and spontaneous720
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emission from the Rydberg state [54, 59]. A more realistic description of the system will721

take these into account. This necessitates the treatment of an open system with a time722

evolution governed by the Lindblad equation723

∂tρ(t) = −i[H, ρ] + κ
∑
i

(
LiρL

†
i −

1

2
{LiL

†
i , ρ}

)
. (82)

Here, ρ(t) denotes the density matrix, the Hamiltonian H is that of Eq. (23), and the724

Hermitian Lindblad operators Li = σ3
i describe dephasing noise that acts incoherently on725

all atoms. The decoherence introduced by the Lindblad operators causes heating. Specifi-726

cally, for Hermitian Li, the stationary state has infinite temperature. Dephasing, therefore,727

introduces a time scale beyond which the system becomes paramagnetic, independent of728

the initial quench. At late times, dephasing needs to be taken into account by simulations729

of the experimental systems.730

It is a strength of the Keldysh field theory that the inclusion of decoherence is very nat-731

ural and requires little additional effort [69]. This is in contrast to microscopic approaches732

like exact diagonalization or matrix product states, particularly in quantum systems at733

low temperatures, when the system becomes highly entangled [66]. Despite this advan-734

tage, simulations of the glass phase, even in mean-field models, remain challenging. The735

reason is the weak long-term memory, which precludes using a finite cutoff time for mem-736

ory integrals. The numerical effort therefore scales with time to the third power, which737

currently limits this method to short times. However, these limitations can be lifted [84]738

and long-time simulations of the quench dynamics will be addressed in the future [85].739

Finally, we mention the connection to Sachdev-Ye-Kitaev (SYK) models, which have740

quantum ‘spin liquid’ ground states [86]. These states are quite distinct from the spin glass741

ground states considered in the present paper, as they do not have any aging behavior,742

and are described by a replica diagonal saddle point. The low energy theory of SYK743

models exhibits an emergent time reparameterization symmetry while preserving thermal744

symmetry. This has enabled a detailed understanding of their quantum dynamics at a745

finite number of spins Ns, well beyond the Ns = ∞ saddle point. The quantum spin glass746

states considered in the present paper also have an emergent time reparameterization747

symmetry, but the glassy dynamics break thermal symmetry [87]. All our analysis here748

has been in the Ns = ∞ saddle point theory, and it would be interesting to adapt the749

SYK technology to understand the structure of the finite Ns theory. However, the broken750

thermal symmetry makes this task considerably more difficult.751
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dynamics in spin-glasses and other glassy systems, pp. 161–223, World Scientific,794

doi:10.1142/9789812819437 0006 (1998).795

[14] G. Parisi, Toward a mean field theory for spin glasses, Physics Letters A 73(3), 203796

(1979), doi:https://doi.org/10.1016/0375-9601(79)90708-4.797

[15] G. Parisi, Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett.798

43, 1754 (1979), doi:10.1103/PhysRevLett.43.1754.799

[16] G. Parisi, A sequence of approximated solutions to the S-K model for spin800

glasses, Journal of Physics A: Mathematical and General 13(4), L115 (1980),801

doi:10.1088/0305-4470/13/4/009.802
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