
SciPost Physics

Topological linear response of hyperbolic Chern insulators

Canon Sun1,2⋆, Anffany Chen1,2, Tomáš Bzdušek3, and Joseph Maciejko1,2,4†

1 Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
2 Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

3 Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich,
Switzerland

4 Quantum Horizons Alberta, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

⋆ canon@ualberta.ca , † maciejko@ualberta.ca

Abstract

We establish a connection between the electromagnetic Hall response and band topo-
logical invariants in hyperbolic Chern insulators by deriving a hyperbolic analog of the
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula. By generalizing the Kubo for-
mula to hyperbolic lattices, we show that the Hall conductivity is quantized to −e2Ci j/h,
where Ci j is the first Chern number. Through a flux-threading argument, we provide
an interpretation of the Chern number as a topological invariant in hyperbolic band
theory. We demonstrate that, although it receives contributions from both Abelian and
non-Abelian Bloch states, the Chern number can be calculated solely from Abelian states,
resulting in a tremendous simplification of the topological band theory. Finally, we verify
our results numerically by computing various Chern numbers in the hyperbolic Haldane
model.

Contents

1 Introduction 2

2 Hyperbolic band theory 3
2.1 Periodic boundary conditions 3
2.2 Single-particle spectrum 6

3 Hall response on hyperbolic lattices 8
3.1 Hyperbolic Kubo formula 8
3.2 Band invariants 10
3.3 Quantization of the Hall conductivity 13

4 Chern numbers in the hyperbolic Haldane model 15

5 Summary and outlook 16

A Bloch Hamiltonian 17

B Fourier transform on hyperbolic periodic clusters 18

C Kubo formula and the Berry curvature 20

1

mailto: canon@ualberta.ca
mailto: maciejko@ualberta.ca


SciPost Physics

References 24

1 Introduction

Hyperbolic matter is a novel form of synthetic matter in which particles exist and move on
the hyperbolic plane, a two-dimensional space with uniform negative curvature. Simulating
physics on the hyperbolic plane in an experimental setting, however, is challenging due to
the lack of an isometric embedding of the hyperbolic plane in three-dimensional Euclidean
space [1]. This challenge can be overcome by discretizing the hyperbolic plane. By con-
structing a network with the connectivity of a hyperbolic tight-binding lattice, then as far
as the particle is concerned, it is living on a periodic tiling of hyperbolic space. This idea
has been realized experimentally in a growing range of platforms, including coplanar waveg-
uide resonators [2, 3], photonic nano/micro-structures [4], mechanical elastic lattices [5],
and topoelectric circuits [6–9]. Motivated by these experimental advances, significant theo-
retical progress has been made to demonstrate the uniqueness and peculiarities of hyperbolic
matter [10–44]. Furthermore, hyperbolic lattices can be used to simulate the anti-de Sitter
(AdS) space and conformal field theory (CFT) correspondence [45–47] in a laboratory set-
ting [48–56]. Other proposals to simulate negative curvature in condensed matter include
Euclidean lattices with non-uniform hoppings [57] and non-Hermitian Hamiltonians [58].

Central to understanding the behavior of electrons in Euclidean lattices is Bloch’s theorem.
Bloch’s theorem states that under translation by a lattice vector R, the electronic wavefunction
acquires a phase factor eik·R determined by the crystal momentum k. The crystal momentum k
completely characterizes the symmetry properties of the wavefunction under translations and
allows for the classification of energy levels into continuous energy bands. The original state-
ment of Bloch’s theorem, however, cannot be straightforwardly applied to hyperbolic lattices.
Recently, Ref. [11] generalized Bloch’s theorem to hyperbolic lattices, or, more generally, sys-
tems with discrete non-Abelian translation groups. The key to this generalization is restating
Bloch’s theorem in group-theoretic terms: Eigenstates of a Hamiltonian with discrete transla-
tional symmetry transform according to irreducible representations (irreps) of the translation
group. This non-Abelian Bloch theorem gives rise to two features that are markedly differ-
ent from the Euclidean Bloch theorem. First, the spectrum admits states transforming under
higher-dimensional irreps of the hyperbolic translation group. Bands transforming in a higher-
dimensional irrep will have degeneracies protected by the translation group, not the point or
spin rotation groups. Second, even for one-dimensional irreps, the Brillouin zone (BZ) is in
general more complicated. For the {8,8} lattice studied in Ref. [10], for example (see Fig. 1),
the Abelian Brillouin zone is a four-dimensional torus, despite the real-space lattice being a
two-dimensional system. The BZ for a hyperbolic lattice is thus far richer than that of an
Euclidean lattice.

With a more exotic BZ, the topological band theory of hyperbolic matter becomes more
intricate. The central goal of topological band theory is to classify topologically distinct Bloch
Hamiltonians. In Euclidean lattices, a comprehensive classification is known based on the
dimension and symmetries of the system [59–65], and the corresponding class to which a
Hamiltonian belongs can be determined by computing topological invariants, such as the
Chern number [66, 67] or the Z2 invariant [68, 69]. These invariants are not simply math-
ematical quantities defined in the abstract but can be observed in physical experiments mea-
suring the charge and/or spin response [66,68,70–72]. The situation becomes more complex
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in hyperbolic lattices. Considering one-dimensional irreps alone, the Abelian BZ is a higher-
dimensional torus [10], and thus a multitude of first Chern numbers can be computed, one for
each two-dimensional subtorus [13, 14]. Moreover, higher Chern numbers can also be calcu-
lated for what is an intrinsically two-dimensional system [9, 16]. For the higher-dimensional
irreps, it is not clear how topological invariants can be assigned to them. Indeed, the non-
Abelian BZ are complicated moduli spaces [11, 38, 39] that do not in general have a simple
toroidal geometry. Furthermore, it is not clear whether any of these topological invariants
would be related to physical phenomena of some kind.

In this work, we relate the physical electromagnetic Hall response of translationally in-
variant hyperbolic insulators to hyperbolic band topological invariants. In Sec. 2, we first
briefly review elements of hyperbolic band theory [10,11]. We consider a general tight-binding
Hamiltonian defined on a hyperbolic lattice with periodic boundary conditions and discuss its
single-particle spectrum and wavefunctions. In Sec. 3, we define and compute a Hall conduc-
tivity using linear response theory (Kubo formula) and show that it is equal to −e2Ci j/h where
e is the electron charge and Ci j is a sum of Chern numbers in flux space. The relation between
Ci j and band invariants is then elucidated and, building on this, we prove that Ci j is integer
valued, thus demonstrating the quantization of the Hall conductivity. Importantly, we find that
Ci j can be computed solely from Abelian Bloch states, even though all Bloch states (including
non-Abelian ones) contribute to the Hall response. This leads to a tremendous simplification
of the topological band theory of hyperbolic lattices, since Abelian Bloch states can be charac-
terized analytically. In Sec. 4, we verify those predictions by computing Ci j numerically in the
hyperbolic Haldane model [13], using finite lattices with periodic boundary conditions that
admit both one- and higher-dimensional irreps of the translation group. We conclude briefly
in Sec. 5.

2 Hyperbolic band theory

The translation group of an arbitrary hyperbolic {p, q} lattice (e.g., the {8, 8} lattice depicted
in Fig. 1) is isomorphic to the fundamental group of a genus-g surface and can be endowed
with the presentation

Γ = 〈γ1,γ2, . . . ,γ2g |X g〉, (1)

with a single relator X g where each generator γ j , j = 1, . . . , 2g and its inverse appear once [12,
14]. The group Γ acts on the Poincaré disk D by fixed-point-free Möbius transformations, and
the orbit of the origin z = 0 under this action, L ≡ {γ(0) ∈ D|γ ∈ Γ }, defines a hyperbolic
Bravais lattice. In other words, the action of Γ partitions D into disjoint Bravais unit cells, each
of which can be labeled by a unique element z ∈ L. In general, the Bravais unit cell contains
a basis of Ns sites that can be viewed as sublattice degrees of freedom (e.g., in Fig. 1, Ns = 1,
while in the hyperbolic Haldane model (Sec. 4), Ns = 16). As the action is fixed-point free,
there is a one-to-one correspondence between Γ and L: For each element γ ∈ Γ , there is a
corresponding unit cell z = γ(0) ∈ L and, conversely, for every unit cell z ∈ L there is a unique
γ ∈ Γ such that z = γ(0). Therefore, we can label unit cells with group elements and vice
versa.

2.1 Periodic boundary conditions

To facilitate the discussion of adiabatic charge transport, it is convenient to impose periodic
boundary conditions (PBC). The application of PBC amounts to taking the quotient of Γ by
some normal subgroup ΓPBC, whose elements define operations that are “periodic”. The quo-
tient group G ≡ Γ/ΓPBC of order |G|, which we take to be finite, defines a periodic cluster of
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Figure 1: The {8,8} tiling of the Poincaré disk. The black dots represent lattice
sites and the black lines are geodesics (in the Poincaré metric) connecting nearest
neighbors. The red arrows depict the actions of the generators γ j on the lattice site
at the origin. In our model, an electron hopping in the γ j direction in the presence
of an external gauge field A acquires a Peierls phase factor e−iA j .

|G| unit cells [11]. The group G should be interpreted as belonging to a sequence of increas-
ingly large periodic clusters that converges to the thermodynamic limit [35, 36], such that G
is meant to approximate the infinite group Γ . Geometrically, elements of the normal subgroup
ΓPBC can be thought of as operations that traverse the entire periodic system and return back
to the same unit cell on the periodic cluster. In contrast, the quotient G consists of the residual
translations between distinct unit cells on the cluster. While Γ is isomorphic to the fundamental
group of a genus-g surface, ΓPBC is isomorphic to that of a genus-h surface, with h≥ g scaling
with the system size. Put differently, a single unit cell lives on a genus-g surface whereas a
periodic cluster lives on a genus-h one. The group ΓPBC can always be given the presentation

ΓPBC = 〈g1,g2, . . . ,g2h| [g1,g2] . . . [g2h−1,g2h]〉, (2)

where [a, b] = aba−1 b−1 is the commutator of two group elements. In this presentation, the
operation of each generator gα, α = 1, . . . , 2h, encircles one of the 2h holes of the genus-h
surface once. In contrast to Γ , which is an infinite group, G is a finite (but arbitrarily large)
group of order |G|= (h−1)/(g−1) and thus methods from the representation theory of finite
groups can be applied.

We consider a nearest-neighbor tight-binding model defined on a periodic cluster G with
Ns sublattices, as described by the second-quantized Hamiltonian

Ĥ(A) = −
∑

γ∈G

2g
∑

j=1

Ns
∑

a,b=1

T j
abe−iA j(γ) ĉ†

γγ j ,a
ĉγ,b + h.c. (3)

Here ĉ†
γ,a creates an electron in unit cell γ on sublattice a. To each link connecting site b in unit

cell γ to site a in unit cell γγ j is associated a hopping matrix element T j
ab and a U(1) Peierls

phase factor e−iA j(γ) with connection A j(γ) ∈ [0,2π). Unlike Euclidean lattices, the connec-
tion here is a 2g-component vector A = (A1, A2, . . . , A2g)T . This hopping model is depicted
schematically on the {8,8} lattice in Fig. 1. Note that the nearest neighbor of γ by traversing
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in the j direction is γγ j , rather than the perhaps more intuitive γ jγ. This can be understood
in the following way: By definition, γ j(0) is a nearest neighbor of 0 on the Bravais lattice.
Translating them both by γ, we reach the unit cells γγ j(0) and γ(0). They must be nearest
neighbors of each other because the distance between them is preserved by Möbius maps. All
the nearest neighbors of γ(0) can be obtained this way. For simplicity, in Eq. (3), we restricted
the Hamiltonian to only involve coupling of sites belonging to nearest-neighbor unit cells, but
it can be extended to include next-nearest neighbors and more by inserting compatible Peierls
phase factors. For example, the next-nearest neighbor hopping from γ to γγiγ j would involve
the phase factor e−i[A j(γγi)+Ai(γ)]. In particular, such terms appear in the hyperbolic Haldane
model on the {8,3} lattice, studied numerically in Sec. 4.

The connection A j(γ) plays the role of an electromagnetic vector potential applied exter-
nally in our model. For any loop around the lattice, the magnetic flux, in units of ħh/e, through
the loop is equal to the sum of the individual connections along its path. If the magnetic
flux enclosed by any contractible loop is zero, then the connection is flat, meaning there is
zero applied magnetic field on the surface. A contractible loop can be defined algebraically
as a group element γ ∈ Γ that can be reduced to the identity e ∈ Γ using either the trivial
relations γ jγ

−1
j = γ−1

j γ j = e or the single non-trivial relation X g = e. On the other hand,
non-contractible loops, i.e., those that involve gα, can enclose magnetic flux even if the con-
nection is flat. This magnetic flux does not penetrate the surface but instead goes through
the 2h holes of the surface (see Fig. 2). Mathematically, the periodic cluster resides on a sur-
face with non-trivial homology, which quantifies the number of “holes" the surface possesses.
Flat connections corresponding to fluxes threaded through these holes belong to non-trivial
cohomological classes.

Generally, the gauge field A j(γ) breaks translational symmetry. The Hamiltonian is only
translationally invariant when the gauge field is independent of the position, i.e., A(γ) = φ for
all γ ∈ G and for some φ = (φ1,φ2, . . . ,φ2g)T , where φ j ∈ [0, 2π). Translationally invariant
field configurations are flat because all the relations of Γ , trivial and non-trivial, contain an
equal number of γ j and γ−1

j , and thus the contribution acquired by traversing through the γ j

operation is canceled by that of γ−1
j . Nevertheless, the gauge field φ j can produce magnetic

flux through the 2h holes (see Fig. 2). Let Λ j(γ) be the number of times γ j appears in any
word representation of γ ∈ Γ minus the number of times γ−1

j appears. This is well-defined

because all the relations of Γ involve the same number of γ j and γ−1
j . The flux through the

hole associated with the generator gα, in units of ħh/e, is

ϕα =
2g
∑

j=1

Λ j(gα)φ j . (4)

However, in contrast with Euclidean lattices, not all flux configurations ϕα can be obtained by
a translationally invariant gauge configuration. Here Λ j(gα) can be thought of as a linear map
from the space of gauge fields T2g , labeled by φ j , to the space of fluxes T2h, ϕα. The rank
of this map is at most 2g. As the rank is smaller than the dimension of the space of fluxes,
2h, not all flux configurations are mapped onto by Λ j(gα). To allow for more general flux
configurations, translational symmetry would have to be broken.1 Since our goal is to relate
electromagnetic response coefficients to hyperbolic band invariants, we focus henceforth on
translationally invariant gauge configurations.

1One may also consider more general flux configurations that preserve a finite-index normal subgroup of Γ .
Hyperbolic band theory can be applied to the corresponding Bravais supercell [15], which results in an enlarged
set of momentum-space Chern numbers [73]. We focus here on the simplest type of electromagnetic Hall response,
which relates to Chern invariants defined for the primitive cell.
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Figure 2: Flux threading on a periodic hyperbolic cluster (black dots representing
sites and lines depicting connections), which lives on a higher-genus surface. The
non-contractible cycle gα (red) encloses flux ϕα, which does not penetrate the sur-
face.

2.2 Single-particle spectrum

As the Hamiltonian in Eq. (3) is non-interacting, the problem of solving for the many-body
spectrum reduces to finding the single-particle energy levels. The problem is further simplified
when the Hamiltonian is translationally invariant, in which case hyperbolic band theory can
be applied [10, 11, 37]. Let A j(φ) = φ j for all γ ∈ G be a translationally invariant gauge
configuration. The single-particle Hilbert space H = ℓ2(G)⊗CNs is the tensor product of two
spaces: ℓ2(G) ∼= C|G|, the space of functions on G, describing the Bravais lattice, and CNs , the
sublattice degrees of freedom. It is spanned by the orthonormal basis |γ, a〉 ≡ ĉ†

γ,a|0〉, which is

a position ket at γ and in the sublattice a. Projecting Ĥ of Eq. (3) onto H, the single-particle
energy spectrum is described by the first quantized Hamiltonian

Ĥ1(φ) = −
∑

γ∈G

2g
∑

j=1

Ns
∑

a,b=1

T j
abe−iφ j |γγ j , a〉〈γ, b|+ h.c. (5)

We note that even though the U(1) Peierls phase e−iφ j itself is Abelian, the translation symme-
try of the Hamiltonian (5) is still noncommutative, described by the non-Abelian group G. To
make those symmetry properties more manifest, it is advantageous to decompose the Hilbert
space into invariant subspaces of G. The space ℓ2(G) transforms in the regular representation
of G, a |G|-dimensional representation that is generally reducible, while CNs transforms triv-
ially under G. The decomposition of the regular representation is achieved through a change
of basis for H from the position basis |γ, a〉 to a new “momentum” basis |K ,λ,ν; a〉 [37]:

|γ, a〉=
∑

K∈BZ(G)

dK
∑

λ,ν=1

|K ,λ,ν; a〉
√

√ dK

|G|
D(K)
νλ
(γ), |K ,λ,ν; a〉=

∑

γ∈G

|γ, a〉
√

√ dK

|G|
D(K)∗
νλ
(γ). (6)

Here, we denote by BZ(G) the space of irreps of G, by D(K)(γ) the unitary representation
matrix of γ in irrep K , and by dK the dimension of K . The index ν labels the states that
mix together under a group transformation and λ the copies of the irrep K appearing in the
decomposition of ℓ2(G). A feature of the regular representation is that the multiplicity of the
irrep K is equal to its dimension dK [74], thus both ν and λ indices range from 1 to dK . The
vector |K ,λ,ν; a〉 transforms in the K irrep of G. In this basis, the transformation properties
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are more transparent. Defining the translation operator Û(γ) by Û(γ)|γ′, a〉 = |γγ′, a〉, the
state |K ,λ,ν; a〉 transforms under the action of γ as

Û(γ)|K ,λ,ν; a〉=
dK
∑

µ=1

|K ,λ,µ; a〉D(K)µν (γ). (7)

The quantum numbers K , λ, and a define invariant subspaces of H that are not mixed un-
der hyperbolic translations. The transformation (6) reduces to the change of basis between
position and momentum eigenstates when Γ is a Euclidean translation group. For illustrative
purposes, let us consider the one-dimensional infinite chain with translation group Γ = Z and
no sublattice. Imposing PBC corresponds to selecting a normal subgroup NZ ◁Z and the quo-
tient G = ZN defines a periodic cluster with |G| = N sites [11]. As G is Abelian, all of its
irreps are one-dimensional and take the form D(kn)(x) = e−ikn x , where x ∈ ZN denotes the site
and kn = 2πn/N , n = 0, . . . , N − 1, is the crystal wavevector. Making these substitutions, the
equations in (6) reduce to the familiar expressions

|x〉=
1
p

N

∑

kn

|kn〉e−ikn x , |kn〉=
1
p

N

∑

x

|x〉eikn x . (8)

The utility of the irrep basis |K ,λ,ν; a〉 is that it block diagonalizes the Hamiltonian. Be-
cause of translational symmetry, the Hamiltonian does not mix components that transform
under different irreps and takes the form (see App. A for details)

Ĥ1(φ) =
∑

K∈BZ(G)

dK
∑

λ,λ′,ν,ν′=1

Ns
∑

a,a′=1

H(K)
λνa,λ′ν′a′(φ)|K ,λ,ν; a〉〈K ,λ′,ν′; a′|, (9)

where

H(K)
λνa,λ′ν′a′(φ) = −

2g
∑

j=1

D(K)
λ′λ
(γ j)δνν′T

j
aa′e
−iφ j + h.c. (10)

The Bloch Hamiltonian H(K) is a d2
K Ns × d2

K Ns matrix and its spectrum consists of dK Ns bands,
each dK -fold degenerate because of the quantum number ν (see Fig. 5 for a schematic depiction
with Ns = 3). Its eigenstates can be brought into “Bloch form”. Let |u(K)nν (φ)〉 be a normalized
eigenvector of H(K)(φ) with energy E(K)n (φ), where n = 1, . . . , dK Ns is a band index. The
associated normalized eigenstate to Ĥ1(φ) is

|ψ(K)nν (φ)〉=
dK
∑

λ=1

Ns
∑

a=1

u(K)nν,λa(φ)|K ,λ,ν; a〉. (11)

where u(K)nν,λa(φ) = 〈K ,λ,ν; a|u(K)nν (φ)〉. This is a generalization of one variant of Bloch’s theo-
rem, which states that, in the Euclidean context, eigenfunctions of a Hamiltonian with discrete
translational symmetry are of the form ψ(k)n (r) = u(k)n (r)e

ik·r. Besides the extra index ν which
accounts for the dimension of the irrep, there is also an extra sum over the multiplicity λ in
Eq. (11). While on Euclidean lattices there is only one basis function per irrep, namely eik·r,
on hyperbolic lattices, the irrep K has dK basis functions once ν is specified. The eigenfunction
would generally be a linear combination of all dK basis functions, which accounts for the extra
sum over λ.
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3 Hall response on hyperbolic lattices

We now suppose our system is in an insulating state and study its Hall response under an
external electric field. We first derive a hyperbolic variant of the Kubo formula based on linear
response theory. We then show that the conductivity is related to topological band invariants
and is quantized to integer multiples of e2/h.

3.1 Hyperbolic Kubo formula

While on Euclidean lattices there are only two independent directions in which a uniform
electric field can be applied and current could flow, on hyperbolic lattices this can be gen-
eralized to 2g possible directions because of the non-commutative nature of the translation
group [75]. Suppose the gauge field A j is varied on top of a stationary, translationally invari-
ant background field φ j: A j(γ, t) = φ j +δA j(γ, t). The perturbation δA j generates an electric
field E j(γ, t) = −δȦ j(γ, t)Φ0/(2π) along each link. As the link fields E j are independent, there
are 2g possible directions to apply an electric field. Similarly, to each generator γi , there is a
corresponding charge current operator

Ĵi(γ) =
2π
Φ0

∂ Ĥ
∂ Ai(γ)

, (12)

which measures the charge current flowing from γ to γγi . The 2g local currents and electric
fields are related, to linear order, through the 2g × 2g conductivity tensor σi j:

Ji(γ, t) =
2g
∑

j=1

∑

γ′∈G

∫ t

−∞
dt ′σi j(γ,γ′; t − t ′)E j(γ

′, t ′), (13)

where Ji(γ, t) = 〈Ĵi(γ, t)〉 is the expectation value of the electric current. As our model is
invariant under time translations, it is convenient to switch to the frequency domain, in which
case the current-field relation reads

Ji(γ,ω) =
2g
∑

j=1

∑

γ′∈G

σi j(γ,γ′;ω)E j(γ
′,ω). (14)

Our interest is in the direct current (d.c.) conductivity, which can be calculated from the Kubo
formula in the ω→ 0 limit (omitting the frequency argument from now on)

σi j(γ,γ′) =− iħh
∑

Ω ̸=GS

〈GS|Ĵi(γ)|Ω〉〈Ω|Ĵ j(γ′)|GS〉
(EΩ − EGS)2

− (i↔ j), (15)

where |Ω〉 is an eigenstate of the many-body Hamiltonian Ĥ with energy EΩ and |GS〉 is the
ground state with energy EGS. In a gapped system, the d.c. and thermodynamic limits com-
mute, thus it is possible to take the ω→ 0 limit first [76,77].

In the presence of translational symmetry, it is convenient to switch to the Fourier represen-
tation. From a group theory perspective, the (discrete) Fourier transform is the decomposition
of a function into parts that transform according to particular irreps of the symmetry group G.
To illustrate this, it is instructive to revisit once again the example of the one-dimensional chain
with PBC imposed. The discrete Fourier transform and its inverse on the chain are defined as

f (x) =
1
N

∑

kn

f (kn)e
ikn x , f (kn) =

∑

x

f (x)e−ikn x . (16)
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Here the function f (x) is expanded in terms of the basis functions D(kn)(x) = e−ikn x , which
are themselves the representation “matrices” of the group G = ZN . Under a translation, basis
functions corresponding to different irreps do not mix together. The analogous Fourier trans-
form for non-Abelian groups employs the same idea. Here we simply outline the basic idea
and defer the detailed discussion to App. B. By the Peter-Weyl theorem, the representation ma-
trices D(K)∗

νλ
(γ) form a basis for functions on the periodic cluster, thus any function f defined

on the cluster can be expanded in terms of them. This motivates the following definition for
the Fourier transform on G and its inverse:

f (γ) =
1
|G|

∑

K∈BZ(G)

dK
∑

λ,ν=1

dK f (K)
λν

D(K)∗
νλ
(γ), f (K)

λν
=
∑

γ∈G

f (γ)D(K)
νλ
(γ). (17)

Note that because G is non-Abelian, there are extra labels for the Fourier coefficient f (K)
λν

, with
ν accounting for the multiple basis functions in the same irrep and λ the multiple copies of
each irrep. We recover the standard Fourier transform (16) when G = ZN . As such, (17) is
the generalization of the usual Fourier transform from the Euclidean translation group to any
finite (but arbitrarily large) non-Abelian group.

The Fourier transform can also be defined for matrix kernels, such as the conductivity
tensor Eq. (15). For our purposes, we focus on matrix kernels h(γ,γ′) that are translationally
invariant. In other words, h(γ,γ′) = h(γ̃γ, γ̃γ′) for all γ̃ ∈ G. Equivalently, h(γ,γ′) = h(γ′−1γ)
is a function of only the “difference variable” γ′−1γ. Since it is a function of one variable, its
Fourier transform and inverse are given by

h(γ′−1γ) =
1
|G|

∑

K∈BZ(G)

dK
∑

λ,λ′=1

dKh(K)
λλ′

D(K)∗
λ′λ
(γ′−1γ), h(K)

λλ′
=
∑

γ−1′γ∈G

h(γ−1′γ)D(K)
λ′λ
(γ−1′γ). (18)

These are the generalizations of the standard Euclidean Fourier and inverse transforms, which
for G = ZN are

h(x − x ′) =
1
N

∑

kn

h(kn)e
ikn(x−x ′), h(kn) =

∑

x−x ′
h(x − x ′)e−ikn(x−x ′). (19)

Finally, the hyperbolic Fourier transform also exhibits a convolution theorem. Suppose the
function f is a convolution of two functions h and g, which, in the non-Abelian context, is
defined as

f (γ) =
∑

γ′∈G

h(γ′−1γ)g(γ′). (20)

Then the Fourier transform of f is

f (K)
λν
=

dK
∑

µ=1

h(K)
λµ

g(K)µν , (21)

which is simply matrix multiplication. This is the generalization of the Euclidean convolution
theorem, which for G = ZN states that

f (x) =
∑

x ′
h(x − x ′)g(x ′) ⇐⇒ f (kn) = h(kn)g(kn). (22)

Returning to the problem of the current response, because the unperturbed Hamiltonian
(i.e., with δA j = 0) is translationally invariant, so is the conductivity tensor. Using the con-
volution theorem Eq. (21), the Fourier transform of the current-electric field relation Eq. (14)
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is

J (Q)i;λν =
2g
∑

j=1

dQ
∑

µ=1

σ
(Q)
i j;λµE(Q)j;µν. (23)

This is the generalization of the relation Ji(q) =
∑d

j=1σi j(q)E j(q) in d-dimensional Euclidean
space. Typically, the Hall measurement is performed in the uniform limit, i.e., q→ 0, which, in
group-theoretic terms, is the trivial representation. For this reason, we focus on the response
in the trivial representation, denoted “0”. Using the Kubo formula, the conductivity tensor in
the trivial representation is (see App. C for details)

σ
(0)
i j (φ) = −

e2

h
1
|G|

∑

K∈BZ(G)

2πF (K)i j (φ), (24)

where F (K)i j ≡ i
∑

n<0

∑dK
ν=1〈∂φi

u(K)nν |∂φ j
u(K)nν 〉 − (i ↔ j) is the Berry curvature in flux space

associated with the irrep K . As the effect of the gauge fieldsφi is to simply change the boundary
conditions, assuming the bulk conductivity is insensitive to the boundary conditions, the Berry
curvature itself is expected to be quantized [78,79]. This allows us to average over the gauge
fields, yielding

σ
(0)
i j ≡
¬

σ
(0)
i j (φ)
¶

φ
= −

e2

h
Ci j , (25)

where

Ci j =
1
|G|

∑

K∈BZ(G)

C (K)i j , C (K)i j =
1

2π

∫ 2π

0

dφidφ j F
(K)
i j . (26)

Eq. (25) is the generalization of the Niu-Thouless-Wu (NTW) formula to hyperbolic lattices.
Here C (K)i j is the first Chern number associated with the irrep K and is quantized to integer
values. Although not obvious from Eq. (26), we will prove in Sec. 3.3 that Ci j is also an
integer, which implies the Hall conductivity is quantized.

3.2 Band invariants

In systems exhibiting translational symmetry, the Chern number Ci j is related to band topo-
logical invariants. This is well-known in Euclidean lattices, in which Ci j is the surface integral
of the Berry curvature in momentum space over the BZ [66]. The key insight lies in the fact
that a change in φ is equivalent to a change in the crystal momentum k of the Bloch state
|uk〉. Put differently, changing φ amounts to parallel transporting |uk〉 around the BZ. This
correspondence between φ and k allows the integral over fluxes in Eq. (26) to be recast into
an integral over the BZ.

To generalize to the hyperbolic case, it is useful to rephrase the correspondence between φ
and k in group-theoretic terms. The momentum k defines an irrep of the Euclidean translation
group and the BZ is the collection of irreps. The flow induced by φ can be thought of as a flow
in the space of irreps. Crucially, this interpretation remains unchanged in the hyperbolic case.
In this section, we demonstrate that adiabatically changing the flux φ leads to a flow in the
space of irreps of the hyperbolic translation group, subsequently establishing a correspondence
between Ci j and band topological invariants.

First, we extend the domain of the Bloch Hamiltonian H(K) from BZ(G) to BZ(Γ ), the space
of irreps of Γ [11,37–39]. This is achieved by simply allowing the representation matrices D(K)

in Eq. (10) to be unitary irreps of Γ . The domain has been enlarged because an irrep of G is
also one of Γ . To be more precise, an irrep K ∈ G can be lifted to an irrep K̂ of Γ by defining

D(K̂)(γ)≡ D(K)([γ]), ∀γ ∈ Γ , (27)

10
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where [γ] ∈ G = Γ/ΓPBC is the coset to which γ belongs. K̂ is a representation because the
cosets themselves form a group:

D(K̂)(γ1γ2)≡ D(K)([γ1γ2]) = D(K)([γ1][γ2]) = D(K)([γ1])D
(K)([γ2])

= D(K̂)(γ1)D
(K̂)(γ2). (28)

It is irreducible because it consists of all the representation matrices of K , and K is irreducible.
Hence, BZ(G) is a subset of BZ(Γ ).

For illustrative purposes, it is instructive to consider the one-dimensional chain again. The
irreps of G = ZN = Z/NZ are D(kn)([x]) = e−ikn[x], where [x] ∈ G with the equivalence
relation x ∼ y iff x and y differ by an integer multiple of N . The wavevector satisfies the
quantization condition kn = 2πn/N , n = 0, . . . , N − 1, to ensure D(kn) is independent of the
representative chosen from the coset. The irrep kn can be lifted to an irrep k̂n of Γ = Z by
defining D(k̂n)(x) = e−ikn x , where x ∈ Γ . The irreps k̂n constitute a subset of BZ(Γ ) because the
irreps of Γ are of the form D(k)(x) = e−ikx , where k ∈ [0,2π) with no quantization condition
imposed. This lifting procedure allows us to regard irreps of G also as those of Γ and to define
the Bloch Hamiltonian over BZ(Γ ).

We now discuss the effect of the gauge field φ on the Bloch Hamiltonian H(K)(φ) and
eigenstates |u(K)nν (φ)〉. Consider the combination D(K

′)(γ j)≡ e−iφ j D(K)(γ j) in the Bloch Hamil-
tonian in Eq. (10). While the map D(K

′) is defined over the generators of Γ , it can be ex-
tended to all of Γ straightforwardly by defining D(K

′)(γ)≡ χ(φ)(γ)D(K)(γ) for all γ ∈ Γ , where

χ(φ)(γ) = e−i
∑2g

j=1φ jΛ j(γ). The matrices D(K
′)(γ) for all γ ∈ Γ furnish an irrep of Γ . To see this,

notice that χ(φ) is a one-dimensional representation of Γ . This makes D(K
′) the tensor product

representation χ(φ) ⊗ D(K). As taking the tensor product of an irrep with a one-dimensional
irrep yields another irrep, K ′ is an irrep of Γ (with the same dimension, dK ′ = dK). Since this
is true for all φ, we can regard K as a continuous function of φ by defining K(φ) = K ′, and
write

H(K(φ))(0) = H(K(0))(φ). (29)

Note that while D(K(φ)) is a linear representation of Γ , it is generally not one of G, as D(K(φ))(gα) =
e−iϕαD(K(φ))(e), which has to equal D(K(φ))(e) for it to be an irrep of G. Therefore, K(φ) is
an irrep of G if and only if the fluxes through all 2h handles are integer multiples of the flux
quantum. As for the Bloch states, Eq. (29) implies that

|u(K(φ))nν (0)〉= |u(K(0))nν (φ)〉. (30)

Thus, the insertion of flux leads to a flow in BZ(Γ ). Since K(φ) has the same dimension as
K(0), the flow does not change the dimension of the irrep. Thus, for each K in Eq. (26), this
flow takes place inside a single component of BZ(Γ ), which is a moduli space of flat U(dK)
connections (or equivalently, vector bundles of rank dK) over the genus-g Riemann surface
D/Γ [11,37–39].

We can now relate the Chern number to band invariants. To do this, we recast the flux
integrals in C (K)i j into a surface integral over some region in the hyperbolic BZ. For each irrep

K of G, define the surface S(K)i j = {K(φ) ∈ BZ(Γ )|0 ≤ φi ,φ j < 2π}, which is the surface
traced out in BZ(Γ ) when φi and φ j are varied continuously, starting at K(0) ∈ BZ(G) (see
Fig. 3). The map K defines a one-to-one correspondence between points on the flux torus
T2 ∋ (φi ,φ j) and the surface S(K)i j . The map is injective because the representation matrices

for the generators, D(K(φ))(γ j) = e−iφ j D(K(0))(γ j), are different for different φ j ∈ (0, 2π]; it is

surjective because S(K)i j is defined as the image of K . Since the space BZ(Γ ) of dK -dimensional

irreps is a smooth manifold [38, 80], the map K : T2 → S(K)i j is a diffeomorphism. Therefore,

11
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Figure 3: Under the map K , the flux torus T2 (left, blue) gets mapped to the surface
S(K)i j (right, blue) in the hyperbolic BZ (schematically drawn as a cube). The point
K(0) lies on the surface and is an irrep of G.

by a change of variables we can express the integral as one over the coordinates of S(K)i j . This
is more compactly written in the notation of differential forms as

C (K)i j =
1

2π

∫

S(K)i j

(K−1)∗F (K), (31)

where (K−1)∗F (K) is the pullback of the Berry curvature F (K) under the map K−1 : S(K)i j → T2.
In this form, the Chern number can be interpreted as the integral of the Berry curvature in
the hyperbolic Brillouin zone over the closed surface S(K)i j , which is a hyperbolic analog of the
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) formula [66].

A more explicit formula can be given for C (K)i j when K is a one-dimensional irrep. The
one-dimensional irreps of G are labeled by a 2g-component crystal wavevector k that lives on
a 2g-dimensional torus and satisfies the quantization condition

2πnα =
2g
∑

j=1

Λ j(gα)k j (32)

for some nα ∈ Z [10, 11]. The generators are represented as D(k)(γ j) = e−ik j . When the
external gauge field is applied, the wavevector shifts to k(φ) = k+φ. Performing a change of
variables, we obtain the Chern number associated with the irrep k0 ∈ BZ(G) to be

C (k0)
i j =

1
2π

∫

dkidk j Fi j(k0 + k), (33)

where Fi j(k) = i
∑

n<0〈∂ki
u(k)n |∂k j

u(k)n 〉 − (i↔ j) is the Berry curvature in momentum space.

In other words, C (k0)
i j is the Chern number associated with the subtorus (ki , k j) of T2g . This

Chern number has been computed in various models of hyperbolic Chern insulators, such as
in Refs. [13,14]. Furthermore, when g = 1, e.g., the square lattice, C (k0)

i j reduces to the usual
Chern number for Euclidean lattices.

12
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Figure 4: Deforming the surface S(K)i j into S
(0dK )
i j . The cuboid is a schematic repre-

sentation of BZ(Γ ), the space of all representations of Γ (reducible and irreducible).

Through flux threading, K traces out the surface S(K)i j (blue) and 0dK
traces out S

(0dK )
i j

(red). As the BZ is connected, K and 0dK
are connected by a path L(t), and at each

point along the path, there is a corresponding smooth surface S(L(t))i j (green).

3.3 Quantization of the Hall conductivity

We now show that the Hall conductivity is quantized. This follows because the Chern numbers
C (K)i j for all K ∈ BZ(G) are not independent. Remarkably, as we prove below,

C (K)i j = d2
K C (0)i j , (34)

where C (0)i j is the Chern number associated with the trivial representation. Equation (34)
implies Ci j is an integer, because [using Eq. (26)]:

Ci j ≡
1
|G|

∑

K∈BZ(G)

C (K)i j =
1
|G|

∑

K∈BZ(G)

d2
K C (0)i j = C (0)i j ∈ Z. (35)

In the last step, we have used that
∑

K∈BZ(G) d
2
K = |G|. Therefore, the Hall conductivity in

Eq. (25) becomes

σ
(0)
i j = −

e2

h
C (0)i j . (36)

Eq. (36) marks the central result of this work. The Hall conductivity on a hyperbolic lattice
is quantized to integer multiples of e2/h, with the integer multiple being the Chern number
associated with the trivial irrep. Importantly, it is independent of the choice of periodic cluster
G. This is unlike, for example, the density of states, where an appropriate sequence of periodic
clusters is needed to reach the correct result in the thermodynamic limit [15,35,36]. Further-
more, even though all the irreps contribute to the response, to determine the conductivity it
suffices to compute C (0)i j using Eq. (33). Since the trivial irrep is one-dimensional, this can be
accomplished using Abelian hyperbolic band theory [10], which makes it considerably simpler
than evaluating Ci j directly by summing over all (Abelian and non-Abelian) irreps.

We now prove Eq. (34). The idea is to deform the surface S(K)i j continuously to a differ-
ent surface that allows us to easily relate the Chern numbers. To that end, let K be a dK -
dimensional irrep of G and 0dK

the representation that is the direct sum of dK copies of the
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Figure 5: Because the BZ for irreps of a given dimension d is connected, the filling
fraction fd of the associated bands for a hyperbolic insulator is the same for all d
(here fd = 1/3, with d = 1 bands in blue and d = 2 bands in red).

trivial representation. We next rely on two properties of representations of Γ , namely that the
space BZ(Γ ) of dK -dimensional irreps is a smooth and connected manifold [38, 80] and the
space BZ(Γ ) of all dK -dimensional representations (whether reducible or irreducible) is con-
nected [81]. Owing to the listed properties, there exists a continuous path L(t), 0 ≤ t ≤ 1,
that starts at L(0) = K and ends at L(1) = 0dK

(see Fig. 4), such that L(t) is irreducible and
thereby smooth for all t < 1. At each point L(t), we can consider as in Sec. 3.2 the surface
S(L(t))i j traced out by L(t) under flux threading. By assumption of our system being an insulator,

the gap does not close at any points along L(t), and thus S(K)i j can be smoothly deformed into

S
(0dK )
i j . As the Chern number is invariant under smooth deformations, we have C (K)i j = C

(0dK )
i j .

Eq. (34) follows once we show that C
(0dK )
i j = d2

K C (0)i j . Indeed, the Bloch Hamiltonian for the
representation 0dK

is

H
(0dK )
λνa;λ′ν′a′ = −

2g
∑

j=1

δλ′λδνν′T
j

aa′e
−iφ j + h.c.

= δλ′λδνν′H
(0)
aa′ . (37)

This Hamiltonian is simply the direct sum of d2
K copies of the Bloch Hamiltonian associated

with the trivial representation H(0). As the Chern number is additive under direct sum, we

have C
(0dK )
i j = d2

K C (0)i j as required.
The connectedness of the BZ in a given irrep dimension reveals another generic feature

of insulators in hyperbolic space: The filling fraction of U(d) bands, i.e., bands with a d-
fold degeneracy at every K that is protected by translation symmetry, is the same for all d
(Fig. 5). This phenomenon was observed previously in hyperbolic tight-binding models with
flat bands [25] but not given an explanation. To understand this, let f1 be the fraction of
filled U(1) bands (Ns = 3 and f1 = 1/3 in the schematic example of Fig. 5). Diagonalizing the
Bloch Hamiltonian in Eq. (37) at 0d in the U(d) BZ, the number of filled states is f1d2Ns. As K
continuously moves away from 0d , the energy levels form bands that, by assumption, do not
cross the Fermi level, so the number of filled states for each K remains f1d2Ns. Therefore, the
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f C12 C13

5/16 −1 1
1/2 0 0

11/16 −1 1

Table 1: The two independent Chern numbers of the hyperbolic Haldane model on
the {8, 3} lattice, computed at various filling fractions f for the parameters adopted
in Ref. [13].

filling fraction of U(d) bands is

fd =
number of filled U(d) states at each K

number of U(d) states at each K
=

f1d2Ns

d2Ns
= f1 ≡ f . (38)

Note that when moving away from 0d , the degeneracy from the λ quantum number is gener-
ically lifted but that from ν is not. Hence, there are generically f dNs number of filled U(d)
bands. This argument implies bands from various dimensions are not independent but are
connected in the spectrum to form a “wider band”. Put differently, a band in a hyperbolic
electronic system consists of d number of U(d) subbands, for each d ≥ 1.

4 Chern numbers in the hyperbolic Haldane model

To supplement our mathematical arguments, we numerically computed the flux-space Chern
numbers Ci j of the {8, 3} hyperbolic Haldane model [13,14] on periodic clusters with |G| unit
cells (Ns|G| sites). We here only outline the basic steps of the computation; supplementary data
and code that can be used to reproduce our results are available at Ref. [82]. We performed
computations on a single Abelian cluster with 20 unit cells (320 sites), and four non-Abelian
clusters with {24, 48,56, 100} unit cells ({384,768, 896,1 600} sites). A periodic cluster is
termed Abelian (non-Abelian) if the finite-size translation group G = Γ/ΓPBC is Abelian (non-
Abelian) [11]. We use the same model parameters as in Ref. [13], i.e., next-nearest-neighbor
hopping amplitude t2 = 1/6 and sublattice mass M = 1/3 (in units of the nearest-neighbor
hopping amplitude), and next-nearest-neighbor hopping phase Φ= π/2. The model is defined
on the {8,8} Bravais lattice which possesses 4 translation generators and, consequently, has
�4

2

�

= 6 Chern numbers. As shown in Ref. [14] however, for M ̸= 0 only two of the Chern
numbers—C12 and C13—are independent due to point-group symmetry constraints. For our
choice of parameters, the hyperbolic Haldane model exhibits three energy gaps,2 namely at
filling fractions f ∈ {5/16,1/2,11/16}, with the first and the last being topological. We dis-
cretized the flux integral in Eq. (26), diagonalized the Hamiltonian at every flux point, and
computed the Chern number using the method described in Ref. [83]. The results are summa-
rized in Table 1. We find that, for the clusters studied, Ci j is always an integer and independent
of the cluster used. Crucially, we also find they are equal to the momentum-space Chern num-
bers evaluated in Ref. [13], which verifies our prediction in Eq. (35).

Furthermore, we computed the Chern numbers C (K)i j for each irrep of two non-Abelian
periodic clusters and verified Eq. (34). The first cluster has order |G| = 24 and comprises

2Note that for the continuous deformation arguments in Sec. 3.3 to apply, the gaps must persist in the thermo-
dynamic limit and for irreps of all dimensions, which is not trivial to verify for hyperbolic lattices. For example,
the {8, 8} lattice Dirac model [9] is gapped at the level of one-dimensional irreps but becomes gapless once higher-
dimensional irreps are taken into account, for a certain range of parameters [16]. A study using the supercell
method [15] suggests that the gaps in the {8, 3} Haldane model first identified in Ref. [13] do persist in the ther-
modynamic limit.
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eight one-dimensional irreps and four two-dimensional irreps. The second has order |G|= 48
and is composed of eight one-dimensional irreps, six two-dimensional irreps, and a single
four-dimensional irrep. Detailed information about the two clusters are available in Ref. [82].
To evaluate C (K)i j , we isolated states transforming under the irrep K from the spectrum by
introducing the projection operators [11]

Π̂(K) =
dK

|G|

∑

γ∈G

χ(K)∗(γ)Û(γ), (39)

where χ(K)(γ) is the character of γ in the irrep K . The projector Π̂(K), when applied to an
arbitrary state, selects out the part of the state that transforms in the irrep K . As the projectors
commute with the Hamiltonian and with one another, they can be simultaneously diagonalized
alongside the Hamiltonian. We identified eigenstates transforming in the irrep K by isolating
those with eigenvalue of Π̂(K) equal to 1. Subsequently, we computed the Chern numbers C (K)i j
from these eigenstates, confirming Eq. (34) for both clusters studied. Moreover, we verified
that the filling fraction fd is indeed independent of d, as expected from Eq. (38).

5 Summary and outlook

In conclusion, we established a connection between the electromagnetic Hall response of hy-
perbolic lattice insulators and their topological invariants from hyperbolic band theory—that
is, we derived a hyperbolic analog of the TKNN formula. By doing so, we elucidated the phys-
ical meaning of the momentum-space Chern numbers computed in, for example, Ref. [13,14].
Furthermore, we demonstrated that both Abelian and non-Abelian Bloch states contribute to
the Hall response. However, to compute the Hall conductivity, we have shown that it is suf-
ficient to consider Abelian Bloch states, which tremendously simplifies the structure of topo-
logical band theory for hyperbolic lattices. For this result to hold, the spectrum must be truly
insulating, i.e., fully gapped for Bloch states of arbitrary irrep dimension d ≥ 1.

In Sec. 3, we derived the Hall conductivity based on the Kubo formalism and related it
to band invariants. We first showed that each irrep has an associated Chern number, defined
through a flux-space integral. The Hall conductivity is the sum of all these Chern numbers
divided by the number of unit cells in the periodic cluster. We then converted each Chern
number into a band invariant by demonstrating that an adiabatic insertion of the flux leads to a
flow in the hyperbolic Brillouin zone. The Chern numbers for irreps of various dimensions were
shown to be interrelated in a simple manner, combining to produce a quantized Hall response.
Finally, we explicitly verified our theoretical predictions through numerical computations of
Chern numbers in the {8,3} hyperbolic Haldane model.

Beyond numerical simulations, our theoretical predictions can in principle be verified ex-
perimentally using existing techniques. Ref. [3] utilized non-reciprocal tunable phase shifters
in a microwave-frequency scattering network to perform a flux-insertion experiment in a hy-
perbolic lattice with Corbino disk geometry. Those techniques could potentially be adapted
for a measurement of the Hall response discussed here. In Ref. [8], a hyperbolic topoelec-
tric circuit was realized in the geometry of a periodic cluster, using tunable complex-phase
elements that could in principle be used to both engineer the complex hoppings needed for
a Chern insulator model, and also to perform flux insertion via the tunable Peierls phases
in Eq. (3). Beyond the Chern number, our work opens the door to a systematic generaliza-
tion of Euclidean topological band theory to hyperbolic lattices. For example, it would be
interesting to investigate whether other types of band invariants, such as the Z2 invariant of
two-dimensional time-reversal invariant insulators [68,69], can likewise be shown to be con-
trolled by the momentum-space topology of Abelian Bloch states. It would also be valuable to
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elucidate any possible relationship between the Chern numbers defined here and the invari-
ants from noncommutative geometry introduced by Mathai and co-workers for the quantum
Hall effect on the hyperbolic plane [75, 84–87]. We finally remark that while we focused on
the Hall response in this work, the momentum-space methods we introduced, based on the
generalized Fourier transform in Eq. (17), are very general and can be adapted to other kinds
of many-body or linear-response calculations on hyperbolic lattices. In App. C, as part of our
calculation of the Hall conductivity, we derived the generalization of the Fourier transform of
the current operator for hyperbolic lattices. We also showed that the hyperbolic analog of the
addition of crystal momentum is the tensor product of irreps. These methods can pave the
way for future theoretical research in hyperbolic lattices.
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A Bloch Hamiltonian

In this appendix, we write the first-quantized Hamiltonian from Eq. (5) in block-diagonalized
form [Eq. (9)]. The Hamiltonian can be brought to block diagonal form based purely on
symmetry constraints. The idea is that because of translational symmetry, the Hamiltonian
commutes with all hyperbolic translations, and thus by Schur’s lemma, the Hamiltonian cannot
mix parts of the Hilbert space transforming under different irreps.

The Hamiltonian is automatically block diagonalized once expressed in the basis |K ,λ,ν; a〉.
In other words, we write the Hamiltonian as

Ĥ1 =
∑

K ,K ′∈BZ(G)

dK
∑

λ,ν=1

dK′
∑

λ′,ν′=1

Ns
∑

a,a′=1

〈K ,λ,ν; a|Ĥ1|K ′,λ′,ν′; a′〉|K ,λ,ν; a〉〈K ′,λ′,ν′; a′|. (A.1)

The matrix element 〈K ,λ,ν; a|Ĥ1|K ′,λ′,ν′; a′〉 can be evaluated by inserting the resolution of
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the identity 1H =
∑

γ∈G

∑Ns
b=1 |γ, b〉〈γ, b| and using the transformation (6),

〈K ,λ,ν; a|Ĥ1|K ′,λ′,ν′; a′〉=
∑

γ,γ′∈G

Ns
∑

b,b′=1

〈K ,λ,ν; a|γ, b〉〈γ, b|Ĥ1|γ′, b′〉〈γ′, b′|K ′,λ′,ν′, a′〉

= −
p

dK dK ′

|G|

∑

γ∈G

2g
∑

j=1

D(K)
νλ
(γγ j)T

j
aa′e
−iφ j D(K

′)∗
ν′λ′
(γ) + h.c.

= −
p

dK dK ′

|G|

∑

γ∈G

2g
∑

j=1

dK
∑

µ=1

D(K)νµ (γ)D
(K)
µλ
(γ j)T

j
aa′e
−iφ j D(K

′)∗
ν′λ′
(γ) + h.c.

= −δKK ′

2g
∑

j=1

D(K)
λ′λ
(γ j)δνν′T

j
aa′e
−iφ j + h.c. (A.2)

In the last step, we have used the Schur orthogonality relation

dK

|G|

∑

γ∈G

D(K)νµ (γ)D
(K ′)∗
ν′λ′
(γ) = δKK ′δνν′δµλ′ , (A.3)

which applies for any two irreps K and K ′. Combining Eqs. (A.1) and (A.2), we obtain Eqs. (9)
and (10) in the main text.

B Fourier transform on hyperbolic periodic clusters

In this appendix, we elaborate on the hyperbolic Fourier transform (17):

f (γ) =
1
|G|

∑

K∈BZ(G)

dK
∑

λ,ν=1

dK f (K)
λν

D(K)∗
νλ
(γ), f (K)

λν
=
∑

γ∈G

f (γ)D(K)
νλ
(γ). (B.1)

In particular, we prove that the transforms are indeed inverses of each other. Then, we in-
troduce the Fourier transform of a matrix kernel and narrow attention to the translationally
invariant case, which is relevant for the conductivity tensor. Finally, we show that the gener-
alized Fourier transform satisfies a convolution theorem.

The transforms in (B.1) are inverses of each other, which can be readily verified using the
following orthogonality relations:

dK

|G|

∑

γ∈G

D(K)∗
νλ
(γ)D(K

′)
ν′λ′
(γ) = δKK ′δνν′δλλ′ ,

1
|G|

∑

K∈BZ(G)

dK
∑

λ,ν=1

dK D(K)∗
νλ
(γ)D(K)

νλ
(γ′) = δγ,γ′ . (B.2)

When G = ZN , we recover the standard Euclidean orthogonality relations

1
N

∑

x

ei(kn−km)x = δkn,km
,

1
N

∑

kn

eikn(x−x ′) = δx ,x ′ . (B.3)

The first equation in (B.2) is precisely the Schur orthogonality relation, already stated as
Eq. (A.3), and the second equation follows from combining the unitarity property

D(K)∗
νλ
(γ) = D(K)

λν
(γ−1) (B.4)
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with the second orthogonality relation for characters (columns of character table are orthog-
onal),

1
|G|

∑

K∈BZ(G)

χ(K)∗(γ)χ(K)(γ′) =

¨

1/nc(γ) γ∼ γ′

0 otherwise
, (B.5)

where χ(K)(γ) = Tr D(K)(γ) is the character of γ in the irrep K . Here γ∼ γ′ iff γ and γ′ belong
to the same conjugacy class, and nc(γ) is the cardinality of the conjugacy class to which γ
belongs. To prove the second equation in (B.2), we rewrite the left-hand side as

1
|G|

∑

K∈BZ(G)

dK
∑

λ,ν=1

dK D(K)∗
νλ
(γ)D(K)

νλ
(γ′) =

1
|G|

∑

K∈BZ(G)

dK
∑

λ,ν=1

dK D(K)
λν
(γ−1)D(K)

νλ
(γ′)

=
1
|G|

∑

K∈BZ(G)

dK
∑

λ=1

dK D(K)
λλ
(γ−1γ′)

=
1
|G|

∑

K∈BZ(G)

dKχ
(K)(γ−1γ′). (B.6)

We now apply Eq. (B.5) by noticing that χ(K)(e) = dK = χ(K)∗(e), where e is the identity
element, and e is the only element in its conjugacy class. This gives the stated result.

The Fourier transform of a matrix kernel h(γ,γ′) can be similarly defined:

h(γ,γ′) =
1
|G|2
∑

K ,K ′∈BZ(G)

dK
∑

λ,ν=1

dK′
∑

λ′,ν′=1

dK dK ′D
(K)∗
νλ
(γ)h(K ,K ′)

λν,λ′ν′D
(K ′)
ν′λ′
(γ′), (B.7)

with inverse

h(K ,K ′)
λν,λ′ν′ =
∑

γ,γ′∈G

D(K)
νλ
(γ)h(γ,γ′)D(K

′)∗
ν′λ′
(γ′). (B.8)

In the presence of translational symmetry, the Fourier transform can be greatly simplified. By
translational symmetry, we mean h(γ,γ′) = h(γ̃γ, γ̃γ′) for all γ̃ ∈ G. In this case,

h(γ,γ′) =
1
|G|

∑

γ̃∈G

h(γ̃γ, γ̃γ′)

=
1
|G|3
∑

γ̃∈G

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν=1

dK′
∑

λ′,ν′=1

dK dK ′D
(K)∗
νλ
(γ̃γ)h(K ,K ′)

λν,λ′ν′D
(K ′)
ν′λ′
(γ̃γ′)

=
1
|G|3
∑

γ̃∈G

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν=1

dK′
∑

λ′,ν′=1

dK dK ′D
(K)∗
νλ
(γ̃γ′−1γ)h(K ,K ′)

λν,λ′ν′D
(K ′)
ν′λ′
(γ̃)

=
1
|G|3
∑

γ̃∈G

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν,µ=1

dK′
∑

λ′,ν′=1

dK dK ′D
(K)∗
νµ (γ̃)D

(K)∗
µλ
(γ′−1γ)h(K ,K ′)

λν,λ′ν′D
(K ′)
ν′λ′
(γ̃)

=
1
|G|2
∑

K∈BZ(G)

dK
∑

λ,λ′,ν=1

dKh(K ,K)
λν,λ′νD(K)∗

λ′λ
(γ′−1γ). (B.9)

In the last step we have used the Schur orthogonality theorem. If we now define

h(K)
λλ′
≡

1
|G|

dK
∑

ν=1

h(K ,K)
λν,λ′ν, (B.10)
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we obtain

h(γ,γ′) =
1
|G|

∑

K∈BZ(G)

dK
∑

λ,λ′=1

dKh(K)
λλ′

D(K)∗
λ′λ
(γ′−1γ), (B.11)

which is simply the Fourier transform with respect to the single “difference variable” γ′−1γ. In
particular, this tells us that h(γ,γ′) = h(γ′−1γ) depends only on group elements through γ′−1γ.
In analogy with Eqs. (B.1), we can deduce the inverse transform to be

h(K)
λλ′
=
∑

γ∈G

h(γ)D(K)
λ′λ
(γ). (B.12)

Just as for the Euclidean Fourier transform, the hyperbolic Fourier transform also obeys a
convolution theorem. For a general finite non-Abelian group, the convolution of two functions
h and g is defined as

f (γ) =
∑

γ′∈G

h(γ′−1γ)g(γ′). (B.13)

Taking the Fourier transform,

f (K)
λν
=
∑

γ∈G

f (γ)D(K)
νλ
(γ) =
∑

γ,γ′∈G

h(γ′−1γ)g(γ′)D(K)
νλ
(γ) =
∑

γ,γ′∈G

h(γ′−1γ)g(γ′)D(K)
νλ
(γ′γ′−1γ)

=
∑

γ,γ′∈G

dK
∑

µ=1

h(γ′−1γ)D(K)
µλ
(γ′−1γ)g(γ′)D(K)νµ (γ

′) =
∑

γ,γ∈G

dK
∑

µ=1

h(γ)D(K)
µλ
(γ)g(γ′)D(K)νµ (γ

′)

=
dK
∑

µ=1

h(K)
λµ

g(K)µν , (B.14)

which is Eq. (21) in the main text.

C Kubo formula and the Berry curvature

In this appendix, we provide a detailed derivation of the Hall conductivity in Eq. (24). We
take the Fourier transform of the Kubo formula and the current operator. Combining the two,
we show that the Hall conductivity in the uniform limit is determined by the Berry curvature.

First, assuming translational invariance, we take the Fourier transform of the conductivity.
Our starting point is the Kubo formula in Eq. (15). Taking the Fourier transform using Eq. (B.8),
we obtain

σ
(Q,Q′)
i j;λ̃ν̃,λ̃′ν̃′

= −iħh
∑

Ω ̸=GS

∑

γ,γ′∈G

D(Q)
ν̃λ̃
(γ)
〈GS|Ĵi(γ)|Ω〉〈Ω|Ĵ j(γ′)|GS〉

(EΩ − EGS)2
D(Q

′)∗
ν̃′λ̃′
(γ′)− (i↔ j)

= −iħh
∑

Ω ̸=GS

〈GS|Ĵ (Q)
i;λ̃ν̃
|Ω〉〈Ω|Ĵ (−Q′)

j;λ̃′ν̃′
|GS〉

(EΩ − EGS)2
− (i↔ j), (C.1)

where Ĵ (Q)
i;λ̃ν̃

is the Fourier transform of the current operator and we denote by −Q′ the complex

conjugate representation of Q′, i.e.,

D(−Q)
νλ
(γ) = D(Q)∗

νλ
(γ). (C.2)
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By translational symmetry, not all Fourier coefficients are independent. The independent com-
ponents are the linear combinations defined in Eq. (B.10), which for the conductivity are given
by

σ
(Q)
i j;λ̃λ̃′

= −iħh
1
|G|

∑

Ω ̸=GS

dK
∑

ν̃=1

〈GS|Ĵ (Q)
i;λ̃ν̃
|Ω〉〈Ω|Ĵ (−Q)

j;λ̃′ν̃
|GS〉

(EΩ − EGS)2
− (i↔ j). (C.3)

To proceed, we need the Fourier transform of the current operator. Using the definition
in Eq. (12) and with the Hamiltonian in Eq. (3), we have the following explicit form for the
current operator:

Ĵ j(γ) = −
2πi
Φ0

Ns
∑

a,a′=1

T j
aa′e
−iφ j ĉ†

γγ j ,a
ĉγ,a′ + h.c. (C.4)

With translational symmetry, it is convenient to pass to the irrep basis. Although in the main
text the irrep basis was introduced in the first-quantized setting, it can be straightforwardly
generalized to second-quantized operators. The electron creation operators in the lattice ba-
sis are defined as ĉ†

γ,a|0〉 = |γ, a〉. They satisfy the anticommutation relation
¦

ĉγ,a, ĉ†
γ′,a′

©

=
δγ,γ′δaa′ . In the main text, we have also introduced the irrep basis |K ,λ,ν; a〉. We define the

analogous fermion operators through ĉ(K)†
λν,a|0〉 ≡ |K ,λ,ν; a〉. Using Eq. (6), the two sets of

operators are related by the change of basis

ĉ†
γ,a =
∑

K∈BZ(G)

dK
∑

λ,ν=1

ĉ(K)†
λν,a

√

√ dK

|G|
D(K)
νλ
(γ), ĉ(K)†

λν,a =
∑

γ∈G

ĉ†
γ,a

√

√ dK

|G|
D(K)∗
νλ
(γ). (C.5)

As the change of basis is unitary, the anticommutation relations are preserved. In particular,
¦

ĉ(K)
λν,a, ĉ(K

′)†
λ′ν′,a′

©

= δKK ′δλλ′δνν′δaa′ . Passing to the irrep basis, the current operator becomes

Ĵ j(γ) = −
2πi
Φ0

Ns
∑

a,a′=1

T j
aa′e
−iφ j ĉ†

γγ j ,a
ĉγ,a′ + h.c.

= −
2πi
Φ0

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν=1

dK′
∑

λ′,ν′=1

Ns
∑

a,a′=1

Æ

dK d ′K
|G|

T j
aa′e
−iφ j D(K)

νλ
(γγ j)D

(K ′)∗
ν′λ′
(γ)ĉ(K)

†

λν,a ĉ(K
′)

λ′ν′,a′ + h.c.

= −
2πi
Φ0

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν,µ=1

dK′
∑

λ′,ν′=1

Ns
∑

a,a′=1

Æ

dK d ′K
|G|

T j
aa′e
−iφ j D(K)νµ (γ)D

(K)
µλ
(γ j)D

(K ′)∗
ν′λ′
(γ)ĉ(K)

†

λν,a ĉ(K
′)

λ′ν′,a′ + h.c.

= −
2π
Φ0

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν,µ=1

dK′
∑

λ′,ν′=1

Ns
∑

a,a′=1

Æ

dK d ′K
|G|

∂φ j
H(K)
λa,µa′D

(K)
νµ (γ)D

(K ′)∗
ν′λ′
(γ)ĉ(K)

†

λν,a ĉ(K
′)

λ′ν′,a′ . (C.6)

For notational convenience, we have introduced

H(K)
λa,µa′ = H(K)

λσa,µσa′ =
1
dK

dK
∑

σ=1

H(K)
λσa,µσa′ , (C.7)

where H(K)
λσa,µσa′ is the Bloch Hamiltonian defined in Eq. (10). The second equality follows

because Hλσa,µσa′ is independent of σ; therefore, tracing out the σ index cancels with the dK
in the denominator. Taking the Fourier transform, we get

Ĵ (Q)
j;λ̃ν̃
= −

2π
Φ0

∑

K ,K ′∈BZ(G)

dK
∑

λ,ν,µ=1

dK′
∑

λ′,ν′=1

Ns
∑

a,a′=1

√

√dK ′

dK
∂φ j

H(K)
λa,µa′C

(K ′,−Q,K)
λ′ν′,λ̃ν̃,µν

ĉ(K)
†

λν,a ĉ(K
′)

λ′ν′,a′ , (C.8)
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where

C (K
′,−Q,K)

λ′ν′,λ̃ν̃,µν
=

dK

|G|

∑

γ∈G

D(K)νµ (γ)D
(K ′)∗
ν′λ′
(γ)D(−Q)∗

ν̃λ̃
(γ). (C.9)

The coefficient C (K
′,−Q,K)

λ′ν′,λ̃ν̃,µν
can be expressed in terms of Clebsch-Gordan coefficients for the

group G. Consider the tensor product space H(K
′)

ρ′
⊗H(−Q)

ρ̃ , where H(K
′)

ρ′
= Span{|K ′,ρ′,λ′〉 :

λ′ = 1, . . . , dK ′} and H(−Q)
ρ̃ = Span{| − Q, ρ̃, λ̃〉 : λ̃ = 1, . . . , d−Q} for some choice of ρ′ =

1, . . . , dK ′ and ρ̃ = 1, . . . , d−Q. It has, as a choice, the basis set

{|K ′,ρ′,λ′;−Q, ρ̃, λ̃〉 ≡ |K ′,ρ′,λ′〉 ⊗ | −Q, ρ̃, λ̃〉 : λ′ = 1, . . . , dK ′; λ̃= 1, . . . , d−Q}. (C.10)

This space transforms in the D(K
′) ⊗ D(−Q) representation, which is in general reducible. It

would be more convenient to switch to the basis, which we denote |K ,ρ,µ〉, that brings the
representation matrices to block diagonal form. Here K ∈ K ′ ⊗ (−Q) is an irrep that appears
in the direct-sum decomposition of the tensor product, µ = 1, . . . , dK labels the vector within
the irrep, and ρ = 1, . . . , mK is an index that accounts for the multiplicity. Note that, unlike
before, the multiplicity index does not in general run from 1 to dK because the tensor product
space does not transform in the regular representation. The two basis sets are related by

|K ′,ρ′,λ′;−Q, ρ̃, λ̃〉=
∑

K∈K ′⊗(−Q)

mK
∑

ρ=1

dK
∑

µ=1

|K ,ρ,µ〉〈K ,ρ,µ|K ′,ρ′,λ′;−Q, ρ̃, λ̃〉, (C.11)

where 〈K ,ρ,λ|K ′,ρ′,λ′;−Q, ρ̃, λ̃〉 is a Clebsch-Gordan coefficient. Applying the group trans-
formation to Eq. (C.11), we obtain

dK′
∑

ν′=1

d−Q
∑

ν̃=1

|K ′,ρ′,ν′;−Q, ρ̃, ν̃〉D(K
′)

ν′λ′
(γ)D(−Q)

ν̃λ̃
(γ)

=
∑

K∈K ′⊗(−Q)

mK
∑

ρ=1

dK
∑

µ,ν=1

|K ,ρ,ν〉D(K)νµ (γ)〈K ,ρ,µ|K ′,ρ′,λ′;−Q, ρ̃, λ̃〉. (C.12)

Applying the orthogonality theorem and using that |K ′,ρ′,ν′;−Q, λ̃, ν̃〉 forms a basis, we ob-
tain an expression for the coefficient C (K

′,−Q,K)
λ′ν′,λ̃ν̃,µν

in terms of Clebsch-Gordan coefficients:

C (K
′,−Q,K)

λ′ν′,λ̃ν̃,µν
=

mK
∑

ρ=1

〈K ′,ρ′,λ′;−Q, ρ̃, λ̃|K ,ρ,µ〉〈K ,ρ,ν|K ′,ρ′,ν′;−Q, ρ̃, ν̃〉. (C.13)

Note that the coefficient is independent of our choice of ρ′ and ρ̃.
The expression in Eq. (C.13) gives a simple interpretation for the hyperbolic current oper-

ator in Eq. (C.8). For illustrative purposes, consider again the case of a one-dimensional chain,
in which G = ZN . The coefficient in Eq. (C.9) becomes

C (k
′,−q,k) =

1
N

∑

x

e−i(k−k′+q)x = δk,k′−q. (C.14)

We have suppressed the ν and λ subscripts because they all take only one value. The coefficient
C (k

′,−q,k) imposes the selection rule k = k′−q, which is the conservation of crystal momentum
[see Fig. 6(a)]. In this case, we recover the usual current operator

Ĵ (q)j = −
2π
Φ0

∑

k

∂k j
H(k−q)

aa′ ĉ(k−q)†
a ĉ(k)a′ . (C.15)
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Figure 6: (a) Depiction of the conservation of crystal wavevector in Euclidean lattices.
An electron with wavevector k′ is annihilated and one with k= k′−q is created. (b)
On a hyperbolic lattice, the wavevector is replaced by the tuple K ′,λ′,ν′ and the
addition of wavevector translates to tensor product of irreps. The selection rules are
dictated by the coefficient C (K

′,−Q,K)
λ′ν′,λ̃ν̃,µν

.

Here we have used that threading the flux φ j in Euclidean space changes the wavevector
as k j 7→ k j + φ j to change the derivative ∂φ j

to ∂k j
. The case of a non-Abelian group G is

analogous. The process of addition of crystal momentum is replaced with the tensor product
of two irreps. The selection rule which imposes conservation of momentum is replaced with
Clebsch-Gordan coefficients in Eq. (C.13) [see Fig. 6(b)].

For our purposes, we are interested in the uniform limit, i.e., Q is the trivial representation
(denoted “0”), in which case we can straightforwardly apply the orthogonality theorem to
Eq. (C.9) to obtain the simple expression

C (K
′,0,K)

λ′ν′;00;µν = δKK ′δλ′µδν′ν. (C.16)

This gives the current operator in the uniform limit

Ĵ (0)j = −
2π
Φ0

∑

K∈BZ(G)

dK
∑

λ,λ′,ν=1

Ns
∑

a,a′=1

∂φ j
H(K)
λa,λ′a′ ĉ

(K)†

λν,a ĉ(K)
λ′ν,a′ . (C.17)

To evaluate matrix elements, it is convenient to switch to the band basis, a basis that diago-
nalizes the Hamiltonian. We define the fermion operators ĉ(K)

†

nν |0〉 = |ψ
(K)
nν 〉. They are related

to the operators ĉ(K)†
λ,ν;a through the change of basis

ĉ(K)
†

nν =
∑

K∈BZ(G)

dK
∑

λ,ν=1

Ns
∑

a=1

ĉ(K)†
λν,a〈K ,λ,ν; a|ψ(K)nν 〉, ĉ(K)†

λν,a =
dK Ns
∑

n=1

ĉ(K)†nν 〈ψ
(K)
nν |K ,λ,ν; a〉. (C.18)

As the change of basis is unitary, the new operators preserve the canonical anticommutation
relations. In particular, the non-trivial relation is

¦

ĉ(K)nν , ĉ(K
′)†

mµ

©

= δKK ′δnmδνµ. In the band
basis, the current operator becomes

Ĵ (0)j = −
2π
Φ0

∑

K∈BZ(G)

Ns
∑

n,m=1

dK
∑

ν=1

〈ψ(K)nν |∂φ j
Ĥ1|ψ(K)mν〉ĉ

(K)†
nν ĉ(K)mν . (C.19)

Using this expression, we can evaluate the matrix elements in Eq. (C.3). For non-interacting
electrons,

〈GS|ĉ(K)†nν ĉ(K)mν |Ω〉〈Ω|ĉ
(K ′)†
n′µ ĉ(K

′)
m′µ |GS〉= δKK ′δnm′δmn′δνµnF(ξ

(K)
n )[1− nF(ξ

(K)
m )], (C.20)
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where ξ(K)n = E(K)n − EF with E(K)n the Bloch energies satisfying Ĥ1|ψ(K)nν 〉 = E(K)n |ψ
(K)
nν 〉, and

nF(ξ) = θ (−ξ) is a ground-state occupation factor with θ (x) the Heaviside step function.
Inserting this relation into Eq. (C.3), we obtain

σ
(0)
i j = −

e2

h
2πi
|G|

∑

K∈BZ(G)

∑

n<0,m>0

dK
∑

ν=1

〈ψ(K)nν |∂φi
Ĥ1|ψ(K)mν〉〈ψ

(K)
mν |∂φ j

Ĥ1|ψ(K)nν 〉

(ξ(K)n − ξ
(K)
m )2

− (i↔ j). (C.21)

Here n< 0 denotes the filled states and m> 0 the empty ones.
We now make the connection between the Hall conductivity and Berry curvature. The

Berry curvature of all the filled states is defined as

Fi j = i
∑

K∈BZ(G)

∑

n<0

dK
∑

ν=1

〈∂φi
u(K)nν |∂φ j

u(K)nν 〉 − (i↔ j)

= i
∑

K∈BZ(G)

∑

n<0

dK
∑

ν=1

〈∂φi
ψ(K)nν |∂φ j

ψ(K)nν 〉 − (i↔ j). (C.22)

We can recast it into a form that resembles Eq. (C.21). Inserting the resolution of identity
1H =
∑

K ′∈BZ(K)

∑dK′Ns
m=1

∑dK′
µ=1 |ψ

(K ′)
mµ 〉〈ψ

(K ′)
mµ |, we have

Fi j = i
∑

K ,K ′∈BZ(G)

∑

n<0,m>0

dK
∑

ν=1

dK′
∑

µ=1

〈∂φi
ψ(K)nν |ψ

(K ′)
mµ 〉〈ψ

(K ′)
mµ |∂φ j

ψ(K)nν 〉 − (i↔ j). (C.23)

We have only included the m> 0 terms because the m< 0 terms cancel when antisymmetrized.
As |ψ(K

′)
mν 〉 and |ψ(K)nν 〉 are orthonormal, for m ̸= n,

0= ∂φ j

�

ξ(K)n 〈ψ
(K ′)
mµ |ψ

(K)
nν 〉
�

= ∂φ j

�

〈ψ(K
′)

mµ |Ĥ1|ψ(K)nν 〉
�

= ξ(K)n 〈∂φ j
ψ(K

′)
mµ |ψ

(K)
nν 〉+ ξ

(K ′)
m 〈ψ

(K ′)
mµ |∂φ j

ψ(K)nν 〉+ 〈ψ
(K ′)
mµ |∂φ j

Ĥ1|ψ(K)nν 〉. (C.24)

From Eq. (9), we observe that ∂φi
Ĥ1 cannot change the quantum numbers K and µ, which

leads to the identity

〈ψ(K
′)

mµ |∂φ j
ψ(K)nν 〉=

〈ψ(K
′)

mν |∂φ j
Ĥ1|ψ(K)nν 〉

ξ
(K)
n − ξ

(K)
m

δKK ′δνµ (C.25)

for n ̸= m. Consequently, we obtain

Fi j = i
∑

K∈BZ(G)

∑

n<0,m>0

dK
∑

ν=1

〈ψ(K)nν |∂φi
Ĥ1|ψ(K)mν〉〈ψ

(K)
mν |∂φ j

Ĥ1|ψ(K)nµ 〉

(ξ(K)n − ξ
(K)
m )2

− (i↔ j). (C.26)

Combining with the expression for the Hall conductivity Eq. (C.21), we obtain Eq. (24) of the
main text.
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