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We study the topological quantum phase transition (TQPT) between a normal insulator and a

topological metal state in the three-leg diamond lattices via thermodynamic means. Doing a

unitary transformation, the Hilbert space of the system is divided into two independent subspaces:

trivial h1 and topologically nontrivial h2 such that the TQPT is regarded as an ordinary

insulator-metal transition plus a topological insulator transition. The thermal Drude weight

portrays well the insulator (Dth=0) and metal (Dth>0) ground states with the low-temperature

gapped and gapless low-lying excitations featured as g Bk T
thD e and thD T linear relation,

respectively. The ordinary insulator-metal transition is manifested not only by the quantum critical

scaling of thermal Drude weight, but also by the critical divergence of Grüneisen ratio (GR~-T-1)

with an asymmetric scaling universal curve. Differently, the topological insulator transition occurs

in h2 subspace protected by a hidden inversion symmetry, which is demonstrated by the switching

of winding number with band inversion as well as the finite GR nearby 1/2 with a symmetric

scaling universal curve, implying the proximate self-duality of quantum critical point. Our

findings provide a novel thermodynamic perspective on topological metal transition.

1 Introduction

It has attracted extentive interest to identify, classify and engineer the novel topological

quantum states based on the topological symmetry and band theory [1-4]. The topological



insulator (TI) [1,5], topological semimetal (TSM) [6,7] and topological metal (TM) [8-13] are

prototype examples of topological phases. TI has a fully gapped bulk band structure with

symmetry-protected edge states falling inside the gap, which can be characterized by the

corresponding topological invariant such as Chern (Z2) number, winding number, Zak phase and

so on [1,2,14,15]. TSM is signaled by the band touching point or node at the Fermi level, at which

the energy gap is closed and the energy bands are degenerate at a particular momentum in the first

Brillouin zone [6]. The representive examples are the Weyl and Dirac semimetals, which

showcase linear relation around the Weyl and Dirac points with double and fourfold degeneracy,

respectively. Differently, TM bridges the ordinary metal state and TI state, manifesting the

nontrivial edge states within the gapless bulk states [10].

Usually, topological quantum phase transition (TQPT) takes place at zero temperature with

bulk band gap closing and TSM as the topological quantum criticality. Meanwhile, it is

accompanied by the topological invariant switched off with band inversion [16,17]. However, the

TQPT into TM is different from the semimetal. It has been designed and realized in 2D

particle-hole or time-reversal symmetric system with or without adjusting the magnetic flux [8,9].

Furthermore, the intrinsic TMs have been demonstrated in 2D T-graphene and quasi-1D trivial

spinless models like dimerized two-leg ladders and three-leg diamond lattices, in which the

topologically-protected nontrivial edge states hidden within the gapless bulk states [10-13].

Strikingly, in the three-leg diamond lattices, the Hilbert space of the system could be divided into

two independent subspaces after performing a unitary transformation. One is a trivial subspace,

and the other is a toplogically nontrivial one. Upon tuning the hopping parameters, it yields a

TQPT from normal insulator (NI) to inversion symmetry-protected TM phase. In experiment,



there is no access to detect the TM phase transition occurrs at zero temperature, some new

thermodynamic means should be explored at finite temperatures to manifest the TQPTs, since the

quantum criticality has a huge effect on the finite temperature thermodynamics [18,19]. How to

feature the low-lying excitations of NI and TM phases? How to characterize the TM phase

transition and demonstrate the self-duality of quantum critical point (QCP) by thermodynamic

means?

Here, we focus on the three-leg diamond lattices to adress these questions. It is constructed

by way of trivial spinless quantum wire arrays with each unit cell containing three sublattices (Fig.

1(a)), which is described by a tight-banding model without explicit symmetry. Doing a unitary

transformation, the Hilbert space of the system is segmented into two independent subspaces: a

trivial h1 and a topologically nontrivial h2 [12,13]. For comparison, first, turning off some intracell

and intercell hoppings, one can obtain a diamond chain with a flat band lying in the Fermi level in

h1 subspace but a TI transition in h2 subspace. In h2 subspace, the exact self-duality of QCP is

demonstrated by the constant of Grüneisen ratio (GR=1/2). After recovering and tuning the

corresponding intracell and intercell hoppings, a TQPT between a normal insulator (NI) and TM is

gained. In such phase transition, one energy band passes the Fermi level, while the gap between

the other two bands is closed and reopened, taking on the zero-energy edge states within the

gapless bulk states. The gapped NI and gapless TM phases are signaled by the thermal Drude

weight with g Bk T
thD e and T-linear relation at low temperatures, respectively. Meanwhile, in

h2 subspace, the switching of winding number and divergence of correlation length signal the

TQPT clearly. The proximate self-duality of QCP is manifested by the finite GR nearby 1/2.

Furthermore, the scaled GR falls on a universal curve with asymmetrical and symmetrical



structures in the whole Hilbert space and h2 subspace, respectively, implying the intrinsic TM

transition.

2 Model Hamiltonian and method

We consider the three-leg diamond lattices as sketched in Fig. 1(a), which is governed by the

tight-banding Hamiltonian [12,13]
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where L is the number of unit cell.  †l ly y annihilates (creates) a spinless electron on sublattice

( , , )y a b c of the lth unit cell. t0 and t1 are the intracell hopping, while t2 and t3 are the intercell

hopping. Here, t1=1 is selected as an energy unit. In the momentum space, it leads to
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If a unitary transformation is employed, the Hamiltonian will be block-diagonalized as,
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with the unitary matrix
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Thus, the Hilbert space becomes two separable subspaces such that one can obtain two

independent blocks  1 3 02 cosh k t k t  and
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Herein,  0 3 02 cos 2d t k t  and 0 is the 2×2 identical matrix.  , ,x y z    are the

Pauli matrices and the effective magnetic field (i.e., the Anderson pseudospin vector)

    1 2 2 0, , 2 cos , 2 sin ,x y zd d d d t t k t k d  


. Accordingly, one can get the energies of

the Bloch bands,

1 3 02 cosE t k t  , 2 2 2
0 x y zE d d d d     . (6)

The thermodynamic quantities such as free-energy density, entropy and specific heat are expressed

as [19],
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with TkB1 and the Fermi-Dirac distribution function     
1
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.

In an adiabatic process, the GR is attained as [20-22]
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3 Results and discussion

For simplity, we first consider t0=t3=0 case and set t1=1 as an energy unit. At this time, the

system is reduced into a diamond chain with only the nearest neighbor hoppings, which is, indeed,

a bipartite lattice with two different connective sites [23,24]. The rim sites have two nearst

neighbor sites while the hub sites own four ones. From the subspace h1, one can obtain a flat band

pinned to the Fermi level, the quenched kinetic energy of which causes localization and zero wave

group velocity, regarded as irreducible compact localized state [23], as shown in Fig. 1(b1)-(b3).



In subspace 2 x x y yh d d   , it hosts the time reversal (TR), particle-hole (PH) and chiral (C)

symmetries [2],

   *
2 2h k h k  ,    *

2 2z zh k h k    ,    2 2z zh k h k    , (11)

belonging to the BDI symmetry class. The subsystem h2 also displays the inversion symmetry

   2 2x xh k h k    [13], similar to the SSH model, and takes on interesting topological bands,

which can be characterized and labelled by the topological invariant-Zak phase [14,15],

 Zak BZ
A k dk   . (12)

The Berry connection is   k k kA k i u u  with ku the normalized eigenvector for E±,

which is divergent at the band gap closing, reflecting the TQPT. Within the bulk-edge

correspondence, the gap closing and reopening give rise to the switching of edge states, which is

similar to the band inversion. It is identified by the symmetry of wavefunction parity defined as

even symmetry with
1
1ku
 

   
 

and odd symmetry with
1
1ku
 

   
 

[16,17]. The phase

transition from topologically trivial ( 0Zak  ) to nontrivial ( Zak  ) one is illustrated in Fig.

1(b1)-(b3) with band inversion at k  , at which it shows Dirac-like bands at t2=t2c=1.0 with the

energy gap closed (Fig. 1(b2)). Even if the intracell nearst neighbor hopping t0 between top and

bottom sites is turned on, it still does not give dispersion to the flat band but pull it down into the

Fermi sea [25], destroying the topology in subspace h2 (Fig. 1(b4)).

Besides, the profile of Berry connection in momentum space is plotted in Fig. 1(c1) for

different t2 values around t2c=1.0 [26,27]. There is a negative dip around k  , which grows as

t2 increases and becomes sharper and sharper approaching the QCP t2c=1.0. Beyond t2c, the Berry

connection takes on a positive peak at k  , which is suppressed with t2 further ascending. It is

evidenced that there is a TQPT at t2c=1.0. Besides, as the wave vector traverses across the entire



first Brillouin zone, it gives rise to the winding of Bloch vector around the origin with the chiral

winding number w ZakN   . The TQPT is clearly portrayed in Fig. 1(c2), wherein the winding

number jumps from 0 to 1 at t2c=1.0, with 1 being the topological invariant difference.

Furthermore, the GR related to the magnetocaloric-like effect, is a good thermodynamic

quantity to diagnose the TQPT and characterize its self-duality [20,22]. In subspace h2, Fig. 1(d1)

presents the GR as a function of t2 in the temperature interval of [0.01,0.05], which displays a

symmetric valley-peak structure with respect to t2c. Meanwhile, it shows an asymptotic quantum

critical scaling form  2 2 2
2

2 2
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c
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t t k T
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with Φ(x) the scaling function [19, 22].

As T→0, a critical divergency    2
2 2 2, 1h
c cT t t t  is taken on with universal prefactors

Φ(x )=1, which is distinguished with the Luttinger liquid QPT in Heisenberg chain [28].

Evidently, by performing the inversion and translational symmetry
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1

ˆ ˆ
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1

ˆ ˆ
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 [29], the Hamiltonian

posseses the same form via the parameter exchange as t1↔t2. Thus, one can decouple the h2

subsystem as  2 2 1 2 2h t H t H  . Doing the unitary or antiunitary transformation,

1
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2 1UH U H  , it manifests an Abelian Z2 symmetry    1
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the QCP with self-duality, around which, two gapped phases can be mapped into each other

[19,20]. At the QCP, the self-duality leads to that  1
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1
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Accordingly, the GR in h2 subspace at the QCP reads as,
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which is irrespective of temperature, as shown in Fig. 1(d2).

Strikingly, if the next nearest neighbor hopping (t3) between adjacent unit cells is turned on, the



flat band will be dispersive. From subspace h2, it is found that if t3≠t2/2 and t0≠t1=1.0 the

subsystem only posseses trivial phases without any topology, as a result of the destruction of PH,

C and inversion symmetries [12]. Hereafter, we set t3=t2/2 and t0=t1=1.0. As such, the TR

symmetry    *
2 2h k h k  still persists, but the PH and C symmetries are broken, which is

belonging to the AI class [2]. Meanwhile, the hidden inversion symmetry of subspace h2 is revived

   1
2 2Ph k P h k   with inversion operator

1 2 21
3 2 2 1

P
 

    
.

In Fig. 2(a), below t2c=1.0, the band E1 resides in the Fermi sea, while the bands E± present

topologically trivial property, implying the normal insulator. With increasing t2, one can find that

from Fig. 2(b), the gap closes, yielding a TQPT for bands E± with linear relation around kc=π, i.e.,

z
cE k k   with z=1. Meanwhile, the band E1 is pushed up and touches the Fermi level with a

quatratic relation around kc=0, resulting in the dynamic critical exponent z=2. After the TQPT, the

bands E± shows topologically nontrivial along with band inversion at k=π and gap reopened, as

plotted in Fig. 2(c). Nevertheless, the band E1 crosses the Fermi level and manifests a metallic

state. Thus, the whole system is a conductor in a topologically nontrivial phase, which is regarded

as a toplogical metal.

In subspace h2, we further present the profile of Berry connection in momentum space in Fig.

2(d), which shows a sharp peak or dip at two sides of t2c with opposite sign. The divergence of

Berry connection gives rise to the critical behavior  0 2 2 2, cA k t t t     with the critical

exponent γ=1 (the inset in Fig. 2(d)). Besides, in Fig. 2(e), the winding number manifests the

TQPT evidently, which jumps from 0 to 1 at t2c=1.0 with 1 being the topological invariant

difference. In order to quantitatively describe the topological criticality, a correlation length k in

the momentum space is defined by the inverse of the full width at half maximum of Berry



connection [26], as shown in the left inset in Fig. 2(f). Fig. 2(f) presents the correlation length

k versus t2, which diverges as t2 approaches the critical value t2c=1.0. Its double logarithm is

plotted in the right inset of Fig. 2(f), in which the critical scaling behavior manifests

2 2k ct t    with ν=1.

In addition, the quantum criticality has a huge effect on the thermodynamics at finite

temperatures [18,19,22], giving experimental access to its observation. The thermal Drude weight

that is defined as
2

2

,

n

n m

E
th th

n m
E E

D e n j m
ZN

 



  with thj the energy current and Z the partition

function [30], is employed to feature the gapless (Dth>0) and gapped (Dth=0) phases. In subspace

h1, the thermal Drude weight increases from zero to a finite value continuously (Fig. 3(a)),

indicating an insulator-metal transition, analogous to the Luttinger liquid QPT. Around the QCP, it

presents a QC scaling  1
1

2 2
h
th cD t t   with δ=1.867 (the inset in Fig. 3(a)). At finite

temperatures, it presents a critical scaling 1h
thD T T  in Fig. 3(b). Its double-logarithm reflects

the critical exponent β=0.489. Besides, in the inset of Fig. 3(b), the specific heat displays

1h
VC T T  critical divergence with α=0.488 at the QCP, denoting a proximate T1/2 critical

behavior. In another way, one can obtain the critical exponent α=1/2 from the scaling relation

α=2-(d+z)/z with d=1 and z=2 [19,31], demonstrating the T1/2 critical behavior of specific heat.

Thus, one can obtain α+β(1+δ)=1.890 for the obtained quantum critical exponents

(δ,,)=(1.867,0.488,0.489), in accordance with the Essam-Fisher law α+β(1+δ)=2 [32].

In Fig. 3(a), one can find that in subspace h2, the thermal Drude weight presents a sharp peak at

the QCP, implying the gapless quantum criticality regarded as a topological semimetal (Fig. 2(b)).

Otherwise, it stays at zero value, suggesting the gapped topological insulators [19]. This gapless

quantum criticality is further manifested by the T-linear relation of 2h
thD in Fig. 3(b), where



2h
thD T keeps a constant independent of temperature.

At finite temperatures, the gapped low-lying excitation is demonstrated for t2<t2c by the

temperature dependence of thermal Drude weight in two subspaces in Fig. 3(c), which is

exponetially activated: g Bk T
thD e . The slope of the curve lnDth versus 1/T in the inset

reflects the energy gap 2 2
z

g ct t    with zν=1. Thus, one can obtain ν=1/2 and 1 with z=2

and 1 in subspaces h1 and h2, respectively, consistent with the critical scaling behavior of

correlation length. Beyond t2c, it is still exponentially activated in subspace h2, as shown in Fig.

3(a) and the left inset. However, in subspace h1, the thermal Drude weight displays zero energy

gap (left inset) and presents a T-linear relation as T→0 (right inset), demonstrating gapless

metallic state.

From the above analysis of thermal Drude weight, one can get the gapped insulator transition

into gapless metal in subspace h1, and one gapped insulator transition into another gapped

insulator in subspace h2, but not feature the topological metal at finite temperatures. Here, we

employ the GR to identify the topological quantum criticality. Although the whole system

composes of subsystems h1 and h2, the subpace h1 determines the insulator-metal transition. In Fig.

4(a), the GR presents a zero-crossing point with sign changed, which manifests an asymptotic QC

scaling form   2 2
2

2 2

1, c
c

c B

t tT t
t t k T

 
      

with  y the scaling function [19]. Upon

cooling down to zero temperature, the asymptotics y=(t2-t2c)/kBT  generate characteristic

zero-temperature divergency Γ(T,t2c)~1/(t2-t2c) with universal prefactors Φ(y )=1 and 1/2,

respectively, which is akin to the Luttinger liquid QPT in Heisenberg chain [28]. At this time, the

self-duality is broken, because the gapless and gapped spectra in the two phases cannot be mapped

into each other [19,20]. At low temperatures, the GR presents a power-law divergence: Γ(T,t2c)



~-T-1 at the QCP in Fig. 4(b), implying the conventional QPT without self-duality [33], which is

further confirmed by the scaling transformation Γ(T,t2)×(t2-t2c) in Fig. 4(c) that perfectly fall on a

universal asymmetrical curve. However, in subspace h2, its topological property is demonstrated

by the valley-peak symmetric structure of GR in Fig. 4(d) around t2c, at which the asymptotics

x=(t2-t2c)/kBT    generate a zero-temperature divergency    2
2 2 2, 1h
c cT t t t  with

universal prefactors Φ(x   )=1. The diagonal element 3 02 cost k t in h2 is seen as a

perturbation such that the expanded GR    
   2

2 2

0,
, 0,

!

n
c n

c c
n

t
T t t T

n


    [20] is finite

but still approaches 1/2 (Fig. 4(e)), demonstrating the proximate self-duality of the QCP.

Meanwhile, the scaling transformation    2
2 2 2,h
c cT t t t   perfectly falls on a universal

symmetric curve with respective to t2c=1.0. Therefore, the GR serves as a superb tool to diagnose

the topological quantum criticality and topological metal.

4. Conclusion

In conclusion, the TQPT between a NI and a TM state in the three-leg diamond lattices, the

Hilbert space of which is segmented into a trivial subspace h1 and a topological nontrivial one h2

with a unitary transformation, is investigated by thermodynamic means. Turning off some intracell

and intercell hoppings, in addition to a trivial flat band, it manifests a TI transition with the QCP

being exactly self-dual, which is demonstrated by the constant of GR=1/2 irrespective of

temperature in h2 subspace. After recovering and tuning the corresponding hoppings, the trivial

flat band becomes dispersive, resulting in a TM transition, which is regarded as an ordinary

insulator-metal transition together with a TI transition. Upon cooling down to zero temperature,

the thermal Drude weight portrays well the gapped insulator (Dth=0) and gapless metal (Dth>0)

phases, which are further featured by g Bk T
thD e and T-linear relation at low temperatures,



respectively. The ordinary insulator-metal transition is captured by the quantum critical scaling of

thermal Drude weight and specific heat, whose exponents fulfill the Essam-Fisher law, similar to

the general Luttinger liquid QPT. Meanwhile, the GR presents a zero-crossing and sign change

with a critical divergence (~-T-1) and an asymmetric scaling universal curve at low temperatures.

However, the TI transition takes place in h2 subspace protected by a hidden inversion symmetry,

which is demonstrated not only by the switching of winding number, divergence of correlation

length and band inversion, but also by the sharp peak of thermal Drude weight as well as the finite

GR nearby 1/2 with a symmetric scaling universal curve, implying the proximate self-duality of

QCP. Our findings manifest a novel thermodynamic perspective on TM transition.
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Figures and figure captions:



Fig. 1 (a) Schematic of three-leg diamond lattices with each unit cell containing three sublattices

(a, b and c). (b) t3=t0=0, energy bands for t2=0.5, 1.0 and 1.5 in (b1)-(b3); (b4) t3=0, t0=0.5. For

t3=t0=0 in subspace h2, (c) the Berry connection as a function k around t2c=1.0 in (c1), winding

number as a function of t2 in (c2); (d) t2 dependence of GR under temperatures [0.01,0.05] with

interval 0.01 in (d1), the temperature dependence of GR at the QCP in (d2).



Fig.2 For t0=t1, t3=t2/2, energy bands for (a) t2=0.5, (b) t2=1.0, and (c) t2=1.5. In subspace h2,(d)

Berry connection as a function k around t2c=1.0; (e) winding number as a function of t2; (f) t2

dependence of correlation length, the left inset is the definition of correlation length, while the

right inset is its critical scaling.



Fig.3 For t0=t1, t3=t2/2, (a) t2 dependence of thermal Drude weight in subspace h1 (Green) and

subspace h2 (Red), the inset is the critical scaling of thermal Drude weight in h1 subspace; (b) at

the QCP t2=t2c=1.0, lnDth/T versus lnT in two subspaces, the inset is the critical scaling of specific

heat in h1 subspace; the temperature dependence of thermal Drude weight in two subspaces for (c)

t2=0.5, and (d) t2=1.5, the inset in (c) is the curve of lnDth versus 1/T, the left inset in (d) is the

curve of lnDth versus 1/T, while the right inset is the temperature dependence of Dth/T in h1

subspace.



Fig.4 For t0=t1, t3=t2/2, in whole Hilbert space, (a) t2 dependence of GR under temperatures

[0.01,0.05] with interval 0.01; (b) the temperature dependence of GR at the QCP; (c) the scaling of

GR versus rescaled t2 hopping under different temperatures, all the data points collapse onto an

asymmetric universal curve, implying the ordinary insulator-metal transition. In h2 subspace, (d)

GR as a function of t2 under temperatures [0.01,0.05] with interval 0.01; (e) the temperature

dependence of GR at the QCP; (e) the scaling of GR versus rescaled t2 hopping under different

temperatures, all the data points fall onto a symmetric universal curve, indicating the TI transition.


