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Abstract

We present an open-source tensor network Python library for quantum many-body simu-
lations. At its core is an abelian-symmetric tensor, implemented as a sparse block struc-
ture managed by a logical layer on top of a dense multi-dimensional array backend.
This serves as the basis for higher-level tensor network algorithms, operating on matrix
product states and projected entangled pair states. An appropriate backend, such as
PyTorch, gives direct access to automatic differentiation (AD) for cost-function gradient
calculations and execution on GPU and other supported accelerators. We show the li-
brary performance in simulations with infinite projected entangled-pair states, such as
finding the ground states with AD and simulating thermal states of the Hubbard model
via imaginary time evolution. For these challenging examples, we identify and quantify
sources of the numerical advantage exploited by the symmetric-tensor implementation.
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1 Introduction16

Full numerical treatment of quantum-mechanical systems is generally prohibitively expensive17

due to the exponential growth of Hilbert space size with the number of interacting degrees18

of freedom. Tensor network (TN) techniques allow for the efficient representation and ma-19

nipulation of states of such large quantum systems [1–3]. The density matrix renormalization20

group (DMRG) introduced by White [4, 5] and its modern reformulation in terms of matrix21

product states [6–10] (MPS), a one-dimensional (1D) tensor network, is a prime example of22

TN capabilities. Since their inception, MPS quickly became a reference method for addressing23

ground states in 1D, and were soon followed by extensions to excited states, time evolution,24

and open systems, forming a comprehensive framework.25

The descriptive power of TNs generalizes to higher-dimensional models. The MPS, despite26

its intrinsic 1D geometry, can be readily applied to systems in higher dimensions by imposing27

linear ordering of lattice sites. Two-dimensional (2D) systems are often limited to finite cylin-28

ders that get mapped to the MPS ansatz by imposing ordering that winds around the cylinder29

circumference, see Fig. 1(c). More natural TN geometry for 2D states is assured by the projected30

entangled-pair states (PEPS) [11,12], see Fig. 1(e), and the similar for 3D states [13,14].31

The TN ansätze in Fig. 1 provide a state-of-the-art numerical approach to strongly corre-32

lated systems of condensed matter. The computational complexity of MPS typically scales as33

O(D3), and PEPS algorithms often reach O(D12) scaling, where bond dimension D governs34

the size of the tensors and the overall precision of the TN approximations. While the scaling35

of PEPS seems less favorable, it is important to note that the bond dimension encodes correla-36

tions between sites. Imposing winding, column-by-column ordering for the MPS on cylinder37

stretches correlations between columns and leads to long-range correlations across the MPS.38

The PEPS, on the other hand, already possesses natural geometry for nearest-neighbor corre-39

lations in 2D. As a result, the PEPS can reach comparable or better precision even at low bond40

dimensions once the cylinder width within the MPS approach exceeds a few sites.41

The most effective way to mitigate the computational complexity is to leverage the symme-42

tries present in physical systems. Two principal types of symmetries to consider are spatial and43

internal symmetries. Tensor networks can be formulated directly in the thermodynamic limit44

by infinitely repeated pattern (a unit cell) of tensors, hence realizing translation symmetry.45

These are infinite-MPS (iMPS) also known as uniform MPS [15] in 1D and the infinite-PEPS46

(iPEPS) [16] in 2D. The computational complexity of iMPS/iPEPS algorithms scales linearly47

with the size of the unit cell.48

For internal symmetries U|Ψ〉 = |Ψ〉, we consider their common form of global symmetries,49

i.e., when U = ⊗i ui with the same unitaries ui acting on each lattice site. These can be both50

abelian (e.g., particle conservation) or non-abelian (e.g., SU(2)-spin). Crucially, such global51

symmetries can be implemented in TNs locally by requiring individual tensors to transform52

covariantly under the action u of the symmetry group [17–21]. These symmetric tensors take53
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Figure 1: Tensor networks. Diagrams depict (a) a rank-3 tensor of the MPS with
left and right virtual spaces V and physical space H, (b) an MPS ansatz, (c) a MPS
winding on a finite width-6 cylinder, (d) a rank-5 tensor of the PEPS, and (e) an
infinite-PEPS ansatz.

block-spare form, with original dense virtual spaces V of bond dimension D split into a direct54

sum of blocks V = ⊕r Vr with dimensions {D1, . . . , Dr } each associated to irreducible represen-55

tation r of the considered symmetry group. Block sparsity substantially lowers computational56

complexity, permitting large-D simulations, in particular for (i)PEPS algorithms.57

Here, we introduce the Yet Another Symmetric Tensor Network (YASTN) library [22]. YASTN58

is an open-source Python library with abelian-symmetric tensor as a basic type and associated59

linear algebra operations on such tensors. The implementation enables automatic differen-60

tiation (AD) via appropriate dense linear algebra backends, allowing convenient variational61

optimization of TNs. This is particularly important for iPEPS [23–25], where no alternative62

direct energy minimization algorithms are known. This is in contrast to the (i)MPS where63

the DMRG provides efficient and robust optimization. YASTN thus joins a continually grow-64

ing collection of tensor network software with various degree of support for symmetries and65

automatic differentiation such as ITensor [26], TenPy [27], Block2 [28], Quantum TEA [29],66

TensorNetwork [30], Cytnx [31], TeNes [32], TensorKit [33], Qspace [34], peps-torch [35],67

ad-peps [36], variPEPS [37], PEPSKit [38], TenNetLib [39].68

In the following sections, we outline the design principles of YASTN and present a set of69

benchmarks demonstrating the computational speed-up from abelian symmetries. We focus on70

variational optimization of iPEPS for SU(2)-symmetric spin-
1
2 model, SU(3)-symmetric model,71

and observables of a Hubbard model at finite temperature simulated via imaginary-time evo-72

lution.73

2 Design principles74

In this section, we give an overview of the structure of YASTN, presented in Fig. 2, and com-75

ment on some aspects of implementation. The basic building block of the library is the yastn.76

Tensor which is defined by the symmetry structure and the backend. The symmetry structure77

determines a set of allowed blocks and how to manipulate them when performing tensor al-78

gebra. The backend handles the execution of dense linear algebra operations and storage of79

tensor elements. These two are independent of each other. Symmetric tensors are used to80

construct TN ansätze, such as MPS and PEPS, and finally define high-level algorithms that are81

applied to specific TN. For a detailed description of the library and all its functionalities, see82

the documentation under Ref. [22].83
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yastn.Tensor

backend:
NumPy,
PyTorch,
JAX, ...

symmetry:
U(1), Z2,
U(1)×U(1),
...

yastn.tn.mps

TDVP,
DMRG,
...

yastn.tn.fpeps

time evolution,
CTMRG, ...

peps-torch

AD variational
optimization,
...

Figure 2: Schematic design of yastn package. The core element of the package
is yastn.Tensor, which implements block-sparse tensor structure corresponding to a
given abelian symmetry on top of a dense linear algebra backend, such as NumPy [40]
or PyTorch [41]. More complex tensor networks, built on top of symmetric tensor, in-
clude standard but versatile MPS toolbox and 2D PEPS implementations to simulate
the time evolution or ground-state variational optimization. The latter can benefit
from automatic differentiation supported by some underlying backends, such as Py-
Torch.

2.1 Abelian-symmetric tensor84

Tensors are multilinear maps from products of several vector spaces85

T : V1 ⊗ V2 ⊗ V3 ⊗ ...→ C, (1)

where V i is a vector space and ⊗ is a tensor product. In quantum mechanical context, we work86

with Hilbert spaces H and their duals H∗. By choosing some bases in each of these spaces the87

tensors can be written out in components88

T =
∑

abc...i jk...

T abc...
i jk... |i〉| j〉|k〉 . . . 〈a|〈b|〈c| . . . , (2)

where i, j , k . . . are indices of bases in H spaces, a, b, c . . . in H∗ spaces, and T abc...
i jk...

is the89

corresponding tensor element. The action of the element g of abelian group G on tensor90

T can be represented in a proper basis by diagonal matrices U i(g ) transforming the tensor91

elements92

(g ◦ T)ab...
i j ... =
∑

a′b′...i′ j ′...

T a′b′...
i′ j ′... [U

1(g )]i
′

i [U
2(g )] j

′

j
. . .

× [Um(g )∗]aa′[U
m+1(g )∗]bb′ . . . .

(3)

The matrix elements of U i(g ) are93

[U i(g )]
j
j ′ = δ j j ′ exp(−iθg t [i]

j
), (4)

4
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forming a diagonal matrix of complex phases defined by integer charges t [i]
j

, with angle94

θg ∈ [0, 2π) which depends on g ∈ G, and δ j j ′ being Kronecker delta. Therefore, under95

the action of g ∈ G, each tensor element simply acquires a phase given by the sum of charges96

(g ◦ T)ab...
i j ... = T ab...

i j ... exp[−iθg (t
[1]
i
+ t [2]

j
+ . . .

− t [m]a − t [m+1]
b

− . . .)].
(5)

This form of the transformation gives a simple selection rule, a charge conservation, on the97

elements of symmetric tensors98

t [1]
i
+ t [2]

j
+ ...− t [m]a − t [m+1]

b
− ... = n. (6)

The charge of each non-zero element T ab...
i j ...

of a symmetric tensor must be n. In the case of99

n = 0, the tensor is invariant (unchanged) under the action of the symmetry. Otherwise, it100

transforms covariantly as all its elements are altered by the same complex phase exp(−iθg n).101

The charges t [i]
j

and n and the precise form of their addition depend on the abelian group.102

For elementary abelian groups such as Zn or U(1) the individual charges t [i]
j

are elements103

of Zn or Z respectively, while for direct products of abelian groups, they become vectors in104

corresponding product of Zn ’s and Z’s.105

By ordering the basis elements in each Hilbert space by their charge, the tensor T ab...
i j ...

106

naturally attains a block-sparse structure which is central to the computational advantage107

offered by abelian-symmetric tensor network algorithms.108

At the core of YASTN is the implementation of symmetric tensor yastn.Tensor, as outlined109

in Refs. [17–19]. It is defined jointly by symmetry (block) structure data and tensor elements110

of existing blocks. First, we define a vector space with a charge structure, a yastn.Leg, deter-111

mined by a signature s = ±1 (distinguishing between H and dual H∗), its charge sectors t,112

and their corresponding dimensions D, now in boldface to underline their vector nature,113

V(s , t, D) = ⊕ρ∈tCDρ , (7)

where ρ now enumerates different charges instead of basis 1. This space is a direct sum of114

simple spaces CDρ , dubbed charge sectors. The effective dimension of such space is the sum115

of dimensions of individual charge sectors116

D =
∑

ρ

Dρ . (8)

In the remainder of the text, we will refer to D as the bond dimension when discussing scal-117

ing of computational complexity or memory requirements of TN algorithms with symmetric118

tensors. The abelian symmetric tensor of rank-N is specified by the product of N such vector119

spaces120

T : ⊗N
i=1V(s [i], t[i], D[i])→ C. (9)

The following is an example creating a random U(1)-symmetric tensor with total charge121

n = 0 with specified legs 2:122

1The conjugation of the leg, i.e., mapping space H to its dual space H∗, is equivalent to flip of the signature
and complex conjugation of elements.

2One can always define tensors with an extra dummy leg V(−1, (n, ), (1, )), having a single charge sector of a
unit dimension, making it invariant under symmetry transformations.

5
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1 import yastn123

2 from yastn.backend import backend_np124

3 from yastn.sym import sym_U1125

4126

5 u1 = yastn.make_config(sym=sym_U1 , backend=backend_np)127

6 l = yastn.Leg(u1, s=1, t=(-1,1), D=(1,1))128

7 lc = l.conj()129

8 H = yastn.rand(u1, legs=[l,l,lc,lc], n=0)130

which is, for example, compatible with a Hamiltonian H = S⃗1 · S⃗2 of two spin-
1
2 degrees of131

freedom. The configuration created by yastn.make_config specifies the symmetry, e.g., yastn132

.sym.sym_U1 for the U(1) in the example, and dense linear algebra backend (see below), e.g.,133

yastn.backend.backend_np for NumPy.134

The covariant transformation property of T is imposed by the charge conservation of non-135

zero blocks. Any block of tensor T can be identified by selecting a charge sector ρi ∈ t[i] on136

each of the legs, i.e., an N-tuple of charges (ρ0,ρ1, ...,ρN). All non-zero blocks must satisfy137

N
∑

i=1

s [i]ρi = n, (10)

which is the block-sparse version of the element-wise charge conservation rule of Eq. (6).138

Finally, we remark on the storage of tensor elements. In YASTN, the block data is initialized139

lazily. The storage is allocated only for the blocks which have been assigned a non-zero value,140

i.e., blocks allowed by the charge conservation but not assigned any value are not stored. All141

allocated blocks are serialized together in a 1D array of dense linear algebra backend.142

2.2 Fusion and contractions143

The key operations on symmetric tensors, necessary for manipulating tensor networks, are144

tensor reshape and permutation, commonly dubbed fusion in this context, and tensor con-145

tractions. Fusion resolves the tensor product of several spaces as a new space, i.e., fusion of146

legs into a new leg. Unlike reshaping of the dense tensor, the shape cannot be chosen freely.147

Instead, it is determined by the structure of fused spaces. In particular, fusion orders and ac-148

cumulates tensor products of charge sectors on selected legs into new charge sectors under149

the joint leg150

V(s [i], t[i], D[i])⊗ V(s [ j], t[ j], D[ j])→ V(s [r ], t[r ], D[r ]), (11)

with new charge sectors t[r ] given by the unique combinations of charges t[i] ⊗ t[ j]151

t[r ] := {ν = s [r ](s [i]ρ + s [ j]ρ′) : ρ ∈ t[i],ρ′ ∈ t[ j]}. (12)

The dimension of new charge sector ν ∈ t[r ] is 3152

D[r ]ν =
∑

ρ,ρ′

ν=s [r ](s [i]ρ+s [ j]ρ′)

D[i]ρ D[ j]
ρ′

. (13)

The fusion and un-fusion calls are demonstrated below on previously constructed rank-4 tensor153

H , first fusing pairs of legs resulting in a matrix form154

1 H_mat = H.fuse_legs(axes =((0 ,1), (2,3)))155

2 H = H_mat.unfuse_legs(axes =(0 ,1))156

3Following a lazy approach adopted in YASTN, a new fused leg contains only charges for which some non-zero
tensor block exists. As such, fusion in YASTN is always done in the context of particular tensor.

6
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In the example above, the YASTN first computes the structure of the resulting tensor with fused157

leg, i.e., the tuple (s [r ], t[r ], D[r ]) and a set of dense linear algebra jobs (permutes, reshapes,158

and copies) to be executed by the backend to populate the new 1D storage array with serialized159

blocks. The resulting tensor records the original structure and hence, the fusion can be reverted160

to restore the original structure.161

The tensor contraction of symmetric tensors is realized by a commonly adopted workflow.162

First, the tensors are fused into matrices 4, then multiplied along the contracted legs, and163

finally unfused to obtain the desired form:164

∑

{x}

A{i}∪{x}B{ j}∪{x}
fuse
−→
∑

X

AIX BX J =

CI J
unfuse
−→ C{i}{ j}

(14)

where {x} is a set of common legs that become fused into single leg X , and original legs {i}165

and { j} are restored from the fused I and J to obtain the final tensor. Here, we first show166

an example call for pairwise tensor contraction, and second, an equivalent given in terms of167

explicit operations168

1 H2 = yastn.tensordot(H, H, axes =((2 ,3), (0,1)))169

2 H2 = (H_mat @ H_mat).unfuse_legs(axes =(0,1))170

For both fusion and multiplication, the YASTN first precomputes what the non-zero blocks are,171

so the backend performs only the relevant operations. Contractions of more general tensor172

diagrams are supported through convenience functions, such as the einsum and ncon [42] (in173

our case differing only by syntax), which are based on the elementary operations discussed174

above.175

2.3 Tensor network algorithms176

The symmetric tensor serves as a foundation for higher-level tensor network structures and177

algorithms. Here, the YASTN comes with MPS and PEPS modules. The MPS module supports178

finite-size MPS with the implementation of a range of standard algorithms, including DMRG179

for ground-state optimization, TDVP [43,44] for time evolution 5, and the overlap maximiza-180

tion [46] against a general target, i.e., MPS, sum of MPSs, or sum of MPO-MPS products. This181

is complemented by a versatile high-level (Hamiltonian) MPO generator. The MPS module182

provides subroutines for some PEPS methods, e.g., it was utilized in Ref. [47] for boundary183

MPS contraction and long-range correlations calculation in a finite PEPS defined on a cylin-184

der. At the same time, it is a versatile computational toolbox on its own. For instance, it185

has been employed in simulations of Lindbladian dynamics in the context of fermionic quan-186

tum transport [48], where the U(1) symmetry reflects a lack of correlations between different187

particle-number sectors of a density matrix.188

The PEPS module features the implementation of fermionic PEPS, dubbed fPEPS (which189

also allows simulations of systems without fermionic statistics). It covers both finite PEPS190

defined on a square lattice and its infinite versions for translationally invariant (over a unit-191

cell) systems in the thermodynamic limit. It supports a range of time-evolution algorithms,192

starting with neighborhood tensor update (NTU) scheme [49, 50], its refinement to a family193

of larger environmental clusters [47], ending on a full-update type of schemes [16, 51]. It194

4For valid contraction, the structures of the contracted legs must be compatible, including the origins of any
fused leg. YASTN automatically resolves a situation when some charges in the fusion history of a to-be-contracted
fused leg are missing but are present in its contraction partner. This is done by utilizing information on the tensor’s
fusion history stored in each yastn.Tensor object.

5In TDVP, we employ adaptive Krylov subspace exponential integrator of Ref. [45]
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is viable for imaginary-time evolution, e.g., in the context of finite temperature simulation195

of density matrix purification [52] or minimally-entangled typical thermal states [53], and196

real-time simulations, e.g., of pure state quench-dynamics in disordered spin systems [47].197

3 Examples198

To demonstrate the use and the versatility of YASTN we present three end-to-end numerical199

examples centered on iPEPS. We show computational speed-up and reduced memory footprint200

obtained with YASTN by utilizing abelian symmetries for the following examples:201

1. Sec. 3.1: variational optimization of iPEPS with D ≤ 8 for antiferromagnetic spin-
1
2202

model on a square lattice using U(1) symmetry,203

2. Sec. 3.2: variational optimization of iPEPS with D ≤ 13 for SU(3) model on Kagome204

lattice using U(1)×U(1) symmetry,205

3. Sec. 3.3: observables of thermal iPEPS of Hubbard model at finite temperature using Z2,206

U(1), and U(1)×U(1) symmetry, with D up to 36 for the latter.207

In Sec. 3.1 and Sec. 3.2 we optimize iPEPS for SU(2) model on square and SU(3) model on208

Kagome lattices respectively. First, given an iPEPS generated by a set of tensors a⃗ = {a, b, . . .},209

we compute an approximate environment tensors E⃗(a⃗) (specified below) with the precision210

governed by the environment dimension χ . Then, environment E⃗ and tensors a⃗ are combined211

to evaluate the energy per site e of the Hamiltonian. Finally, the reverse mode of AD (i.e., back-212

propagation) is invoked to compute the gradient ∂ e/∂ a⃗. The most computationally intensive213

stage is the construction of the environments, scaling as the cube of D2χ , which assuming the214

necessary χ ∝ D2 gives the overall complexity O(D12), where D is the bond dimension of215

iPEPS tensors. We use iPEPS optimization implemented in peps-torch [35], here operating on216

YASTN’s symmetric tensors.217

For the presented examples, we employ the corner transfer matrix (CTM) algorithm [54–218

56] to compute the environments. CTM approximates environments E⃗ = {C , T} of iPEPS by219

a set of χ × χ corner matrices C and χ × D2 × χ transfer tensors T , as shown in Fig. 3(a).220

Alternatively, one can use boundary MPS methods [16,46,57]. The computational complexity221

of CTM arises from two sources, see Fig. 3, tensor contractions and singular value decomposition222

(SVD) when computing low-rank approximations, both scaling as O(D12). In practice, for223

simulations without symmetries the SVD gives a substantially greater contribution due to a224

higher scaling prefactor and a poor speed-up offered by multithreading or GPU acceleration225

compared to tensor contractions. However, for symmetric iPEPS the situation becomes more226

nuanced as we demonstrate in the examples below.227

In Sec. 3.3, the purification techniques are applied to compute thermal expectation values228

for the Fermi-Hubbard model on a 2D square lattice. To effectively transform the thermal229

density matrix into a purified wavefunction we use the ancilla trick and perform imaginary time230

evolution to reach the target temperature. We adopt the NTU algorithm to optimize the time-231

evolution, with computational cost scaling of O(D8) dominated by tensor contractions. We232

focus our example on the final calculation of the expectation values using CTM with χ = 5D,233

translating to O(D9) scaling. We quantify the sources of advantage offered by incorporating234

various symmetries.235

8
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Figure 3: Corner transfer matrix iteration. In (a), CTM approximates parts of
an infinite tensor network by a set of finite environment tensors characterized by
environment bond dimension χ . We depict elements of the CTM algorithm step (it-
eration) that dominate the computational effort shown in Figs. 4–6. Panels (b), (b’),
and (c) depict the construction of an enlarged corner combining CTM environment
tensors (rectangular) with PEPS tensors (circle). Panel (d) shows an SVD decompo-
sition of a product of four enlarged corners that is then used to construct the CTM
projections from enlarged virtual spaces.

3.1 Heisenberg antiferromagnet with anisotropy236

We revisit the Heisenberg model with anisotropy in the couplings describing a system of cou-237

pled spin-
1
2 ladders238

H = J
∑

R

SR · SR+x̂ +
∑

R

JRSR · SR+ ŷ , (15)

where SR = (Sx
R , Sy

R, Sz
R) is the S =

1
2 operator at site R = (x , y) on a square lattice spanned by239

the x̂ and ŷ unit vectors. The coupling JR = J for odd and JR = αJ for even position along the240

y axis, respectively. For α = 1, the Hamiltonian in Eq. (15) realizes the Heisenberg model on241

the square lattice, and for α = 0 it corresponds to a system of decoupled two-legged ladders.242

The model was previously addressed with iPEPS in Ref. [58]. We adopt the same description243

that uses 2×2 unit cell with four non-equivalent tensors a⃗ = {a, b, c, d} 6.244

The ground states possess U(1)-symmetry corresponding to the conservation of Sz com-245

ponent. The symmetry can be exploited by utilizing U(1)-symmetric iPEPS. The results, sum-246

marized in Fig. 4, show a rapidly growing computational advantage of symmetric iPEPS for247

bond dimensions D > 4. While at D = 4 the overhead due to the block-sparse logic is still248

significant, at the largest bond dimension considered, D = 8, a 30-fold speed-up is observed.249

6A more efficient description might generate all tensors in 2×2 unit cell from a single parent tensor a by use of
unitary −iσy acting on physical index and/or permutation of virtual indices generated by the reflection along the
x -axis. Nevertheless, such parametrization would not change CTM complexity.

9
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Figure 4: Use case 1: optimization of U(1)-symmetric iPEPS for model of spin-
1
2 coupled ladders. In (a), we show the scaling of the wall time per CTM step (in
seconds) for the entire gradient optimization step of iPEPS. The bond dimension of
the environment is χ = 2D2. The inset shows the relative speed-up compared to an
implementation without symmetry. In (b), we show a distribution of blocks of an
enlarged corner by their size (number of elements) before fusion to a block-diagonal
matrix as shown in Fig. 3(c). In (c), we show the sizes of L×L blocks after the fusion.

In practical terms, the convergence of the CTM towards the desired precision, here mea-250

sured by the error on the energy per site becoming lower than ε < 10−8, typically requires251

O(10) iterations, thus without U(1) symmetry a single optimization step would already take252

hours. Details of the block-sparse structure and its impact on the CTM are visualized in253

Fig. 4(b,c). At the largest bond dimension, D = 8, the fusion of enlarged corner into a block-254

diagonal matrix requires processing of roughly O(100) blocks by performing dense permutes,255

reshapes, and copies, with the largest block having O(105) elements. The cost of subsequent256

SVD is dominated by the largest block(s) of fused enlarged corner, which are L×L matrices with257

L = 1, 500 ∼ 2, 000. As a result, the computational time contributions are shared between258

the SVD and tensor contractions with fusions roughly as 3:2, with SVD being the dominant259

factor.260

3.2 SU(3) model on Kagome lattice261

We consider an SU(3)-symmetric model on Kagome lattice, analyzed recently in Ref. [59],262

where each site holds a single degree of freedom from the fundamental representation 3 of263
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SU(3) group spanned by three states {|α〉, |β〉, |γ〉}. The Hamiltonian reads264

H = J
∑

〈i, j〉

Pi j +
∑

△i jk

(KPi jk + h.c.), (16)

where Pi j is a permutation, Pi j |α〉i |β〉 j = |β〉i |α〉 j , of local states on nearest-neighbour265

bonds. Pi jk is a clockwise permutation of local states on nearest-neighbour triangles such266

that Pi jk |α〉i |β〉 j |γ〉k = |γ〉i |α〉 j |β〉k , with fixed choice of the orientation of triangles, and J267

and K are real- and complex-valued couplings respectively.268

In this section, we demonstrate an advantage of U(1)×U(1)-symmetric iPEPS, utilizing269

maximal abelian subgroup of SU(3), over implementation without symmetries 7. To compute270

CTM environments on the Kagome lattice, we coarse-grain three sites on each down-pointing271

triangle into a single tensor resulting in an effective square lattice. The local Hilbert space272

dimension thus grows to 33 = 27, which makes the optimizations memory-intensive. In Fig. 5,273

we demonstrate the dramatic speed-up achieved by utilizing U(1)×U(1) symmetry. For D = 9274

iPEPS, a single gradient step is already accelerated by more than a factor of 100. For larger275

bond dimensions, the simulations without symmetries become prohibitive and we estimate276

the speed-up based on extrapolation of the scaling at smaller bond dimensions.277

In contrast to the example in Sec. 3.1 utilizing the U(1)-symmetry, the speed-up in this case278

is not monotonic in D. This happens due to the varying structure of the iPEPS tensors, i.e.,279

the allowed symmetry sectors and their sizes. In Fig. 5(b,c) we illustrate the block structure of280

enlarged corners before and after the fusion to a block-diagonal matrix. Generally, for larger281

groups the number of blocks of enlarged corner before fusion is substantially higher. Even at282

D = 7, the total number of blocks is already more than 3, 000 whereas for U(1)-symmetric283

enlarged corner in Sec. 3.1 it was below 300. For D = 13 ansatz, the fusion of enlarged284

corner into a block-diagonal matrix requires processing of more than 16, 000 blocks, with285

more than half of them being small in size, having roughly O(103) elements or less. This286

granularity defines the bottleneck of the simulations. For D = 12 and D = 13 the ratios287

between the computational time of SVD and contractions including fusion to block-diagonal288

enlarged corners are 3:4 and 1:10 respectively. Overall, the U(1)×U(1) simulations become289

dominated by fusion, with SVD being subleading. The precise speed-up rests on the sizes of290

blocks, such as here, where D = 12 has a slightly higher proportion of largest blocks compared291

to D = 13.292

3.3 2D Fermi-Hubbard model on a square lattice293

We consider a two-dimensional Fermi-Hubbard model (FHM) with on-site repulsion as studied294

in Ref. [52]. The Hamiltonian reads295

H = −t
∑

〈i, j〉,σ

�

c†
iσ

c jσ + c†
jσ

ciσ

�

+U
∑

i

�

ni↑ −
1

2

��

ni↓ −
1

2

�

−µ
∑

i

ni , (17)

where c†
iσ

and ciσ are the creation and annihilation operators for an electron with spin σ at296

site i, niσ = c†
iσ

ciσ is a corresponding number operator, t is the hopping amplitude, U is the297

on-site Coulomb repulsion strength, and µ is the chemical potential.298

The iPEPS ansatz employs a checkerboard lattice with a 2-site unit cell. The thermal299

state for inverse temperature β is obtained by evolving the infinite-temperature purification300

|ψ(0)〉 under the non-unitary propagator U(β) = e−
β
2 H . The initial purification is a prod-301

uct of maximally entangled pairs between each physical site and its corresponding ancilla,302

7In this example, besides iPEPS, one can also use different ways to construct two-dimensional TN ansatz on
Kagome lattice, i.e., infinite projected simplex states (iPESS), however, the computational complexity O(D12),
attributable to CTM, remains unchanged.
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Figure 5: Use case 2: optimization of U(1)×U(1)-symmetric iPEPS for SU(3)
Kagome model. In (a), scaling of the wall time per CTM step (in seconds) for the
entire gradient optimization step of iPEPS. The bond dimension of the environment
is χ = D2. The inset shows the relative speed-up compared to an implementation
without symmetry, with D = 12 and 13 simulation wall times estimated from the
extrapolation (blue dashed line). In (b), a distribution of blocks of an enlarged corner
by their size (number of elements) before the fusion to a matrix. In (c), L× L blocks
of the block-diagonal enlarged corner after fusion. We plot them as a heatmap, with
different U(1) charges on x- and y-axes.

|ψ(0)〉 =
∏

j

∏

m=↑,↓
1
p

2

∑

sm j=am j=0,1 |sm j
am j
〉, translating to local Hilbert spaces of dimen-303

sion 42 = 16. In the examples below, we run the imaginary time evolution employing the NTU304

scheme targeting β = 2.305

In YASTN, the fermionic exchange order is implemented following the scheme of Refs. [60,306

61] by projecting the lattice ansatz onto a plane, imposing a canonical fermionic order, and307

applying swap gates on every line crossing; see Fig. 3(b). Swap gate introduces sign changes308

for blocks with charges of odd parity on both swapped legs. This makes Z2 a minimal symmetry309

needed for fermionic system simulations. The Hamiltonian in Eq. (17) preserves the number310

of particles per spin direction, which allows us to implement the model under U(1)×U(1)311

symmetry as the highest abelian symmetry.312

The expectation values of the thermal state at β = 2 are calculated using the CTM. Fig. 6313

demonstrates an advantage of symmetric tensors by comparing Z2 (parity; minimal require-314

ment for fermionic statistics), U(1) (total charge conservation), and U(1)×U(1) (total charge315

conservation for each spin) symmetries. We also show equivalent values for the corresponding316
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Figure 6: Use case 3: expectation values from CTM environments in fermionic
iPEPS for finite-temperature Hubbard model. The bond dimension of the environ-
ment is χ = 5D, which is sufficient here to converge the expectation values. We show,
in (a), the wall time per CTM step and, in (b), the data size (memory requirement)
of the biggest intermediate tensor appearing while building enlarged CTM corners
in Fig. 3(b). Panel (c) shows the number of blocks in an enlarged corner before the
fusion in Fig. 3(c), and panel (d) is the size of the largest L × L block for SVD in
Fig. 3(d).

tensors with no symmetry. We choose the environmental bond dimension χ = 5D, which is317

sufficient to converge the expectation values in this example.318

Fig. 6(a) presents the computational wall time for one CTM step as a function of the iPEPS319

bond dimension for all the tested symmetries, with systematic improvement offered by higher320

symmetries. Fig. 6(b) highlights the memory usage bottleneck, showcasing the size of the321

largest object formed during the CTM iteration, i.e., an intermediate step of the contraction in322

Fig. 3(b); this tensor has to be later fused, and there are other tensors in the memory, so the323

memory peak is roughly two times higher. This illustrates that those simulations are ultimately324

memory-limited. Employing U(1)×U(1)-symmetry offers a systematic 30-fold memory gain325

as compared to tensors with no symmetries, which ultimately allows for successful simulations326

up to D = 36.327

Following the previous examples, in Fig. 6(c), we present the number of blocks processed328

during the fusion that forms enlarged corners in Fig. 3(c). A particular challenge for U(1)×U(1)329

case is the number of blocks that can exceed 10, 000. Nevertheless, the SVD is a dominant330

factor that takes at least half the simulation time for D ≥ 25 in our numerical experiments. In331

Fig. 6(d), we show the (sectorial) bond dimension of the largest block decomposed in Fig. 3(d),332

13



SciPost Physics Codebases Submission

which is O(104) for each employed symmetry. Among them, the U(1)×U(1)-symmetry offers333

here 15-fold improvement for given D as compared to a setup with no symmetries involved.334

4 Conclusion and future outlook335

Tensor networks are becoming increasingly popular tool for numerical treatment of quantum336

systems, ranging from ground state simulations of condensed-matter systems to simulation of337

quantum circuits. The landscape of associated software is continuously growing. For 1D and338

quasi-1D geometries, well-established and mature packages offer a rich set of MPS algorithms339

covering direct energy minimization, (imaginary) time evolution, and much more. For two-340

dimensional geometries, predominantly targeted by iPEPS, the field remains nascent.341

Here, we have introduced YASTN, a Python-based TN library with a strong emphasis on342

simulations of two-dimensional systems by iPEPS, that is motivated by the need for both343

abelian symmetries and automatic differentiation. By design, the dense linear algebra and the344

AD engine are provided by different backends, allowing for implementation-specific optimiza-345

tions. YASTN, with its rich set of examples covering ground state simulations of various 2D spin346

lattice models (through peps-torch) and finite-temperature simulations of 2D Hubbard model,347

thus joins similar efforts by VariPEPS [37], PEPSkit [38], ad-peps [36], and peps-torch [35]348

together lowering the barrier for entry.349

The wide separation between the high-level description of iPEPS algorithms and their fast350

execution, optimized down to low-level dense linear algebra, especially for symmetric tensors,351

remains a challenge. Unlike MPS simulations, iPEPS contraction algorithms for computing352

environments and evaluation of observables involve a more diverse set of tensor contractions,353

varying in ranks and block sparsity patterns. Furthermore, flexible deployment and the ability354

to leverage heterogenous clusters, accounting for the iPEPS-specific block sparsity, is vital for355

addressing the sharpO(D8 ∼ D12) (albeit polynomial) scaling with the bond dimension, which356

is the key resource governing the precision of iPEPS. These challenges thus call for further357

development.358
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