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Abstract

Spontaneous symmetry breaking of interacting fermion systems constitutes a
major challenge for many-body theory due to the proliferation of new independent
scattering channels once absent or degenerate in the symmetric phase. One exam-
ple is given by the ferro/antiferromagnetic broken symmetry phase (BSP) of the
Hubbard model, where vertices in the spin-transverse and spin-longitudinal chan-
nels become independent with a consequent increase in the computational power
for their calculation. Here we generalize the formalism of the non-perturbative
Two-Particle-Self-Consistent method (TPSC) to treat broken SU(2) magnetic
phases of the Hubbard model, providing with a efficient yet reliable method.
We show that in the BSP, the sum-rule enforcement of susceptibilities must be
accompanied by a modified gap equation resulting in a renormalisation of the
order parameter, vertex corrections and the preservation of the gap-less feature
of the Goldstone modes. We then apply the theory to the antiferromagnetic
phase of the Hubbard model in the cubic lattice at half-filling. We compare our
results of double occupancies and staggered magnetisation to the ones obtained
using Diagrammatic Monte Carlo showing excellent quantitative agreement. We
demonstrate how vertex corrections play a central role in lowering the Higgs
resonance with respect to the quasi-particle excitation gap in the spin-longitudinal
susceptibility, yielding a well visible Higgs-mode.
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1 Introduction

The characterisation of broken symmetry phases (BSP) in correlated quantum systems remains
a formidable challenge for many-body theory. In fact, determining the precise ground state of
spin Hamiltonians, such as the 3D-Heisenberg model with antiferromagnetic exchange, remains
an open question to this day. Even though the precise ground state may remain elusive, it is
possible to improve mean-field predicted groundstates , e.g. the Néel state, including quantum
corrections encoded in the long-range and low-energy Goldstone modes [1, 2, 3, 4, 5], e.g.
spin-waves in antiferromagnets [6].

The situation becomes richer when interacting electrons in solids are strongly correlated.
A minimal model to describe such materials is the Hubbard model [?], where electrons
interact through on-site Coulomb repulsion, enhancing electron localisation [7]. The theoretical
challenge with strongly correlated BSP lies in simultaneously accounting for long-range
fluctuations encoded in Goldstone modes and the localisation of electrons.

Such an ambitious task could be achieved by employing cluster [8] or diagrammatic [9]
extensions of Dynamical Mean Field Theory (DMFT) [10], as well as Monte Carlo techniques
[11, 12, 13, 14, 15, 16]. However, the inclusion of long-range modes for cluster theories would
be limited by the maximum size of the cluster used in the calculations, even if clever clustering
schemes that permit an optimal finite-size scaling analysis are available [17]. In diagrammatic
approaches, the proliferation of independent vertex components [18, 19, 20, 21, 22, 23, 24],
once absent or degenerate in the symmetric phase, strongly increases the computational power
needed for their numerical evaluation.

Hence, it is of great interest to develop efficient algorithms that require fewer computational
resources while still accurately including correlation effects. In this context, the Two-Particle-
Self-Consistent (TPSC) approach [25, 26, 27, 28, 29, 30, 31, 32] has proven to be a reliable and
efficient method for describing the physics of the Hubbard model in the weak-to-intermediate
interaction regime. Given its reduced computational complexity, TPSC has already been
successfully extended to multi-orbital models [29, 33], interfaced with ab-intio calculations
[30] and applied to non-equilibrium [31]. However, current TPSC formulations are limited to
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symmetric phases, preventing their application to parameter regimes where materials exhibit
broken symmetry phases (BSP). Additionally, because TPSC uses Moriya corrections to two-
particle propagator masses [34, 35, 36, 37, 38] to include correlation effects, a straightforward
generalisation of TPSC equations might violate Goldstone’s theorem, leading to an unphysical
energy gap in the Goldstone modes. In this work, we extend the TPSC formalism to handle
spontaneous symmetry breaking while correctly preserving the Goldstone modes.

We apply the new formulation to the antiferromagnetic phase of the three-dimensional
Hubbard model on a cubic lattice. Our results show excellent quantitative agreement with
Diagrammatic Monte Carlo (DiagMC) [15] across a wide range of interaction values. We
demonstrate that as the temperature decreases from the critical value, the degree of correlation
is reduced, which extends the theory’s applicability to higher interaction values deep in
the broken symmetry phase. Additionally, we show that symmetry breaking leads to a
differentiation of vertex corrections in various scattering channels. This differentiation plays a
central role in lowering the Higgs resonance relative to the quasi-particle excitation gap in the
spin-longitudinal susceptibility, resulting in a clearly distinguishable Higgs mode.

The manuscript is organised as follows: in Sec. 2 we introduce the Hubbard model and
establish the notation; Sec.3 describes the method and explains how two-particle self-consistency
can be achieved in magnetic broken symmetry phases while preserving the Goldstone modes;
in Sec.4 we show the numerical data of the order parameter and double occupancies comparing
them with DiagMC, and we also show how TPSC is able to capture the elusive amplitude
(Higgs) mode in the susceptibility spectra; in Sec.5 we provide our conclusions and outlook;
in Appendix A we discuss some technical details relative to the derivation of the effective
irreducible vertices; in Appendix B we present the derivation of the Bethe-Salpeter equations;
in Appendix C we show the steps needed to obtain the corrected one-loop self-energy.

2 The model

In this work we will explicitly consider the single band Hubbard model in the cubic lattice,

H = −t
∑
⟨ij⟩σ

c†iσcjσ + U
∑
i

n̂i↑n̂i↓, (1)

where t is the electronic hopping amplitude between nearest-neighbours and U is the local
Coulomb repulsion. In the case of the AF phase, the system loses the full translational
symmetry of the original cubic lattice and it is useful to introduce the sub-lattice index
a = A,B for specifying whether the fermionic field c†iaσ is evaluated at one site belonging to
the sub-lattice A or B. Therefore, it is useful to introduce the generalised multi-flavor indices α,
which for example coincide with α = (a, σ) containing both sub-lattice (a) and spin (σ) indices
in the AF or to spin indices in the FM case. Then, we can rewrite the Hubbard Hamiltonian
in the following form:

H =
∑
⟨ij⟩

∑
αβ

c†iαH
αβcjβ +

1

2

∑
i

∑
αβ

Uαβ n̂iαn̂iβ. (2)

In the case of FM, we have that Hαβ = −tδαβ and Uαβ = δαβ̄U , whereas for the AF case we

have Hαβ = −tδσσ′δab̄ and Uαβ = δσσ̄′δabU , where ℓ̄ denote the opposite of index ℓ, referring
to the complementary spin or sub-lattice index (e.g., if ℓ is spin-up or sub-lattice A, then ℓ̄ is
spin-down or sub-lattice B).
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3 The method

The Two-Particle Self-Consistent (TPSC) method requires relatively low computational power
and achieves its efficiency through a series of approximations, which we will examine in detail
in this section. In practice, the self-energy is approximated in a form similar to that used in
Hartree-Fock (HF) (see Figure 1). This assumption simplifies the expressions for the Green’s
function and two-particle susceptibilities, which can then be analytically obtained using a
formula akin to the Random Phase Approximation (RPA).

However, unlike in HF and RPA, the vertex in the self-energy and susceptibility diagrams is
represented not by the bare interaction but by an effective vertex. This effective vertex includes
a renormalisation factor that depends on the double occupations, which are determined by
imposing an exact sum rule on the susceptibility in the spin-transverse channel. This sum rule
complements the ’usual’ gap equation for the order parameter by coupling it to the double
occupancies, which, unlike in HF, are determined self-consistently.

While we will provide an explicit derivation of all the equations, readers primarily interested
in the results may refer to Figure 2, which presents a flow diagram summarizing the main
steps and equations of the TPSC method.

3.1 The TPSC ansatz

The core of TPSC consists in finding an approximate form for the electron self-energy from
which one can construct a conserving approximation in the Baym-Kadanoff sense [39, 40]. In
order to do so, one can start from the equation of motion that reads:

Σαγ(x, y′)Gγ,β(y′, y) = UαγG
(2)βα

γγ (y, x+ 0−, x+ 0+, x), (3)

where Gαβ(x, y) = −Tt

〈
cα(x)c

†
β(y)

〉
is the Green’s function, with x = (Ri, τi) being a four-

vector containing the lattice coordinate Ri and the imaginary time τi, cα(x) = eHτiciαe
−Hτi ,

Σαβ(x, y) is the electronic self-energy, andG
(2)αβ

γδ (x1, x2, x3, x4) = Tτ

〈
c†α(x1)cβ(x2)c

†
γ(x3)cδ(x4)

〉
represents the two-particle Green’s function. In Eq.(3), a summation is intended for the re-
peated indices γ and y′. Due to the presence of G(2), Eq.(3) is not closed for the self-energy
and single-particle Green’s function, and in order to obtain an explicit expression for Σ further
approximations must be carried on. In mean-field theory the two-particle Green’s function is
replaced by its disconnected part, that is a valid approximation only at weak coupling. In
TPSC [25, 26, 28, 29], in order to take into account of correlation effects, and at the same
time to reduce the complexity of Eq.(3), the following assumption is considered:

Σαγ(x, y′)Gγ,β(y′, y) ∼ λαγ Uαγ

[
Gαβ(x, y)nγ − sαγGγβ(x, y)

]
, (4)

where nα = ⟨n̂iα⟩, sαβ =
〈
c†iβciα

〉
, and λαβ is an extra-coefficient that must be determined

self-consistently and contains correlation effects. When λαβ = 1 mean-field theory is recovered.
The parameter λ can be determined by requiring that the equal-time/position limit of Eq.(3),
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i.e. y = x+ 0++, is preserved exactly when β = α 1, by imposing:

λαγ =
⟨n̂α n̂γ⟩

nαnγ − sαγsαγ
. (5)

From Eq.(4), we can isolate the self-energy that reads:

Σαβ(x− y) = δ(x− y)
(
δαβλ

αγUαγnγ − λαβUαβs
αβ

)
. (6)

In the FM/AF phase of the Hubbard model, the expression for the λ parameter simplifies as
follows:

λ =
⟨n̂↑n̂↓⟩
n↑n↓

, (7)

which is identical to the one in the paramagnetic case [26, 28]. Since in the FM/AF phase Eq.(7)
does not depend on the spin/sub-lattice indices, we omitted those indices in the expression of
λ, and therefore we need to optimize only one parameter even within the broken-symmetry
phases under scrutiny. Hence, in the AF phase the expression of the self-energy can be written
as:

Σab
σσ′(x, y) = δ(x− y)δabU↑↓

(
δσσ′naσ̄ − δσσ̄′sσσ̄a

)
, (8)

where U↑↓ = λU , a, b are sub-lattice indices. We notice that in a AF phase the components of

the self-energy off-diagonal in the spin indices should vanish, i.e. sσσ̄ = 0. However, it is useful
to keep those terms in the expression of the self-energy for the derivation of the Bethe-Salpeter
equation in the spin-transverse channel. Therefore, we will consider the presence of an external
field that breaks spin-conservation and eventually compute the functional derivatives of Σ
with respect to the off-diagonal component of the propagator in the limit of a vanishing field.

In order to obtain self-consistency at the two-particle level, we have to calculate physical
susceptibilities and therefore we need the knowledge of the irreducible vertex function Γ, which
is obtained by carrying the functional derivative of Σ with respect toG, i.e. Γ(1, 2, 3, 4) = δΣ(2,1)

δG(3,4)

[41]. In the FM/AF phases the original SU(2) symmetry of the Hubbard Hamiltonian is
spontaneously broken and the two independent scattering channels to be considered are the
spin-transverse and spin-longitudinal channels [21].

3.1.1 Spin-transverse channel

The vertex function in the spin-transverse channel is defined as:

Γabcd
↑↓ (x1, x2, x3, x4) =

δΣba
↓↑(x2, x1)

δGcd
↓↑(x3, x4)

= −λUδabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4), (9)

where we used Eq.(8) and the fact that sσσ̄a = Gaa
σσ̄(x, x+ 0−) 2.

1In the case of the AF phase that we address in this work, spin conservation implies that
〈
c†αn̂γcβ

〉
= 0

at zero field, when α ̸= β, and therefore we shall introduce the λ-correction only for the two-particle Green’s
functions that do not vanish in the limit of zero external field.

2We used the overline symbol, i.e. ↑↓, to distinguish this vertex component from those belonging to the
spin-longitudinal channel, that are defined in the next paragraphs.
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Figure 1: Diagrammatic representation of the diagonal (a) and off-diagonal (b) components
of the self-energy, as analytically expressed in Eq.(8). The wiggly line represents the effective
vertex Γ↑↓, which must be obtained self-consistently along with the order parameter (encoded
in the Green’s function, represented by the thick continuous line). Both are determined
through the simultaneous solution of Eqs.(13,14). The diagrams shown here refer to the
first-level self-energy, however in TPSC it is possible to calculate an improved version of Σ
which includes non-local and dynamical quantum corrections (see Section 3.2 and Figure 2).

Let us now define the physical susceptibility in the spin-transverse channel:

χab
σσ̄(x1, x2) = Tτ

〈
Sσσ̄
a (x1)S

σ̄σ
b (x2)

〉
, (10)

where Sσσ′
a (x) = eHτ c†iaσciaσ′e−Hτ , with x = (Ri, τ). Since the vertex function in Eq.(9) is

local and static, the Bethe-Salpeter equation (BSE) [see Appendix B for the derivation] for
the physical susceptibilities is similar to the one obtained in RPA [21] and reads:

¯̄χ−1
σσ̄

(q) = ¯̄χ−1
0,σσ̄

(q) + ¯̄Γσσ̄, (11)

where we used the double bar to indicate 2×2 matrices, q = (iωn,q) with ωn = 2πn/β and q
being respectively the bosonic Matsubara frequency and crystalline exchanged momentum,
¯̄χσσ̄(q) is given by the Fourier transform of the susceptibility defined in Eq.(10), ¯̄Γσσ̄ = −λU I2×2

and χab
0,σσ̄

= − 1
V β

∑
k G

ab
σ (k)Gab

σ̄ (k + q). The Green’s function is obtained using the Dyson
equation and reads:

¯̄G−1
σ (k) = ϵk σ

x + [iν + µ−
Γ↑↓
2

(n+ σm)]I2×2, (12)

where n is the electron density and m = nA↑ − nA↓ is the staggered magnetisation.
In order to univocally determine single-particle and two-particle properties, we have to solve

a set of self-consistent equations that will allow us to find the chemical potential, staggered
magnetisation and double occupancies (µ, m, ⟨n̂↑n̂↓⟩) as a function of the electron density,
on-site interaction and temperature. In this work we will specialize in the case of the three-
dimensional cubic lattice at half-filling , i.e. n = 1, that corresponds to fixing the chemical

potential to µ =
Γ↑↓
2 .

Since the self-energy is static and local, the gap equation for the order parameter is similar
to the one obtained in mean-field theory and is given by following expression:

1

(2π)3

∫
BZ

dk
|Γ↑↓|
2Ek

tanh

(
βEk

2

)
= 1, (13)
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where Ek =

√
ϵ2k +

(
mΓ↑↓

2

)2
, with ϵk = −2t [cos(kx) + cos(ky) + cos(kz)], which is obtained

by imposing m = 1
V β

∑
kν e

i0−ν [GAA
↑ (k)−GAA

↓ (k)] and by substituting Eq.(12) into the last
equation. Differently from mean-field theory however, the order parameter is not univocally
determined by the gap equation, because the double occupancies, appearing in Eq.(13), are
still unknown.

As a direct consequence of its definition in Eq.(10), the susceptibility in the transverse
channel assumes the following limiting value

∑
σ χ

aa
σσ̄

(x, x+ 0−) = n− 2 ⟨n̂↑n̂↓⟩, which implies
the following sum rule for its Fourier transform:

1

β(2π)3

∑
ωnσ

∫
BZ

dqχaa
σσ̄(q) = n− 2 ⟨n̂↑n̂↓⟩ . (14)

Hence, Eqs.(13,14) provide with a closed set of equations that must be solved self-consistently
in order to determine the order parameter and the double occupancies.

3.2 Spin-longitudinal channel

The irreducible vertex function in the spin-longitudinal channel reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣba
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

∼ Uσσ′δσσ̄′δabδacδad δ(x1 − x2)δ(x1 − x3)δ(x1 − x4).

(15)

Differently from Eq.(9) which is an exact equality, a further approximation, similar to the one
performed in the charge channel in the paramagnetic phase [25, 28], is needed to write Eq.(15)
in its final form (see Appendix A).

Let us define the susceptibilities in the spin-longitudinal channel:

χab
σσ′(x1, x2) = Tτ ⟨naσ(x1)nbσ′(x2)⟩ − ⟨naσ⟩ ⟨nbσ′⟩ (16)

Given the local and static form of the vertex function in Eq.(15), the expression of
the susceptibilities in the charge and spin-longitudinal channel, in presence of particle-hole
symmetry 3, can be written as follows:

χz(q) =
χ0,∥(q)

1− Γzχ0,∥(q)
(17)

χρ(q) =
χ0,∥(q)

1 + Γρχ0,∥(q)
, (18)

where χz = 1
2

∑
abσσ′(−1)a+b+σ+σ′

χab
σσ′ , χρ = 1

2

∑
abσσ′ χab

σσ′ , Γz = 1
2

∑
σσ′(−1)σ+σ′

Γσσ′ , Γρ =
1
2

∑
σσ′ Γσσ′ , χ0,∥ = − 1

2V β

∑
kσbG

Ab
σ (k)GbA

σ (k+q). Analogously for the spin-transverse channel,
we can determine the value of the vertices Γz and Γρ by imposing the following sum rule for
the longitudinal channel susceptibilities:

2

β(2π)3

∑
ωn

∫
BZ

dqχz(q) = n− 2 ⟨n̂↑n̂↓⟩ −m2 (19)

2

β(2π)3

∑
ωn

∫
BZ

dqχρ(q) = n+ 2 ⟨n̂↑n̂↓⟩ − n2. (20)

3In general, the charge and spin-longitudinal channels interact via a mixed terms χz̄ρ [42, 43] that vanishes
only in presence of particle-hole symmetry [21].
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Since Eqs.(13,14) are a set of closed equations, Eqs.(19,20) can be solved separately once
the values of m and ⟨n̂↑n̂↓⟩ have been self-consitently obtained from the spin-transverse channel.

3.3 Improved one-loop self-energy

In TPSC it is possible to obtain an improved self-energy that, differently from the one appearing
in Eq.(8), depends on both momenta and frequency. This can be achieved by computing the
TPSC vertices and susceptbilities and using them as input for the equation of motion [26, 44].
Extending this procedure to the broken symmetry phase we obtain the following expression
for the improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄ χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q), (21)

where Gab
σ (k) is given by Eq.(12). In appendix C we show the derivation of Eq.(21).

4 Numerical results

Fig. (3-a) shows the order parameter as a function of temperature for different values of the
on-site interaction. The order parameter decreases as a function of increasing temperature
until it vanishes at the critical temperature. Close to the phase transition, the order parameter
behaves like m = α|T − Tc|β with critical exponent β = 1/2, which is different from the exact
one belonging to the O(3) (Heisenberg) universality class β ∼ 0.369 [45]. The exponent value
for the order parameter β = 1

2 might suggest that TPSC is a mean-field theory. However, the
method actually belongs to a different universality class. The critical exponents for TPSC,
as well as those for other theories based on λ-Moriya [34, 35] corrections [see, for example,
[36, 37, 46], fall within the O(N) universality class in the limit N → ∞ [27]. This class is
distinct from the mean-field, which is obtained in the limit of infinite spatial dimensions and
is characterized by the exponents ν = 1

2 , γ = 1, and β = 1
2 . In contrast, in three dimensions,

the critical exponents for O(∞) are ν = 1, γ = 2, and β = 1
2 . In two dimensions, the critical

temperature vanishes, as predicted by the Mermin-Wagner theorem, which also holds for the
O(3) case. This can be understood by considering the divergence of the sum in Eq.(14) at
finite temperature in 2D within the broken symmetry phase, while it remains finite at T = 0,
where the discrete sum over Matsubara frequencies is replaced by an integral over a continuous
variable. Our results for the critical exponent β = 1

2 is therefore consistent with previous
calculations showing that TPSC belongs to the O(∞) universality class.

In Fig.(3-b), we show the value of the vertex renormalisation λ = |Γ↑↓|/U as a function of
temperature for different values of U . We observe that λ decreases as a function of increasing
interactions, as expected, since the system get more correlated when U increases. On the
other hand, λ increases by decreasing the temperature from the critical one, which can be
rationalised in the following way: when symmetry breaking is allowed, the system can reduce
the number of double occupancies ⟨n̂↑n̂↓⟩ = λ

4 (n
2 −m2), shown in Fig.(3-c), (and therefore

minimize the potential energy) by increasing the order parameter, rather than by decreasing
λ. Hence, our results show that the degree of correlation of the system is reduced deep in the
broken symmetry phase far away from the the critical temperature.
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G−1
σ = G−10 − Σσ χab0,σσ̄ = − 1

Vβ ∑k Gab
σ (k)Gab

σ̄ (k + q)
Green’s function Bubble-terms

⟨n↑n↓⟩

1
(2π)3 ∫BZ

dk
|Γ ↑ ↓ |

2Ek
tanh ( βEk

2 ) = 1,

1
Vβ ∑

q,σ
[ ¯̄χ−1

0,σσ̄(q) + ¯̄Γσσ̄]
−1

aa
= ⟨n⟩ − 2 ⟨n↑n↓⟩

Gap equation + Feedback from the Goldstone modes

Modified gap equation + sum-rule are satisfied?
Yes 

No

New params 
are picked

2
Vβ ∑

q

χ0,∥(q)
1 − Γz χ0,∥(q) = n − 2 ⟨n↑n↓⟩ − m2,

Σab
σ (k) − Unaσ̄ = − U

2Vβ ∑
q

Gab
σ̄ (k + q)Γa

σσ̄ χab
σσ̄(q) + U

2Vβ ∑
qσ1

Gab
σ (k + q)Γa

σσ1χ
ab
σ1σ̄(q)

m

2
Vβ ∑

q

χ0,∥(q)
1 + Γρ χ0,∥(q) = n + 2 ⟨n↑n↓⟩ − n2

Sum rules for the longitudinal channel

Eq.(12)

Eq.(13)

Eq.(19)

Improved Self-Energy 

Eq.(14)

Eq.(21)

Eq.(20)

χ0,∥ = − 1
2Vβ ∑

kσb

GAb
σ (k)GbA

σ (k + q)

Figure 2: Work-flow of the Two-Particle Self-Consistent (TPSC) method for
antiferromagnetic phases of the Hubbard model. The first box at the top shows how the
staggered magnetisation m = nA↑ − nA↓ and double occupancies are obtained self-consistently
by solving the gap equation [Eq. (13)] and the sum rule [Eq. (14)] for the spin-transverse
channel, where Goldstone modes appear. An initial guess for m and ⟨n↑n↓⟩ is used to calculate
the Green’s function and susceptibility. If Eqs. (13) and (14) are not satisfied, a minimisation
routine adjusts the values. Once satisfied, the next step is to find the renormalised vertices in
the spin-longitudinal channel by enforcing Eqs. (19) and (20), shown in the middle box. With
all renormalised interactions in the different channels, the improved electron self-energy can
finally be computed using Eq. (21) displayed in the box at the bottom.
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Figure 3: (a) Staggered magnetisation m as a function of T for three different values of
U/t = 3, 4, 5. Dashed lines are best fits of the function α|T − Tc|1/2 close to Tc. (b) λ
parameter as a function of the reduced temperature θ = T−Tc

Tc
for the three different values of

the on-site interaction. (c) Double occupancies D = ⟨n̂↑n̂↓⟩ as a function of θ for the three
different U values. (d) Magnetisation and double occupancies as a function of U for T/t = 1/10.
TPSC data (open symbols) are compared to the DiagMC results (filled symbols) adapted from
Ref. [15]. The black dashed line is the magnetisation curve obtained using Hartree-Fock.

In Fig.(3-d), we show the order parameter and double occupancies as a function of U
by fixing the temperature to T/t = 1/10. As expected we observe that the order parameter
(double occupancies) increases (decrease) as a function of U . It is worth to highlight that
the introduction of quantum fluctuations leads to a significant decrease in the staggered
magnetisation compared to its mean-field predicted value [black curve in Fig. (3-d)]. We
compared our results to the ones obtained using Monte Carlo in Ref. [15] and we observe an
excellent quantitative agreement. It is worth noting that HF deviates significantly from the
exact DiagMC results and the TPSC ones even at weak coupling. This behavior is somewhat
similar to what has been predicted in the symmetric phase near criticality, where second-order
perturbation theory shows a sizable deviation from mean-field predictions [47].

After solving Eqs.(13,14) we can use the values of double occupations and staggered
magnetisation as input for Eqs.(19,20) in order to obtain the renormalised vertices in the
longitudinal channel. In Fig.(4), we show the renormalisation factors of the vertices, i.e. Γρ/U ,
Γz/U and λ as a function of U for T/t = 1/7.5. We observe that Γρ is highly enhanced
with respect to the bare vertex which is similar to what has been already observed in the
paramagnetic phase of the Hubbard model using TPSC [26]. Differently from the symmetric
case, in the AF phase Γz ̸= |Γ↑↓|, and our results show that Γz > |Γ↑↓| for all values of U and
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Figure 4: Vertex renormalisations in the density (Γρ/U), spin-longitudinal (Γz/U) and spin
transverse (λ = |Γ↑↓|/U) channels as a function of the bare interaction for T/t = 1/7.5.

that the difference between the two vertices increases as a function of the on-site interaction.
Interestingly, while |Γ↑↓| is always lower than the bare vertex (as Us in the paramagnetic phase
[26]), this is not true anymore for Γz/U , which is also an increasing function of U and crosses
the unity at U/t ∼ 5.4 for T/t = 1/7.5 [see Figure 4].

Integrals in the Brillouin zone were numerically calculated using the trapezoidal rule in
three dimensions, employing grids of Nk ×Nk ×Nk points with Nk values up to 32. For the
numerical integration of the spin-transverse susceptibility evaluated at zero frequency, i.e.,∫
dq

∑
σ χσσ̄(q, 0), a specific strategy was applied. Since this function diverges at q = Π, that

point was excluded from the integration grid. We evaluated the integral for different Nk values
(21, 24, 28, 32) and then extrapolated the integral value by fitting the function I + h/Nk,
where I represents the extrapolated value. For the summation over Matsubara frequencies, we
evaluated the momentum integrals up to 24 bosonic frequencies. We then performed a fit to
extrapolate the high-frequency quadratic tails, which allowed us to extend the summation to
thousands of frequencies.

4.1 Dynamical Susceptibilities

We can use the solution of the self-consistent equations to evaluate spectral properties of
two-particle propagators. Regarding the spin-transverse channel, we observe that self-energy
and vertex corrections are both controlled by the same quantity, i.e. Γ↑↓, which substitutes de
facto the bare vertex appearing in RPA. Therefore, the spin-transverse dynamical susceptibility
defined in Eq.(11), which contains the information about the Goldstone modes, calculated
at a given U corresponds to the RPA one evaluated at a lower value of the interaction,
namely |Γ↑↓(U)|. In Figure 5, we show the imaginary part of the spin-transverse susceptibility

Imχx(ω + iη,q) evaluated on the real axis, where χx = 1
2(χ

AA
↑↓ + χBB

↑↓ ) + χAB
↑↓ . The TPSC

11
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TPSC RPA

Figure 5: Imaginary part of the spin-transverse susceptibilities χx(ω + iη) for U/t = 5,
T/t = 1/7.5 , η = 0.03 calculated using TPSC (left panel) and RPA (right panel).
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Figure 6: (a) Imaginary part of χz(ω + iη,q) (in log scale) defined in Eq.(17) evaluated along
the BZ high-symmetry path and for a wide range of real frequencies, for U/t = 12, T/t = 1/7.5,
and η/t = 0.03. (b) Imaginary part of χz(ω + iη,q) (in log scale) calculated using RPA for
U/t = 12, T/t = 1/7.5, and η/t = 0.02. (c) Imχz(ω + iη,q) evaluated using TPSC and RPA
at fixed momentum q = (π, π, π + 0.1) at U/t = 12, T/t = 1/7.5 and for η = 0.03. (d) Same
as (c) but for U/t = 5.

12



SciPost Physics Submission

spectrum, much like that derived from RPA, accurately predicts the existence of Goldstone
gapless modes at the R-point in the Brillouin zone. While TPSC introduces a quantitative
renormalization to the low-energy modes, the qualitative behavior remains consistent with
RPA4. Conversely, the vertex in the spin-longitudinal susceptibility Γz assumes different
values than Γ↑↓ because of symmetry breaking, and Γz > |Γ↑↓| as shown in Figure 4. This
implies that the spin-longitudinal susceptibility evaluated in TPSC does not correspond to
any RPA one evaluated at different effective parameters, and consequently the two methods
yield qualitatively different results for the spin-longitudinal susceptibility. In particular, since
Γz > |Γ↑↓| the gap in the χz spectrum is reduced with respect to the quasi-particle gap
predicted by TPSC, i.e. 2∆TPSC = |Γ↑↓|m, which is controlled by self-energy corrections. In
Fig.(6-a) we show a color plot of Imχz(q) that has been evaluated in the high-symmetry path
of the BZ and for a wide range of frequencies at U/t = 12 and T/t = 1/7.5. We observe that a
well visible Higgs mode appears well below the quasi-particle continuum starting at 2∆TPSC, it
has a minimum at R = (π, π, π), and presents a substantial dispersion along the M-R and R-Γ
directions. This is in stark contrast with the RPA predicted spectrum [shown in Fig.(6-b)],
where the Higgs resonance occurs at ω/t = 2∆HF and therefore is overdamped by the particle-
hole continuum [48, 49]. Our findings agree qualitatively with recent numerical results based
on a time-dependent Gutzwiller approach showing that the Higgs resonance is shifted below
the edge of the particle-hole continuum upon increasing the interaction [50]. In Figs.(6-c,d)
we show Imχz evluated using TPSC and RPA as a function of the real frequencies for a fixed
momentum close to R and two values of the interactions U/t = 12, 5 and at T/t = 1/7.5. It is
apparent that for both values of the interaction the Higgs resonance predicted by TPSC is
well separated from the particle-hole continuum and occurs at lower energies, while RPA does
not yield any true isolated pole.

4.2 Improved self-energy

In this section, we discuss numerical results for the improved self-energy obtained by incorpo-
rating TPSC collective modes into the equation of motion [Eq. (21)]. Unlike the mean-field-like
self-energy shown in Figure 1, the improved self-energy exhibits frequency and momentum
dependence. Figure (7a) displays the imaginary part of the electron self-energy for the majority
spin species as a function of crystalline momentum, with U/t = 3 and T/t = 1/10, evaluated
at the first Matsubara frequency ν = π/β. We observe that ImΣ peaks in absolute value
at momenta k = (π, π2 , 0) and k = (π2 ,

π
2 ,

π
2 ), where the gap between the quasiparticle bands

reaches its minimum value. Figure (7b) shows the same quantity for U/t = 5. Here, while
the qualitative behavior of the self-energy remains similar, its overall magnitude increases
significantly.

We next examine the frequency dependence of the self-energy at fixed crystalline momentum.
Figure (7c) illustrates ImΣ as a function of Matsubara frequency for two chosen momenta:
k1 = Γ (blue squares) and k2 = (π, π2 , 0) (red dots), where the self-energy reaches its extreme
values at the lowest frequency, for U/t = 3, T/t = 1/10. For comparison, we include DMFT
results from the antiferromagnetic solution (gray triangles) [51]. At U/t = 3, both methods
show good agreement overall, though some noticeable differences emerge at higher frequencies.
Despite the moderate k-dependence of the electron self-energy (variation of around 16% at the
lowest frequency), the two methods display similar qualitative features. For U/t = 5 [Figure

4We evaluated the spectra on the real axis using the analytical expressions [21] for the bubble terms and
used a grid of 32 × 32 × 32 internal momenta.
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Figure 7: (a) Imaginary part of the self-energy as a function of the crystalline momentum
for σ =↑, U/t = 3, T/t = 1/10 evaluated at ν = π/β. (b) Same as (a) but for U/t = 5. (c)
Imaginary part of the self-energy as a function of the fermionic Matsubara frequency evaluated
at two different points in the BZ k1 = (0, 0, 0) [blue squares] and k2 = (π, π2 , 0) [red circles] and
for U/t = 3, T/t = 1/10. The imaginary part of the (local) self-energy evaluated in DMFT for
the same parameters is represented by gray triangles. (d) Same as (c) but for U/t = 5.

7d], the quantitative deviation between TPSC and DMFT becomes more pronounced, with the
TPSC self-energy having a greater magnitude. This discrepancy is expected, as DMFT does
not account for gapless quantum fluctuations from Goldstone modes due to its local, single-site
formulation. Specifically, DMFT lacks two-particle self-consistency, meaning that the local
spin fluctuations obtained from the effective Anderson impurity model (AIM) do not match the
sum of the Fourier components of the lattice susceptibility: χAIM

↑↓,loc(ω) ̸=
1
V

∑
q χ

DMFT
↑↓ (q, ω)

[37]. Consequently, while χDMFT
↑↓ (q, ω) may correctly predict Goldstone modes [20], these

modes do not influence the DMFT self-energy, which remains a purely local quantity. Although
TPSC captures electron scattering with collective modes, the Green’s function in Eq. (21)
lacks self-energy damping. This limitation may lead to overestimated quantum corrections
in TPSC. A comprehensive comparison with dynamical quantities calculated using DiagMC
in the broken symmetry phase could further clarify TPSC’s strengths and limitations, which
we leave for future work. We expect that the applicability of TPSC is limited in regions of
parameter space where the dynamical structure of the vertex function cannot be neglected
[52, 53, 54].
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5 Conclusions

We extended the formalism of TPSC to account for spontaneous symmetry breaking and
applied the new method to the AF phase of the single-band Hubbard model on a cubic lattice
at half-filling. Our comparison with DiagMC reveals excellent quantitative agreement between
the two methods for the order parameter and double occupancies.

We show that the differentiation of vertex corrections in the different scattering channels
due to symmetry breaking (Γz ̸= |Γ↑↓|) has remarkable effects in the spin-longitudinal channel.
In particular, the Higgs resonance occurs at energies lower than the quasi-particle continuum
leading to a well visible Higgs mode for a wide range of parameters.

In TPSC, an improved electron self-energy can be constructed, exhibiting a nontrivial
frequency and momentum structure, as shown in the latter part of our results section. Although
we observe a limited dependence on the crystalline momentum, the TPSC self-energy is generally
larger in magnitude compared to that obtained from DMFT, similarly to what is found in
ladder-DΓA in the paramagnetic phase close to criticality [46]. This difference arises because
TPSC incorporates Goldstone modes in the self-energy calculation, whereas DMFT does
not. We leave to future work the exploration of doped antiferromagnetic states, where the
momentum dependence of the electron self-energy could become more pronounced.

Since our data demonstrate that the level of correlation decreases by decreasing temperature
deep in the BSP, one could argue that TPSC is particularly suited to the study of BSP where
correlation are not negligible but less pronounced.

Additionally, TPSC has already been successfully integrated with ab-initio methods, though
only for symmetric phases [30]. This opens up exciting possibilities for extending our method
to broken symmetry phases in combination with DFT (Density Functional Theory) for realistic
electronic structure calculations.

Also, since TPSC already has been used as a benchmark for cold atomic simulators [55, 56],
its generalisation will provide further guidance to cold-atom experiments exploring broken
symmetry phases [57].

Generalising improved versions of TPSC, such as TPSC+ and TPSC+SFM [32], to the
BSP case could lead to the partial inclusion of dynamical effects. These effects are particularly
important near the Néel temperature [58, 59], and will be addressed in future work.

Additionally, combining TPSC with DMFT [60, 61] in the antiferromagnetic phase could
provide deeper insights into the non-local quantum corrections to the spin-polaron peaks that
emerge at strong coupling in the Heisenberg regime [62, 51, 63]. Furthermore, similar steps as
those presented in this work could be applied to extend TPSC to study charge density waves
and superconductivity in the attractive and extended Hubbard models [64, 46, 65, 66, 67].

The potential for applying TPSC to understand complex magnetic phases in novel ma-
terials is vast. For example, the approach we present here can be applied to models hosting
altermagnetism [68, 69, 70, 71], a recently identified category of broken-symmetry phases.
Group theory predictions suggest that many such materials might exist in three dimensions
[72], providing an ideal scenario where our method can be readily applied. Investigations of
these novel magnetic phases in candidate compounds [73, 74, 75, 76, 77, 78] are underway, and
we anticipate that new magnetic materials will soon be proposed theoretically and realized
experimentally. We also demonstrated that TPSC is an effective tool for studying the ampli-
tude (Higgs) mode, which is often elusive in most mean-field theories. This paves the way for
theoretical calculations of amplitude collective modes in altermagnets, providing a reference
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for future experimental investigations and offering insights into fundamental questions–such as
how the topological properties of altermagnets electronic structures [79, 80] are reflected in
their collective modes.

Let us note that in principle, the same scheme presented here can be applied to ordered states
with larger unit cells, though the technical challenges depend on the type of incommensurate
order. For spiral order, where the order parameter rotates in a plane with momentum Q (e.g.,
mR ∝ (cos(Q·R), sin(Q·R), 0)), the computation is simplified by re-expressing the Hamiltonian
in a new basis, restoring translational symmetry. This approach is similar to that used in
studies of the Hubbard model with artificial gauge fields [81]. However, for striped collinear
order, where the order parameter amplitude is modulated (e.g., mR ∝ (0, 0, cos(Q ·R))), the
enlarged unit cell must be explicitly considered [82], increasing computational cost due to the
inclusion of additional orbitals.
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A Irreducible vertices

In this section we shall give some details about the derivation of the expression for the
irreducible vertices in the spin-transverse and spin-longitudinal channels.

A.1 Spin-transverse channel

It is worth to note that the expression for the irreducible vertex in the spin-transverse channel
presented in the main text is an exact equality. In fact, even if λ is a functional of the Green’s
function, it does not appear in the expression of the irreducible vertex function because its
functional derivative with respect to the off-diagonal propagator vanishes, i.e.

δλ

δGcd
↓↑(x3, x4)

= 0. (22)

In fact, from Eq.(3) we can derive the following formula for the double occupancies:

⟨n̂aσn̂aσ̄⟩ =
1

2U
Σaa′
σσ′(x, y′)Ga′a

σ′σ(y
′, x). (23)

Let us now compute the functional derivative of the double occupancies:

δ ⟨n̂a↑n̂a↓⟩
δG↓↑

cd(x3, x4)
∝ δ(x− x4)δadΣ

↑↓
dc(x4, x3) +

δΣ↑σ′

aa′ (x, y
′)

δG↓↑
cd(x3, x4)

Gσ′↑
a′a(y

′, x), (24)

where we can now easily see that the LHS does not conserve the spin along the z-axis and
therefore vanishes at zero external field.

16



SciPost Physics Submission

A.2 Spin-longitudinal channel

On the other hand the expression for the irreducible vertex in the spin-longitudinal channel
given in the main text is not an exact equality. Here we shall clarify where the extra
approximation comes from. The irreducible vertex function in the spin-longitudinal channel
reads:

Γabcd
σσ′ (x1, x2, x3, x4) =

δΣab
σσ(x2, x1)

δGcd
σ′σ′(x3, x4)

= U↑↓δσσ̄′δabδacδadδ(x1 − x2)δ(x1 − x3)δ(x1 − x4)

+ U naσ̄ δ(x1 − x2)δab
δλ

δGcd
σ′σ′(x3, x4)

. (25)

Therefore, the irreducible vertex in the spin-longitudinal channel acquires non-local and
dynamical corrections, which would complicate the expression of the Bethe-Salpeter equations
and further approximations are needed. In practice, one approximates the extra dynamical
term to a constant deviation from the value obtained in the spin-transeverse channel, i.e.
Γρ/z ∼ −Γ↑↓ + δUρ/z.

B Bethe-Salpeter Equations

Let us define the generalized susceptibility as:

χ1234 =
δG(21)

δh(34)
, (26)

where G(12) = −Tτ

〈
cα(x1)c

†
β(x2)

〉
is the propagator, x = (R, τ), 1 = (α, x1) and h(12) is the

perturbing field whose action reads:

Sext = −
∫

d1d2h(1, 2) c(1)c(2), (27)

where in the last equations c and c are Grassmann variables, and
∫
d1 =

∑
α

∑
R

∫ β
0 dτ , with

β = 1/kBT . Given the form of the external perturbation, the inverse of the non-interacting
propagator reads:

G−1
0 (12) = [∂τ + µ−H0]12 + h(12). (28)

We now want to obtain a closed equation for χ1234 by explicitly performing the functional
derivative in Eq.(26). For doing so we first note that:

δG(21)

δh(34)
= −

∫ ∫
d1′d2′G(2, 2′)

δG−1(2′1′)

δh(34)
G(1′, 1). (29)

We can further develop Eq.(29) by making use of the Dyson equation, that reads:

G−1(12) = G−1
0 (12)− Σ(12). (30)
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In fact, by substituting Eq.(30) into Eq.(29) and using Eq.(28), we obtain the following identity:

χ1234 = −G(2, 3)G(4, 1) +

∫ 4∏
i=1

di′G(2, 2′)G(1′, 1)Γ1′2′3′4′χ4′3′34, (31)

where we defined the two-particle irreducible (2PI) vertex function Γ1234 = δΣ(2,1)
δG(3,4) . Let us

express the last equation in Fourier space. For this purpose let us expand the propagators and
vertices in terms of their Fourier components, i.e.:

f1234 =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]fαβ
γδ (k, k

′, q),

G(1, 2) =
1

V β

∑
k

e−ik(x1−x2)Gαβ
k . (32)

We first note that:

−G(2, 3)G(4, 1) =
1

(V β)3

∑
kk′q

ei[kx1−(k+q)x2+(k′+q)x3−k′x4]χ αβ
0,γδ (k, k

′, q), (33)

where we defined the bubble terms as:

χ αβ
0,γδ (k, k

′, q) = −(V β) δkk′ G
δα
k Gβγ

k+q. (34)

The final equation in Fourier space reads:

χαβ
γδ (kk

′q) = χ αβ
0,γδ (k, k

′, q)− 1

(V β)2

∑
k1k2

∑
α′β′γ′δ′

χ α β
0,β′α′(k, k1, q) Γ

α′β′

γ′δ′ (k1, k2, q)χ
δ′γ′

γ δ (k2, k
′, q) .

(35)

C Improved one-loop self-energy

Let us note that from its definition the generalised susceptiblity is related to the two-

particle Green’s function in the following way: χαβ
γδ (x1, x2, x3, x4) = G

(2)αβ
γδ (x1, x2, x3, x4) −

Gβα(x2, x1)G
δγ(x4, x3). Hence, we can rewrite the RHS of Eq.(3) in the following way:

1

V β

∑
kγ

e−ik(x−y)UαγnγG
αβ
k +

1

(βV )3

∑
kk′q

∑
γ

Uαγe
−ik(x−y)χαβ

γγ (kk
′q).

If we substitute Eq.(35) into the second term of last equation we obtain the following expression:

− 1

(V β)2

∑
kk′q

∑
γ

eik(x−y)UαγG
γα
k Gβγ

k+q

+
1

(V β)4

∑
kk′qk1

∑
γα′β′γ′δ′

UαγG
α′α
k Gββ′

k+qΓ
α′β′

γ′δ′ (kk1q)χ
γ′β′
γγ (k1k

′q), (36)

which is a generic and exact expression of the RHS of Eq.(3). Now we shall specialize to the
antiferromagnetic phase of the Hubbard model, and approximate the vertex function to a local
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α (a, σ)

β (b, σ′)

γ (c, σ′′)

α′ (a1, σ1)

β′ (a2, σ2)

γ′ (a3, σ3)

δ′ (a4, σ4)

Table 1: Relation between indices expressed in the compact and extended notations.

quantity that does not depend on the crystalline momenta. In order to do so it is useful to
explicitly express the spin-orbital indices in sub-lattice and spin indices as shown in Table 1.

Furthermore, if we assume spin-conservation we can express the irreducible vertex function
as follows:

Γa1a2
a3a4 |

σ1σ2
σ3σ4

∼ δa1a2δa1a3δa1a4(Γ
a1
σ1σ2

δσ1σ2δσ3σ4 + Γa1
σ1σ̄1

δσ1σ̄2δσ3σ̄4δσ1σ3), (37)

where we used the following notation Γa
σσ′ = Γaa

aa|σσσ′σ′ and Γa
σσ̄

= Γaa
aa|σσ̄σ̄σ. Substituting Eq.(37)

into Eq.(36) we obtain the following expression for the equation of motion in momentum space:

Σab
σ (k)− Unaσ̄ =

U

(V β)3

∑
k1k′qσ1

Gab
σ (k + q)Γb

σσ1
(νν ′ω)χba

σ1σ̄(k1k
′q). (38)

We notice that in this representation the self-energy is expressed in terms of the longitudinal
scattering channel only. It is possible to obtain an equivalent expression where the transverse
vertex and susceptibility appear by using the following crossing relation:

G(2)βα
γγ (y, x+ 0−, x+ 0+, x) = −G(2)βγ

γα(y, x, x+ 0+, x+ 0−). (39)

Plugging the last equation into the equation of motion in Eq.(3) and following similar passages
to the ones we did for obtaining Eq.(38), we obtain the following expression for the self-energy:

Σab
σ (k)− Unaσ̄ = − U

(V β)3

∑
k1k′q

Gab
σ̄ (k + q)Γa

σσ̄(νν
′ω)χab

σσ̄(k1k
′q). (40)

In TPSC the irreducible vertices are local and static, i.e. they do not depend on the Mastubara
frequencies and further simplification arise. In particular, if we assume static and local
vertex functions, if we average Eqs.(38,40) we obtain the following expression for the one-loop
improved self-energy:

Σab
σ (k)− Unaσ̄ = − U

2V β

∑
q

Gab
σ̄ (k + q)Γa

σσ̄χ
ab
σσ̄(q) +

U

2V β

∑
qσ1

Gab
σ (k + q)Γa

σσ1
χab
σ1σ̄(q).

(41)

References

[1] J. Goldstone, Field theories with superconductor solutions, Il Nuovo Cimento (1955-1965)
19(1), 154 (1961).

19



SciPost Physics Submission

[2] Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an anal-
ogy with superconductivity. i, Phys. Rev. 122, 345 (1961), doi:10.1103/PhysRev.122.345.

[3] J. Goldstone, A. Salam and S. Weinberg, Broken symmetries, Phys. Rev. 127, 965 (1962),
doi:10.1103/PhysRev.127.965.

[4] H. Watanabe and H. Murayama, Unified description of Nambu-Goldstone
bosons without Lorentz invariance, Phys. Rev. Lett. 108, 251602 (2012),
doi:10.1103/PhysRevLett.108.251602.

[5] H. Watanabe and H. Murayama, Effective lagrangian for nonrelativistic systems, Phys.
Rev. X 4, 031057 (2014), doi:10.1103/PhysRevX.4.031057.

[6] P. W. Anderson, An approximate quantum theory of the antiferromagnetic ground state,
Phys. Rev. 86, 694 (1952), doi:10.1103/PhysRev.86.694.

[7] N. F. Mott, The basis of the electron theory of metals, with special reference to the
transition metals, Proceedings of the Physical Society. Section A 62(7), 416 (1949),
doi:10.1088/0370-1298/62/7/303.

[8] T. Maier, M. Jarrell, T. Pruschke and M. H. Hettler, Quantum cluster theories, Rev.
Mod. Phys. 77, 1027 (2005), doi:10.1103/RevModPhys.77.1027.

[9] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnel-
son, A. I. Lichtenstein, A. N. Rubtsov and K. Held, Diagrammatic routes to nonlocal
correlations beyond dynamical mean field theory, Rev. Mod. Phys. 90, 025003 (2018),
doi:10.1103/RevModPhys.90.025003.

[10] A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of
strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996), doi:10.1103/RevModPhys.68.13.

[11] S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke and M. Troyer, Thermo-
dynamics of the 3d Hubbard model on approaching the Néel transition, Phys. Rev. Lett.
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[27] A.-M. Daré, Y. M. Vilk and A. M. S. Tremblay, Crossover from two- to three-dimensional
critical behavior for nearly antiferromagnetic itinerant electrons, Phys. Rev. B 53, 14236
(1996), doi:10.1103/PhysRevB.53.14236.
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