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Abstract

I investigate the motion of a single hole in 2D spin lattices with square and triangular
geometries. While the spins have nearest neighbor Ising spin couplings J , the hole is
allowed to move only in 1D along a single line in the 2D lattice with nearest neighbor
hopping amplitude t . The non-equilibrium hole dynamics is initialized by suddenly re-
moving a single spin from the thermal Ising spin lattice. I find that for any nonzero spin
coupling and temperature, the hole is localized. This is an extension of the thermally
induced localization phenomenon [1] to the case, where there is a phase transition to
a long-range ordered ferromagnetic phase. The dynamics depends only on the ratio of
the temperature to the spin coupling, kBT/|J |, and on the ratio of the spin coupling to
the hopping J/t . I characterize these dependencies in great detail. In particular, I find
universal behavior at high temperatures, common features for the square and triangular
lattices across the Curie temperatures for ferromagnetic interactions, and highly distinct
behaviors for the two geometries in the presence of antiferromagnetic interactions due
geometric frustration in the triangular lattice.
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1 Introduction24

Is an impurity or a dopant necessarily delocalized in a system with polarized long-range order?25

As the system is almost perfectly homogeneous, the immediate response would presumably26

be ’yes’! However, if the dopant’s motion is correlated with the background in which it moves,27

then it modifies the background as it moves. Therefore, this question is more subtle than one28

would immediately expect. Such a scenario arises in its most simplistic form in an Ising magnet29

with a doped hole. Here, the ability of the spins to hop only onto vacant sites, means that the30

motion of holes is completely contingent on a counterpropagating spin. While the hole in a31

ferromagnetic ground state will certainly delocalize, the same may not remain true as soon32

as one heats up the system by any infinitesimal amount. Indeed, when the system is not at33

zero temperature, occasional spin flips may act as local defects that generically has a localizing34

effect in one dimension due Anderson localization [2].35

The general scenario turns out to be tremendously complex to analyze, however. In par-36

ticular, the exponential growth in the number of possible configurations of the system as the37

hole moves away from its origin means that analytical treatments are generically out of the38

window. However, numerical investigations of full two-dimensional (2D) motion of holes in39

thermal spin ensembles have been carried out [3–5]. These intriguing results are unfortu-40

nately limited by the underlying exponential complexity of the dynamics in a generic spin41

state to short times and/or small systems, and no robust conclusions have been found for long42

timescales in the thermodynamic limit. A mean-field approach [6] has, however, shown the43

possibility of rich phase diagram, supporting stripe formation [7] at low temperatures.44

In a broader context, dopants in magnetic lattices have been extensively studied for decades45

[8–13] due to their intimate links to high-temperature superconductivity [14–16]. In recent46

years, this line of research has seen a fruitful revival thanks to advances in quantum simula-47

tion experiments with ultracold atoms in optical lattices [17–24]. Such experiments can also48

manipulate the models otherwise fixed in the solid state. In particular, clear signatures of49

magnetically mediated pairing of dopants [24] has been observed and boosted by only allow-50

ing holes to move in one dimension (1D) along the investigated ladder geometry. Building on51

these successes, I recently investigated such a model idealised further to support only Ising52

type spin couplings [1]. Contrary to earlier setups [3–5], 1D motion in the an Ising magnet53

facilitates the investigation of very large system sizes and essentially arbitrarily long evolution54

times can be achieved. This allowed me to systematically show that the hole is localized for55

any nonzero temperature and any nonzero spin coupling, and only asymptotically delocalize56

in the limits βJ = J/kB T → −∞ and/or |J |/t → 0. In other words, even though there are57
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Figure 1: The mixed-dimensional t-Jz model with 1D dopant motion (green region)
in a square (a) and triangular (b) spin lattice. Here, both spin-↑ (red spheres) and− ↓
particles (blue spheres) may hop to vacant sites (green circles) – holes – with hopping
amplitude t along the system. The spins are coupled via isotropic Ising interactions
with magnitude J (black lines).

perfect quasiparticle excitations in these limits, in which they behave exactly as free particles,58

any nonzero temperature and spin coupling immediately localizes the hole.59

From a statistical mechanics perspective, the ladder geometry is, however, a one-dimensional60

system. Consequently, there is no phase transition for the underlying Ising spins until zero tem-61

perature is reached. One might think, therefore, that the hole localization is linked directly to62

the disordered nature of the finite temperature (Gibbs) state. This is supported in my previous63

paper by the fact that the localization length becomes proportional to the spin-spin correla-64

tion length at low temperatures. Since this length scale diverges as the para- to ferromagnetic65

phase transition is crossed from above, this would seem to indicate that for a fully 2D spin66

lattice, the hole should delocalize as the transition to a ferromagnetic phase is crossed at the67

Curie temperature. As a result, the present Article is concerned with addressing exactly this68

question: how is the 1D motion of the hole affected in the presence of the Ising phase tran-69

sition for the 2D Ising model? To study this carefully, I will consider two lattice geometries:70

the square and triangular lattices with nearest neighbor Ising interactions, see Fig. 1. These71

support such a para- to ferromagnetic phase transition at their respective Curie temperatures.72

The comparison of the two lattice structures allow me to extract the common features of the73

systems and highlight the importance of the change in the number of nearest neighbor spin74

couplings (from 4 for the square lattice to 6 in the triangular case). To my surprise, the realiza-75

tion of a long-range ordered ferromagnetic phase is not enough to delocalize the hole. Instead,76

I find that the exponentially small probability of meeting spin flips in the ferromagnetic phase77

is more than adequate to keep the hole localized.78

The localization effect in the two-leg ladder was tied directly to thermal spin fluctuations79

of the disordered spin lattice. This realizes a novel variant of Anderson localization in the pres-80

ence of strong disorder, in which the dopant back-scatter off the spin fluctuations, as the energy81

cost of propagating further away from its origin will inevitably fluctuate to values larger than82

the initial kinetic energy of the hole. This framework also explains the localization quantita-83

tively well in the disordered phase above the Curie temperature in this present setup. However,84

in the ordered phase this picture breaks down for intermediate to large values of |J |/t. In par-85

ticular, the thermal spin fluctuations in the long-range ordered phase on short length scales86

tend to happen as singular spin flips. This results in a crossover between large and small val-87

ues of |J |/t. For large |J |/t, the hole backscatters off these single spin flips. For intermediate88

values, it tunnels through many such flips, but destructively interfere for different pathways89

to a specific point because there is a large statistical variation in how long the segments are90

between such spin flips. This is the physics of Anderson localization in the presence of weak91
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disorder [25]. Finally, for sufficiently small |J |/t this effect is too weak. Instead the hole once92

again backreflects once the build up of potential energy overcomes its initial kinetic energy.93

Moreover, for a square lattice its bipartite structure results in a symmetry between the94

ferro- and antiferromagnetic case, such that the thermodynamics of the underlying spin sys-95

tems are equivalent. Therefore, the Neél critical temperature is simply the same as the Curie96

temperature for ferromagnetic couplings. However, the motion of the hole is markedly differ-97

ent in the two scenarios. In the antiferromagnet, the buildup of the staggered Neél order leads98

to a linearly increasing potential which becomes stronger and stronger as zero temperature is99

approached. In this case, there is, therefore, a crossover between localization driven by spin100

fluctuations at high temperatures to localization exerted by an effective confining potential at101

low temperatures. The latter eventually leads to heavy coherent oscillations in the position102

of the hole due to interference of the low-energy states as zero temperature is approached,103

analogous to what was found for the two-leg ladder at zero temperature [26].104

In stark constrast, in the triangular case, antiferromagnetic couplings hinder any phase105

transition all the way down to zero temperature and results in a residual entropy S0/N ' 0.323106

of the ground state manifold, due to an exponentially large ground state degeneracy [27,28].107

The present setup, hereby, also allows me to study the influence of this extensive ground state108

degeneracy. We will see that while the behavior for the square antiferromagnet is characterized109

by more and more coherent oscillations of the hole’s motion, the same is not true for the110

triangular antiferromagnetic case, and the dynamics retains a thermal character with smooth111

and incoherent behavior, even as zero temperature is approached.112

From a traditional condensed matter point of view, it is hard to imagine how one would113

actually investigate the dynamical phenomena detailed above, as it requires one to track the114

motion of dopants in real time. However, quantum simulation experiments with ultracold115

atoms have made substantial breakthroughs in this regard. Not only do these systems allow116

for single site detection [29,30], but has enough sensitivity to actually track the motion of holes117

in real time [18]. Moreover, the Ising type of interactions investigated are e.g. facilitated with118

Rydberg-dressed atoms in optical lattices [31], which crucially still allow for the motion of119

dopants. Finally, the 1D restriction of the hole motion have been achieved for dopants in such120

spin lattices [24]. In this manner, one can combine these well-established experimental capa-121

bilities to observe the predicted effects, as I have also previously pointed out in a suggestion122

for an explicit experimental protocol [1].123

124

The Article is organized as follows. In Sec. 2, the system and setup is explained. In Sec.125

3, I describe the employed Monte-Carlo simulation of exact trajectories. In Sec. 4, a detailed126

analysis of the numerical results is given at infinite temperature [Sec. 4.1], for ferromagnetic127

[Sec. 4.2] and antiferromagnetic couplings [Sec. 4.2], and finally the general spin-coupling128

dependency [Sec. 4.4]. Moreover, a detailed discussion on the extension of the model is given129

in Sec. 5, before I conclude in Sec. 6.130

2 System and setup131

In this paper, I will consider the mixed-dimensional t-Jz model132

Ĥ = Ĥt + ĤJ = −t
∑

〈i,j〉‖,σ

�

c̃†
i,σ c̃j,σ + h.c.

�

+ J
∑

〈i,j〉

S(z)i S(z)j , (1)

in the presence of a single dopant – a hole. Here, the correlated motion of the dopant is133

allowed through the nearest neighbor hopping Hamiltonian Ĥt , with constrained operators134

c̃†
i,σ = ĉ†

i,σ(1 − n̂iσ̄) to ensure at most a single particle per site. Note that σ̄ designates the135
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opposite spin of σ, i.e. ↑̄=↓ and vice versa. Also, while the Ising spin couplings ĤJ couple all136

nearest neighbors isotropically, the hopping is only allowed along a 1D line, indicated by 〈i, j〉‖.137

In a recent paper [1], I studied this model in a two-leg square ladder system. Here, I will extend138

the studies to a 2D spin lattice and encompass both square and triangular lattices. The main139

idea is to study the importance of the appearing Ising phase transition on the motion of the140

single hole, as well as understanding the importance of magnetic frustration in the triangular141

case for antiferromagnetic couplings.142

To easily describe hole and spin degrees of freedom, I employ an exact Holstein-Primakoff143

transformation with the ferromagnetic state |FM〉= |· · · ↑↑ · · ·〉 with all spins pointin up as the144

reference state. This leads to the alternate expressions for the hopping145

Ĥt = t
∑

〈i,j〉‖

�

ĥ†
j F(ĥi, ŝi)F(ĥj, ŝj)ĥi + ĥ†

j ŝ†
i F(ĥi, ŝi)F(ĥj, ŝj)ŝj ĥi

�

+H.c., (2)

and the spin coupling Hamiltonians146

ĤJ = J
∑

〈i,j〉

�1
2
− ŝ†

i ŝi

��1
2
− ŝ†

j ŝj

��

1− ĥ†
i ĥi

��

1− ĥ†
j ĥj

�

. (3)

Here, the spin excitation operator ŝ†
i is bosonic, and creates a spin-↓ on site i. Also, the hole is147

created by the operator ĥ†
i , and maintains the statistics of the underlying spins, be it fermionic148

or bosonic [26]. In the hopping Hamiltonian Ĥt , the operator F(ĥ, ŝ) =
p

1− ŝ†ŝ− ĥ†ĥ keeps149

the single-occupancy constraint in check. This construction enables me to succintly describe150

the motion of holes.151

3 Monte Carlo sampling of exact trajectories152

The non-equilibrium dynamics of the holes is initialized in the following manner. The system153

starts out in the absence of holes in its thermal Gibs state, ρ̂J = e−β ĤJ/ZJ . I assume nothing154

about how this equilibrium is initially established, but from the time of the quenched insertion155

of the hole at τ = 0, I assume the system to be closed. The state of the system immediately156

after the removal of a spin from the origin i= 0 is157

ρ̂(τ= 0) =
∑

σ0

ĉ0,σ0
ρ̂J ĉ†

0,σ0
= ĥ†

0ρ̂J ĥ0 + ĥ†
0ŝ0ρ̂J ŝ†

0ĥ0 (4)

After that, since the system is assumed to be closed, it evolves unitarily under the full Hamil-158

tonian Ĥ in Eq. (1), ρ̂(τ) = e−iĤτρ̂(0)e+iĤτ. Next, I express the density operator in the Ising159

basis with spin configurationsσσσ. Using this, I can write the time-evolved density matrix as the160

Boltzmann-weighted sum of pure-state evolutions161

ρ̂(τ) =
∑

σ0,σσσ

e−βEJ (σ0,σσσ)

Z0
|Ψσσσ(τ)〉 〈Ψσσσ(τ)| , (5)

where EJ (σ0,σσσ) is the magnetic energy of the spin realization σ0,σσσ before the hole is in-162

troduced. With the hole and spin excitation operators at hand, we may express the non-163

equilibrium pure states |Ψσσσ(τ)〉 quite concisely. In particular, I consider a system of size164

(2Nx + 1) × (2Ny + 1) with open boundary conditions, such that the coordinates is written165

as i = x , y with x ∈ {−Nx ,−Nx + 1, . . . , Nx} and y ∈ {−Ny ,−Ny + 1, . . . , Ny}, and with the166

hole moving along the y = 0 leg of the 2D system. Here, the triangular lattice is implemented167
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as a square lattice but with one additional spin coupling along one of the diagonals of the168

lattice [32].169

In terms of the spin excitation operators, a certain subset S y
σσσ in each leg y will have spin170

flips. This means that the initial wave function for such a realization can be expressed as171

|Ψσσσ(τ= 0)〉= ĥ†
0,0

Ny
∏

y=−Ny

∏

j∈S y
σσσ

ŝ†
j,y |FM〉 . (6)

When the hole moves along the system, the spins in leg y = 0 countermove by a single lattice172

site, while all other spins remain static. Therefore, the state at any later time τ is173

|Ψσσσ(τ)〉=
�

∑

x≥0

Cσσσ(x ,τ)ĥ†
x ,0

∏

j∈S0
σσσ

0≤ j≤x

ŝ†
j−1,0

∏

j∈S0
σσσ

j>x

ŝ†
j,0

+
∑

x<0

Cσσσ(x ,τ)ĥ†
x ,0

∏

j∈S0
σσσ

x≤ j<0

ŝ†
j+1,0

∏

j∈S0
σσσ

j<x

ŝ†
j,0

�

∏

y 6=0

∏

j∈S y
σσσ

ŝ†
j,y |FM〉 . (7)

The upper (lower) line describes the scenario in which the hole has moved |x | sites to the174

right (left), and how the spin excitations countermove by one site to the left (right). Crucially,175

the probability amplitude to find the hole at site x and time τ for a given spin realization176

σσσ only depends on these three variables, since the spin background is static apart from the177

countermotion due to the hole motion. This also means that the probability to observe the178

hole at position x after time τ is the thermal average of |Cσσσ(x ,τ)|2,179

P(x ,τ) = tr
�

ĥ†
x ,0ĥx ,0ρ̂(τ)

�

=
∑

σ0,σσσ

e−βEJ (σ0,σσσ)

ZJ
|Cσσσ(x ,τ)|2. (8)

In this way, we have to determine the probability amplitudes Cσσσ(x ,τ) for a given spin realiza-180

tion σσσ and then perform sampling of the thermal average in Eq. (8). To determine Cσσσ(x ,τ),181

we may realize, in complete analogy to my previous paper on the two-leg ladder [1], that the182

Cσσσ(x ,τ) amplitudes obey free-particle equations of motion183

i∂τCσσσ(x ,τ) = Vσσσ(x)Cσσσ(x ,τ) + t [Cσσσ(x − 1,τ) + Cσσσ(x + 1,τ)] . (9)

with an emergent potential Vσσσ(x). In particular, the potential may be divided into two parts:184

Vσσσ = Vσσσ,‖ + Vσσσ,⊥. The first term gives the contributions within the leg y = 0 the hole is185

propagating in,186

Vσσσ,‖(x) = J[σ1,0σ−1,0 −σx ,0σx+1,0], x > 0,

Vσσσ,‖(x) = J[σ1,0σ−1,0 −σx ,0σx−1,0], x < 0. (10)

Here σx ,y = ±1/2 designates spin-↑ (+) and -↓ (−) at site i = x , y of the original sample, i.e.187

before the hole has started to move. The second term Vσσσ,⊥ describes the trans-leg potential188

giving the contributions from the neighboring legs y = ±1. This depends on the geometry of189

the couplings. For the square lattice,190

Vσσσ,⊥(x) = J
∑

y=±1

x
∑

j=+1

σ j,0[σ j−1,y −σ j,y], x > 0,

Vσσσ,⊥(x) = J
∑

y=±1

x
∑

j=−1

σ j,0[σ j+1,y −σ j,y], x < 0. (11)
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For the triangular lattice,191

Vσσσ,⊥(x) = J
x
∑

j=+1

σ j,0

�

[σ j−1,+1 −σ j+1,+1] + [σ j−2,−1 −σ j,−1]
	

, x > 0,

Vσσσ,⊥(x) = J
x
∑

j=−1

σ j,0

�

[σ j+2,+1 −σ j,+1] + [σ j+1,−1 −σ j−1,−1]
	

, x < 0. (12)

Here, the coordinates of the triangular lattices is defined by using the standard embedding on192

a square lattice with an additional diagonal coupling [27]. With these explicit constructions,193

the effective hole potential Vσσσ(x) can easily be computed from each realized spin sample σσσ.194

Furthermore, for each σσσ Eq. (9) can be solved highly efficiently by defining the effective195

Hamiltonian Hσσσ with diagonal entries given by the effective potential, Hσσσ(x , x) = Vσσσ(x), and196

off-diagonal entries given by the hopping Hσσσ(x , x ± 1) = t. By concatenating Cσσσ(x ,τ) as a197

vector Cσσσ(τ), the effective Schrödinger equation198

i∂τCσσσ(τ) =HσσσCσσσ(τ) (13)

can be solved using standard linear algebra packages. As Hσσσ is a sparse matrix, I use the199

"expm_multiply" function, part of the "scipy.sparse.linalg" package in Python. This allows me200

to go to systems sizes of at least 10.000 sites long.201

To obtain the samples σσσ in the first place, I perform Monte-Carlo sampling. In the pres-202

ence of a phase transition, i.e. for FM couplings in the triangular lattice as well as both FM203

and AFM couplings in the square lattice, I use a combined Wolff [33, 34] and Metropolis-204

Hastings [35,36] algorithm to increase the accuracy around the critical temperature. For AFM205

couplings in the triangular lattice, there is no phase transition, and I instead simply use a stan-206

dard Metropolis-Hasting algorithm with single-spin flip updates. These algorithms are used to207

generate 2000 samples for a range of inverse temperatures βJ . In this manner, the dynamics208

of the hole is computed highly efficiently, whereby I easily go to very large system sizes, long209

evolution times and effortlessly monitor the behavior across the phase transition. The main210

observable in this regard will be the root-mean-square (rms) distance, calculated as211

xrms(τ) =

�

∑

x

x2P(x ,τ)

�1/2

, (14)

evaluated from the hole probability distribution function P(x ,τ) in Eq. (8). This methodology212

is completely equivalent to the one I developed in Ref. [1]. Only the explicit expressions for213

the trans-leg potentials in Eqs. (11) and (12) differ, as well as the implementation of the Wolff214

algorithm. From the rms dynamics, I extract a localization length as the long-time average215

lloc = lim
τ→∞

1
τ

∫ τ

0

dsxrms(s). (15)

As a good check of the sampling, I compute the average and variance of the effective hole216

potential. As for the two-leg ladder [1], these are both found to be linear in the distance |x |,217

〈Vσσσ(x)〉= |J |
|x |
xave

+ const., Var[Vσσσ(x)] = J2 |x |
xfl
+ const., (16)

with temperature-dependent length scales xave and xfl, respectively. These are explicitly shown218

in Fig. 2. The former may also quite easily be expressed in terms of short-range correlators as219

x�ave =
2

C(1)− C(
p

2)
, x4ave =

2

C(1)− C(
p

13/4)
, (17)
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Figure 2: Length scales associated with the effective hole potential for the square
(a) and triangular (b) lattices for ferromagnetic couplings, J < 0, as a function
of the inverse temperature β |J |. The length scales are defined through the lin-
earity of the mean and variance of the potential: 〈Vσσσ(x)〉 = |J | · |x |/xave and
Var[Vσσσ(x)] = J2 · |x |/xfl, respectively. The solid violet lines show the analytic solu-
tions in Eq. (17), while the black lines give the asymptotic behaviors, scaling as e3β |J |

and e5β |J | for the square and triangular cases. The thin vertical black lines designate
the position of the para- to ferromagnetic phase transition at βc|J | = 2 ln(1 +

p
2)

and βc|J |= ln(3), respectively.

for the square (left) and triangular (right) lattices, respectively. The nearest-neighbor correla-220

tors C(1) = 4 〈Ŝ(z)0,0Ŝ(z)1,0〉, and next-nearest neighbor correlators C(
p

2) = C(
p

2) = 4 〈Ŝ0,0Ŝ1,1〉221

and C(
p

13/4) = 4 〈Ŝ1,0Ŝ0,1〉 are computed explicitly in Appendices A and B and are seen to222

agree perfectly with the numerical results in Fig. 2.223

4 Results224

In this section, I present the results for the hole dynamics. The section is split into three225

subsections, describing the universal infinite temperature limit in Sec. 4.1, ferromagnetic226

couplings in Sec. 4.2, and finally antiferromagnetic couplings in Sec. 4.3.227

4.1 Infinite temperatures228

For infinite temperatures, βJ = 0, the results are quite similar to the two-leg ladder case [1].229

In particular, since each spin is now an independent random variable σ = ±1/2, it follows that230

the potential Vσσσ(x) performs a random walk as a function of the distance |x |. In particular,231

the mean value of the potential over all the spin realization vanishes identically, while the232

standard deviation scales as
p

|x |,233

σ[Vσσσ(x)] =
J
2

Æ

|x |+ 1. (18)

This gives a length scale xfl = 4 at infinite temperatures in excellent agreement with the234

Monte-Carlo sampling result shown in Fig. 2. As was also realized for the two-leg ladder [1],235

the dynamics in this limit becomes independent of the sign of J . This can be seen directly236

from the explicit expressions in Eqs. (10)-(12). Here, a sign change in J can be absorbed237

in σ j,0 = ±1/2, as this random variable is independent from the rest of the spins at infinite238

temperatures. More interestingly, since the expressions for the square and triangular lattices,239

respectively Eqs. (11) and (12), have the same number of terms with the same quadratic240

structure, σσ′, they give identical potentials at infinite temperature. Hence, the dynamics241

is not only independent of the sign of the spin coupling in this limit, but also whether the242

8
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Figure 3: Universal infinite temperature dynamics. (a) Root-mean-square (rms)
distance as a function of time τ in units of the hopping t for indicated spin couplings
at infinite temperature. The dashed lines are the asymptotic averages defining the
localization length lloc. All lines collapse at short times to an initial ballistic motion
with speed

p
2t (black line). (b) Localization length lloc at infinite temperature as

a function of the spin coupling (red dots). For small |J |/t, the localization length
diverges as (t/J)2 (red solid line). Inset: effective hole potential V (x) in units of the
spin coupling for 50 spin samples (grey lines). As a hole with initial kinetic energy
∼ t travels in a specific spin sample (colored lines), it will eventually back-scatter off
the potential (colored lines with arrows, shown for t ' 5|J |), because the standard
deviation of the potential grows as |J |

p

|x |+ 1/2 (black lines), see also Eq. (18).

geometry is square or triangular. I note, however, that this does not hold for general 2D243

structures. Indeed, for kagome and honeycomb lattices, one can find 1D lines, in which the244

structure is the same as the two-leg ladder, and consequently gives the same hole motion245

along these lines as in the two-leg ladder at infinite temperatures. In Fig. 3(a), I plot the root-246

mean-square distance, calculated from Eq. (14), versus time for indicated values of the spin247

coupling. As was found for the two-leg ladder [1], the dynamics crosses over from an initial248

universal ballistic behavior [37] of a free particle [with speed
p

2t], to localized dynamics on249

long timescales. As the spin coupling is lowered, the associated localization length, shown in250

Fig. 3(b), increases and eventually diverges as (t/J)2 in the limit of |J |/t � 1. As was realized251

for the two-leg ladder, the localization can be understood by equating the initial kinetic energy252

of the hole ∼ t to the fluctuations of the potential at a length scale lfl, i.e. the standard253

deviation σ(Vσσσ(lfl))' |J |
p

lfl/2. This results in the fluctuation-induced localization length,254

lfl ' 4
h t

J

i2
, (19)

which, apart from an overall factor of 2, is in quantitative agreement with the observed results255

in Fig. 3(b). The physical picture is, hereby, that the dopant will eventually back-scatter off256

the emergent effective potential V (x) [inset of Fig. 3(b)]. Indeed, taking the enhancement257

factor of 2 into account, I check when |Vσσσ(x)| first exceeds
p

2t for each spin realization σσσ258

and average over the achieved mean-square distance x2 over all the spin realizations. This259

quantitatively recovers the full numerical solution both in terms of the localization length lloc,260

and in terms of the standard deviation around this value.261

4.2 Ferromagnetic couplings262

In this Section, I take a detailed look at the temperature dependency for ferromagnetic cou-263

plings. In Figs. 4(a) and 4(b), I show the rms dynamics across the phase transitions at the264

inverse Curie temperatures β�c |J | = 2 ln(1 +
p

2) ' 1.76 and β4c |J | = ln(3) ' 1.10, for the265

square and triangular cases respectively. At short times, they again all collapse to a ballistic266

expansion with speed v =
p

2t, as they should [37]. For lower temperatures – higher β |J |267

9



SciPost Physics Submission

Figure 4: Ferromagnetic couplings. Root-mean-square distance (rms) dynamics
for J < 0 and indicated inverse temperatures β |J | in the square (left) and triangular
(right) lattices for |J | = 5t in (a) and |J | = 0.5t in (b). At long times and any finite
β |J |, the rms distance saturates at long times. The associated localization length is
plotted in (c) versus inverse temperature for indicated values of the spin coupling
for the square (left) and triangular (right) lattices. The vertical black lines indicate
the phase transitions at β�c |J | = 2 ln(1 +

p
2) (left) and β4c |J | = ln(3) (right). At

low temperatures, the localization length scales as c1 exp(c2β |J |) (solid lines). The
growth rate c2 is extracted and plotted in the insets of (c) as a function of |J |/t. The
horizontal black and grey lines show the expected limiting behaviors for small and
large values of |J |/t, corresponding to the black and grey lines in the main part of
the plots.

– the dynamics generally follows this ballistic behavior for longer. Essentially, this is because268

the system becomes more and more ferromagnetically ordered, allowing the hole to move269

more freely. Note, however, that there are exceptions to this general rule. For example, for270

|J | = 0.5t, we see that the dynamics at β |J | = 1.2 in the square lattice and β |J | = 0.8 in the271

triangular lattice is more localized than at infinite temperature. We will return to this subtlety272

later on.273

Moreover, it is strikingly apparent that the asymptotes, i.e. the localization lengths of the274

hole, remain finite even in the phase with long-range ferromagnetic order. This is surprising275

with the analysis of the two-leg ladder in mind [1]. Here, it was shown that the localiza-276

tion length scales with the spin-spin correlation length at low temperatures. As this length277

scale diverges across the para- to ferromagnetic phase transition in the present 2D system, the278

expectation from there would be that the hole should also delocalize across the transition.279
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To analyze this puzzling situation further, I next calculate the localization length across the280

phase transitions for the square and triangular lattices in Fig. 4(c). This manifestly shows that281

even though the localization has a sharp increase around the phase transition, no divergence282

appears. Instead, I find that the localization length scales as283

lloc = c1

�

|J |
t

�

exp
�

c2

�

|J |
t

�

β |J |
�

, (20)

for low temperatures. Here, the coefficients c1 and c2 are functions of |J |/t. The exponential284

growth rate, c2, is plotted in the insets of Fig. 4(c), and is seen to increase for decreasing |J |/t,285

between what seems to be two limiting behaviors. This is again in stark contrast to the two-leg286

ladder case [1]. Here, the localization length scales with the spin-spin correlation length at287

low temperatures, which in turn increases exponentially as exp[β |J |], i.e. with an exponential288

coefficient c2 = 1 independent of |J |/t.289

Let us, therefore, analyze these limits in detail. First, for a large mobility of the hole,290

|J | � t, we can use a semi-classical argument of energetic turning points. The basic idea291

is that the average and standard deviation of the effective hole potential defines two length292

scales which compete to localize the hole even as |J |/t becomes small. In particular, I found in293

Fig. 2 that the mean and standard deviation at all temperatures and ferromagnetic couplings294

behave as 〈Vσσσ(x)〉 = |J ||x |/xave and σ(Vσσσ(x)) = |J |
p

|x |/xfl. By equating these to the initial295

kinetic energy of the hole ∼ t, we obtain the semi-classical turning points296

lave =
t
|J |

xave, lfl =
� t

J

�2
xfl, (21)

for the average and standard deviation of the potential, respectively. Whichever of these two297

length scales is the shortest is expected to describe the localization as |J |/t becomes small298

– where it is well-defined to talk about an initial kinetic energy of the hole. This actually299

also explains the non-monotonic behavior of the localization length at high temperatures and300

low |J |/t mentioned previously. To understand why, note that lave diverges as the infinite301

temperature limit is approached, β |J | → 0. However, the fluctuation length scale lfl remains302

finite as discussed in Sec. 4.1. Now, at sufficiently low |J |/t, lave will eventually drop below the303

fluctuation-induced localization length scaling as lfl ∝ (t/J)2, because it has a weaker t/|J |304

scaling. Physically, the potential achieves a confining bias, 〈Vσσσ〉 (x) > 0, which can localize305

the hole more strongly than the fluctutations. This means that as a function of decreasing306

temperature, the localization length at low |J |/t will initially decrease. However, since the307

hole eventually delocalizes as zero temperature is reached in the ferromagnetic phase, the308

localization length must at some point increase again. As a result, the localization length is a309

non-monotonic function of temperature for low enough |J |/t.310

In the ferromagnetic phase, I found in Fig. 2 that the fluctuation length scale xfl has the311

same scaling behavior with decreasing temperature as the average length scale xave. This312

means that lave and lfl scale with temperature in the same manner, with exponential growth313

rates of c2 = 3 and c2 = 5 for the square and triangular lattices, respectively. This is seen to314

match the numerical findings in Fig. 4(c) in the regime of |J | � t.315

Finally, we should understand why the scaling behavior is different for intermediate to316

large |J |/t. Here, it is important to again stress the difference with the two-leg ladder case [1].317

There, as low temperatures are approached, one also approaches the phase transition from the318

para- to ferromagnetic phase. As a result, one can expect to only see a single length scale ap-319

pear in this limit: the spin-spin correlation length. However, here as low temperatures are320

reached we do not approach a phase transition, because the system is already in the ferromag-321

netic phase. Therefore, there can easily be more than one length scale available. Indeed by322

analyzing the length scale over which a single spin flip occurs – see Appendix C – I find that323
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this on average scales as324

lflip∝ exp
h z

2
β |J |

i

, (22)

for z nearest neighbors. This gives another length scale with growth rates of c2 = 2 and c2 = 3325

for the square and triangular lattices, respectively. At these length scales, the effective hole326

potential will, hereby, jump by −|J |/2 before jumping up again to 0. When |J | � t, this length327

scale will thus define the localization length, because the hole will reflect back, as soon as it328

meets this energetic barrier. This explains why c2→ 2 for the square lattice and c2→ 3 for the329

triangular lattice, when |J |/t becomes large. As |J |/t diminishes, however, the hole can start330

to tunnel through these barriers. Eventually, it can tunnel through enough barriers so that the331

lower length scale is given by either lave or lfl in Eq. (21). This, consequently, explains the332

crossover between the two behaviors.333

Finally, it is worth pointing out that at intermediate values |J | ∼ 3t, the barriers are low334

enough that the hole can tunnel through many of them, but still the localization length is335

exponentially small compared to what one expects from Eq. (21). In this regime, it seems336

most accurate to think of the localization in terms of Anderson localization in the presence of337

weak disorder, i.e. when the disorder strength is smaller than or comparable to the kinetic338

energy. In such a scenario, instead of simple back-reflection, a particle localizes because it339

accumulates randomly varying phases for arriving to a particular point [25], i.e.340

C(x) = c1eiϕ1 + c2eiϕ2 + . . . , (23)

in which the phases ϕ1 are basically chosen at random. In the present setup, these varying341

phases arise, because the distribution of the spin flips, happening on average on the length342

scale of lflip, is random. Indeed, the standard deviation on lflip is on the same order as lflip343

itself, as shown in Appendix C. As a result, the hole will travel wildly different length scales344

between each barrier. As the hole can arrive between two barriers in many different ways, this345

gives rise to the destructive interference in Eq. (23).346

The asymptotic delocalization of the hole in the low temperature limit describes a reversed347

metal-insulator crossover, in which the system is highly insulating at high temperatures, and be-348

comes more and more metallic once the phase transition to the ferromagnetic phase is crossed349

and zero temperatures are approached.350

4.3 Antiferromagnetic couplings351

In this Section, we delve into the regime of antiferromagnetic couplings, J > 0. While fer-352

romagnetic couplings led to qualitatively the same behavior for the square and triangular353

lattices, we shall see that antiferromagnetic couplings define highly distinct behaviors both for354

the underlying spin lattice and for the dopant dynamics.355

The square lattice is bipartite, and may therefore be divided into sublattices A and B. This356

means that it is possible to rotate the local reference frame on every second site, such that357

Ŝ(z)j → −Ŝ(z)j on sublattice B. As the spin couplings are between nearest neighbors only, this358

also corresponds to flipping the sign of the spin coupling. This simple analysis shows that the359

ferromagnetic and antiferromagnetic cases are completely equivalent for a bipartite lattice.360

However, in the presence of holes and, as here, nearest neighbor hopping of the spins onto361

such vacant sites, the AFM and FM scenarios are no longer equivalent. Indeed, at low tem-362

peratures the staggered magnetization appearing in the Neél ordered ground state for AFM363

couplings gives rise to a confined hole as it starts to move. This naturally realizes an exact ver-364

sion of the retraceable path approximation due to Brinkman and Rice [8]. The confimenent365

comes about, because the 1D motion of the hole realigns spins that were otherwise antialigned,366

giving rise to a linear potential increasing as J/2 · |x | [26]. The crossover from the thermally367
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induced localization at high temperatures to the confined hole motion at low temperatures is368

illustrated in Fig. 5(left). Where the dynamics at high temperatures is mostly featureless, the369

motion at low temperatures is characterized by strong coherent oscillations. These have pre-370

viously been shown to be due to interferences between the so-called string states that define371

the low-energy eigenstates at zero temperature [26]. Moreover, in Fig. 5(c), we see that the372

approach to the zero-temperature limit happens as the entropy of the spin lattice [inset in Fig.373

5(c)] approaches 0, around βJ ¦ 3. The sharp decrease around the critical temperature be-374

havior β�c J = 2 ln(1+
p

2) originates in this sense directly from the sharp decreasing behavior375

in the entropy at the phase transition.376

377

The triangular lattice is, however, markedly different. In this case, the system is frustrated378

and there is no mapping between the ferro- and antiferromagnetic cases. Even more dramat-379

ically, the frustration of the lattice leads to a non-vanishing entropy at zero temperature [27],380

shown in the inset of the right figure in Fig. 5(c). This strongly affects the dynamics as tem-381

perature is lowered. As mentioned in Sec. 4.1, the high-temperature limit gives the same382

dynamics both for ferro- and antiferromagnetic interactions and for the square and triangular383

geometries. However, as temperature is lowered there is, in stark contrast to the square lattice,384

no appearance of strong oscillations, as can be seen to the right in Figs. 5(a) and 5(b). The385

reason is that the ground state degeneracy is exponentially large in system size, meaning that386

the dynamics is averaged over many different spin realizations, even at the lowest tempera-387

tures, and this washes out the coherent oscillations that would otherwise appear. Moreover,388

the lack of a phase transition means that the localization length changes much slower with389

temperature as seen from the figure to the right in Fig. 5(c). In point of fact, we need to wait390

for the entropy per particle to be close to its zero-temperature limit, S0/N ' 0.323kB, for the391

localization length of the hole to saturate to its zero-temperature limit. This only happens for392

inverse temperatures βJ ¦ 6 for the triangular case.393

What is also initially confounding about the triangular lattice is that there are ground state394

configurations, in which the effective hole potential is completely flat. Such configurations are395

all variations of the Neél states shown in Fig. 6(a). So if such configurations are there at low396

temperatures, why is the hole even localized? Surely, their presence must make it possible397

for the hole to escape its origin – even ballistically fast. Well, the answer to this conundrum398

turns out again to lie in the entropy of such states. As originally pointed out by Wannier [27],399

there are on the order of 2
p

N states with the structure in Fig. 6(a). This scaling comes from400

realizing that the only alteration one can make to such a state is to shift the rows of the lattice401

by 1. And since there are
p

N rows this gives 2
p

N states. However, there is a much much402

larger family of states shown in Fig. 6(b). Here all the purple spins, which is every third, can403

be either spin-↑ or -↓without a change in the energy. There are, therefore, at least a staggering404

2N/3 of these1. This also explains why the entropy of the ground state manifold is nonzero.405

For just N = 100 spins, the relative abundance of the latter type of states to the former type406

is 2N/3/2
p

N ∼ 107, for 400 spins the ratio is at ∼ 1034! As a result, even though there are in407

principle states available in the ground state manifold in which the hole could delocalize, they408

have zero statistical weight.409

4.4 Spin coupling scaling dependency410

Before concluding, this Section is concerned with describing in detail the dependency of the411

localization length on the ratio between the spin coupling and the hopping amplitude, J/t.412

Examples of this dependency are shown in Figs. 7(a) and 7(b) for ferro- and antiferromag-413

1Wannier [27] came up with an even stronger lower bound of 25N/12 based on simple geometrical arguments.
This gives a ground state entropy > 5 ln(2)/12kBN ' 0.289kBN , pretty close to the exact value of S0 ' 0.323kBN .
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Figure 5: Antiferromagnetic couplings. Root-mean-square (rms) distance of hole
to its original site as a function of time τ in units of hopping t for |J | = 5t (a) and
|J | = 0.5t (b) for indicated values of the inverse temperature β . For the square lat-
tice (left), lower temperatures – higher β |J | – results in more and more pronounced
coherent oscillations eventually approaching the zero-temperature behavior in grey
lines. For the triangular lattice (right), on the other hand, the dynamics depend only
mildly on temperature, especially at larger spin couplings as in (a), and retains a
thermal character even as zero temperature is approached. (c) Localization length
versus inverse temperature for indicated values of the spin coupling for the square
(left) and triangular (right) lattices. In the square lattice (right), the localization
length decreases rapidly across the phase transition at β�c J = 2 ln(1 +

p
2) ' 1.76

(vertical black line). In the triangular lattice (right), there is no phase transition
and the localization length consequently has a much slower dependency on tem-
perature. The insets in (c) show the entropy per particle S/N , both starting out at
S/N = kB ln(2) at high temperatures. The saturation at low temperatures happens
as the entropy of the system approaches its zero-temperature limit (0 for the square
lattice, ' 0.323 for the triangular lattice).

netic couplings, respectively. This is furthermore compared to the universal behavior found414

at infinite temperatures, identical for the square and triangular lattices and for both ferro-415

and antiferromagnetic spin couplings, scaling as (t/J)2 for |J |/t � 1. Analogous to the two-416

leg ladder [1], this scaling behavior turns out to be highly specific to the infinite-temperature417

limit. In point of fact, for any finite temperature we observe that the asymptotic behavior is418

rather t/|J | with a temperature dependent prefactor. This is because as t/|J | is lowered,419

the bias of the effective hole potential will eventually dominate over the fluctuations, i.e.420
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Figure 6: Origin of localization for triangular lattice at low temperatures. (a) A
perfect Neél structure is a part of the ground state manifold. As the hole moves
through such a state, it experiences a completely flat potential, V (x) = 1/2 for x 6= 0,
since the perpendicular part vanishes V⊥(x) = 0. This suggests that the hole should
be able to delocalize for antiferromagnetic couplings. However, the number of perfect
Neél ordered states scales only as 2

p
N , and there are configurations (b) that have a

much larger weight. Here, all purple spins can be chosen freely between |↑〉 , |↓〉,
leading to at least 2N/3 states. For these, the hole always experiences an overall
growing potential, as it is guaranteed to increase for every third hop. As the latter
type in (b) completely outnumbers the first type in (a), the hole remains localized.

lave ∼ t/|J |< lfl ∼ (t/J)2 for sufficiently small |J |/t, no matter the temperature.421

Moreover, we see that for ferromagnetic couplings in Fig. 7(a), equal values of β/β�c and422

β/β
4
c – i.e. temperatures in the same proportion to their respective critical temperatures – are423

quantitatively very similar, especially for low values of |J |/t. On the antiferromagnetic side in424

Fig. 7(b), we additionally observe that for the square lattice, the localization length already at425

the critical temperature is quantitatively close to the zero-temperature limit for low J/t, with426

a factor of 1.5 between them. For larger J/t, the localization length is short, and it becomes427

important that the system locally has occasional spin flips with respect to the perfect Neél-428

ordered state at zero temperature. Finally, for hole motion in the triangular lattice the effective429

hole potential in the ground state manifold only increases in every third hop, as described in430

Fig. 6. As a result, the localization length is strictly larger for the hole in the triangular lattice431

compared to the square lattice at similar temperatures, here shown for βJ = 1.8' β�c J . Also,432

at these temperatures the localization length of the hole in the triangular lattice even follows433

the infinite temperature behavior for J ¦ 2t.434

5 Discussion435

In this Section, I will discuss generalizations to the mixed-dimensional t-Jz model considered436

in this Article.437

5.1 Beyond 1D dopant motion438

A central assumption in the present Article has been the one-dimensional nature of the dopant439

motion. This not only enables the numerical computation of the results to large system sizes440

and long times, but also clarifies certain physical situations that are far more complex in higher441

dimensions. For example, when the hole moves solely in 1D it has to scatter on any domain442

walls it may find on its way. If the hole were to move in 2D, it could very well be able to443

circumvent these, enabling a slow, but continuing, propagation. In the ferromagnetic phase,444

where the system macroscopically occupies one spin state, say spin-|↑〉, the domains of spin-|↓〉445

become smaller and rarer, and eventually consist of singly flipped spins as discussed in Sec.446
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Figure 7: Localization length dependency for ferromagnetic (a) and antiferromag-
netic (b) couplings as a function of J/t on a log-log plot for indicated inverse tem-
peratures. Square and triangular symbols are for the square and triangular lattices,
respectively. Also, β�c = 2 ln(1+

p
2)/|J | and β4c = ln(3)/|J | indicate the inverse crit-

ical temperatures in the square and triangular lattice, respectively. Only at infinite
temperature is the asymptotic scaling (t/J)2 (solid red line). For any finite temper-
ature, the asymptotic behavior (dashed lines) is t/|J | with a temperature dependent
prefactor.

4.2. In this low-temperature ferromagnetic limit, the system hereby resembles a perfect lattice447

with occasional "impurities" of spin-|↓〉 that the hole may scatter on. This seems essentially448

equivalent to the propagation of electrons in lattices with a low density of defects – or local449

impurities. As a result, in the ferromagnetic phase we should at the very least expect the hole450

to perform diffusion with weak localization corrections [38], if not full-scale ballistic motion.451

Contrary to the usual case in the solid state, however, the effective defect density – the452

domain walls – in the present setup increases rapidly with temperature. As a result, the mean453

free path decreases to be on on the order of the lattice spacing at high temperatures. In454

this limit, therefore, scattering happens all the time and the dopant may very well localize455

completely. These considerations illustrate that the inverted metal-insulator crossover found456

in the present analysis for 1D dopant motion may be replaced by an actual transition for 2D457

motion, and should probably happen at the underlying Curie temperature of the spin lattice.458

Detailed numerical analyses in the infinite temperature limit of vanishing spin couplings459

for 2D motion of dopants [3,4] illustrate that the situation even in this restricted setup is quite460

complex. At the short to intermediate timescales investigated, the motion is a lot slower than461

ballistic motion, but remain faster than the predictions of the retraceable path approximation462

[3,8], and faster than expected from the mapping to a Bethe lattice [4]. Conclusions on long463

timescales, however, remain to be drawn and must await further analyses.464

5.2 Beyond the Ising model465

Another crucial assumption in the presented analysis is the Ising type spin couplings. One466

could go beyond this realm by introducing spin flip-flop terms into the Hamiltonian. The467

computational complexity in this case, however, increases in a daunting manner, as the de-468

scription even just of the underlying spin lattice now becomes highly complex and – at best469

– approximate. At low temperatures and antiferromagnetic couplings, there is good evidence470

that quasiparticles – magnetic polarons – form [10]. Indeed, linear spin-wave theory combined471

with the selfconsistent Born approximation has been shown to compare well to exact diago-472

nalization studies [12, 39] and Monte-Carlo simulations [40]. Even more importantly, it has473

successfully explained [37] the experimentally observed propagation of holes [18] through the474

formation and propagation of such magnetic polarons. As temperature is increased, however,475

there are currently only limited approaches available [41], and the quasiparticle picture at low476
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temperatures is even still debated [42–47].477

One possible path forward could be to go in the opposite regime of the XY model, where478

the only present spin couplings are flip-flop terms. In one dimension, this supports a simple479

analytical solution via the Jordan-Wigner transformation [48]. If one can also formulate the480

motion of dopants in an efficient manner in this model, this would certainly be an interesting481

pathway to pursue.482

5.3 Increasing the doping level483

In the present analysis, I have focused on the propagation of a single dopant. One may wonder,484

what happens as the doping level rises. If their initial mutual distances are much larger than485

the single dopant localization length, one can expect them to retain their single-dopant char-486

acteristics uncovered in the present analysis. However, if two dopants start out close to each487

another, they may significantly alter each others motion. This could lead to novel phenomena,488

as their motion may become strongly correlated even though they are submerged in, e.g., an489

infinite temperature spin environment.490

5.4 Connecting to an external bath491

A final obvious extension of the ideas pursued in the present Article is to investigate the same492

type of dynamics, but in the presence of a coupling to an external heat bath. This should drive493

the system back to thermal equilibrium by allowing spin flip dynamics to occur, and may be a494

way to investigate their influence in a simpler manner than through spin flip-flop terms in the495

Hamiltonian. It is clear, however, that the methodology must be changed substantially in such496

an open system case, as now the propagation dynamics cannot be calculated as the thermal –497

Boltzmann-weighted – average of pure state evolutions.498

6 Conclusions and outlook499

In this Article, I have investigated the one-dimensional motion of a dopant in two-dimensional500

square and triangular lattices of Ising coupled spins. The thermally induced localization effect501

originally found in a two-leg ladder geometry [1] has, hereby, been extended to the case in502

which there exists a finite temperature transition to a long-range ordered ferromagnetic phase.503

While the high-temperature limit features universal localized hole dynamics across ferro- and504

antiferromagnetic couplings as well as the two investigated lattice geometries, finite tempera-505

tures break this correspondence. On the ferromagnetic side, the hole remains localized across506

the Curie temperature and feature very similar behaviors for the two investigated geometries.507

While the localization in the two-leg ladder was found to scale identically with temperature508

across any (negative) value of J/t, this is no longer true for the two-dimensional system. At509

small |J |/t, the localization can be understood as the back-scattering off an effective hole po-510

tential that fluctuates to large values as the hole moves away from its origin. At large |J |/t, the511

hole instead back-reflects on singular spin flips happening on an exponentially shorter length512

scale. Inbetween, increased tunneling through these singular spin flips describes a crossover513

from one to the other behavior as |J |/t is lowered.514

On the antiferromagnetic side, only the square lattice features a phase transition to a long-515

range ordered AFM phase. As the antiferromagnetic correlations grow, the hole experiences516

a stronger and stronger linear potential, because its motion now starts to realign spins that517

were otherwise antialigned. This leads to a crossover between (thermal) disorder induced lo-518

calization to confinement, with a particularly sharp decrease of the localization length around519

the Curie temperature in the square lattice. The characteristics of the dynamics in these two520
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regimes is also markedly different. At high temperatures, the motion is incoherent with a521

smooth, featureless behavior of the root-mean-square distance of the hole to its origin. As522

zero temperature is approached, and the entropy of the system vanishes, stronger coherent523

oscillation occur due to quantum interference of the low-lying energy states, the so-called524

string states [26,49].525

In the triangular lattice, no phase transition happens for antiferromagnetic couplings due526

to frustration. This makes the approach to the zero-temperature limit much slower, explained527

well by when the entropy drops to its nonzero zero-temperature limit [27]. The associated528

exponentially large ground state manifold means that the hole dynamics retains its featureless,529

thermal behavior.530

These detailed investigations show that the motion of dopants, even in these highly simplis-531

tic models, host rich and diverse behaviors, in which an indepth knowledge of the underlying532

spin lattice is crucial for understanding the dopant dynamics. For ferromagnetc couplings, it533

describes an intriguing reversed metal-insulator crossover, from a highly insulating regime at534

high temperatures to an increasingly metallic regime at low temperatures. Moreover, there are535

several exciting research pathways that may be undertaken to expand these considerations.536

First and foremost, it would be interesting to study the stability of the localization effect. Here,537

one could study the influence of coupling the spins to an external heat bath driving them to-538

wards thermalization. In such a scenario, the thermal fluctuations might play a similar role to539

flip-flop spin interactions, and such links could be pursued further. One could also introduce540

such flip-flop terms in the Hamiltonian directly, and finally one could pursue the understanding541

of less restrained hole motion, where it is allowed to move not only along a one-dimensional542

line in the lattice.543
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A Short-range correlators: square lattice549

In this Appendix, I compute the nearest and next-nearest spin correlators for the square lattice.550

The calculation is based Ref. [50]. Starting from the Hamiltonian551

ĤJ = −|J |
∑

〈i,j〉

Ŝ(z)i Ŝ(z)j = −
|J |
4

∑

〈i,j〉

ŝiŝj, (A.1)

we can express the desired correlators as552

C(1) = 4 〈Ŝ(z)0,0Ŝ(z)1,0〉= 〈ŝ0,0ŝ1,0〉 , C(
p

2) = 4 〈Ŝ(z)0,0Ŝ(z)1,1〉= 〈ŝ0,0ŝ1,1〉 . (A.2)

Here, I define ŝ = 2Ŝ(z), such that it can take on the values ±1. The nearest and next-nearest553

neighbor correlators are computed from the expression554

a0(α1,α2) =

∫ 2π

0

dθ
2π

�

(1−α1eiθ )(1−α2e−iθ )
(1−α1e−iθ )(1−α2e+iθ )

�1/2

. (A.3)

Here, the only difference between the two correlators are in the choice of the αi . Explicitly,555

C(1) : α1 = e−β |J |/2 tanh
�

β |J |
4

�

, α2 = e−β |J |/2coth
�

β |J |
4

�

,

C(
p

2) : α1 = 0, α2 =
1

sinh2
�

β |J |
2

� . (A.4)

This allows me to numerically compute these correlators. Also, a rather tedious low-temperature556

expansion shows that557

C(1)→ 1− 4e−2β |J | −
47
4

e−3β |J |,

C(
p

2)→ 1− 4e−2β |J | − 16e−3β |J |. (A.5)

The length scale arising from the mean value of the hole potential then asymptotically scales558

as559

xave =
2

C(1)− C(
p

2)
→

8
64− 47

e+3β |J | =
8
17

e+3β |J |, (A.6)

having a fast e+3β |J | scaling behavior.560

B Short-range correlators: triangular lattice561

In this Appendix, I compute the nearest and next-nearest neighbor spin correlators for ferro-562

magnetic couplings in the triangular lattice. The calculation is based on Refs. [51, 52]. The563

setup is identical to the one in the previous Appendix, albeit with the diagonal coupling ap-564

propriate for the triangular lattice. I also define v = tanh(β |J |/4). I need the nearest and565

next-nearest neighbor correlators (at distance 1 and
p

13/4)566

C(1) = 4 〈Ŝ(z)0,0Ŝ(z)1,0〉= 〈ŝ0,0ŝ1,0〉 , C(
Æ

13/4) = 4 〈Ŝ(z)1,0Ŝ(z)0,1〉= 〈ŝ1,0ŝ0,1〉 . (B.1)

The nearest-neighbor correlator is explicitly computed in Ref. [51] to be567

C(1) =

∫ π

−π

dω
2π

�

a− be+iω − ce−iω

a− be−iω − ce+iω

�1/2

, (B.2)
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with568

a = 2v(1+ v2), b = v2c = v2(1− v)2. (B.3)

The next-nearest correlator C(
p

13/4) does not seem to be explicitly computed in Stephen-569

son’s papers. However, we may use the results for 4-point correlators to get C(
p

13/4). In570

particular, slightly rewritting Eq. (2.15) in Ref. [52], I get571

〈ŝ0,0ŝ1,0ŝp,q ŝp,q+1〉=C(1)2 + (1+ v)2(1− v)2

×
�

[p− 1, q]4,3[p, q+ 1]1,6 − [p, q]1,3[p− 1, q+ 1]4,6

	

. (B.4)

Here, the notation [p, q] is short-hand for the 6× 6 matrix572

[p, q] = A−1(p, q) =

∫ π

−π

dϕ1

2π

∫ π

−π

dϕ2

2π
e−i(pϕ1+qϕ2)A−1(φ1,φ2). (B.5)

Here, A(φ1,φ2) is a specific 6 × 6 matrix depending on v,ϕ1,ϕ2, which I will return to in a573

moment. Inserting p = q = 0 in Eq. (B.4), the 4-point correlator collapses to 〈ŝ0,0ŝ1,0ŝ0,0ŝ0,1〉574

= 〈ŝ1,0ŝ0,1〉= C(
p

2), as the ŝ operators commute and ŝ2
p,q = 1. In this manner,575

C(
Æ

13/4) = C(1)2 + (1+ v)2(1− v)2
�

[−1,0]4,3[0,+1]1,6 − [0, 0]1,3[−1,+1]4,6

	

. (B.6)

The matrix that we need to invert is given in Eq. (2.4) in Ref. [52]576

A(ϕ1,ϕ2) =















0 1 1 1− v eiϕ1 1 1
−1 0 1 1 1− v ei(ϕ1+ϕ2) 1
−1 −1 0 1 1 1− v eiϕ2

−1+ v e−iϕ1 −1 −1 0 1 1
−1 −1+ v e−i(ϕ1+ϕ2) −1 −1 0 1
−1 −1 −1+ v e−iϕ2 −1 −1 0















. (B.7)

Here, I perform the inversion of the matrix in Mathematica. I express the result in terms of577

the cofactor matrix C: A−1 = C T/∆, where C T is the transpose of C and ∆ = det(A) is the578

determinant. Explicitly,579

∆= (1+ v)2
�

(1+ v2)3 + 8v3

(1+ v)2
− 2v(1− v)2 {cos(ϕ1) + cos(ϕ2) + cos(ϕ1 +ϕ2)}

�

(B.8)

Transforming the variables as θ = −ϕ2,ω = ϕ1 +ϕ2, one can express the determinant in the580

form581

∆(θ ,ω) = (1+ v)2 [A+ B cos(θ ) + C sin(θ )] . (B.9)

Here,582

A=
(1+ v2)3 + 8v3

(1+ v)2
− 2v(1− v)2 cos(ω), (B.10)

B = −2v(1− v)2 [1+ cos(ω)] , (B.11)

C = 2v(1− v)2 sin(ω). (B.12)

Moreover, we need combonents C3,4, C6,1, C3,1 and C6,4 to compute the correlator. First,583

C3,4(ϕ1,ϕ2) = (1+ v)
�

[1− v(1− 2v)]− v [2− v(1− v)] e−i(ϕ1+ϕ2) − v(1− v)
�

e−iϕ1 + e−iϕ2
�	

= (1+ v)
�

[1− v(1− 2v)]− v [2− v(1− v)] e−iω − v(1− v)
�

e−i(ω+θ ) + eiθ
�	

= (1+ v)
�

D+ Ee−iω + F
�

e−i(ω+θ ) + eiθ
�	

, (B.13)
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with584

D = [1− v(1− 2v)] , E = −v [2− v(1− v)] , F = −v(1− v). (B.14)

Second,585

C6,1(ϕ1,ϕ2) = −(1+ v)
�

D+ Ee+i(ϕ1+ϕ2) + F
�

e+iϕ1 + e+iϕ2
�	

= −C∗3,4(ϕ1,ϕ2)

= −(1+ v)
�

D+ Ee+iω + F
�

e+i(ω+θ ) + e−iθ
�	

. (B.15)

Third,586

C3,1(ϕ1,ϕ2) = −(1+ v)
�

−(1− v) + v2(1− v)e+i(ϕ1−ϕ2) + v(1+ v)
�

e+iϕ1 + e−iϕ2
�	

= −(1+ v)
�

−(1− v) + v2(1− v)e+i(ω+2θ ) + v(1+ v)eiθ
�

e+iω + 1
�	

. (B.16)

And finally,587

C6,4(ϕ1,ϕ2) = −(1+ v)
�

−(1− v) + v2(1− v)e−i(ϕ1−ϕ2) + v(1+ v)
�

e−iϕ1 + e+iϕ2
�	

= C∗3,1(ϕ1,ϕ2)

= −(1+ v)
�

−(1− v) + v2(1− v)e−i(ω+2θ ) + v(1+ v)e−iθ
�

e−iω + 1
�	

. (B.17)

Now, I will the terms in Eq. (B.6) explicitly. First,588

[−1, 0]4,3 =

∫ π

−π

dϕ1

2π

∫ π

−π

dϕ2

2π
eiϕ1

C3,4(ϕ1,ϕ2)

∆(ϕ1,ϕ2)
=

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

ei(ω+θ ) C3,4(ω,θ )

∆(ω,θ )

=
1

1+ v

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

F + (Deiω + E)eiθ + Feiωe2iθ

A+ B cos(θ ) + C sin(θ )

=
1

1+ v

∫ π

−π

dω
2π

�

F I0(ω) + (Deiω + E)I1(ω) + Feiω I2(ω)
�

. (B.18)

Here, I follow Stephenson [51] and define589

In(ω) =

∫ π

−π

dθ
2π

einθ

A+ B cos(θ ) + C sin(θ )
=

αn

(A2 − B2 − C2)1/2
. (B.19)

Importantly, this integral is solved exactly. Here, α = [(A2 − B2 − C2)1/2 − A]/[B − iC]. I,590

furthermore, define In,m =
∫ π

−π dωeimω In(ω)/(2π). Then591

[−1,0]4,3 =
1

1+ v

∫ π

−π

dω
2π

�

F I0(ω) + (Deiω + E)I1(ω) + Feiω I2(ω)
�

=
1

1+ v

�

DI1,1 + EI1,0 + F(I0,0 + I2,1)
�

. (B.20)

Likewise,592

[0,1]1,6 =

∫ π

−π

dϕ1

2π

∫ π

−π

dϕ2

2π
e−iϕ2

C6,1(ϕ1,ϕ2)

∆(ϕ1,ϕ2)
=

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

eiθ C6,1(ω,θ )

∆(ω,θ )

= −
1

1+ v

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

F + (D+ Eeiω)eiθ + Feiωe2iθ

A+ B cos(θ ) + C sin(θ )

= −
1

1+ v

∫ π

−π

dω
2π

�

F I0(ω) + (D+ Eeiω)I1(ω) + Feiω I2(ω)
�

= −
1

1+ v

�

DI1,0 + EI1,1 + F(I0,0 + I2,1)
�

(B.21)
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which is very similar to [−1,0]4,3. Moreover,593

[0, 0]1,3 =

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

C3,1(ω,θ )

∆(ω,θ )

= −
1

1+ v

�

−(1− v)I0,0 + v2(1− v)I2,1 + v(1+ v)(I1,1 + I1,0)
�

. (B.22)

And finally,594

[−1,+1]4,6 =

∫ π

−π

dω
2π

∫ π

−π

dθ
2π

ei(ω+2θ ) C6,4(ω,θ )

∆(ω,θ )

= −
1

1+ v

�

−(1− v)I2,1 + v2(1− v)I0,0 + v(1+ v)(I1,1 + I1,0)
�

. (B.23)

So, to compute C(
p

13/4), I need to compute the four terms I0,0, I1,0, I1,1, I2,1.595

C Localization length in the ferromagnetic phase for large |J |/t596

In this Appendix, I derive the average distance between spin flips in the ferromagnetic phase.597

I then use this to calculate what the asymptotic localization length is at low temperatures and598

large |J |/t.599

First, in a lattice with z nearest neighbor interactions, the probability to have a single600

spin flip is proportional to the Boltzmann factor pflip = e−zβ |J |/2. Here z = 4, 6 correspond601

to the square and triangular lattices, respectively. This means that at low temperatures, the602

probability to find a strip of length l ≥ 1 with exactly one spin flip at the end is proportional to603

pflip[1− pflip]l−1. Since the normalization constant is simply unity, A=
∑∞

l=1 pflip[1− pflip]l−1
604

= pflip
∑∞

l=0[1− pflip]l = 1, the probability to find such a segment of length l is605

P(l) = pflip[1− pflip]
l−1. (C.1)

The average length of such a segment gives the mean distance between spin flips (along a line)606

at low temperatures607

lflip = 〈l〉=
∞
∑

l=1

l P(l) = pflip

∞
∑

l=1

l[1− pflip]
l−1 = pflip

d
dr

∞
∑

l=0

r l
�

�

�

r=1−pflip

= pflip
d
dr

1
1− r

�

�

�

r=1−pflip

= pflip
1

p2
flip

= p−1
flip = ezβ |J |/2. (C.2)

Now, spin flips along any of the three lines y = −1, 0,+1 will give a change of −|J |/2 in the608

potential. However, at low temperatures we may treat the legs as independent. As a result,609

taking the other legs into account will not alter this asymptotic result.610

Second, I now use this average distance to calculate the localization length for |J |/t � 1.611

In this limit, the hole is effectively a single particle in a one-dimensional infinite square well612

potential of length lflip. Now, the initial state is centered at x = 0. Since it is on a single lattice613

site, in this continuum limit I will take it to be a constant with width 1 (in units of the lattice614

spacing)615

Ψ(x , t = 0) = 1, −1/2≤ x ≤ +1/2. (C.3)
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Since this is even, there is only an overlap with the even eigenfunctions, ψ2n+1(x) =
Æ

2/lflip616

cos[(2n+ 1)πx/lflip], where n= 0,1, 2, . . . . The overlaps are then617

c2n+1 = 〈ψ2n+1|Ψ(t = 0)〉=
∫ +1/2

−1/2

d xψ2n+1(x) =
2
Æ

2lflip
(2n+ 1)π

sin

�

(2n+ 1)π
2lflip

�

. (C.4)

To compute the asymptotic mean-square distance, 〈x2〉 =
∑

n |c2n+1|2 〈ψ2n+1| x2 |ψ2n+1〉, we618

need the mean-square distance for each of the contributing eigenfunctions. These are619

〈ψ2n+1| x2 |ψ2n+1〉=
2

lflip

∫ +lflip/2

−lflip/2
d x x2|ψ2n+1(x)|2 =

l2
flip

4

�

1
3
−

2
(2n+ 1)2π2

�

. (C.5)

The resulting asymptotic mean-square distance is620

〈x2〉=
∑

n

|c2n+1|2 〈ψ2n+1| x2 |ψ2n+1〉=
∑

n

|c2n+1|2
l2
flip

4

�

1
3
−

2
(2n+ 1)2π2

�

→
l2
flip

12
. (C.6)

Here, I use that the 1/(2n + 1)2 term will contribute with a term linear in lflip, which is ex-621

ponentially small compared to lflip at low temperatures. Note that this asymptotic behavior622

is actually independent of the particular choice of the initial state in Eq. (C.3), because only623

the common l2
flip/12 part for the mean-square distance is retained. Hence, the asymptotic rms624

distance is625

xrms→
Æ

〈x2〉=
lflip

2
p

3
=

ezβ |J |/2

2
p

3
. (C.7)

This is valid in the limit of strong spin couplings, |J |/t � 1, and at low temperatures, β |J | � 1.626

D Entropy for antiferromagnetic couplings627

In this Appendix, I calculate the entropy as a function of temperature for antiferromagnetic628

couplings, both for the square and triangular lattice.629

The calculation is carried through by using the thermodynamic relation F = U − TS, be-630

tween the free energy F , the average energy U = 〈ĤJ 〉, and the entropy, S. In particular, both631

for the square and triangular lattice there are explicit expressions for F and U , whereby the632

entropy per particle may readily be computed as633

S
kBN

=
β

N
[U − F], (D.1)

with β = 1/(kB T ) the inverse temperature. For the square lattice in particular [53,54],634

−β
F
N
= ln

�

2cosh
�

β |J |
2

��

+
1
π

∫ π/2

0

dϕ ln [ f (k,ϕ)] , (D.2)

with f (k,ϕ) = 1
2

�

1+ (1− k2(β |J |) sin2ϕ)1/2
	

and k(β |J |) = 2 sinh(β |J |/2)/ cosh2(β |J |/2).635

From the relation U = 〈ĤJ 〉= −∂β ln(Z), where Z = tr[e−β ĤJ ] = e−βF is the partition function,636

it follows that F = − ln(Z)/β , and hereby637

U
N |J |

= −∂β |J |
�

−
βF
N

�

=

1
2

tanh[
β |J |

2
] +

1− 2tanh(β |J |/2)
cosh(β |J |/2)

k(β |J |)
1
π

∫ π/2

0

dϕ f −1(k,ϕ)(1− k2 sin2ϕ)−1/2. (D.3)
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The integrals appearing in Eqs. (D.2) and (D.3) are easily solved numerically. By insertion in638

Eq. (D.1), we hereby have the entropy per particle for the square Ising lattice.639

For the triangular lattice, there are also exact expressions. The free energy can be calcu-640

lated from [27]641

−β
F
N
= ln

�

2e−βJ/4 cosh
�

βJ
2

��

+
1

2π2

∫ π

0

dω1

∫ π

0

dω2 ln
�

1+ 4κ cos(ω1) cos(ω2)− 4κ cos2(ω2)
�

, (D.4)

where κ(βJ) = [e−βJ − 1]/[e−βJ + 1]2. Moreover, there is a closed form expression for the642

average energy [28],643

U
NJ
=

1
2(1−µ)

�

1−
4µ(3−µ)

4
p

|µ|+
p

(|µ|+ 1)3(3− |µ|)
2
π

K(x)

�

, (D.5)

where µ = 1 − 2tanh(−βJ/2), K(x) is the complete elliptic integral of the first kind, and644

x(βJ) = [4
p

|µ| −
p

(|µ|+ 1)3(3− |µ|) ]/[4
p

|µ| +
p

(|µ|+ 1)3(3− |µ|)]. By inserting Eqs.645

(D.4) and (D.5) into Eq. (D.1), we thus obtain the entropy per particle for the triangular Ising646

lattice.647
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