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Abstract

The Inozemtsev chain is an exactly solvable interpolation between the short-range Hei-
senberg and long-range Haldane–Shastry (HS) chains. In order to unlock its potential
to study spin interactions with tunable interaction range using the powerful tools of
integrability, the model’s mathematical properties require better understanding. As a
major step in this direction, we present a new generalisation of the Inozemtsev chain
with spin symmetry reduced to U(1), interpolating between a Heisenberg XXZ chain and
the XXZ-type HS chain, and integrable throughout. Underlying it is a new quantum many-
body system that extends the elliptic Ruijsenaars system by including spins, contains the
trigonometric spin-Ruijsenaars–Macdonald system as a special case, and yields our spin
chain by ‘freezing’. Our models have potential applications from condensed-matter to
high-energy theory, and provide a crucial step towards a general theory for long-range
integrability.
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1 Introduction18

Recent years brought tremendous progress for trapped-ion and cold-atom experiments, and19

low-dimensional systems with tunable spin-spin interactions can now be engineered [1–4].20

Wheareas such systems inherently have long-range spin interactions, theoretical studies of-21

ten assume drastically simplified nearest-neighbour interactions. Long-range spin interactions22

also find applications in quantum information and computing [5–7] and pose fundamental23

questions about e.g. causality [8–11]. In 1+ 1 dimensions, (quantum) integrable models are24

exactly solvable thanks to underlying symmetries. Such models may thus offer exciting op-25

portunities to study the effects of long-range interactions using exact analytical methods. Yet26

such models are rare, and the theory behind them is incomplete.27

Main results. We introduce two new integrable long-range models with spins:28

a (quantum) spin chain;

a quantum many-body system (QMBS),
of particles with spins moving on a circle.

29

As we shall see, the two models are closely related. Besides having potential applications in30

both condensed-matter and high-energy theory, our models shed light on the three-decade old31

open problem to understand the integrability of the Inozemtsev chain.32

The spin chain. Until recently, the study of integrable long-range spin chains focused on33

isotropic (i.e. SU(2)-symmetric) models, with hamiltonian of the form34

H iso =
1
2

N
∑

i< j

V̄ (i − j)
�

1− σ⃗i · σ⃗j

�

=
N
∑

i< j

V̄ (i − j)
�

1− Pi j

�

, (1)

where we consider a chain of N spins, V̄ (x) is a pair potential setting the interaction range,35

σ⃗ = (σx ,σ y ,σz) are the Pauli spin matrices, and Pi j = (1+ σ⃗i · σ⃗j)/2 is the spin permutation36

operator. The Haldane–Shastry (HS) chain [12,13] is given by (1) with pair potential37

V̄ HS(x) =
1
r2

, r = N
π sin
�

�

π
N x
�

� , (2)

which is the critical case for long-range order (cf. [8, 10, 14]). It can be engineered with38

trapped ions [15] and is a lattice toy model for the fractional quantum Hall effect [16,17] and39

Wess–Zumino–Witten CFT [18–21]. This model is connected (Fig. 1) to the nearest-neighbour40

Heisenberg XXX chain through the Inozemtsev chain [22], whose hamiltonian H Ino is given by41

(1) with42

V̄ Ino(x) = ℘(x) + cst (3)

2
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Figure 1: Landscape of integrable long-range spin chains, including the Heisenberg
and Haldane–Shastry chains and their partially isotropic extensions. We find the spot
marked ‘X’.

the Weierstraß elliptic function. This pair potential generalises (2) by including a second,43

imaginary period that sets the interaction range. Widely believed to be integrable [17,23], H Ino
44

offers the tantalising possibility to study a spin system analytically as one tunes the interaction45

range. First, however, the toolkit of integrability needs to be developed further: there is a46

conjecture for the conserved charges of H Ino [24,25], but no underlying algebraic structure is47

known. This is an important open problem in the theory of integrability [17]. To unveil such48

structures we shall break the spin symmetry of H Ino in a controlled way.49

The HS chain has a partially isotropic (i.e. U(1)-symmetric) extension retaining its key50

properties, the deformed HS chain [26–28]. Our first new long-range model likewise deforms51

H Ino, generalising the Inozemtsev and deformed HS chains as in Fig. 1 while remaining inte-52

grable. The partially isotropic generalisation of 1− Pi j from (1) comes in two ‘chiralities’, with53

deformed permutations transporting either spin to the other, for a deformed exchange, followed54

by transport back. Like in (1), a potential sets the interaction range; it is a ‘point splitting’ of55

(3) as anticipated in [23].56

The QMBS. Unlike for nearest-neighbour models, integrability of long-range spin chains57

hinges on connections to QMBSs of Calogero–Sutherland (CS) and Ruijsenaars type. This58

is best understood for HS (see also [29]):59

i. its exact wavefunctions come from a spinless trigonometric CS system [16,30],60

ii. its conserved charges stem from a trigonometric CS system with spins by ‘freezing’ [30–61

32],62

and the enhanced (Yangian) spin symmetry of HHS arises from (ii) too [30, 33]. These con-63

nections persist at the partially isotropic level, where trigonometric CS is generalised to the64

‘relativistic’ trigonometric Ruijsenaars–Macdonald (RM) system [26,28,30] (Fig. 2). For H Ino
65

only (i) was properly understood, via the elliptic CS system [23,34]. Here, we add (ii): our spin66

chain arises by freezing an elliptic dynamical spin-Ruijsenaars system. This QMBS is our second67

new long-range model (Fig. 2). Despite its supporting role here, it is clearly of independent68

theoretical interest. We shall prove the commutativity of its hamiltonians elsewhere.69

Outline. While we focus on spin 1/2, all our results extend to multi-component versions70

with several particle ‘species’ (‘colours’).1 In Section 2, we introduce our new long-range spin71

chain, discuss how it satisfies the defining properties introduced above, and compute two72

new limits: an intermediate refinement of the Inozemtsev chain, and the short-range limit.73

We furthermore point out some interesting new features. In Section 3, we construct a novel74

QMBS and discuss its properties. We moreover outline how ‘freezing’ this QMBS yields our75

1 Simply replace (8) by the dynamical glr R-matrix [35].
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Figure 2: Landscape of integrable QMBS with spins, including Calogero–Sutherland
(CS) and Ruijsenaars–Macdonald (RM). Without lattice spacing as an infrared cutoff,
the short-range limit is absent. We find the spot marked ‘eX’.

spin chain, thereby connecting the commutativity of their respective charges and hence their76

integrability. We conclude in Section 4. The appendices contain all relevant information about77

the elliptic functions (Appendix A) and R-matrix (Appendices B–C) that we will need.78

2 The spin chain79

2.1 Hamiltonians80

Consider N spin-1/2 sites equispaced on a circle. The deformed Inozemtsev chain has ‘chiral’81

hamiltonians82

H L =
N
∑

i< j

V(i − j)SL
[i, j] , HR =

N
∑

i< j

V(i − j)SR
[i, j] . (4)

Let ρ(x) = θ ′(x)/θ (x), where θ (x) is the odd Jacobi theta function with quasiperiods iπ/κ83

and N , which we view as a periodisation of a hyperbolic sine:84

θ (x) =
sinh(κ x)
κ

∞
∏

n=1

sinh[κ (N n+ x)] sinh[κ (N n− x)]
sinh2(Nκn)

=
sinh(κ x)
κ

+O(p2) , (5)

with nome p = e−Nκ, see Appendix A for more.85

The potential is86

V(x) =
ρ(x −η)−ρ(x +η)

θ (2η)
∼

1
sn(x +η) sn(x −η)

, (6)

with anisotropy parameter η. Here sn is the Jacobi elliptic sine function, see (A.6).87

The long-range spin interactions SL
[i, j] and SR

[i, j] are deformations of the isotropic long-88

range spin exchange interaction Ei j = (1− Pi j)/2 = (1− σ⃗i · σ⃗j)/4 in (1). The latter admits89

two ‘chiral’ decompositions into nearest-neighbour steps:90

Ei j = Pj−1, j · · · Pi+1,i+2 Ei,i+1 Pi+1,i+2 · · · Pj−1, j

= Pi,i+1 · · · Pj−2, j−1 E j−1, j Pj−2, j−1 · · · Pi,i+1 .
(7)

The structure on the right-hand side persists to the partially isotropic level, with suitable re-91

placements for both the spin permutation P and the nearest-neighbour spin interaction E.92

These are both built from Felder’s dynamical R-matrix [36]93

Ř(x , a) =







1 0 0 0
0 f (η, x ,η a) f (x ,η,η a) 0
0 f (x ,η,−η a) f (η, x ,−η a) 0
0 0 0 1






, f (x , y, z) =

θ (x)θ (y + z)
θ (x + y)θ (z)

, (8)
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depending on a ‘dynamical’ parameter a. It satisfies the dynamical Yang–Baxter equation, see94

Appendix B. The deformed spin permutation is95

Pi,i+1(x) = Ři,i+1

�

x , a− (σz
1 + · · ·+σ

z
i−1)
�

= ···

x ′′

x ′′

x ′

x ′

···a , x = x ′ − x ′′ , (9)

where the ith and i + 1st spins cross, carrying along their ‘inhomogeneity’ parameters x ′, x ′′.96

The dynamical parameter a is shifted by the spin-z to the left of the R-matrix. On the usual97

spin basis labelled by s j equal to ↑≡ +1 or ↓≡ −1 for each 1⩽ j ⩽ N this means98

Pi,i+1(x) |s1, . . . , sN 〉= |s1, . . . , si−1〉

⊗ Ř
�

x , a−
∑i−1

k=1 sk

�

|si , si+1〉
⊗ |si+1, . . . , sN 〉 ,

so, for example, P23(x) = |↑〉〈↑| ⊗ Ř(x , a− 1) + |↓〉〈↓| ⊗ Ř(x , a+ 1). The properties of these99

deformed spin permutations are collected in Appendix B.100

Finally, the deformed nearest-neighbour spin exchange is defined from (9) as101

Ei,i+1(x) =
1

θ (η)V(x)
Pi,i+1(−x) P ′i,i+1(x) = ···

x ′

x ′

x ′′

x ′′

···a , x = x ′ − x ′′ . (10)

This definition, in which we factor out the potential (6), is chosen such that both (6) and (10)102

have the appropriate limits, as we will see in Section 2.2. The explicit 4×4 matrix determining103

(10) is given in Appendix C. Unlike the potential, it depends on a. While the dependence on104

x is new compared to the Inozemtsev and deformed HS chains, this feature is shared by the105

elliptic long-range spin chain of Matushko and Zotov [37,38], as well as in all degenerations106

thereof.107

Together, the deformed permutation (9) and deformed exchange (10) define the chiral108

long-range spin interactions SL
[i, j] and SR

[i, j] diagrammatically as109

SL
[i, j] =

N

N

···

···

j

j

···

···

i

i

···

···

1

1

··· ···a , SR
[i, j] =

1

1

···

···

i

i

···

···

j

j

···

···

N

N

······a . (11)

Here each site 1 ⩽ k ⩽ N has a fixed inhomogeneity parameter x⋆k = k. Thus, the deformed110

long-range spin interactions (11) read111

SL
[i, j] = Pj−1, j(1) · · · Pi+1,i+2( j − i − 1) Ei,i+1(i − j) Pi+1,i+2(i − j + 1) · · · Pj−1, j(−1) , (12)

SR
[i, j] = Pi,i+1(1) · · · Pj−2, j−1( j − i − 1) E j−1, j(i − j) Pj−2, j−1(i − j + 1) · · · Pi,i+1(−1) , (13)

in clear analogy to the first and second line, respectively, of the decompositions in (7).112

Examples. At N = 3 the chiral long-range spin interactions read113

SL
[1,2] = E12(−1) , SL

[2,3] = E23(−1) , SL
[1,3] = P23(1) E12(−2) P23(−1) ,

SR
[1,2] = E12(−1) , SR

[2,3] = E23(−1) , SR
[1,3] = P12(1) E23(−2) P12(−1) .

(14)

5
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For higher N the first few terms look exactly the same, with dependence on N residing in the114

real (quasi)period of the entries of Ei,i+1(x) and Pi,i+1(x). At N = 4 we further need115

SL
[3,4] = E34(−1) , SL

[2,4] = P34(1) E23(−2) P34(−1) ,

SL
[1,4] = P34(1) P23(2) E12(−3) P23(−2) P34(−1) ,

(15a)

for the left-chiral interactions, and for the right-chiral ones116

SR
[3,4] = E34(−1) , SR

[2,4] = P23(1) E34(−2) P23(−1) ,

SR
[1,4] = P12(1) P23(2) E34(−3) P23(−2) P12(−1) .

(15b)

In general one obtains SL
[i, j] from SL

[1, j−i+1] by shifting all subscripts k, k+ 1 to k+ i − 1, k+ i.117

The same holds for SR
[i, j]. Note that the SL

[i, j] have the same structure as in [27] and the SR
[i, j]118

look like in [28], the difference being the choice of R-matrix.119

2.2 Properties and limits120

While the hamiltonians (4) are more complex than in the isotropic case (1), their ingredients121

have clear physical meanings: a potential (6), a deformed permutation (9), and a deformed122

spin exchange (10). There are four parameters: the length N ⩾ 2, κ > 0 tuning the interaction123

range, the anisotropyη, and the dynamical parameter a.2 The spectrum is real ifη is imaginary124

(i.e. the regime |∆|> 1 for the Heisenberg XXZ spin chain) and a real.125

Defining properties. The chain (4) contains the Inozemtsev and deformed HS chains as in126

Fig. 1, and is integrable. Let us explain.127

When η→ 0 we retrieve the isotropic Inozemtsev hamiltonian H Ino given by (1) and (3).128

Indeed, (6) becomes −ρ′(x) = V̄ Ino(x) from (3), and both (12)–(13) yield 1− Pi j up to a con-129

jugation that is removed by a→−i∞, since then Pi,i+1(x)→ Pi,i+1 and Ei,i+1(x)→ 1− Pi,i+1.130

At κ= 0 we find the deformed HS chain, again up to a conjugation that disappears if a is re-131

moved. The potential (6) has the long-range limit V tri(x) = (πN )
2/ sin[πN (x+η)] sin[

π
N (x−η)].132

If moreover η a→−i∞, the exchange (10) becomes independent of x , namely133

Etri =







0 0 0 0
0 q−1 −q 0
0 −q−1 q 0
0 0 0 0






, q = eπiη/N , (16)

acting at sites i, i + 1. The deformed permutation (9) reduces to the operator134

Řtri(x) = 1−
sin(πN x)

sin[πN (x +η)]
Etri (17)

at sites i, i + 1. We will discuss the algebraic meaning of (16)–(17) in Section 2.3. Thus we135

obtain the deformed HS chain, which is still chiral and of the form (4). Further letting η→ 0,136

both reduce to the isotropic HS hamiltonian HHS, which is also obtained from H Ino as κ→ 0.137

Finally, our model is integrable in the sense that the chiral hamiltonians (4) commute,138

[H L, HR] = 0 , (18)

belonging to a tower of conserved charges whose expressions parallel those in [28,37], see [39].139

2 These parameters have some constraints, since the potential (6) has poles at 2η = Nk + iπ l/κ for k, l ∈ Z,
and the entries of (8) have poles at η a = N k+ iπ l/κ.

6
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Further properties. The ordinary Inozemtsev chain has full SU(2) spin symmetry. Our chain140

is its generalisation with spin symmetry broken to U(1): our conserved charges all commute141

with Sz =
∑

i σ
z
i /2.142

Like the deformed HS chain, the spin interactions (11) involve multispin interactions af-143

fecting all intermediate spins, whence the subscript ‘[i, j]’. While η ̸= 0 breaks periodicity, our144

chain has quasiperiodic boundary conditions. One of the conserved charges is the deformed145

(lattice) translation operator (cf. [27])146

G =

1

1

2

2

···

···

N

N

a = KN PN−1,N (1− N) · · · P12(−1) , KN = e−κη[a−(σ
z
1+···+σ

z
N−1)]σ

z
N . (19)

Here KN is a diagonal twist, e−κηaσz
= diag(e−κηa , eκηa), acting at site N with a shift of a as147

in (9). Upon normalisation, (2.2) provides a notion of momentum, plus all N eigenvectors148

at Sz = N/2 − 1 (cf. §1.2.6 in [28]), i.e. the magnons of our chain. We have not yet been149

able to find an expression for the dispersion relation. Moreover, (2.2) allows us to express the150

long-range interaction of neighbouring spins on sites 1 and N as151

SL
[1,N] = G SL

[1,2] G
−1, SR

[1,N] = G−1SR
[N−1,N] G , (20)

underlining the chirality of the hamiltonians (4).152

New limits. Our chain has various new limits. For N → ∞ we formally get a hyperbolic153

counterpart of the deformed HS chain, with N ↭ iπ/κ and sum in (4) over all integers.154

Numerics suggests that its matrix entries converge.155

As discussed in the previous section, the limit η→ 0 yields the Inozemtsev spin chain (up156

to a conjugation). Interestingly, this limit can be refined to obtain an intermediate spin chain157

that seems to be new, by setting a = a′/η before sending η → 0. This does not affect the158

limits of the potential and deformed spin permutation, but changes the limit of the deformed159

exchange (10) as a function of a′. Both chiral hamiltonians (4) then limit to160

H Ino(a′) =
1
2

N
∑

i< j

�

φ′(i − j, a′)
σ+i σ

−
j

2
+φ′(i − j,−a′)

σ−i σ
+
j

2
+ V̄ Ino(i − j)1−σz

iσ
z
j )
�

, (21)

where φ′ is the derivative with respect to the first variable of φ(x , y) = θ (x+ y)/[θ (x)θ (y)].161

The hamiltonian (21) generalises H Ino from (1) and (3) with an extra parameter a′ that breaks162

the left-right symmetry and SU(2) spin symmetry. Unlike for η ̸= 0, (21) is not dynamical in163

the sense that the parameter a′ does not receive any shifts as in e.g. (9). The spectrum is164

a′-dependent and real when a′ ∈ iR. The isotropic Inozemtsev chain is retrieved by sending165

a′→ 0 or a′→ iπ/κ, since then φ′(x , a′)→ ρ(x) = −V̄ Ino(x).166

Finally, we turn to the short-range limit κ→∞. It is convenient to represent the potential167

(6) as the sum168

ρ(x +η)−ρ(x −η) =
∑

n∈Z

2κ sinh(2κη)
sinh[κ(η+ x + N n)] sinh[κ(η− x − N n)]

=
∑

n∈Z

4κ sinh(2κη)
cosh(2κη)− cosh[2κ (N n+ x)]

.
(22)

For a convergent but non-zero limit as κ →∞ we must also send η → 0 with κη fixed so169

that cosh(2κη) becomes constant. Thus we set η = −iπγ/κ and rescale (22) by a prefactor170

7
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behaving as nη(κ)∼ e2κ/[4κ sinh(2κη)] to obtain171

n−iπγ/κ(κ)
�

ρ(x − iπγ/κ)−ρ(x + iπγ/κ)
�

→ δx ,1+δx ,N−1 , κ→∞ , x ∈ {1, . . . , N −1} .
(23)

A choice of normalisation that fits with all other limits is to rescale the hamiltonians (4) by172

nη(κ) = sinh2κ/[κ2 θ (2η)]. This is why we choose denominator θ (2η) in the potential (A.6)173

rather than the 2η from [23]; when η → 0 the two have the same behaviour. Therefore, as174

κ→∞, we get a nearest-neighbour chain175

HXXZ =
N−1
∑

i=1

SH
[i,i+1] + SH

[1,N] . (24)

Here, the exchange SH
[i,i+1] = EH

i,i+1

�

a − (σz
1 + · · ·+σ

z
i−1)
�

is defined like in (9) in terms of a176

generalisation of (16):177

EH(a) =











0 0 0 0
0 sin[πγ(a−1)]

sin[πγa] − sin[πγ(a+1)]
sin[πγa] 0

0 − sin[πγ(a−1)]
sin[πγa]

sin[πγ(a+1)]
sin[πγa] 0

0 0 0 0











. (25)

Since the two expressions in (20) coincide, the boundary term in (24) admits two forms178

SH
[1,N] = GH SH

[1,2] G
H−1 = GH−1SH

[N−1,N] G
H , (26)

where (2.2) becomes GH = KH
N P H

N−1,N · · · P
H
12, with twist eiπγaσz

and permutation built from179

ŘH(a) = 1 − e−iπγEH(a) as in (9). Note that the arguments x have completely disappeared.180

This R-matrix also appeared in a slightly different form in [40], see (5.28) therein.181

The short-range limit (24) is a ‘dynamical’ variant of the Heisenberg XXZ chain. It is no182

longer chiral, but remains quasiperiodic, since the twist in (26) prevents removing a. When183

γ→ 0 we obtain, once more up to a conjugation that vanishes as a→−i∞, the usual periodic184

Heisenberg XXX chain (Fig. 1).185

2.3 Discussion186

Form of spin interactions. The long-range interactions (11) are very specific generalisations187

of 1− Pi j . The need for such involved interactions is more clear for the deformed HS chain,188

so as to maintain the HS chain’s integrability, enhanced spin symmetry, and extremely simple189

exact spectrum [27,28]. In turn generalising the deformed HS chain, our spin chain must have190

similar spin interactions.191

Choice of R-matrix. The deformed HS chain already uses an R-matrix in its deformed per-192

mutations, viz. (17). Its enhanced spin symmetry requires [30,33] Řtri to be related (by ‘Bax-193

terisation’) to the Hecke algebra — and, for spin 1/2, the Temperley–Lieb algebra, see (28)194

below. This necessarily leads to some asymmetry (P Ř P ̸= Ř) as in (16). Now, at the partially195

isotropic level, an elliptic potential asks for an R-matrix with elliptic functions, cf. (??). The196

standard choices are197

• Baxter’s eight-vertex (XYZ) R-matrix: P Ř8v P = Ř8v, which generalises the symmetric198

six-vertex (XXZ) R-matrix;199

• Felder’s elliptic dynamical R-matrix (8) [36]: Sz-symmetric, which generalises the R-200

matrix (17).201

8
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They are related by a (‘face-vertex’) transformation [41],202

Ř8v(x i − x j) T (x i , x j , a) = T (x j , x i , a) Ř(x i − x j , a) . (27)

One might expect the corresponding spin chains to be equivalent. Yet the resulting deformed203

exchanged interactions (10), containing a derivative in x , are not related by the x-dependent204

transformation (27). It appears impossible to obtain (17) from Ř8v without (27).3 Hence our205

spin chain differs from the (fully) anisotropic chain recently found by Matushko and Zotov206

using Ř8v [43], which belongs to a landscape disjoint from Fig. 1 [39]. See [38] for a detailed207

analysis of this fact.208

Modular family. As we will see below, ‘freezing’ in fact produces an SL(2,Z)-family of inte-209

grable longe-range spin chains. Only two of these have a real spectrum for some parameter210

range, of which only (4) has a short-range limit. At the isotropic level this choice corresponds211

to shifting℘(x) to−ρ′(x) [22,34]; this shift also simplifies the dispersion and Bethe equations,212

and allows the latter to be recast in rational form [23].213

Algebraic structure at short range. The operators ei ≡ SH
[i,i+1] in (24) obey the Temperley–214

Lieb (TL) relations215

e2
i = 2cos(πγ) ei , 1⩽ i ⩽ N − 1 , ei ei±1 ei = ei , 1⩽ i ⩽ N − 2 . (28)

The boundary term (26) is a ‘braid translation’ [44], and e0 ≡ SH
[1,N] obeys the periodic TL216

relations, i.e. the preceding extended to subscripts mod N . The translation u∝ GH enhances217

this to the affine TL algebra,218

u ei u−1 = ei−1 mod N , 1⩽ i ⩽ N , uN is central , u2 e1 · · · eN−1 = eN−1 . (29)

Thus, (24) is a dynamical alternative to the twisted Heisenberg chain of [45], relating to the219

affine TL algebra in a similar way as the usual TL algebra underpins the Heisenberg XXZ chain220

with special open boundaries [46]. Also note that (24) resembles an unrestricted version of221

the RSOS model [47]. It provides an Sz-symmetric alternative to the TL representation from222

the conclusion of [48], enabled by the dynamical nature of our ei , cf. [49].223

3 The quantum many body system224

3.1 Hamiltonians225

Now consider N spin-1
2 particles with coordinates x j moving on a circle. Given another pa-226

rameter ε, consider the shift operator227

Γi = exp
�

−iħhε∂x i

�

, xk 7→ xk − iħhεδ jk . (30)

3 This is supported by the fact that the principal grading operator is essential in the construction of the universal
elliptic R-matrix of vertex type [42]. We thank H. Konno for pointing this out.
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Our QMBS is given by a tower of conserved charges that are difference operators built from228

(30) and the deformed permutation (9). The first conserved charge is229

eD1 =
N
∑

i=1

Ai(x )×

xN

xN

···

···

x−i

ε

x i

···

···

x1

x1

···
a

ε

x−i

x i

= Γi , x−i ≡ x i − iħhε (31)

=
N
∑

i=1

Ai(x ) Pi−1,i(x i − x i−1) · · · P12(x i − x1) Γi P12(x1 − x i) · · · Pi−1,i(x i−1 − x i)

=
N
∑

i=1

Ai(x ) Pi−1,i(x i − x i−1) · · · P12(x i − x1) P12(x1 − x−i ) · · · Pi−1,i(x i−1 − x−i ) Γi ,

with coefficients230

Ai(x ) =
N
∏

j(̸=i)

θ (x i − x j +η)

θ (x i − x j)
. (32)

We furthermore have an ‘antichiral’ version of (31),231

eD−1 =
N
∑

i=1

Ai(−x )×

x1

x1

···

···

x+i

−ε

x i

···

···

xN

xN

···
a

x+i ≡ x i + iħhε (33)

=
N
∑

i=1

Ai(−x ) Pi,i+1(x i+1 − x i) · · · PN−1,N (xN − x i) Γ
−1
i PN−1,N (x i − xN ) · · · Pi,i+1(x i − x i+1)

=
N
∑

i=1

Ai(−x ) Pi,i+1(x i+1 − x i) · · · PN−1,N (xN − x i) PN−1,N (x
+
i − xN ) · · · Pi,i+1(x

+
i − x i+1) Γ

−1
i .

These two operators commute with each other, and with the total shift operator232

eDN = Γ1 · · · ΓN . (34)

In Section 3.4 we will describe how the higher conserved charges, whose structure is like233

in [28,43,50], are constructed.234

Example. For N = 3 we have235

eD1 = A1(x ) Γ1 + A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2)

+ A3(x ) P23(x3 − x2) P12(x3 − x1) Γ3 P12(x1 − x3) P23(x2 − x3) ,
eD−1 = A3(−x ) Γ−1

3 + A2(−x ) P23(x3 − x2) Γ
−1
2 P23(x2 − x3)

+ A1(−x ) P12(x2 − x1) P23(x3 − x1) Γ
−1
1 P23(x1 − x3) P12(x1 − x2) .

(35)

3.2 Properties and limits236

Our QMBS, of which (31) and (33) are the first two commuting charges, depends on the four237

parameters of our spin chain, as well as on the shift ε.238
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Defining properties. As η → 0, again with a → −i∞, we get the (‘effective’ form of the)239

elliptic spin-CS system [51, 52]. Next, κ → 0 and a → −i∞ readily yields the spin-RM240

system [28,50] underlying the deformed HS chain [26,28,30]. See Fig. 2. Replacing P(x)⇝ 1241

gives the spinless elliptic Ruijsenaars system [53].242

Moreover, our QMBS is integrable in the sense that the difference operators all commute,243

e.g.244

[eD1, eD−1] = 0 , [eD±1, eDN ] = 0 . (36)

The second equality is clear as eD±1 only depend on coordinate differences. The first one can245

be checked explicitly for low N .246

3.3 Discussion247

Commutativity. It seems difficult to use the proof of integrability of [43], which relies heav-248

ily on the periodicity properties of Ř8v for simplifying expressions and setting up a proof by249

induction. Alas, (8) does not have such simple properties. Our proof of (36) is independent.250

In view of its technical nature it will appear elsewhere.251

Choice of R-matrix. Since (31)–(33) only differ from the spin-Ruijsenaars model found by252

Matushko and Zotov [43] in the choice of R-matrix, (27) might again lead one to expect these253

QMBSs to be equivalent. But, because the face-vertex transformation (27) depends on coor-254

dinates xk, it does not commute with the shift operators Γi . Thus our difference operators are255

not face-vertex transforms of those of MZ, and define another QMBS. As we have seen, this256

difference persists to all limiting spin chains (see [38] for more).257

Modular family. A new feature of the elliptic case is that there is an SL(2,Z)-family of clas-258

sical equilibria of (49) related by modular transformations of the quasiperiods N , iπ/κ [54].259

These equilibria can be identified by reparametrising η, a,ε, x . Upon freezing, however, each260

equilibrium yields a different integrable spin chain.261

3.4 Heuristic derivation of the QMBS262

Let us motivate how the expressions (31), (33) and (34) for the charges of our QMBS with263

spins can be ‘derived’ from the spinless QMBS known as the elliptic Ruijsenaars system. The264

latter describes N scalar particles moving on a circle with coordinates xk and is defined by the265

difference operator266

D1 =
N
∑

i=1

Ai(x ) Γi , Ai(x ) =
N
∏

j(̸=i)

θ (x i − x j +η)

θ (x i − x j)
. (37)

The operator D1 belongs to a hierarchy of conserved charges, i.e. commuting difference op-267

erators. While this commutativity holds in general, it is physically reasonable to focus on268

bosonic/fermionic wave functions with definite (anti)symmetry269

si,i+1Ψ(x ) = ±Ψ(x ) , 1⩽ i < N . (38)

The space of either type of wave functions is preserved by (37). At the same time, on either270

space, (37) is determined by any single term: if we have an operator of the form
∑

i Bi(x ) Γi271

where, say, B1(x ) = A1(x ) is as in (37), then the prescribed symmetry fixes the remain-272

ing coefficients to be as in (37) too. Indeed, on any wave function obeying (38) we have273

D1Ψ(x ) = (±s12)D1 (±s12)Ψ(x ) = s12 D1 s12Ψ(x ) since D1Ψ(x ) also obeys (38); comparing274

coefficients of Γ2 in D1 = s12 D1 s12 gives B2(x ) = s12 B1(x ) s12 = A2(x ). Likewise, equating275
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coefficients of Γ3 in D1 = s23 D1 s23 yields B3(x ) = A3(x ), and so on. This argument provides a276

useful heuristic to understand the structure of Ruijsenaars operators in more complicated set-277

tings, such as the trigonometric spin-Ruijsenaars–Macdonald system [28], the trigonometric278

and elliptic spin-Ruijsenaars systems of Matushko and Zotov [43], and ours.279

Now consider a QMBS with N spin-1/2 particles moving on a circle. To define bosons or280

fermions in our setting, the appropriate permutation operator for the particles is281

P tot
i,i+1 = si,i+1 Pi,i+1(x i − x i+1) , (39)

which exchanges both coordinates, through si,i+1, as well as spins, through Pi,i+1(x i − x i+1)282

as defined in (9). Such permutation operators form a representation of the braid group (see283

Appendix B), and reduce to the usual permutation of particles, si,i+1Pi,i+1, as η→ 0. In terms284

of this permutation operator the boson(fermion) condition is simply285

P tot
i,i+1 |Ψ〉= ±|Ψ〉 , 1⩽ i < N . (40)

Now suppose a difference operator has the form eD1 =
∑

i
eBi(x ) Γi on either space, and again286

eB1(x ) = A1(x ). The coefficient of Γ2 in eD1 = P tot
12
eD1 P tot

12 can be found by comparing287

eB2(x ) Γ2 = P tot
12
eB1(x ) Γ1 P tot

12 = s12 P12(x1 − x2)A1(x ) Γ1 s12 P12(x1 − x2)

= A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2)

= A2(x ) P12(x2 − x1) P12(x1 − x2 + iħhε) Γ2 ,

(41)

whence eB2(x ) = A2(x ) P12(x2 − x1) P12(x1 − x2 + iħhε). Similarly,288

eB3(x ) Γ3 = P tot
23
eB2(x ) Γ2 P tot

23

= s23 P23(x2 − x3)A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2) s23 P23(x2 − x3)

= A3(x ) P23(x3 − x2) P12(x3 − x1) Γ3 P12(x1 − x3) P23(x2 − x3)

= A3(x ) P23(x3 − x2) P12(x3 − x1) P12(x1 − x3 + iħhε) P23(x2 − x3 + iħhε) Γ3 ,

(42)

and so on. In this way we obtain our first difference operator (31).289

Its ‘antichiral’ counterpart eD−1 =
∑

i
eB−i(x ) Γ−1

i is likewise fixed by (40) starting from the290

coefficient eB−N (x ) = AN (−x ) and yields (33).291

More generally, the higher conserved charges eD±r =
∑N

i1<···<ir
eB±i1,...,±ir (x ) Γ

±1
i1
· · · Γ±1

ir
are292

obtained in the same way from eB1...r(x ) = A1...r(x ) =
∏

i(⩽r)

∏N
j(>r) θ (x i − x j +η)/θ (x i − x j)293

and eB−(N−r+1),...,−N (x ) = AN−r+1,...N (−x ), yielding a tower of hamiltonians, with structure like294

in [28,43,50]. In particular, the total shift operator takes the simple form eDN = Γ1 · · · ΓN .295

We emphasise that while this argument ‘explains’ the structure of our dynamical spin-296

Ruijsenaars operators, including the appearance of R-matrices, and shows that our operators297

preserve the ‘physical space’ of bosonic/fermionic vectors (40), it does not prove their com-298

mutativity (36). The proof will be published elsewhere in view of its technical nature.299

3.5 Freezing300

Let us discuss the relation between the spin-chain hamiltonians (4) and the spin-Ruijsenaars301

operators (31)–(33). We begin with a useful heuristics for deriving the spin-chain hamiltonians302

from the QMBS. Let δ = ∂ε
�

�

ε=0 denote linearisation in ε. Using δΓ j = −iħh∂x j
and the Leibniz303

rule we compute304
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δeD1 =
N
∑

j=1

A j(x )×δ

xN

xN

···

···

x−j

ε

x j

···

···

x1

x1

···
a

=
N
∑

j=1

A j(x )×−iħh






∂x j
−

j−1
∑

i=1

xN

xN

···

···

x j

x j

x i

x i

⊛

···
a






,

(43)

where the ⊛ denotes a derivative of the (deformed) permutation (9). Note that the spin and305

differential part decouple (‘spin-charge separation’). By unitarity and recognising (10) the306

spin part is307

xN

xN

···

···

x j

x j

x i

x i

⊛

···a =

xN

xN

···

···

x j

x j

x i

x i

⊛
···a

= θ (η)V (x i − x j)×

xN

xN

···

···

x j

x j

x i

x i

···a ,

(44)

which equals θ (η)V (i− j)SL
[i, j] at x⋆k = k (1⩽ k ⩽ N). The computation of δeD−1 is analogous,308

instead yielding θ (η)V (i − j)SR
[i, j]. As we will explain below, at the equispaced positions309

x⋆k = k the coefficients A j(x ⋆) = A⋆ have a common value [A⋆ = θ (η)N=1/N θ (η)]. Then we310

can conclude that311

1
iħhθ (η)

�

δeD±1 ∓
N
∑

j=1

A j(±x )δ Γ j

�

xk = x⋆k
=

1
iħhθ (η)

�

δeD±1 ∓ A⋆δeDN

�

xk = x⋆k

= A⋆
N
∑

i< j

V (i − j)SL,R

[i, j] = A⋆H L,R .

(45)

The physical picture is that ε = iη/g (cf. the ‘nonrelativistic limit’ to the spin-Calogero–312

Sutherland system) and in the classical/strong-coupling limit ħhε∝ ħh/g → 0 the kinetic en-313

ergy is negligible compared to the potential energy, and the particles slow down to come to a314

halt, ‘freezing’ at the classical equilibrium positions x⋆k = k of the spinless elliptic Ruijsenaars315

system.316

The expansion (45) gives the correct spin-chain hamiltonian, but the calculation has to be317

made more precise to turn it into a proper derivation. Here we outline how this goes; details318

will be given in [39]. Let us for a moment keep the elliptic parameter τ arbitrary by replacing319

the (odd) Jacobi theta function (5) by320

ϑ(x |τ) =
sin(π x)
π

∞
∏

n=1

sin[π(nτ+ x)] sin[π(nτ− x)]
sin2(πnτ)

. (46)
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Consider the classical spinless elliptic Ruijsenaars system with canonically conjugate coordi-321

nates x i and momenta p j , with Poisson brackets {x i , p j} = δi j . The (‘chiral’) hamiltonians322

are323

Dcl
±1 =

N
∑

i=1

e±ε pi Ai(±x ;η |τ) , Ai(x ;η |τ) =
N
∏

j(̸=i)

ϑ(x i − x j +η |τ)
ϑ(x i − x j |τ)

. (47)

These functions belong to a family of N independent Poisson-commuting quantities, which324

are the conserved charges of the classical Ruijsenaars–Schneider system [55]. Picking Dcl
1 as325

hamiltonian defines a time flow with velocities326

∂ x j

∂ t
≡ {x j , Dcl

1 }=
∂ Dcl

1

∂ p j
= ε eε p j A j(x ;η |τ) , (48a)

and momenta changing as327

∂ p j

∂ t
≡ {p j , Dcl

1 }= −
∂ Dcl

1

∂ x j
= −

N
∑

i=1

eε pi ∂x j
Ai(x ;η |τ) . (48b)

We can search for phase-space configurations (x ⋆, p⋆) ∈ C2N that satisfy the classical equilib-328

rium conditions329
∂ x j

∂ t
= εA⋆ ,

∂ p j

∂ t
= 0 , (49)

for a ( j-independent) constant A⋆. Such configurations are ‘frozen’ in the sense that they330

remain stationary in the co-moving frame with velocity A⋆. Evaluating our quantum spin-331

Ruijsenaars system at such stationary configurations and dropping all derivatives in a consis-332

tent manner yields a spin-chain hamiltonian like in (45), cf. [37].333

One equilibrium configuration solving (49) is334

x⋆j =
j

N
, p⋆j = 0 , τ=

ω

N
, (50)

(we parametriseω= iπ/κ). In this case all coefficients A j

�

x ⋆; ηN
�

�

ω
N

�

are equal to the constant335

A⋆ ≡ ϑ(η |ω)/
�

N ϑ
� η

N

�

�

ω
N

��

. This configuration is used to obtain an integrable spin chain by336

freezing for the HS and deformed HS chains [28] and was used by Matushko and Zotov [37].337

In this case the argument around (45) can be made rigorous following [37].338

However, the resulting spin chain does not admit a Heisenberg-type short-range limit. Hap-339

pily, there are many more solutions to (49), each belonging to a (lattice) parameter τ [39].340

The modular action of SL(2,Z) on τ relates these solutions. In particular, one of the other341

equilibrium configurations is342

x⋆j =
− j
ω

, p⋆j =
iπη
ωε
(N − 2 j + 1) , τ⋆ =

−N
ω

, (51)

which yields the theta function (5) as θ (x) =ωϑ
� x
ω

�

�

−N
ω

�

. Note that the positions in (51) are343

still equally spaced, albeit now along the imaginary axis. The values of the momenta in (51)344

compensate for the differences between345

A j

�

x ⋆;
−η
ω

�

�

�

−N
ω

�

= e−(N−2 j+1)ηκ ϑ
� η

ω

�

�

�

−1
ω

�

/ϑ
� η

ω

�

�

�

−N
ω

�

, (52)

so that all velocities (49) are again equal; one may think of the particles as having different346

masses. Thus, the expansion leading to (45) has to be computed more carefully, taking into347

account that Γi = eε p̂i → eε pi also contributes to the value of A⋆ = ϑ
� η
ω

�

�

−1
ω

�

/ϑ
� η
ω

�

�

−N
ω

�

;348

see [39] for details. The result is that freezing the quantum spin-Ruijsenaars system at (51)349
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yields our spin-chain hamiltonians (4) with theta functions (5). Unlike the spin chain obtained350

by freezing at (50), this spin chain admits a short-range limit, as discussed above.351

Note that (45) does not yet imply the commutativity (18) of the commuting charges of our352

spin chain. This can be proven [39] following [26, 32, 37] using the commutativity (36) for353

the spin-Ruijsenaars system. The conclusion is that the commutativity of the hamiltonians of354

our QMBS implies that for the hamiltonians of our spin chain.355

4 Conclusion356

Summary. We introduced a new integrable long-range quantum spin chain that unifies the357

Inozemtsev chain and the deformed Haldane–Shastry chain: the deformed Inozemtsev chain.358

It is obtained by ‘freezing’ a quantum many body system (QMBS) of particles with spins moving359

on a circle: the dynamical elliptic spin-Ruijsenaars system, which is also new. Both models are360

(quantum) integrable in the sense that they possess a family of conserved charges including the361

hamiltonians. The freezing procedure guarantees that the commutativity of these conserved362

charges is preserved when passing from the QMBS to the spin chain.363

Since the SU(2)-symmetric Inozemtsev chain is a limit of our U(1)-symmetric generalisa-364

tion, through our work the Inozemtsev chain, too, is embedded in the framework of freezing at365

last. It thus gives strong evidence for its integrability (existence of many conserved charges),366

although extracting explicit conserved charges from (4) requires effort, cf. Remark ii in §1.3.4367

of [28]. Moreover, our work provides a first glimpse of underlying algebraic structures via the368

appearance of R-matrices. The latter depend on an extra ‘dynamical’ parameter, not unlike369

suggestions of [17, 22]. Thus, our work presents a major step towards a general theory of370

(quantum) integrability for long-range models with spins.371

Our models differ from those of Matushko and Zotov [37, 43] in that the deformed spin372

interactions are built from the (face-type) dynamical elliptic R-matrix, rather than the (vertex-373

type) elliptic R-matrix of Baxter. Unlike for periodic nearest-neighbour chains, the two sets of374

models are not related by a face-vertex transformation. The difference has significant impli-375

cations for the physical properties, even in all limits [38].376

In addition to recovering known limits, we showed that the deformed Inozemtsev chain377

also has two new limits. Its short-range limit is a twisted Heisenberg XXZ chain that seems378

to be new and is related to the affine Temperley–Lieb algebra in the spirit of [48], certainly379

warranting further investigation. Other promising directions are RSOS specialisations, cf. [47].380

It would also be worth investigating our novel intermediate generalisation of the Inozemtsev381

spin chain depending on an extra parameter a′, which sits somewhere between the latter and382

its deformed generalisation in Fig. 1. The fact that the parameter a′ disappears in all limits383

(including infinite length) makes this model rather unique, and its solution structure could384

shed light on the particular challenges that appear at the elliptic level.385

Outlook. Our work opens up many new directions.386

The exact characterisation of the energies and eigenstates of our models is left for future387

work. The spin chain magnons, eigenstates of the (twisted) translation operator, already ex-388

hibit rich structure, making it quite non-trivial to find the dispersion relation. The eigenstates389

of both the isotropic Inozemtsev and deformed Haldane–Shastry chain rely on a connection to390

a scalar QMBS. It is natural to investigate whether our freezing procedure can produce eigen-391

states for the chain from the eigenfunctions of the scalar elliptic Ruijsenaars model [56–59]392

as well, connecting it to elliptic Macdonald theory and elliptic toroidal algebras beyond gl1,393

cf. [60]. Through suitable short-range limits, we believe this will provide a new perspective394

even on the well-known Bethe-ansatz solution of the isotropic Heisenberg chain.395
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The anisotropy of our deformed Inozemtsev chain can be set to points of special interest396

for condensed-matter theory, where it will simplify to yield new long-range models with e.g.397

free fermions or supersymmetry on the lattice, cf. [61].398

Our work also has implications for high-energy theory: long-range spin chains naturally399

appear in AdS/CFT integrability (see [62–65] and references therein), and our QMBS is closely400

related to supersymmetric gauge theories in five dimensions, cf. [60,66,67]. Finally, it provides401

a test for the conjectured spin-version of the (quantum) ‘DELL’ (double elliptic) system [66,67].402
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A Elliptic functions414

Here we summarise the definitions of the elliptic functions that we need. See [23] (where415

the functions θ and ρ defined below were decorated with a subscript ‘2’) and [39] for more416

details or the standard references [69–71].417

We use the (odd) Jacobi theta function with nome p = e−Nκ, which is a periodisation of a418

hyperbolic sine:419

θ (x) =
sinh(κ x)
κ

∞
∏

n=1

sinh[κ (N n+ x)] sinh[κ (N n− x)]
sinh2(Nκn)

=
sinh(κ x)
κ

+O(p2) . (A.1)

It is the unique odd entire function with double quasiperiodicity420

θ (x + iπ/κ) = −θ (x) θ (x + N) = −eκ(2x+N) θ (x) (A.2)

and normalisation θ ′(0) = 1. In terms of the Weierstraß sigma function with quasiperiods N421

and iπ/κ it reads422

θ (x) = eiκη2 x2/2πσ(x) , η2 = 2ζ(iπ/2κ) . (A.3)

It obeys the addition formula423

θ (x + y)θ (x − y)θ (z +w)θ (z −w) = θ (x + z)θ (x − z)θ (y +w)θ (y −w)

+ θ (x +w)θ (x −w)θ (y + z)θ (y − z) .
(A.4)

The prepotential is the logarithmic derivative424

ρ(x) =
θ ′(x)
θ (x)

= ζ(x) +
iκη2

π
x = κ coth(κ x) +O(p2) , (A.5)
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with ζ(x) = σ′(x)/σ(x) the Weierstraß zeta function. It is odd and obeys ρ(x+iπ/κ) = ρ(x),425

ρ(x + N) = ρ(x) + 2κ.426

Finally, the potential is defined as the symmetric difference quotient427

V(x) = −
ρ(x +η)−ρ(x −η)

θ (2η)
=

A
sn[B (x +η), k] sn[B (x −η), k]

+ C ,

k =

p

℘(iπ/2κ)−℘[(N + iπ/κ)/2]
p

℘(N/2)−℘[(N + iπ/κ)/2]
,

(A.6)

where the equality with Jacobi’s elliptic sine sn(x , k), with elliptic modulus k, involves con-428

stants A, C (determined by the values at x = 0, N/2) and B =
p

℘(N/2)−℘(N/2+ iπ/2κ).429

The potential is even and doubly periodic, V (x + iπ/κ) = V (x +N) = V (x). The sign in (A.6)430

is chosen such that V (x)→−ρ′(x) = ℘(x)− iκη2/π becomes the Weierstraß elliptic function431

as η→ 0.432

B Deformed permutations433

One way to obtain the dynamical R-matrix (8) is from Baxter’s R-matrix of the eight-vertex434

model using the face-vertex transformation (27) [41,72,73]. As the name of the transforma-435

tion suggests, one often thinks of Ř(x , a) as defining a ‘(interaction-round-the-)face’ (or ‘IRF’)436

model. One can equivalently view this model as a ‘height model’, in which case it is often437

called the (‘elliptic’ or ‘eight-vertex’) ‘solid-on-solid’ (or ‘SOS’) model, which can be described438

as a version of the six-vertex model where each face is decorated by a ‘height’.439

One face of the lattice is given a ‘reference’ height a, which determines the heights of all440

other faces by the spin configuration on the lines of the vertex model through the rule441

s

s

a b , b = a− s , (B.1)

where the line carries a spin s = ±1, and |+1〉 ≡ |↑〉 and |−1〉 ≡ |↓〉. The matrix entries of the442

identity correspond to443

δs,t = 〈t |s〉=
s

t

a b , b = a− s = a− t , (B.2)

Furthermore giving each line a spectral parameter, the generalised vertex model has vertices444

〈t ′, t ′′| Ř(x ′ − x ′′, a) |s′, s′′〉= a
b

c
d

x ′′, s′′

x ′′, t ′

x ′, s′

x ′, t ′′

,
b = a− t ′ ,

d = a− s′ ,
c = b− t ′′ = d − s′′ , (B.3)

with (statistical-mechanical) weight equal to the corresponding entry of (8). The equality on445

the right uses the ice rule (spin-z conservation) s′+ s′′ = t ′+ t ′′ of the dynamical R-matrix. By446

passing to the dual lattice, where the heights are instead attached to the vertices, one arrives447

at the standard IRF picture shown in gray in (B.1)–(B.3), with weight W
�

a b
d c
�

�

� x ′− x ′′
�

. One448

of the benefits of the generalised-vertex perspective is that the R-matrix with entries (B.3) is449
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just a 4× 4 matrix (in the spin, rather than height, basis) as in (8), i.e.450

Ř(x , a) =







1 0 0 0
0 f (η, x ,η a) f (x ,η,η a) 0
0 f (x ,η,−η a) f (η, x ,−η a) 0
0 0 0 1






, f (x , y, z) =

θ (x)θ (y + z)
θ (x + y)θ (z)

. (B.4)

The price to pay is an additional parameter, a, that has to be shifted in the appropriate way,451

determined by (B.2). The dynamical R-matrix obeys the unitarity relation Ř(x , a) Ř(−x , a) = 1452

and initial condition Ř(0, a) = 1. In components, unitarity reads453

〈t ′, t ′′| Ř(x ′′ − x ′, a) Ř(x ′ − x ′′, a) |s′, s′′〉=
a

a
b

c

c

d

e

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

= δb,d × a b c

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

= δs′, t ′ δs′′, t ′′ , ,

(B.5)

with b = a − s′ and c = b − s′′, and where in the first diagram dashed lines join heights that454

are to be identified, and a sum over the spins on the two internal edges (equivalently, over the455

heights e on the internal face) is understood. In addition, (B.4) obeys the (braid-like form of456

the) dynamical Yang–Baxter equation (or Gervais–Neveu–Felder equation)457

Ř12(x
′ − x ′′, a) Ř23(x − x ′′, a−σz

1) Ř12(x − x ′, a)

= Ř23(x − x ′, a−σz
1) Ř12(x − x ′′, a) Ř23(x − x ′, a−σz

1) .
(B.6)

In components it reads458

〈t, t ′, t ′′| Ř12(x
′ − x ′′, a) Ř23(x − x ′′,

= g
︷ ︸︸ ︷

a−σz
1 ) Ř12(x − x ′, a) |s, s′, s′′〉

=
a

a
b

c

d

d

d

e
f

g

x , s

x , t ′′

x ′, s′

x ′, t ′

x ′′, s′′

x ′′, t

= a

b c

d

ef

g

x , s

x , t ′′

x ′, s′

x ′, t ′

x ′′, s′′

x ′′,t

= d

cb

a

f e

h

x ′′, s′′

x ′′, t

x ′, s′

x ′, t ′

x , s

x , t ′′

=
d

d
c

b

a

a

a

f
e

h

x ′′, s′′

x ′′, t

x ′, s′

x ′, t ′

x , s

x , t ′′

= 〈t, t ′, t ′′| Ř23(x − x ′, a−σz
1
︸ ︷︷ ︸

= b

) Ř12(x − x ′′, a) Ř23(x − x ′, a−σz
1
︸ ︷︷ ︸

= f

) |s, s′, s′′〉 ,

(B.7)

where sums over spins on the three internal lines (equivalently, over the height g or h of459

the internal face) are again understood. The resulting algebraic structure is Felder’s elliptic460

quantum group [36].461

Now consider a row of N vertical lines in the generalised vertex model. The deformed462

permutation (9) similarly encodes the vertex463

〈t1, . . . , tN | Pi,i+1(x
′ − x ′′) |s1, . . . , sN 〉=

s1

t1

···

x ′′, si+1

x ′′, t i

x ′, si

x ′, t i+1

···

sN

tN

a ai−1

a′′i
ai+1

a′i

aN , (B.8)

where we omitted the spectral parameters attached to all non-crossing lines to avoid cluttering,464

and the heights are465

a0 = a , a j = a j−1− s j ( j ̸= i, i+1) ,
a′′i = ai−1 − t i ,

a′i = ai−1 − si ,
ai+1 = a′′i − t i+1 = a′i − si+1 .

(B.9)
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The vertex (B.8) corresponds to a single matrix entry of Pi,i+1(x). The whole matrix can be466

written as in (9), i.e.467

Pi,i+1(x) = Ři,i+1

�

x , a− (σz
1 + · · ·+σ

z
i−1)
�

(B.10)

On the usual spin (‘computational’) basis this notation means468

Pi,i+1(x) |s1, . . . , sN 〉= |s1, . . . , si−1〉 ⊗
�

Ř
�

x , a−
∑i−1

k=1 sk

�

|si , si+1〉
�

⊗ |si+1, . . . , sN 〉 . (B.11)

We stress once more that the dynamical parameter of the R-matrix in (B.10)–(B.11) is shifted469

by (twice) the spin-z to the left of the in agreement with (B.8). Projecting on 〈t1, . . . , tN |470

we recover (B.8).471

Thanks to (B.6), the deformed permutations obey the (braid-like) Yang–Baxter equation472

Pi,i+1(x − y) Pi+1,i+2(x) Pi,i+1(y) = Pi+1,i+2(y) Pi,i+1(x) Pi+1,i+2(x − y) , (B.12)

as well as the commutativity [Pi,i+1(x), Pj, j+1(y)] = 0 for |i − j| > 1. They moreover inherit473

the unitarity relation474

Pi,i+1(−x) Pi,i+1(x) = 1 . (B.13)

with ‘initial condition’ Pi,i+1(0) = 1. According to (B.13), swapping twice is the identity. That475

is, taking into account that the parameters follow the lines, the deformed permutations square476

(appropriately interpreted) to the identity. This can be made precise by introducing the coor-477

dinate permutation si j : x i↔ x j . Consider the deformed total permutation478

P tot
i,i+1 = si,i+1 Pi,i+1(x i − x i+1) . (B.14)

It permutes particles, i.e. spins and coordinates. (Since parameters should follow lines in479

diagrams, one could draw it as .) Now (B.6) becomes the braid relation480

P tot
i,i+1 P tot

i+1,i+2 P tot
i,i+1 = P tot

i+1,i+2 P tot
i,i+1 P tot

i+1,i+2 , (B.15)

we have
�

P tot
i,i+1, P tot

j, j+1

�

= 0 for |i − j|> 1, and (B.13) reads481

�

P tot
i,i+1

�2
= 1 . (B.16)

These are the relations of the permutation group. In the isotropic limit η → 0 we recover482

the standard particle permutation, P tot
i,i+1 → si,i+1 Pi,i+1. For general η, (B.14) depends on all483

parameters.484

C Deformed nearest-neighbour exchange485

The deformed spin exchange486

E(x , a) =
1

θ (η)V(x)
Ř(−x , a) Ř′(x , a) =

x ′

x ′

x ′′

x ′′

a , Ř′(x , a)≡ ∂x Ř(x , a) , x = x ′ − x ′′ , (C.1)

is nothing but a normalised logarithmic derivative of the dynamical R-matrix, ∂ log Ř= Ř−1Ř′,487

mirroring the local hamiltonians of Heisenberg chains. As an explicit 4× 4 matrix it reads488

θ (η)V (x) E(x , a) = Ř(−x , a) Ř′(x , a) =







0 0 0 0
0 α(x ,η a) β(x ,η a) 0
0 β(x ,−η a) α(x ,−η a) 0
0 0 0 0






, (C.2)
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where the first equality uses the unitarity Ř(x , a)−1 = Ř(−x , a), and the coefficients are489

α(x , a) = f (η, x , a) f (η,−x , a)
�

ρ(x + a)−ρ(x)
�

−
�

ρ(x +η)−ρ(x)
�

= f (η, x , a) f (η,−x , a)ρ(x + a) + f (x ,η, a) f (−x ,η,−a)ρ(x)−ρ(x +η) ,

β(x , a) = f (x ,η, a) f (η,−x , a)
�

ρ(x)−ρ(x − a)
�

.

(C.3)

Its entries can be interpreted like in (B.5): if ‘ ⊛’ marks the derivative of Ř′,490

〈t ′, t ′′| E(x ′ − x ′′, a) |s′, s′′〉= a
b

c
d

x ′, s′

x ′, t ′

x ′′, s′′

x ′′, t ′′

=
1

θ (η)V(x ′ − x ′′) ⊛a

a
b

c

c

d

e

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

,
b = a− t ′ ,

d = a− s′ ,
(C.4)

with c = b− t ′′ = d − s′′.491
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