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Abstract

Random features models play a distinguished role in the theory of deep learning, de-
scribing the behavior of neural networks close to their infinite-width limit. In this work,
we present a thorough analysis of the generalization performance of random features
models for generic supervised learning problems with Gaussian data. Our approach,
built with tools from the statistical mechanics of disordered systems, maps the random
features model to an equivalent polynomial model, and allows us to plot average gen-
eralization curves as functions of the two main control parameters of the problem: the
number of random features N and the size P of the training set, both assumed to scale
as powers in the input dimension D. Our results extend the case of proportional scaling
between N, P and D. They are in accordance with rigorous bounds known for certain
particular learning tasks and are in quantitative agreement with numerical experiments
performed over many order of magnitudes of N and P. We find good agreement also far
from the asymptotic limits where D→∞ and at least one between P/DK , N/DL remains
finite.
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1 Introduction33

The connection between deep feed-forward neural networks (DNNs) in the large-width limit34

and kernel methods has been well understood in the last years. It has been shown, in a35

Bayesian learning perspective, that if the number of units in each hidden layer is taken to36

infinity at fixed input dimension and training set size, a DNN becomes a “neural network37

Gaussian process” whose kernels can be defined iteratively layer by layer [1–4]. This result38

has been recently generalized beyond the infinite-width limit [5–10]. In a dynamical perspec-39

tive moreover, it has been shown that wide DNNs trained with gradient-based methods exhibit40

a the lazy-training kernel regime [11], evaluated by first order Taylor-expanding the network41

with respect to the weights around initialization [12–14].42

Once a DNN is proven equivalent to a kernel machine, the mechanism by which it realizes43

the input-output mapping of the corresponding supervised-learning task is understood: the44

input data, which generally speaking are points in RD, are mapped with an implicit feature45

map ψ : RD → RN to an N -dimensional space where the classification, or regression, rule is46

linear and can be learnt by the read-out layer. The mapping to the feature space is implicit,47

in the sense that the learning problem can be solved by a support vector machine (SVM), so48

that learning and generalization depend on the features only through the kernel H̄(x,x′) =49
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Figure 1: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ =
10−8, quadratic teacher (balanced: τ1 = τ2 = 1/

p
2, τℓ>2 = 0) and ELU activation

functions; the continuous line is the equivalent polynomial theory devised in Sec. 4,
truncated at L = 3; dashed lines are the asymptotic theories (see Sec 6 for details) for
N →∞ and P/D finite (red), N →∞ and P/

�D
2

�

finite (yellow), N →∞ and P/
�D

3

�

finite (blue), P/
�D

3

�

and N/P finite (green); black points are results from numerical
experiments averaged over 50 instances (see Appendix I). The model learns the linear
features (first step at P ∼ O(D)), then learns the quadratic features (second step at
P ∼ O(D2)), then follows the interpolation peak at P ∼ N . Right: numerical and
theoretical teacher-student overlaps – defined in Eq. (35) and (43) – of the linear and
quadratic features (the overlap of the cubic features is identically 0 by definition);
the parameters of the model are the same as for the left panel.

∑N
i=1ψi(x)ψi(x′)/N (see, for reference, [15]). Learning curves (generalization error as a50

function of the size P of the training set) of kernel machines can be obtained analytically from51

a statistical mechanics [16–19] or a mathematical [20–22] perspective. A very interesting52

trait of these curves is their staircase shape for P ∼ DK : by setting the scaling of the size of the53

training set to a certain power K of the input dimension, features of order K can be learnt by54

the machine, so that the test error decreases increasing K with subsequent steps.55

The discovery of the lazy training regime of wide neural networks motivated in the recent56

past the study of the random features model (RFM) [23,24], a shallow (one-hidden-layer, 1HL)57

neural network where the feature map is explicitly parametrized by a fixed random linear58

embedding of the input points from RD to RN , followed by a non-linear activation function. In59

this sense, the model mimics the behavior of a neural network in the large-width limit, where60

the feature map depends only on initialization and learning is linear.61

In the present work we study theoretically the generalization performance of the RFM in62

the large-D limit, with P ∼ DK , N ∼ DL . We find, under a quite general teacher/student63

setting with a random polynomial teacher and Gaussian i.i.d. input data, that64

• as long as P ≪ N , the model behaves as an infinite-rank (N → ∞) kernel machine:65

for P ∼ DK , features of order K can be learnt, such that the generalization error as a66

function of P has a staircase descent (or overfitting peaks if the teacher is less complex)67

with steps corresponding to different values of K;68

• for P ≫ N and N ∼ DL , the model is equivalent to a degree-L polynomial student: if the69

complexity of the teacher is lower than the degree L, the generalization error is equal70

to zero, or otherwise, to the minimum error for a degree-L polynomial fitting a more71

complex teacher;72
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Figure 2: Generalization error of a RFM on a classification task, as a function of the
number of hidden units N , for P = 104 and the rest of the parameters as in Fig. 1;
continuous lines are the theories truncated at L′ = 1, 2,3 (respectively: blue, yellow,
red); numerical points (in black) are nicely interpolating between these curves in the
regimes where N ∼ O(D), O(D2), O(D3), validating Eq. (24), where the truncation
L′ of the equivalent polynomial theory is fixed at L ∼ log(N)/ log(D).

• for P ∼ N , an interpolation peak of the generalization error, which depends on the73

strength of the regularization of the student’s weights, occurs.74

This behavior is depicted in Fig. 1. Comparison with numerical experiments shows that our75

theory, based on the mapping of the RFM to an equivalent noisy polynomial model, predicts76

well the quantitative behavior of the true generalization performance at finite size, over many77

orders of magnitude.78

Our theory, formulated from the point of view of the statistical mechanics of disordered79

systems, expresses the generalization performance of the RFM in terms of few order param-80

eters with a clear physical interpretation, as overlaps between combinations of the student’s81

weights and the parameters defining the teacher. In this way, we are offering a complementary82

take on what is known about RFMs in the computer science community, as we discuss in the83

following.84

1.1 Related works85

In this section we give an overview on the previous works that have been of inspiration to our86

paper, presenting relevant results and differences with our approach.87

Random feature models were introduced in [23–26], initially as randomized low-rank ap-88

proximations of kernels arising in classification or regression problems. Recently, their interest89

was renewed by the discovery that DNNs behaves as RFMs close to the infinite-width limit, both90

in a Bayesian learning [1–4] and in a gradient-based learning [11–14] setting. This mapping,91

which provides one of the few limits where DNNs can be studied with analytical methods, has92

motivated in the last few years a huge effort to formalize their behavior in terms of expressive93

power and generalization performance.94

In particular, the impressive series of works [14,27–33] (see [34] for a review) formulates95

rigorous bounds on the generalization performance of RFMs in different asymptotic regimes.96

For a non-exhaustive recap of the results (with our notation):97

• In [27], the large-D limits where DL+δ ≤ N ≤ DL+1−δ (for small δ) after sending P →∞98

(underparametrized regime) and DK+δ ≤ P ≤ DK+1−δ after sending N → ∞ (over-99

parametrized regime) are considered. In the first case the model is found equivalent to100
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degree-L polynomial regression; in the second one, it reduces to (infinite-rank) kernel101

regression, which for that number of samples can fit at most a degree-K polynomial in102

the inputs, in a way also investigated in literature [16–22].103

• In [29], the limit where both N and P scale linearly with D with their ratio fixed is104

considered; the generalization error as a function of the ratio between the number of105

hidden units and the size of the training set first decreases for N/P small, then exhibits106

a peak at the interpolation threshold N/P = 1 and then relaxes again for N ≫ P to107

the value predicted from the kernel theory with P ∼ D, coherently with the previous108

point. This phenomenology is widely observed in numerical experiments and known in109

literature as double descent [35] of the generalization error.110

• In [31], the authors push forward the analysis of [27] (that is, P and N scaling poly-111

nomially with D) to the regimes where N ≤ P1−δ and N ≥ P1+δ. The authors show112

indeed that the limiting behavior is given by the smallest of N and P, and they find the113

interpolation threshold at N ∼ P also in this polynomial scaling.114

• In [33], universality results on training and test error are proven in the P ∼ N regime115

for a larger class of models, as long as with finite-dimensional outputs, and generic116

losses. Indeed, they prove that training and test errors depend on the random features117

distribution only through its covariance structure.118

These papers find bounds to the generalization performance of a RFM with rigorous analytical119

methods under quite general assumptions on data distribution and activation functions.120

A statistical mechanics point of view, complementary to the formal approach discussed121

so far, has been formulated in the series of papers [36–42]. Originally aiming at modelling122

the role of data structure in machine learning, as in other contemporary approaches [43–50],123

the authors obtained in [37] a closed-form expression for the generalization error of RFMs124

for regression and classification in the asymptotic regime where N ∼ P ∼ D. Their approach,125

based on the replica theory from statistical mechanics [51], can be applied to supervised learn-126

ing tasks with generic convex loss functions. Not only their results are supported under mild127

hypothesis by analytical proofs [29,33,38,52,53], but they can predict remarkably well the nu-128

merical experiments. Our work extends these results to more general scaling regimes, where129

P ∼ DK , N ∼ DL .130

One of the main steps in our derivation is the expansion of activation function of the hidden131

layer on a polynomial basis, which corresponds to the diagonalization of the kernel (20) on132

its eigenbasis (Mercer’s decomposition). This expansion is then truncated to a certain degree133

L, corresponding to the integer exponent in the scaling law N ∼ DL: similar approximations134

appeared recently in [54, 55]. Moreover, while the literature on the double descent behav-135

ior of the generalization error is vast and impossible to outline here (see for example [35]),136

we mention [56], where the presence of more than one peak in the generalization curve is137

remarked: the authors call “linear peak” the one occurring at P ∼ D for N ≫ P, where the138

model behaves as a kernel learning the linear features, while for P ∼ N there is a “non-linear139

peak” due to the non-linearity of the activation function acting as noise and overfitted when140

P and N are of the same order; in the present work we show that, as long as N ≫ P, there is141

a peak (or a descent) for each of the regimes P ∼ DK .142

Appeared in parallel with our work, the paper [57] pushes forward the line of research143

of [29] from a mathematical perspective, deriving sharp asymptotics for the generalization of144

random features ridge regression in the polynomial regime.145

5
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Symbol Definition
D input space dimension

N ∼ DL feature space dimension
P ∼ DK size of the training set

B degree of the teacher
n number of replicas
ηℓ N/

�D
ℓ

�

α,β , · · · indices in input space
i, j, · · · indices in feature space
µ,ν, · · · indices spanning the training set
a, b, · · · indices in replica space
α multi-index {α1, · · · ,αℓ}, α1 < · · ·< αℓ
θ teacher parameters, θ = {θ (ℓ)α }

B
ℓ=1

F N × D random features matrix
Fα, Fi (Fiα)Ni=1, (Fiα)Dα=1
F⊗ℓα (Fiα1

· · · Fiαℓ)
N
i=1

C F F⊤/D
C⊙ℓ ((Ci j)ℓ)Ni, j=1 ≃

∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

Q,Q(ℓ), ... (Qab)na,b=1, (Q(ℓ)ab)
n
a,b=1, ...

Table 1: Notations used in this paper

2 The model146

We would like to study the generalization performance of the Random Features model in a147

teacher/student [58, 59] supervised learning set-up, where the teacher performs an input-148

output mapping with various degree of complexity. We summarize in Table 1 the main nota-149

tions used in this paper.150

The input data x are vectors in RD with i.i.d. Gaussian elements, while the labels are151

assigned by a polynomial teacher of degree B defined as:152

y ∼ p(y |ν(x)) ,

ν(x) =
B
∑

ℓ=1

τℓ
Ç

�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
xα1
· · · xαℓ ,

(1)

where θ (1)α , θ (2)
αβ

, · · · are i.i.d. N (0,1) parameters collectively denoted as θ , describing the153

non-linear decision boundary (diagonal terms, irrelevant for large D, are for simplicity not154

included in the sum). Notice that the function ν(x) coincide with the Hamiltonian of the155

“mixed p-spin model” of the statistical physics of the spin-glasses (see, for example, [60]).156

The mixture parameters τℓ, weighting the monomials of different degree, are chosen to respect157
∑B
ℓ=1τ

2
ℓ
= 1. Within this general setting, we will concentrate on the specific simple examples158

of a deterministic teacher for binary classification or a noisy teacher for polynomial regression159

with variance of the noise ∆, for which Eq. (1) reduces respectively to160

y ∼ δ [y − sgnν(x)] , y ∼N [y |ν(x) ,∆] . (2)

It has been shown in [16] that a polynomial student, defined in the same way as in Eq. (1),161

would learn the weights of the teacher in a hierarchical fashion: O(DK) examples are needed162

in order to learn the parameters θ (ℓ) for ℓ ≤ K . However, here the student’s task is to learn163

6
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the weights of the last layer of a 2-layers NN, f (x;w), whose first layer realizes a random164

embedding of the data in a N -dimensional feature space:165

f (x;w) = φ[λ(x;w)] , (3)

λ(x;w) =
1
p

N

N
∑

i=1

wi σ

�

1
p

D

D
∑

α=1

Fiαxα

�

(4)

where F is a N ×D quenched random matrix with i.i.d. standard normal entries, σ is the non-166

linear activation function of the hidden layer, w ∈ RN the student’s weight vector and φ the167

activation function of the last (“readout”) layer. It is customary to introduce the pre-activations168

hi =
1
p

D

D
∑

α=1

Fiαxα , (5)

which at fixed instance of the random features F , given that we chose xα i.i.d normal variables,169

follow a multivariate Gaussian distribution with covariance170

Ci j = Exµ[hih j] =
1
D

D
∑

α=1

FiαF jα . (6)

In our setting with independent random features, C is a Wishart matrix.171

While our theory is general in the choice of σ that we will suppose it can be expanded in172

Hermite polynomials (see Sec. 4). We will test our results for popular choices, such as173

σ(h) = ReLU(h) =max(h, 0) , (7)

σ(h) = ELU(h) =

¨

exp(h)− 1 if h< 0 ,

h if h≥ 0 ,
(8)

(respectively, Rectified and Exponential Linear Unit).174

The training set is made of P input-output pairs, T = {(xµ, yµ)}Pµ=1. The student learns by175

solving the following optimization problem,176

w⋆ = argmin
w





P
∑

µ=1

L[yµ,λ(xµ;w)] +
ζ

2
∥w∥2



 , (9)

where L is an opportune convex loss function and ζ controls the regularization of the weights.177

The choice of the loss function L and the readout activation function φ in Eq. (3) defines the178

specific learning task to perform. To simplify calculations we will mostly look at the cases of179

of a pure quadratic loss, reading, both in the case of regression and classification:180

L(y,λ) =
1
2
(y −λ)2 , (10)

the use of a regression loss for a classification task dates back to the early days of NNs [59,61].181

The main aim of this work is the evaluation of the generalization performance of the model,182

both for the classification and the regression problems, using a statistical mechanics approach.183

From this perspective, the model defines a disordered system with N degrees of freedom w,184

and quenched disorder given by the realization of the input points xµ, the teacher’s parameters185

θ and the random features F . Our computation will follow the standard path, starting from186

the computation partition function at inverse temperature β187

Z =
∫

dw exp



−β
P
∑

µ=1

L[yµ,λ(xµ;w)]−
βζ

2
∥w∥2



 . (11)

7
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3 Generalization error188

In order to quantify how well the student can learn the teacher, we look at the generalization189

error, defined as the probability of misclassifying a new sample (in the case of classification)190

or as the mean squared error of a new point (in the case of regression). Given a test point191

(x, y)∼ p0(x)p(y|ν(x)), both cases can be expressed with the following formula,192

εg(θ , F,T ) =
∫

dx p0(x)

∫

dy p(y|ν(x))
1
4κ
�

y −φ(λ(x;w⋆T ))
�2

, (12)

where κ = 1 for binary classification and κ = 0 for regression. Notice the presence of the193

function φ in the definition of the generalization error, at variance with the loss function.194

With (12) we can evaluate the quality of the student NN (3) for a given realization of the195

teacher, of the random weights F , and of the dataset T . In order to get a general view of196

the effectiveness of (3), we calculate the average generalization error over all the sources of197

randomness. Doing so, we get a function of N , P, and D only,198

εg =

∫

dνdλ p(ν,λ)

∫

dy p(y|ν)
1
4κ
[y −φ(λ)]2

p(ν,λ) = E
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w⋆T )) ,
(13)

where we took E= Eθ ,F,T .199

We have written the average generalization error as in Eq. (13) to show that we only need200

to know the joint distribution of (ν,λ) to evaluate it. Being x a test point, and so uncorrelated201

from w⋆, we will take the distribution p(ν,λ) as Gaussian: to compute the generalization error202

we only need the first and second moments,203

0= E[ν] , t⋆ = E[λ] ,

ρ = E[ν2] , m⋆ = E[νλ] , q⋆ = E[λ2]− t⋆2 .
(14)

Notice that by definition of the model (i.e. the normalization of the mixing parameters τℓ)204

ρ is identically equal to 1. In section 5 we will show how to obtain this quantities from a205

replica approach. Central limit theorems for sums of non linear functions of Gaussian fields206

(the pre-activations (5) at given feature matrix F), of the kind we just used to motivate this207

ansatz, have been proven in the past under conditions on the realization of the feature-feature208

covariance matrix C and of the vector w⋆ [38,62,63].209

For the case of binary classification with y = sgn(ν) and φ = sgn,210

εg =
1
4
E [y − sgn(λ)]2

=

∫ 0

−∞
Dν

�

1−H

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

��

+

∫ ∞

0

DνH

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

�

,
(15)

where we use the Gardner’s notation [58] Dν = e−ν
2/2
p

2π
dν and H(x) =

∫∞
x Dt. Notice that211

when t⋆ = 0 (that is, when the student is zero-mean) the formula simplifies to212

εg =
1
π

arccos

�

m⋆
p

q⋆

�

. (16)

For the case of noisy polynomial regression, (φ = id and ∆= E[(y − ν)2]) [64,65],213

εg = E[y −λ]2 = ρ +∆− 2m⋆ + q⋆ + t⋆2 . (17)

8
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These formulas remind the generalization error of a generalized linear model with the same214

architecture as the teacher [59]: in that case, m⋆/
p

q⋆ corresponds to the angle between215

the teacher and the student weight vectors. For the RFM, it is not clear a priori if we can216

interpret m⋆/
p

q⋆ as a scalar product of the teacher’s weight vector and some effective weights217

of the student. If this can be done, the RFM could be mapped to an equivalent polynomial218

model. In Sec. 4 we will show how to explicitly construct it from w and F , thus achieving219

this mapping. To do so, we need to spend a few words on the connection between RFMs and220

kernel machines, in order to explain the truncation of the activation function σ on the basis221

of Hermite polynomials, which we will use later on.222

4 Kernel learning and polynomial models223

The RFM defined in (3) is a generalized linear model in the learnable parameters w, so it can224

be formulated as a kernel model, as we remind in this section. First of all, because of the225

choice of quadratic loss, we can write down th explicit solution to (9),226

w⋆i =
∑

j

�

ζ1N +
P
N
K̄
�−1

i j

1
p

N

∑

µ

yµσ(hµj ) , (18)

where the pre-activations h are given by (5) and the operator227

K̄i j =
1
P

∑

µ

σ(hµi )σ(h
µ
j ) (19)

defines the kernel in feature space. The properties of the kernel are crucial for the generaliza-228

tion performances.229

While our analysis will be more general, for the purpose of arguing, in this section we230

consider the limit P →∞. In this case the kernel reduces to231

Ki j = Exµ[σ(h
µ
i )σ(h

µ
j )] . (20)

From this formula, it is possible to obtain an explicit formula of the kernelK as a function of the232

covariance matrix of the pre-activations (6). To this aim, as the pre-activations are Gaussian,233

it is convenient to expand the activation function on the basis of Hermite polynomials (see234

also [27]):235

σ(hi) =
∞
∑

ℓ=0

µℓ
ℓ!

Heℓ(hi) , (21)

where Heℓ is the ℓ-th Hermite polynomial and the coefficient µℓ are:236

µℓ =

∫

Dx Heℓ(x)σ(x) . (22)

Along these lines, the kernel (20) can be expressed for large D [66, 67] (see App. A for237

details) as238

Ki j =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ , (23)

where Ci j , given by (6), is a rank-D Wishart matrix with elements Cii = 1 + O(D−1/2) and239

Ci j = O(D−1/2) for i ̸= j. The matrix with entries (Ci j)ℓ, which we denote by C⊙ℓ, defines an240

interesting random matrix ensemble, obtained taking Hadamard (element by element) powers241

of the covariance C . A similar ensemble was recently studied in [68].242

9
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Suppose now the relation between N and D is fixed: N ∼ DL+δ with 0≤ δ < 1. The N×N243

matrix C⊙ℓ has generically rank equal to min{Dℓ, N} and off-diagonal elements O(D−ℓ/2). For244

ℓ > L the matrix is full ranked, the small off-diagonal terms give a vanishing contribution to245

eigenvalues and eigenvectors. We can then truncate the expansion substituting C⊙ℓ>L by the246

identity matrix:247

Ki j ≃
L
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ +µ2
⊥,Lδi j , (24)

where248

µ2
⊥,L =

∞
∑

ℓ=L+1

µ2
ℓ

ℓ!
. (25)

This truncation is proven for L = 1 (that is, in the proportional regime N ∼ D) in [69], and249

extended to the case L > 1 under generic assumptions on the kernelK in [31,55]. A convincing250

check of this property for moderately large values of N is given by Fig. 2, which shows the251

theoretical curves of the generalization error obtained through a truncated effective theory252

(that we describe below) at different values of L′, compared with the numerical experiments,253

as a function of N ; quantitative agreement is obtained for L′ = L ∼ log N/ log D, with the254

numerical points interpolating nicely the theoretical curves in the various regimes.255

The analysis above suggests that in the N ∼ DL regime we can represent the RFM as an256

effective noisy polynomial student257

λeff(x
µ;w) = µ0m(0) +

L
∑

ℓ=1

µℓp
Dℓ

∑

α1,··· ,αℓ

s(ℓ)α1···αℓ
: xµα1
· · · xµαℓ :+ zµ , (26)

where258

• m(0) =
∑

i wi/
p

N is the empirical mean of the vector w, rescaled by
p

N ;259

• the student parameters s(ℓ)α1···αℓ
are the scalar product of w with the “vectors” F⊗ℓα1...αℓ

/
p

N260

with components Fiα1
· · · Fiαℓ/

p
N (see Table 1),261

s(ℓ)α1···αℓ
=

1
p

N

∑

i

wi Fiα1
· · · Fiαℓ . (27)

• we have written the expansion of the Hermite polynomials in terms of the so-called Wick262

products of the x ’s, routinely used in theoretical physics and defined from the following263

generating function (see for example [70]):264

: x1 · · · xk := ∂λ1
· · ·∂λk

G(λ;x)
�

�

λ=0 ,

G(λ;x) =
exp
�

λ⊤x
�

E [exp (λ⊤x)]
= exp
�

λ⊤x− ∥λ∥2/2
�

(28)

(see App. B for more details). These quantities have the property E[: x1 · · · xk :] = 0.265

• the last term zµ is a Gaussian noise term with zero mean and variance E(zµ2(w)) =266

µ2
⊥,L

∑N
i=1 w2

i /N which can be represented as267

zµ =
µ⊥,Lp

N

N
∑

i=1

wi vµi , (29)

in terms of i.i.d. N (0, 1) variables vµi .268
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Although ultimately the parameters s(ℓ) and z are functions on the network weights, to269

enlighten the notation we will not explicitly write the dependence on w.270

In (26) we give an effective description of the RFM, mapping it to a polynomial model271

with correlated weights in presence of a noise term coming from the ℓ > L terms in the expan-272

sion (21). This is an extension to generic scaling regimes N ∼ DL of the Gaussian equivalence273

principle from [38] and related works, to which it reduces when L = 1. In the following, we274

will base our analysis on this representation of λ. This description makes more transparent275

the meaning of the observables introduced in Sec. 3 and the mechanism by which the RFM276

learns the teacher’s features, as we explain in the following.277

5 Replica calculation278

Let us now turn to the analysis of the general case through the replica method. To obtain the279

generalization error we write the joint probability distribution of ν and λ in Eq. (13) as the280

zero temperature limit of the equilibrium distribution of a statistical mechanics system, as281

p(ν,λ) = lim
β→∞
E
∫

dw
1
Z e−β
∑

µL[y
µ,λ(xµ;w)]− βζ2 ∥w∥

2
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w)) .

(30)
Through a standard application of the replica trick we rewrite the distribution as282

p(ν,λ) = lim
n→0

lim
β→∞
E
∫ n
∏

a=1

dwae−β
∑

µ,a L[y
µ,λ(xµ;wa)]− βζ2

∑

a∥w
a∥2

×
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w1)) , (31)

which can be obtained from the calculation of the n-times replicated partition function283

Zn = E[Zn] =

∫ n
∏

a=1

dwa e−
βζ
2

∑

a∥w
a∥2EF,θ

�

Eν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa)

�P

. (32)

In this integral, we treat the distribution of ν and λa conditioned by F , θ and wa as Gaussian,284

with moments given by285

ta = E(λa|F,θ ) , Ma = E(νλa|F,θ ) , Qab = E(λaλb|F,θ )− ta tb . (33)

from which we can extract the generalization error according to (15), (17). Using the repre-286

sentation (26) we can decompose these order parameters as (see Appendix C for details)287

ta = µ0M (0)a , Ma =
min{L,B}
∑

ℓ=1

µℓτℓp
ℓ!

M (ℓ)a , Qab = µ
2
⊥,LQ(0)ab +

L
∑

ℓ=1

µ2
ℓ

ℓ!
Q(ℓ)ab , (34)

with the definitions:288

M (0)a =
1
p

N

N
∑

i=1

wa
i , M (ℓ)a =

θ (ℓ) · s(ℓ)a
�D
ℓ

� , Q(0)ab =
1
N

N
∑

i=1

wa
i wb

i , Q(ℓ)ab =
1
N

N
∑

i, j=1

wa
i Cℓi jw

b
j ,

(35)
where we are using the notation289

θ (ℓ) · s(ℓ)a =
∑

α

θ (ℓ)α s(ℓ)a,α (36)

11
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(remember that the sum over α is restricted to ordered tuples).290

Enforcing these definition with delta functions in Fourier representation, and anticipating291

saddle point integration for the various M and Q, and their Fourier conjugated parameters292

that we denote as M̂ and Q̂ with the due indexes, we rewrite the partition function as293

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF,θ

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q(0))⊗1N+
∑

ℓ Q̂(ℓ)⊗ C⊙ℓ
ηℓ

i

w−
∑

ℓ,i,a,α M̂ (ℓ)a wa
i F⊗ℓi,αθ

(ℓ)
α /
Ç

ηℓ(Dℓ) ,
(37)

where now w ∈ Rn×N , the sums over ℓ span {1, · · · , L}, ηℓ = N/
�D
ℓ

�

and294

SP[Q, M] = logEν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa) . (38)

In writing Eq. (37), we took M̂ (0)a → 0, as the Fourier conjugate of the mean ta is suppressed295

in the large-N limit [71] (a property that could be checked a posteriori from the saddle point296

equation for M̂ (0)a ); moreover, the conventional scalings with N and
�D
ℓ

�

in this equation are297

chosen in such a way that the hat variables corresponding to the asymptotic regimes explained298

in Sec. 6 have a non-trivial high-dimensional limit.299

Averaging over θ we obtain:1300

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q̂(0))⊗1N+
∑

ℓ(Q̂
(ℓ)−M̂ (ℓ)M̂ (ℓ)⊤)⊗ C⊙ℓ

ηℓ

i

w (39)

and integrating over w,301

Zn = ePSP [Q,M]e
N
2

∑

ℓ,a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a −
1
2 Tr log[A(0)⊗1N+

∑

ℓ B(ℓ)⊗C⊙ℓ], (40)

where traces are taken over replica and feature indices and we introduced for compactness302

the n× n matrices303

A(0) = βζ1n + Q̂(0) , B(ℓ) = (Q̂(ℓ) − M̂ (ℓ)M̂ (ℓ)⊤)/ηℓ . (41)

We notice at this point that, given N ∼ DL+δ, for ℓ ≤ L the matrices C⊙ℓ have rank rℓ =304

O(Dℓ) ≪ N and have eigenvalues of order N/
�D
ℓ

�

. Simple perturbation theory shows that305

adding these matrices with coefficients of order 1 only slightly modify the eigenvalues. This is306

due to the fact that the row spaces (that is, the complements to their null spaces) corresponding307

to the different ℓ are almost orthogonal. In such a situation we approximate the trace-log term308

appearing in (40) as309

Tr log

�

A(0) ⊗ 1N +
L
∑

ℓ=1

B(ℓ) ⊗ C⊙ℓ
�

≃ N(1− L)Tr log(A(0)) +
L
∑

ℓ=1

Tr log
�

A(0) ⊗ 1N + B(ℓ) ⊗ C⊙ℓ
�

(42)
(notice that Tr in Tr log(A(0)) is over replica indices only). We report a detailed derivation of310

Eq. (42) under the hypothesis of orthogonality of the C⊙ℓ row spaces in Appendix E. Notice311

that we could have gotten to the same result decomposing the vectors w on the row spaces312

of the C⊙ℓ supposed orthogonal. This decomposition clearly shows the hierarchical nature of313

learning.314
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Figure 3: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ =
10−8, linear teacher (τ1 = 1, τℓ>1 = 0) and ELU activation functions; the continuous
line is the mean-field theory truncated at L = 3; dashed lines are the asymptotic
theories for P/D finite and L > 1 (red), P/

�D
2

�

finite and L > 2 (yellow), P/
�D

3

�

finite and L > 3 (blue), P/
�D

3

�

finite and L = 3 (green); black points are results
from numerical experiments averaged over 50 instances (see Appendix I). The model
learns the linear features (first step at P ∼ O(D)), then overfits the quadratic features
before learning they are zero (peak at P ∼ O(D2)), then follows the interpolation
peak P ∼ N . Notice how the accordance between the mean-field theory and the
experiment is only qualitative around the last peak. Right: Generalization error on
classification for a linear teacher, as a function of the number of random features N ,
for different amounts of data P (D = 30, ζ = 10−4, see Appendix I). The optimal
amount of hidden units, for which εg is minimal, shifts from overparametrization
to underparametrization, as it is visible in the curves for P = 40 and P = 200, 400.
At fixed value of N , not always more data means better generalization: after the
interpolation peak, the order between the red (P = 400) and yellow (P = 200)
curves is reversed (point of view complementary to the plot in the left panel, where,
at fixed N , the error can increase with P). The curves as functions of N are obtained
by gluing together the theories truncated at the corresponding L.

5.1 Replica symmetric theory315

In order to complete the evaluation of the partition function, we need to specify the form of316

the replica parameters. In this paper we use the replica symmetry (RS) ansatz317

Q(ℓ)ab =
χ(ℓ)

β
δab + q(ℓ) , M (ℓ)a = m(ℓ) , ta = t . (43)

Notice that the diagonal elements of the matrix Q(ℓ) are Q(ℓ)aa =
χ(ℓ)

β + q(ℓ). We anticipate the318

scaling with β of the variables χ: the quantities Q(ℓ)aa measures the variance of the variables λ,319

tending to zero for β →∞. This implies the following form for the conjugate order parameters320

in the RS:321

Q̂(ℓ)ab = βχ̂
(ℓ)δab − β2q̂(ℓ) , M̂ (ℓ)a = −βm̂(ℓ) . (44)

1For the sake of simplicity, to write Eq. (39) we collected a common C⊙ℓ between the terms Q̂(ℓ) and M̂ (ℓ)M̂ (ℓ)⊤,
even though the average over the teacher gives instead a term

∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

, with ordered indices α’s, in front
of M̂ (ℓ)M̂ (ℓ)⊤. See discussion around Eq. (47).
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Exploiting the explicit parametrization of the RS matrices, we can perform the traces over322

replica indices in Eq. (42), to get (see Appendix F)323

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log(βχ̂(ℓ)) + n Tr log(γℓ1+ C⊙ℓ)

− nβηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1 − nβ

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] , (45)

where we introduced the parameter324

γℓ = ηℓ
(ζ+ χ̂(0))
χ̂(ℓ)

(46)

and the remaining traces are over feature indices only.325

We need now to evaluate the traces in feature indexes. In order to proceed, we make326

make at this point a crucial approximation, and treat C⊙ℓ as a Wishart matrix with parameter327

ηℓ = N/
�D
ℓ

�

. This amounts essentially in approximating C⊙ℓ, by328

C⊙ℓi j =
ℓ!
Dℓ

∑

α1<...<αl

F i
α1

F j
α1

...F i
αℓ

F j
αℓ

(47)

i.e. in neglecting the terms with equal indexes α in the sum that defines C⊙ℓ. While this329

approximation can be fully justified in the regimes where N , D→∞ with N/DL finite, as we330

will see, it turns out to be an excellent approximation even for moderately large values of the331

parameters (see Sec. 6 and Appendix D).332

Using the properties of Wishart matrices (see Appendix D), we can write that, for large N ,333

1
N

Tr(γℓ1+ C⊙ℓ)−1 ≈ gℓ(−γℓ) , (48)

where gℓ is the Stieltjes transformation of the Marchenko-Pastur distribution with ratio ηℓ =334

N/
�D
ℓ

�

:335

gℓ(z) =
1− z −ηℓ −
p

(1− z −ηℓ)2 − 4zηℓ
2zηℓ

. (49)

Re-arranging terms we get, for large β ,336

Zn ∼ ePSP+NSM , (50)

where337

1
βn

SM = −
min{L,B}
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

1
2

L
∑

ℓ=0

q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ)

ηℓ
+
(1− L)

2
q̂(0)

ζ+ χ̂(0)

+
1
2

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
gℓ(−γℓ) +

1
2

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
[1− γℓg(−γℓ)]

(51)

and, for the quadratic loss 10,338

1
βn

SP =
2m⋆ 〈yν〉 − q⋆ − 〈(t⋆ − y)2〉

2(1+χ⋆)
, (52)

where 〈·〉=
∫

dyDν p(y|ν)(·) is the average over the teacher distribution (1) and339

m⋆ =
min{L,B}
∑

ℓ=1

τℓµℓp
ℓ!

m(ℓ) , t⋆ = µ0m(0) ,

χ⋆ = µ2
⊥χ
(0) +

L
∑

ℓ=1

µ2
ℓ

ℓ!
χ(ℓ) , q⋆ = µ2

⊥q(0) +
L
∑

ℓ=1

µ2
ℓ

ℓ!
q(ℓ) .

(53)
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A detailed derivation of the terms SM and SP , with the form of SP valid for generic loss func-340

tions, is reported in Appendix G.341

Eq. (53) gives the RS version of Eq. (34): these quantities are precisely the ones appearing342

in Eq. (14), giving the low-order statistics of the distribution used to evaluate the generaliza-343

tion error. Once their value is known from the saddle point equations implicit in the derivation344

of the partition function, they can be used to obtain the generalization curves reported in this345

paper.346

5.2 Saddle-point equations for quadratic loss347

The free energy in Eq. (50) has to be evaluated at the saddle point with respect to all the348

RS order parameters and their Fourier conjugates. The resulting equations, which we report349

here for the case of quadratic loss function. Remark however that only the equations where350

P appears explicitly depend on the form of the loss. The equations can be solved in steps.351

First, a set of 2L + 2 nonlinear equations is used to determine the variables χ(0), . . . ,χ(L) and352

χ̂(0), . . . , χ̂(L):353

χ̂(0) =
P
N

µ2
⊥

1+χ⋆
, χ(0) =

1−
∑L
ℓ=1[1− γℓgℓ(−γℓ)]
χ̂(0) + ζ

,

χ̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
1

1+χ⋆
, χ(ℓ) =

N
�D
ℓ

�

1− γℓgℓ(−γℓ)
χ̂(ℓ)

.

(54)

From the solution of Eq. (54), we can fully determine m(ℓ), m̂(ℓ) according to354

m(0) =
〈y〉
µ0

, m(ℓ) = χ(ℓ)m̂(ℓ), m̂(ℓ) =
P
�D
ℓ

�

µℓτℓp
ℓ!

〈yν〉
1+χ⋆

. (55)

With all the previous values we can determine the rest of the variables through the following355

set of linear equations:356

q(0) =
q̂(0)

(ζ+ χ̂(0))2

�

1−
L
∑

ℓ=1

�

1− γ2
ℓ g ′ℓ(−γℓ)
�

�

+
L
∑

ℓ=1

m̂(ℓ)2 + q̂(ℓ)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

,

q(ℓ) =
N
�D
ℓ

�

q̂(0)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

+
N
�D
ℓ

�

m̂(ℓ)2 + q̂(ℓ)

χ̂(ℓ)2

�

1+ γ2
ℓ g ′ℓ(−γℓ)− 2γℓgℓ(−γℓ)

�

,

q̂(0) =
P
N
µ2
⊥
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
.

(56)
Notice that, because of the conventional scalings we chose for the hat variables starting from357

Eq. (37) and for the definition of γℓ, these equations give O(1) results for the order parameters358

m, χ, q.359

By numerically integrating Eq. (54), (55), (56), we obtain the theoretical curves for the360

generalization error in Eq. (16) and for the order parameters we report in this paper. We com-361

pare the result with numerical simulations: despite its asymptotic nature and the hypothesis362

of row space orthogonality, our theory works reasonably well even if D is not large. The results363

are shown in Fig. 1, 2 (D = 30 in this case), where the generalization error is quantitatively364

predicted by the theory both when varying P and N .365
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6 Strongly separated regimes366

Our analysis relies on two cornerstones: (1) The possibility of taking the saddle point on the367

replica parameters (2) Treating the traces of log(γℓ + C⊙ℓ) as if C⊙ℓ were Wishart matrices.368

These assumptions can be justified if P, N , D→∞. Depending on the relation between the369

three parameters one is led to consider the following different asymptotic regimes:370

(i) N , P, D→∞, P/N → 0, P/DK finite; (this includes the case N ∼ DL with L > K).371

(ii) N , P, D→∞, N/DL finite, P/N finite;372

(iii) N , P, D→∞, P/N →∞, N/DL finite; (this includes the case P ∼ DK with K > L).373

In all these cases we need to specify the relation of K and L with B, the maximum degree of374

the teacher polynomial. This will be done in the following of this section.375

In order to understand these regimes, we need to evaluate terms of the kind376

kℓ = Tr log(a1+ bC⊙ℓ) , C⊙ℓi j =

�

1
D

∑

α

FiαF jα

�ℓ

(57)

in three situations (a) Dℓ ≫ N ; (b) Dℓ ≪ N ; (c) Dℓ ∼ N . Notice that in all cases, while377

the diagonal elements are C⊙ℓii = 1 + O(
p

1/Dℓ), the off-diagonal elements C⊙ℓi ̸= j are of the378

order D−ℓ/2. In case (a), Dℓ ≫ N , apart for a negligible number of possible eigenvalue of379

order N/Dℓ/2, all the other eigenvalues are λ = 1+O(
p

N/Dℓ), and to the leading order we380

simply have kℓ = N log(a+ b). If we are in the opposite situation, (b), Dℓ≪ N , we have only381

O(Dℓ) non-zero eigenvalues, roughly equal to ℓ!N/Dℓ+O(
p

N/Dℓ), and to the leading order382

kℓ = N log(a). The interesting case is (c) N = O(Dℓ): we have here Dℓ eigenvalues of order 1383

that contribute to kℓ. The leading contribution can be understood writing384

C⊙ℓi j =
ℓ!
Dℓ

∑

α

F⊗ℓi,αF⊗ℓj,α + terms with less α’s (58)

where the sum includes the terms where the α′s in the multi-index α are ordered, coherently385

with our definition in Table 1. This leading term is a matrix of rank min{N ,
�D
ℓ

�

}. Other terms386

with smaller number of indexes in the sum lead to matrices of lower rank r (with r/N →387

0). Moreover, due to the randomness of the F , the row spaces of these term are effectively388

orthogonal to the leading one. We conclude that we can compute kℓ as if C⊙ℓ were a Wishart389

matrix of parameter ηℓ = N/
�D
ℓ

�

. The explicit formula is given in eq. (D.12), and both limits390

ηℓ → 0 and ηℓ →∞ agree with the previous analysis of cases (a) and (b) respectively. We391

show in appendix D that approximating C⊙ℓ as a Wishart matrix gives good results also for392

moderately large values of N and D.393

In all our three cases, most of the order parameters go to trivial limits, while only the ones394

corresponding to the selected scaling regime converge to non-trivial values. We report the395

corresponding equations in Appendix H. In this way, we are able to plot the dashed lines in396

Fig. 1 and 3.397

7 Effective theory for finite-size random features networks398

In the last sections we devised a theory able to capture the relevant phenomenology of general-399

ization in RFMs at finite values of input dimension, hidden layer width and size of the training400

set. Indeed, even though the asymptotic approximation leading to the system of saddle-point401

16



SciPost Physics Submission

101 D 102 D2

2
103 ND3

6
105

P

0.2

0.3

0.4

0.5

εg

ReLU, ζ = 10−4

ELU, ζ = 10−4

ELU, ζ = 10−8

Figure 4: Generalization error vs P (D = 30, N = 104) on classification for a purely
cubic teacher (τ3 = 1); in blue, polynomial theory and numerical experiments for
ReLU activation function (7): in this case, µ3 = 0 and the model cannot learn the
cubic features, so the error remains 1/2; in yellow and red (respectively, for ζ =
10−4, 10−8), the case of ELU (8), for which µ3 ̸= 0 and the model can learn the cubic
features.

equations (54), (55), (56) is justified only for N large and N/DL finite, the curves obtained by402

fixing the values of N , P and D at finite values are in accordance with numerical simulations403

over several orders of magnitudes of the control parameters. This occurs thanks to the fact404

that we kept into account quantities that scale differently with D, as N/
�D
ℓ

�

or P/
�D
ℓ

�

, that are405

formally zero or infinity in the asymptotic regimes presented in Sec. 6.406

By developing a theory from Eq. (26), we show that the RFM is in essence equivalent to a407

polynomial model: the student tries to tune its weights through the combinations s(ℓ) defined408

in (27) to fit the corresponding coefficients θ (ℓ) of the teacher. This interpretation is also409

confirmed in the numerical experiments: see Fig. 1 (right) for the behavior of the teacher-410

student overlaps m(ℓ) in the case of a quadratic teacher.411

However, a crucial difference from a purely polynomial setting arises: the degree of the412

equivalent polynomial model is controlled by the scaling L of the random features, and higher413

order terms in the expansion of the kernel K on the Hermite basis act as noise, given by414

Eq. (29). This eventually produces the interpolation peak in the generalization error at N ∼ P,415

which would not be present for a vanilla polynomial student (see Fig. 1 and 3): in this regime,416

the model is overfitting the effective noise. In terms of the order parameters, overlaps of417

different orders are coupled by an additional set of parameters χ(0), q(0), related to the noise418

term in the equivalent polynomial model.419

In summary, the learning of features of a certain order is possible as long as the number420

of parameters N is enough: the scaling L ∼ log N/ log D controls the learning process through421

the truncation of the kernel (24). At the same time, P also plays an important role: if K ∼422

log P/ log D is smaller than L, the model only learns as a K-degree polynomial; on the other423

hand, if K > L, the model learns as a L-degree polynomial.424

By choosing a polynomial teacher of arbitrary degree B, we are able to explore to some425

extent the interplay between the complexity of the data and the one of the neural network.426

In the case where the teacher is less complex than the network, we can see that overfitting427

can occur and that overparametrization is not always optimal. This can be seen in Fig. 3.428

In the case of a linear teacher, if the amount of data P is O(D), an overparametrized network429

generalizes better. However, as soon as P hits the quadratic regime, but is still far from enabling430

the network to realize that there is no quadratic feature, then overparametrization leads to431

overfitting and therefore the optimal N is less than P.432
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Interestingly, in order for the model to learn features of order ℓ, the activation function σ433

must have a non-zero Hermite coefficient µℓ in Eq. (21). This can be seen from our theory434

by the fact that in the total teacher-student overlap m⋆ in Eq. (53) the single entry m(ℓ) is435

weighted by the corresponding coefficient. This theoretical prediction was tested by using a436

cubic teacher and two different students, one with ReLU activation function and the other one437

with ELU: the ReLU one, which has no third order term in the Hermite basis (µ3 = 0) could438

not learn the teacher, while the ELU one, that does have a nonzero component (µ3 ̸= 0), was439

able to (see Fig. 4).440

8 Conclusions and perspectives441

The approach we have explored so far provides a way to analytically evaluate the general-442

ization performance of a RFM in the limit of large input dimension D, in the scaling regimes443

N ∼ DL , P ∼ DK .444

We considered a teacher-student setting, where a shallow random features student is re-445

quired to fit a polynomial teacher. The student network learns as an equivalent polynomial446

model with effective noise. We showed this property by expanding the kernel in feature space447

on a convenient basis (21).448

The resulting theory is effective, in the sense that it is formulated in terms of a few collective449

order parameters (the teacher-student overlaps m(ℓ), the student-student overlaps q(ℓ), χ(ℓ))450

with a clear physical interpretation and whose values are fixed via a variational principle,451

as explained in Sec. 5. To perform the calculation we neglect the correlations between the452

student’s coefficients, assuming orthogonality between the row spaces of the components C⊙ℓ453

of the kernel.454

We find quantitative agreement with numerical simulations, except close to the interpo-455

lation peak at N ∼ P in some cases (see Fig. 3, left, where this effect is more apparent).456

Nevertheless, even then the effective theory gives a good qualitative picture, predicting the457

location and the shape of the peak. See also Fig. 1, right, depicting how the teacher-student458

overlaps of already learned features become noisy in the interpolation regime. A precise finite-459

size analysis of this effect, to address the gap between theory and numerics in this regime, is460

left for future work.461

One possible direction to continue this work is to consider how close is the learning of a462

fully-trained network to this model. The role of the variables s(ℓ) could play a similar role even463

if the values for Fiα are also learned, at least close to the lazy regime. However, what is the464

fate of row space orthogonality of the kernel components, which is ultimately responsible for465

the staircase behavior of the generalization error, for networks that are trained end-to-end in466

a feature learning regime?467

Moreover, it would be interesting to extend our analysis to deeper models [10, 72] in dif-468

ferent scaling regimes of the dimensions. Even if the RFM, whatever the activation function469

of the last layer, is essentially bounded by a polynomial model, the precise shape of the kernel470

in cases where a deeper architecture is involved could help understanding to some extent the471

feature learning regimes of realistic models, in view of the discussion above.472

Acknowledgements473

The authors would like to thank Pietro Rotondo, Rosalba Pacelli, Bruno Loureiro, Valentina474

Ros, the QBio group at ENS for discussions and suggestions. MP and FAL are grateful to the475

organizers and speakers of the Statistical Physics of Deep Learning summer school held in June476

18



SciPost Physics Submission

2022 in Como, where the idea was in part conceived.477

Funding information The authors have been supported by a grant from the Simons Foun-478

dation (grant No. 454941, S. Franz), thanks to which most of this work was performed at479

LPTMS (CNRS, Université Paris-Saclay).480

FAL conducted part of this research within the Econophysics & Complex Systems Research481

Chair, under the aegis of the Fondation du Risque, the Fondation de l’École polytechnique, the482

École polytechnique and Capital Fund Management.483

A Kernel on the Hermite basis484

In this section we report the steps needed to obtain the expression of the feature-feature kernel485

in Sec. 4. The kernel to evaluate is defined as486

Kii = Ehi
[σ(hi)

2] =

∫

du
p

2πCii
e−

u2
2Cii σ(u)2

Ki j = Ehi ,h j
[σ(hi)σ(h j)] =

∫

du dv

2π
p

det C̄
e−

1
2 (u,v)C̄−1(u,v)⊤σ(u)σ(v) i ̸= j

(A.1)

where487

C̄ =

�

Cii Ci j
Ci j C j j

�

. (A.2)

Using the fact that Cii ≃ C j j ≃ 1, this kernel can be written as a series of separable kernels488

exploiting Mehler’s formula [66,67], that we report here for convenience:489

1

2π
p

1− c2
e−

1
2 (u,v)
�

1 c
c 1

�−1
(u,v)⊤ =

e−
u2
2

p
2π

e−
v2
2

p
2π

∞
∑

ℓ=0

cℓ

ℓ!
Heℓ(u)Heℓ(v) , (A.3)

from which we find Eq. (23) using the fact that, by orthogonality of the Hermite polynomials,490

Kii =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
. (A.4)

Mehler’s formula, which dates back to 1866, can be viewed as an example of Mercer’s decom-491

position [15].492

B Hermite polynomials and Wick products493

For completeness, we show in this section that, asymptotically for D large,494

Heℓ(hi)≃
∑

α1,··· ,αℓ

Fiα1
· · · Fiαℓp
Dℓ

: xα1
· · · xαℓ : , (B.1)

for ℓ≥ 1. The equivalence follows from the generating function of the Hermite polynomials,495

Heℓ(hi) =
dℓ

dtℓ
exp
�

thi − t2/2
��

�

t=0 , (B.2)

with hi =
∑

α Fiαxα/
p

D. Defining496

λα = t
Fiαp

D
, (B.3)
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we have, for D large,497

∑

α

λ2
α ≈ t2 ,
∑

α

Fiαλαp
D
≈ t ,
∑

α

Fiαp
D

∂

∂ λα
≈

d
dt

, (B.4)

where we used repeatedly
∑

α(Fiα)2/D ≃ 1. The thesis follows from comparison with Eq. (28).498

Notice that, in the simpler case of a single standard Gaussian variable x , the identity Heℓ(x) =499

: xℓ : is exact and trivially follows from the definition of the Wick power.500

C Evaluation of the moments of ν,λa
501

We assume that the variables (ν, {λa}) are normally distributed with mean and covariance502

Ex[(ν, {λa})] = (0, {ta}) , covx[(ν, {λa})] =
�

ρ M⊤

M Q

�

, (C.1)

where503

ta = Ex[λ
a] =

N
∑

i=1

wa
ip
N
Ehi
[σ(hi)] ,

ρ = Ex[ν
2]−Ex[ν]

2 =
B
∑

ℓ=1

τ2
ℓ

∥θ (ℓ)∥2
�D
ℓ

� ,

Ma = Ex[νλ
a] =

N ,B
∑

i,ℓ

wa
i τℓ
Ç

N
�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
Ex[xα1

· · · xαℓσ(hi)] ,

Qab = Ex[λ
aλb]− ta t b =

N
∑

i, j=1

wa
i wb

j

N
Ehi ,h j

[σ(hi)σ(h j)]− ta t b ,

(C.2)

To proceed, we make the following steps, starting from the expansion of the activation504

function on the Hermite basis, Eq. (21). For ta we simply observe that Ehi
[σ(hi)] = µ0. For505

ρ we use the fact that x is distributed as a standard normal random vector. To deal with Qab506

we introduce the truncation of (24). Finally, for Ma we write explicitly507

∑

α1<···<αk

θ (k)α1···αk
Ex[xα1

· · · xαk
σ(hi)] =
∑

α1<···<αk

θ (k)α1···αk

∞
∑

ℓ=0

µℓ
ℓ!
Ex[xα1

· · · xαk
Heℓ(hi)] (C.3)

and we perform Wick’s contractions in order to evaluate the expected value, exploiting the508

mapping to Wick’s product explained in Appednix B. As the indices α of the teacher are strictly509

ordered, they must be paired only with the ones in the Wick product, leaving only the term510

ℓ= k in the sum over ℓ. The number of possible contractions is k!, so the result is511

ta =
µ0p

N

N
∑

i=1

wa
i ,

Ma =
N
∑

i

wa
ip
N

B
∑

ℓ=1

τℓ
�D
ℓ

�p
ℓ!

∑

α

θ (ℓ)α F⊗ℓi,α ,

Qab =
1
N

N
∑

i, j=1

wa
i wb

j

�

δi jµ
2
⊥,L +

L
∑

ℓ=1

µ2
ℓ

ℓ!
(Ci j)

ℓ

�

,

(C.4)

from which Eq. (34) follows.512
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D Results on random matrix theory513

D.1 Marchenko-Pastur distribution and Stieltjes transformation514

In this section, we remind some textbook results in Random Matrix Theory we used in the515

main text, for the reader’s convenience. First of all, random matrices of the form516

C = F F⊤/D , (D.1)

where F is a N ×D random matrix with i.i.d. entries Fiα such that E[Fiα] = 0, E[(Fiα)2] = σ2,517

define the Wishart (or Wishart-Laguerre) ensemble. For large N and D, parameter η ≡ N/D518

finite, their spectral density follows the Marchenko-Pastur (MP) distribution,519

ρMP(λ) =

¨

(1− 1/η)δ(λ) +ρbulk(λ/σ2)/σ2 if η > 1 ,

ρbulk(λ/σ2)/σ2 if η≤ 1 ,
(D.2)

with520

ρbulk(λ) =

p

(λ+ −λ)(λ−λ−)
2πηλ

, λ± = (1±pη)2 (D.3)

with support in λ− ≤ λ≤ λ+.521

The MP distribution can be obtained with standard methods [73,74]. The determinant of522

the resolvent can be evaluated as follows:523

E
�

det

�

γ1N +
F F⊤

D

��− 1
2

= E
∫

dx

(2π)
N
2

e−
1
2 x⊤(γ1N+

F F⊤
D )x . (D.4)

By Gaussian linearization,524

E
∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2+ix⊤ Fp
D

y (D.5)

The average over F gives525

∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2− 1
2D ∥x∥

2∥y∥2 . (D.6)

Integrating over y,526
∫

dx

(2π)
N
2

e−
γ
2 ∥x∥

2− D
2 log(1+∥x∥2/D) . (D.7)

Inserting r = ∥x∥2/N with a Dirac delta, we can integrate over x:527

∫

dr dr̂
4π

e
iN r̂ r

2 −
N
2 log(i r̂)− N

2 γr− N
2η log(1+ηr) . (D.8)

The integral over the Fourier variable r̂ can be solved via asymptotic integration, the saddle-528

point being in r̂ = −ir−1:529
∫

dr e
N
2

�

1+log(r)−γr− 1
η log(1+ηr)
�

(D.9)

The saddle point equation in r gives530

1
r
− γ−

1
1+ηr

= 0 (D.10)
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Figure 5: Top row – empirical (30 instances, D = 20, N = D3) vs. analytical (MP)
distributions of the non-zero eigenvalues of the matrices defined in Sec. D.2: C (1,1)

(left), C (2,1)/D, C (2,2) (center), C (3,1)/D2, 3C (3,2)/D, C (3,3) (right). Bottom row –
comparison of the analytical curves with the empirical distribution (notice the log
scale on the axes) of C⊙2 (left), C⊙3 (center) and C⊙1+C⊙2+C⊙3 (right); analytical
curves in the bottom row are rescaled in such a way that the sum of the densities in
each panel is normalized.

with solutions531

r± =
η− γ− 1±
Æ

(η− γ− 1)2 + 4ηγ
2ηγ

. (D.11)

The correct branch can be proven to be r = r+. From this analysis, the relation532

1
N
ETr log(γ1+ C) = −(1− γr)− log(r) +

1
η

log(1+ηr) (D.12)

follows. Deriving with respect to γ,533

1
N
ETr(γ1+ C)−1 = r(γ) . (D.13)

By definition of Stieltjes transformaiton, r(γ) = g(−γ), which gives Eq. (49).534

D.2 Spectral density of C⊙ℓ535

In this Appendix we discuss the spectral density of the matrices C⊙ℓ, to clarify the kind of536

approximation we used in the main text. We are interested to the large N computation of the537

following traces:538

aℓ =
1
N

Tr(γℓ1+ C⊙ℓ)−1 , bℓ =
1
N

Tr C⊙ℓ(γℓ1+ C⊙ℓ)−1 (D.14)

under the hypothesis that ηL = N/
�D

L

�

remain finite. We anticipate that γℓ given by (46) either539

remain finite (if P/N remains finite) or tends to infinity (if P/N →∞) in that limit. As we540

have already discussed, for ℓ > L, the matrix C⊙ℓ is fully ranked, with diagonal elements close541

to one and off-diagonal elements of order D−ℓ/2: all eigenvalues will be equal to one up to542

a negligible correction. For that reason we could neglect off-diagonal terms for ℓ > L and543

aℓ ≈ bℓ ≈ (1+γℓ)−1. For ℓ < L conversely, the matrix has rank Dℓ at most, and it is easy to see544

that its max eigenvalue cannot be larger that N maxi

�

1
D

∑

α F2
i,α

�ℓ
= N(1+O(
p

log(N)/D)). 2
545

2λmax =maxv|v2=1
1

Dℓ

∑

α1 ,...,αℓ

�∑

i vi Fi,α1
...Fi,αℓ

�2
≤ N
∑

i v2
i

�

1
D

∑

α F2
i,α

�ℓ
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We get therefore546

1
N

�

(N − Dℓ)/γℓ + Dℓ/(γℓ + N)
�

≤ aℓ ≤
1
γℓ

, 0≤ bℓ ≤
Dℓ

N
N

γℓ + N
. (D.15)

It remains to be discussed the only non trivial case: ℓ= L In that case, we can decompose the547

matrix C⊙L as a Wishart matrix with rank min{N ,
�D

L

�

} and parameter ηL , plus a contribution548

with rank at most DL−1 which for reasoning similar to the previous case, do not contribute to549

aL and bL in the thermodynamic limit.550

We would like now to show, that even for moderate values of N and D, the neglection of all551

non-Wishart contribution provides an excellent approximation to the spectrum. To fix ideas,552

let us consider L = 3 (N ∼ D3), so that we consider the matrices553

C⊙1 = C (1,1) , C⊙2 =
1
D

C (2,1) + C (2,2) , C⊙3 =
1
D2

C (3,1) +
3
D

C (3,2) + C (3,3) , (D.16)

where (we use the label (ℓ, k), where ℓ is the corresponding exponent in C⊙ℓ, and k the number554

of different summation indices)555

C (1,1)
i j =

1
D

∑

α

FiαF jα = Ci j ,

C (2,1)
i j =

1
D

∑

α

F2
iαF2

jα ,

C (2,2)
i j =

2
D2

∑

α<β

FiαFiβ F jαF jβ ,

C (3,1)
i j =

1
D

∑

α

F3
iαF3

jα ,

C (3,2)
i j =

1
D2

∑

α̸=β

F2
iαFiβ F2

jαF jβ ,

C (3,3)
i j =

6
D3

∑

α<β<γ

FiαFiβ FiγF jαF jβ F jγ .

(D.17)

We can say the following on the matrices C (ℓ,k) when N , D are both (generically) large:556

• C (1,1) = C has a Marchenko-Pastur (MP) spectrum with parameter η1 = N/D and σ2 =557

1, with D bulk eigenvalues λ= N/D+O(
q

N
D ) (and N − D zero eigenvalues).558

• C (2,1) can be written as559

C (2,1)
i j ≃ 1+

1
D

∑

α

(∆iα∆ jα) , (D.18)

where ∆iα = F2
iα − E[F

2
iα] = F2

iα − 1. Notice that E[∆2
iα] = 2. From this, it follows560

that C (2,1) has an MP spectrum with parameter η1 and σ2 = 2, with D bulk eigenvalues561

O(σ2η1), plus an additional outlier eigenvalue of order N (due to the finite mean);562

however, in C⊙2 this matrix is scaled by an additional factor of 1/D, so it contributes to563

the sum with D eigenvalues O(2N/D2) and an outlier O(N/D).564

• C (2,2) has an MP spectrum with parameter η2 = 2N/D2 and σ2 = 1, with D2/2 bulk565

eigenvalues O(η2).566

• C (3,1) has an MP spectrum with parameter η1 and σ2 = 15, with D bulk eigenvalues567

O(η1); however, in C⊙3 this matrix is scaled by an additional factor of 1/D2, so it con-568

tributes to the sum with D eigenvalues O(N/D3).569
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• C (3,2) can be written as570

C (3,2) ≃
1
D2

∑

α̸=β

∆iαFiβ∆ jαF jβ +
1
D

∑

α

FiαF jα . (D.19)

The first addendum (notice that the double sum is not symmetric) has an MP spectrum571

with parameter N/D2 and σ2 = 2, with D2 eigenvalues O(2N/D2), while the second572

addendum is C; however, in C⊙3 they are both scaled by a factor 3/D, so they contribute573

to the sum with D2 eigenvalues O(6N/D3) and with D eigenvalues O(3N/D2).574

• C (3,3) has an MP spectrum with parameter η3 = 6N/D3 and σ2 = 1, with D3/6 bulk575

eigenvalues O(α3).576

This heuristics is compared with numerical results in Fig. 5, which shows a remarkable ac-577

cordance. In the main text, we took the approximation C⊙ℓ ≃ C (ℓ,ℓ), and considered the row578

spaces of C⊙ℓ for different ℓ as orthogonal: in Fig. 5, bottom right, we show how the spectrum579

of a sum of the full matrices C⊙ℓ is reasonably approximated by the sum of the (analytical)580

spectra of the corresponding C (ℓ,ℓ) matrices, validating our approach.581

E Determinant of sum of matrices with orthogonal row spaces582

In this section we derive Eq. (42). Let us take the N × N matrix given by583

K = a1+
L
∑

ℓ=1

bℓCℓ , (E.1)

where the matrices Cℓ are such that rank(Cℓ) = rℓ,
∑

ℓ rℓ ≤ N and their row spaces Rℓ (that584

is, the orthogonal complements to their null spaces) are mutually orthogonal (Rℓ ⊥ Rk for585

k ̸= ℓ). Then,586

det K = aN−
∑

ℓ rℓ
∏

ℓ

det(ℓ)∥ (a1+ bℓCℓ) , (E.2)

where det(ℓ)∥ (·) is the determinant restricted to the row space of Cℓ:587

det(ℓ)∥ (a1+ bℓCℓ) =
rℓ
∏

α=1

(a+ bℓλα) , (E.3)

with λα the non-zero eigenvalues of Cℓ. Eq. (E.2) can be proven by noticing that, if {eα
ℓ
}rℓα=1588

is a basis of Rℓ and {eα⊥}
N−
∑

ℓ rℓ
α=1 a basis of (

⋃

ℓRℓ)⊥, the set (
⋃

ℓ{e
α
ℓ
})
⋃

{eα⊥} is a basis of RN
589

in which the matrix K is in block-diagonal form. Moreover, from Eq. (E.3)590

det(ℓ)∥ (a1+ bℓCℓ) = det(a1+ bℓCℓ)a
−(N−rℓ) , (E.4)

so we can conclude that591

det K = aN(1−L)
∏

ℓ

det(a1+ bℓCℓ) . (E.5)

F Traces over RS matrices592

In this section we derive Eq. (45). We need to evaluate593

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

, (F.1)
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where A, B are RS n× n matrices. We can write594

A⊗ 1N + B ⊗ C⊙ℓ = (B ⊗ 1N )
�

B−1A⊕ C⊙ℓ
�

, (F.2)

where the Kronecker sum is defined as595

B−1A⊕ C⊙ℓ = B−1A⊗ 1N + 1n ⊗ C⊙ℓ. (F.3)

The eigenvalues of a Kronecker sum are the sums of the eigenvalues of the addenda. Calling596

σa the eigenvalues of B−1A and λi the eigenvalues of C⊙ℓ, this means that597

log det(B−1A⊕ C⊙ℓ) =
∑

a,i

log(σa +λi) . (F.4)

Given that B−1A is RS, it has 2 different eigenvalues, σ with multiplicity n−1 and σ+nσ̃ with598

multiplicity 1, so that for small n599

logdet(B−1A⊕ C⊙ℓ) = n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.5)

In total we get600

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log b+ nN
b̃
b
+ n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.6)

Using the RS algebra, we know that σ = a/b, σ̃ = (bã− ab̃)/b2, so that601

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= n Tr log(a1+ bC⊙ℓ) + nã Tr(a1+ bC⊙ℓ)−1

+ nb̃ Tr[C⊙ℓ(a1+ bC⊙ℓ)−1] . (F.7)

It only remains to find a, ã, b, b̃:602

a = β(ζ+ χ̂(0)) , ã = −β2q̂(0) , b = βχ̂(ℓ)/ηℓ , b̃ = −β2[q̂(ℓ) + (m̂(ℓ))2]/ηℓ . (F.8)

We define γℓ = a/b = ηℓ(ζ+ χ̂(0))/χ̂(ℓ) to get Eq. (45).603

G Replica-symmetric free energy604

In this section we report the main steps to obtain the terms SM and SP in Eq. (51) and (52),605

that is the measure and pattern contributions to the free energy.606

G.1 Measure contribution607

By plugging the RS ansatz (43), (44) and Eq. (45) in Eq. (40), we readily obtain608

SM = − nβ
L
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

n
2

L
∑

ℓ=0

1
ηℓ
[χ(ℓ)χ̂(ℓ) + β(q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ))]

−
n
2

log(β(ζ+ χ̂(0))) +
βn(1− L)

2
q̂(0)

ζ+ χ̂(0)
−

n
2N

L
∑

ℓ=1

Tr log(1+ C⊙ℓ/γℓ)

+
βn
2N

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1 +

βn
2N

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] .

(G.1)

We obtain Eq. (51) by keeping the leading order terms for β large and using Eq. (48).609
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G.2 Pattern contribution610

SP is a function only of the order parameters:611

SP = log

�∫

dν
n
∏

a=1

dλa p(ν, {λa})
∫

dy p(y|ν)e−β
∑

a L(y,λa)

�

,

p(ν, {λa}) =N
�

(ν, {λa})
�

�

� (0, {ta}),
�

1 M⊤

M Q

��

.

(G.2)

With the RS ansatz and for small n,612

SP = log

�∫

dy dν
n
∏

a=1

dλa p(y|ν) e−
ν2
2 +β

m⋆ν
χ⋆

∑

a λ
a− β

2χ⋆
∑

a λ
2
a−β
∑

a L(y,λa+t⋆)−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb
�

−
n
2

log(2π)−
1
2

logdet

�

1 M⊤

M Q

�

. (G.3)

To factorize the integral over replicas we use the Hubbard-Stratonovich transformation613

e
−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb

= Eξ eβ
p

q⋆−m⋆2

χ⋆

∑

a λ
aξ , (G.4)

obtaining, to leading order in n,614

SP = −
n
2

log
χ⋆

β
−

nβ
2

q⋆

χ⋆
+ nEξ

∫

dyDν p(y|ν)

× log

∫

dλ eβ
�p

q⋆−m⋆2ξ+m⋆ν
�

λ
χ⋆ −

βλ2

2χ⋆ −βL(y,λ+t⋆) . (G.5)

For our choice of loss (10) and for β large, we obtain Eq. (52).615

H Asymptotic limits of the saddle-point equations616

The system of saddle-point equations can be studied in different asymptotic limits, as we an-617

ticipated in Sec. 6:618

(i) N , P, D→∞, P/N → 0, P/DK finite;619

(ii) N , P, D→∞, N/DL finite, P/N finite;620

(iii) N , P, D→∞, P/N →∞, N/DL finite.621

H.1 Case (i)622

In the limit where N scales faster to infinity than P, Eq. (54) reduces to623

χ̂(0)→ 0 , χ(0)→
1
ζ

,

χ̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µ2
K

K!(1+χ⋆) for ℓ= K ,

0 for ℓ > K ,

χ(ℓ)→











0 for ℓ < K ,
1

χ̂(K)+ζ for ℓ= K ,
1
ζ for ℓ > K ,

(H.1)
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where we used the asymptotic results for the Stieltjes transformation of the Marchenko-Pastur624

distribution,625

1− γℓg(−γℓ;ηℓ)∼











1
ηℓ

for ℓ < K ,
1

ηK+γK
for ℓ= K ,

1
γℓ

for ℓ > K .

(H.2)

Notice that now, consistently,626

χ⋆ =
µ2
⊥,K

ζ
+
µ2

K

K!
χ(K) , (H.3)

because µ2
⊥,L recombines with the terms coming from K < ℓ≤ L to give µ2

⊥,K . Eq. (55) reduces627

to628

m(0) =
〈y〉
µ0

m̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µKτKp
K!
〈yν〉
1+χ⋆ , for ℓ= K ,

0 for ℓ > K ,

m(ℓ)→











p
ℓ!τℓµℓ 〈yν〉 for ℓ < K ,
p

K!τK
µK
〈yν〉 (1− ζχ(K)) for ℓ= K ,

0 for ℓ > K ,
(H.4)

while Eq. (56) becomes629

q̂(0)→ 0 , q(0)→ 0

q̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µ2
K

K!
〈(µ0m(0)−y)2〉−2〈yν〉m⋆+q⋆

(1+χ⋆)2
for ℓ= K ,

0 for ℓ > K ,

q(ℓ)→



















ℓ!
τ2
ℓ

µ2
ℓ

〈yν〉2 for ℓ < K ,

(m̂(K)2+q̂(K))
(χ̂(K)+ζ)2 for ℓ= K ,

0 for ℓ > K ,
(H.5)

where now630

q⋆ = 〈yν〉2
K−1
∑

ℓ=1

τ2
ℓ +

µ2
K

K!
q(K) , m⋆ = 〈yν〉

K−1
∑

ℓ=1

τ2
ℓ +

µKτKp
K!

m(K) . (H.6)

H.2 Case (ii)631

In the limit where both P and N scale in the the same way, N ∼ P ∼ O(DL), we have, for632

0< ℓ < L,633

χ̂(ℓ)→∞ , m̂(ℓ)→∞ , q̂(ℓ)→∞ ,

χ(ℓ)→ 0 , m(ℓ)→
p

ℓ!
τℓ
µℓ
〈yν〉 , q(ℓ)→ ℓ!

τ2
ℓ

µ2
ℓ

〈yν〉2 .
(H.7)

For the other parameters we need to solve the equations for χ634

χ̂(0) =
P
N

µ2
⊥,L

1+χ⋆
, χ(0) =

γL gL(−γL)
χ̂(0) + ζ

,

χ̂(L) =
P
�D

L

�

L!

µ2
L

1+χ⋆
, χ(L) =

N
�D

L

�

1− γL gL(−γL)
χ̂(L)

,

(H.8)

for m,635

m(0) = 〈y〉/µ0 , m(L) = χ(L)m̂(L) , m̂(L) =
P
�D

L

�

µLτLp
L!

〈yν〉
1+χ⋆

, (H.9)
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and for q636

q̂(0) =
P
N
µ2
⊥,L
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(L) =
P
�D

L

�

µ2
L

L!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q(0) =
q̂(0)

(ζ+ χ̂(0))2
γ2

L g ′L(−γL) +
m̂(L)2 + q̂(L)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) =
N
�D

L

�

q̂(0)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

+
N
�D

L

�

m̂(L)2 + q̂(L)

χ̂(L)2

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.10)

The values χ⋆, m⋆ and q⋆ are consistent with their definition. At variance with case (i), χ(0) and637

q(0) have non-trivial values, responsible for the interpolation peak appearing in this regime.638

Notice that their value is controlled explicitly by the regularizer ζ: the lower it is, the sharper639

is the peak. Moreover, the spectral function relative to the active component, gL , also gives a640

non-trivial contribution.641

H.3 Case (iii)642

In the limit where P is scaling faster than N to infinity, we have that for all 0 < ℓ < L the643

order parameters behave as in Eq. (H.7), meaning that the degree-L student learns perfectly644

all the terms of the teacher of degree less then L, as the amount of training data P is effectively645

infinite. In this case646

γL =
L!µ2
⊥,L

µ2
L

(H.11)

and we have χ(L), χ̂(L)→ 0; q̂(0), q̂(L)→∞ and647

m(L) = ηL 〈yν〉
p

L!
τL

µL
(1− γL gL(−γL)),

q(0) = ηL 〈yν〉
2 τ2

L

µ2
⊥,L

�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) = ηL 〈yν〉
2 L!

τ2
L

µ2
L

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.12)

I Numerical experiments648

All numerical experiments were done in Python using JAX, [75], to generate the synthetic ran-649

dom data, and scikit, [76], to optimize the parameters. The optimizer has a simple analytic650

form given by (18). Nevertheless, it is potentially inefficient to implement the formula naively,651

as it would require the inversion of a very large matrix. Since we used very large values of N652

and P, we performed the ridge regression with the function sklearn.linear_model.Ridge.653

In this way we could explore regimes of N , P up to order D3.654

Almost all numerical experiments were performed with D = 30. In most of the simulations655

we sampled 50 times for each combination of N , P, D. For the right panel of Figure 3 we used a656

larger number of samples since in that case both D = 30 and P = 40∼ 400 were small, hence657
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the generalization error had higher variability. For N < 3000 we used 500,200, 300 samples658

respectively for P = 40, 200,400. For N > 3000 we used 100, 100,50 samples respectively for659

P = 40,200, 400.660

A GitHub repository collecting the code needed to reproduce the figures of this paper (both661

numerical experiments and theoretical curves from the integration of the saddle-point equa-662

tions) can be found at [77].663
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