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Abstract

Random features models play a distinguished role in the theory of deep learning, de-
scribing the behavior of neural networks close to their infinite-width limit. In this work,
we present a thorough analysis of the generalization performance of random features
models for generic supervised learning problems with Gaussian data. Our approach,
built with tools from the statistical mechanics of disordered systems, maps the random
features model to an equivalent polynomial model, and allows us to plot average gen-
eralization curves as functions of the two main control parameters of the problem: the
number of random features N and the size P of the training set, both assumed to scale
as powers in the input dimension D. Our results extend the case of proportional scaling
between N, P and D. They are in accordance with rigorous bounds known for certain
particular learning tasks and are in quantitative agreement with numerical experiments
performed over many order of magnitudes of N and P. We find good agreement also far
from the asymptotic limits where D→∞ and at least one between P/DK , N/DL remains
finite.
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1 Introduction33

The connection between deep feed-forward neural networks (DNNs) in the large-width limit34

and kernel methods has been well understood in the last years. It has been shown, in a35

Bayesian learning perspective, that if the number of units in each hidden layer is taken to36

infinity at fixed input dimension and training set size, a DNN becomes a “neural network37

Gaussian process” whose kernels can be defined iteratively layer by layer [1–4]. This result has38

been recently generalized beyond the infinite-width limit [5–10]. In a dynamical perspective39

moreover, it has been shown that wide DNNs trained with gradient-based methods exhibit the40

lazy-training kernel regime [11], evaluated by first order Taylor-expanding the network with41

respect to the weights around initialization [12–14].42

Once a DNN is proven equivalent to a kernel machine, the mechanism by which it realizes43

the input-output mapping of the corresponding supervised-learning task is understood: the44

input data, which generally speaking are points in RD, are mapped with an implicit feature45
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Figure 1: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ= 10−8,
quadratic teacher (balanced: τ1 = τ2 = 1/

p
2, τℓ>2 = 0) and ELU activation func-

tions (defined in Eq. (8) below); the continuous line is the equivalent polynomial
theory devised in Sec. 4, truncated at L = 3; dashed lines are the asymptotic the-
ories (see Sec 6 for details) for N →∞ and P/D finite (red), N →∞ and P/

�D
2

�

finite (yellow), N →∞ and P/
�D

3

�

finite (blue), P/
�D

3

�

and N/P finite (green); black
points are results from numerical experiments averaged over 50 instances (see Ap-
pendix I). The model learns the linear features (first step at P ∼ O(D)), then learns
the quadratic features (second step at P ∼ O(D2)), then follows the interpolation
peak at P ∼ N . Right: numerical and theoretical teacher-student overlaps – defined
in Eq. (37) and (45) – of the linear and quadratic features (the overlap of the cubic
features is identically 0 by definition); the parameters of the model are the same as
for the left panel.

map ψ : RD → RN to an N -dimensional space where the classification, or regression, rule is46

linear and can be learnt by the read-out layer. The mapping to the feature space is implicit,47

in the sense that the learning problem can be solved by a support vector machine (SVM), so48

that learning and generalization depend on the features only through the kernel H̄(x,x′) =49
∑N

i=1ψi(x)ψi(x′)/N (see, for reference, [15]). Learning curves (generalization error as a50

function of the size P of the training set) of kernel machines can be obtained analytically from51

a statistical mechanics [16–19] or a mathematical [20–22] perspective. A very interesting52

trait of these curves is their staircase shape for P ∼ DK : by setting the scaling of the size of the53

training set to a certain power K of the input dimension, features of order K can be learnt by54

the machine, so that the test error decreases increasing K with subsequent steps.55

The discovery of the lazy training regime of wide neural networks motivated in the recent56

past the study of the random features model (RFM) [23,24], a shallow (one-hidden-layer, 1HL)57

neural network where the feature map is explicitly parametrized by a fixed random linear58

embedding of the input points from RD to RN , followed by a non-linear activation function. In59

this sense, the model mimics the behavior of a neural network in the large-width limit, where60

the feature map depends only on initialization and learning is linear.61

In the present work we study theoretically the generalization performance of the RFM in62

the large-D limit for empirical risk minimization, with P ∼ DK , N ∼ DL . We find, under a quite63

general teacher/student setting with a random polynomial teacher and Gaussian i.i.d. input64

data, that65

• as long as P ≪ N , the model behaves as an infinite-rank (N → ∞) kernel machine:66

for P ∼ DK , features of order K can be learnt, such that the generalization error as a67

function of P has a staircase descent (or overfitting peaks if the teacher is less complex)68
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Figure 2: Generalization error of a RFM on a classification task, as a function of the
number of hidden units N , for P = 104 and the rest of the parameters as in Fig. 1;
continuous lines are the theories truncated at L′ = 1, 2,3 (respectively: blue, yellow,
red); numerical points (in black) are nicely interpolating between these curves in the
regimes where N ∼ O(D), O(D2), O(D3), validating Eq. (25), where the truncation
L′ of the equivalent polynomial theory is fixed at L ∼ log(N)/ log(D).

with steps corresponding to different values of K;69

• for P ≫ N and N ∼ DL , the model is equivalent to a degree-L polynomial student: if the70

complexity of the teacher is lower than the degree L, the generalization error is equal71

to zero, or otherwise, to the minimum error for a degree-L polynomial fitting a more72

complex teacher;73

• for P ∼ N , an interpolation peak of the generalization error, which depends on the74

strength of the regularization of the student’s weights, occurs.75

This behavior is depicted in Fig. 1. Comparison with numerical experiments shows that our76

theory, based on the mapping of the RFM to an equivalent noisy polynomial model, predicts77

well the quantitative behavior of the true generalization performance at finite size, over many78

orders of magnitude.79

Our theory, formulated from the point of view of the statistical mechanics of disordered80

systems, expresses the generalization performance of the RFM in terms of few order param-81

eters with a clear physical interpretation, as overlaps between combinations of the student’s82

weights and the parameters defining the teacher. In this way, we are offering a complementary83

take on what is known about RFMs in the computer science community, as we discuss in the84

following.85

1.1 Related works86

In this section we give an overview on the previous works that have been of inspiration to our87

paper, presenting relevant results and differences with our approach.88

Random feature models were introduced in [23–26], initially as randomized low-rank ap-89

proximations of kernels arising in classification or regression problems. Recently, their interest90

was renewed by the discovery that DNNs behaves as RFMs close to the infinite-width limit, both91

in a Bayesian learning [1–4] and in a gradient-based learning [11–14] setting. This mapping,92

which provides one of the few limits where DNNs can be studied with analytical methods, has93

motivated in the last few years a huge effort to formalize their behavior in terms of expressive94

power and generalization performance.95
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In particular, the impressive series of works [14,27–33] (see [34] for a review) formulates96

rigorous bounds on the generalization performance of RFMs in different asymptotic regimes.97

For a non-exhaustive recap of the results (with our notation):98

• In [27], the large-D limits where DL+δ ≤ N ≤ DL+1−δ (for small δ) after sending P →∞99

(underparametrized regime) and DK+δ ≤ P ≤ DK+1−δ after sending N → ∞ (over-100

parametrized regime) are considered. In the first case the model is found equivalent to101

degree-L polynomial regression; in the second one, it reduces to (infinite-rank) kernel102

regression, which for that number of samples can fit at most a degree-K polynomial in103

the inputs, in a way also investigated in literature [16–22].104

• In [29], the limit where both N and P scale linearly with D with their ratio fixed is105

considered; the generalization error as a function of the ratio between the number of106

hidden units and the size of the training set first decreases for N/P small, then exhibits107

a peak at the interpolation threshold N/P = 1 and then relaxes again for N ≫ P to108

the value predicted from the kernel theory with P ∼ D, coherently with the previous109

point. This phenomenology is widely observed in numerical experiments and known in110

literature as double descent [35] of the generalization error.111

• In [31], the authors push forward the analysis of [27] (that is, P and N scaling poly-112

nomially with D) to the regimes where N ≤ P1−δ and N ≥ P1+δ. The authors show113

indeed that the limiting behavior is given by the smallest of N and P, and they find the114

interpolation threshold at N ∼ P also in this polynomial scaling.115

• In [33], universality results on training and test error are proven in the P ∼ N regime116

for a larger class of models, as long as with finite dimensional outputs, and generic117

losses. Indeed, they prove that training and test errors depend on the random features118

distribution only through its covariance structure.119

These papers find bounds to the generalization performance of a RFM with rigorous analytical120

methods under quite general assumptions on data distribution and activation functions.121

A statistical mechanics point of view, complementary to the formal approach discussed122

so far, has been formulated in the series of papers [36–42]. Originally aiming at modelling123

the role of data structure in machine learning, as in other contemporary approaches [43–50],124

the authors obtained in [37] a closed-form expression for the generalization error of RFMs125

for regression and classification in the asymptotic regime where N ∼ P ∼ D. Their approach,126

based on the replica theory from statistical mechanics [51], can be applied to supervised learn-127

ing tasks with generic convex loss functions. Not only their results are supported under mild128

hypothesis by analytical proofs [29,33,38,52,53], but they can predict remarkably well the nu-129

merical experiments. Our work extends these results to more general scaling regimes, where130

P ∼ DK , N ∼ DL .131

One of the main steps in our derivation is the expansion of activation function of the hidden132

layer on a polynomial basis, which corresponds to the diagonalization of the kernel (20) on133

its eigenbasis (Mercer’s decomposition). This expansion is then truncated to a certain degree134

L, corresponding to the integer exponent in the scaling law N ∼ DL: similar approximations135

appeared recently in [54, 55]. Moreover, while the literature on the double descent behav-136

ior of the generalization error is vast and impossible to outline here (see for example [35]),137

we mention [56], where the presence of more than one peak in the generalization curve is138

remarked: the authors call “linear peak” the one occurring at P ∼ D for N ≫ P, where the139

model behaves as a kernel learning the linear features, while for P ∼ N there is a “non-linear140

peak” due to the non-linearity of the activation function acting as noise and overfitted when141

P and N are of the same order; in the present work we show that, as long as N ≫ P, there is142

a peak (or a descent) for each of the regimes P ∼ DK .143
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Symbol Definition
D input space dimension

N ∼ DL feature space dimension
P ∼ DK size of the training set

B degree of the teacher
n number of replicas
ηℓ N/

�D
ℓ

�

α,β , · · · indices in input space
i, j, · · · indices in feature space
µ,ν, · · · indices spanning the training set
a, b, · · · indices in replica space
α multi-index {α1, · · · ,αℓ}, α1 < · · ·< αℓ
θ teacher parameters, θ = {θ (ℓ)α }

B
ℓ=1

F N × D random features matrix
Fα, Fi (Fiα)Ni=1, (Fiα)Dα=1
F⊗ℓα (Fiα1

· · · Fiαℓ)
N
i=1

C F F⊤/D
C⊙ℓ ((Ci j)ℓ)Ni, j=1 ≃

∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

Q,Q(ℓ), ... (Qab)na,b=1, (Q(ℓ)ab)
n
a,b=1, ...

Table 1: Notations used in this paper

Appeared in parallel with our work, the paper [57] pushes forward the line of research144

of [29] from a mathematical perspective, deriving sharp asymptotics for the generalization145

of random features ridge regression in the polynomial regime. The even more recent [58]146

bounds the test error of random features ridge regression with a dimension-free (that is, for147

arbitrary input dimension D) non-asymptotic (depending explicitly on N and P, converging to148

the test error when at least one of them is large) deterministic equivalent, depending only on149

the feature map eigenvalues through a set of self-consistent equations. The mapping of our150

approach to [57,58] is left for future work.151

2 The model152

We would like to study the generalization performance of the Random Features model in a153

teacher/student [59, 60] supervised learning set-up, where the teacher performs an input-154

output mapping with various degree of complexity. We summarize in Table 1 the main nota-155

tions used in this paper.156

The input data x are vectors in RD with i.i.d. Gaussian elements, while the labels are157

assigned by a polynomial teacher of degree B defined as:158

y ∼ p(y |ν(x)) ,

ν(x) =
B
∑

ℓ=1

τℓ
Ç

�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
xα1
· · · xαℓ ,

(1)

where θ (1)α , θ (2)
αβ

, · · · are i.i.d. N (0,1) parameters collectively denoted as θ , describing the159

non-linear decision boundary (diagonal terms, irrelevant for large D, are for simplicity not160

included in the sum). Notice that the function ν(x) coincide with the Hamiltonian of the161

“mixed p-spin model” of the statistical physics of the spin-glasses (see, for example, [61]).162
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The mixture parameters τℓ, weighting the monomials of different degree, are chosen to respect163
∑B
ℓ=1τ

2
ℓ
= 1. Within this general setting, we will concentrate on the specific simple examples164

of a deterministic teacher for binary classification or a noisy teacher for polynomial regression165

with variance of the noise ∆, for which Eq. (1) reduces respectively to166

y ∼ δ [y − sgnν(x)] , y ∼N [y |ν(x) ,∆] . (2)

It has been shown in [16] that a polynomial student, defined in the same way as in Eq. (1),167

would learn the weights of the teacher in a hierarchical fashion: O(DK) examples are needed168

in order to learn the parameters θ (ℓ) for ℓ ≤ K . However, here the student’s task is to learn169

the weights of the last layer of a 2-layers NN, f (x;w), whose first layer realizes a random170

embedding of the data in a N -dimensional feature space:171

f (x;w) = φ[λ(x;w)] , (3)

λ(x;w) =
1
p

N

N
∑

i=1

wi σ

�

1
p

D

D
∑

α=1

Fiαxα

�

(4)

where F is a N ×D quenched random matrix with i.i.d. standard normal entries, σ is the non-172

linear activation function of the hidden layer, w ∈ RN the student’s weight vector and φ the173

activation function of the last (“readout”) layer. It is customary to introduce the pre-activations174

hi =
1
p

D

D
∑

α=1

Fiαxα , (5)

which at fixed instance of the random features F , given that we chose xα i.i.d normal variables,175

follow a multivariate Gaussian distribution with covariance176

Ci j = Exµ[hih j] =
1
D

D
∑

α=1

FiαF jα . (6)

In our setting with independent random features, C is a Wishart matrix.177

While our theory is general in the choice of σ (as long as it can be expanded on the basis178

of Hermite polynomials – see Sec. 4), we will test our results for popular choices, such as179

σ(h) = ReLU(h) =max(h, 0) , (7)

σ(h) = ELU(h) =

¨

exp(h)− 1 if h< 0 ,

h if h≥ 0 ,
(8)

(respectively, Rectified and Exponential Linear Unit).180

The training set is made of P input-output pairs, T = {(xµ, yµ)}Pµ=1. The student learns by181

solving the following optimization problem,182

w⋆ = argmin
w





P
∑

µ=1

L[yµ,λ(xµ;w)] +
ζ

2
∥w∥2



 , (9)

where L is an opportune convex loss function and ζ controls the regularization of the weights.183

Notice how the solution of this optimization problem is an implicit function of the training set184

T , the parameters of the teacher θ and the random features F , that is w⋆ = w⋆(T ,θ , F); we185

will omit this dependence to lighten notations.186

The choice of the loss function L and the readout activation function φ in Eq. (3) defines187

the specific learning task to perform. The approach we present in the following can be followed188

7
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for any choice of L, as long as the optimization problem (9) is convex (to justify the Replica189

Symmetric ansatz, see below); this is true in particular if L(y,λ) is convex as a function of190

λ, as the student’s weights w enter linearly in the definition of λ(x;w). However, to simplify191

formulas, we will report in the main text only the case of a pure quadratic loss, reading, both192

in the case of regression and classification:193

L(y,λ) =
1
2
(y −λ)2 . (10)

The use of a regression loss for a classification task (λ instead of φ(λ) even when φ = sgn)194

is not unusual in practical cases (e.g. the linear_model.RidgeClassifier class in the195

Scikit-learn library for Python [62]) and dates back to the early days of NNs [60,63].196

The main aim of this work is the evaluation of the generalization performance of the model,197

both for the classification and the regression problems, using a statistical mechanics approach.198

From this perspective, the model defines a disordered system with N degrees of freedom w,199

and quenched disorder given by the realization of the input points xµ, the teacher’s parameters200

θ and the random features F . Our computation will follow the standard path, starting from201

the partition function at inverse temperature β202

Z =
∫

dw exp



−β
P
∑

µ=1

L[yµ,λ(xµ;w)]−
βζ

2
∥w∥2



 . (11)

3 Generalization error203

In order to quantify how well the student can learn the teacher, we look at the generalization204

error, defined as the probability of misclassifying a new sample (in the case of classification)205

or as the mean squared error of a new point (in the case of regression). Given a test point206

(x, y)∼ p0(x)p(y|ν(x)), both cases can be expressed with the following formula,207

εg(T ,θ , F) =

∫

dx p0(x)

∫

dy p(y|ν(x))
1
4κ
[y −φ(λ(x;w⋆))]2 , (12)

where κ = 1 for binary classification and κ = 0 for regression. Notice the presence of the208

function φ in the definition of the generalization error, at variance with the loss function (10).209

With (12) we can evaluate the quality of the student NN (3) for a given realization of the210

teacher, of the random weights F , and of the dataset T . In order to get a general view of211

the effectiveness of (3), we calculate the average generalization error over all the sources of212

randomness. Doing so, we get a function of N , P, and D only,213

εg =

∫

dνdλ p(ν,λ)

∫

dy p(y|ν)
1
4κ
[y −φ(λ)]2

p(ν,λ) = E
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w⋆)) ,
(13)

where we took E= ET ,θ ,F .214

We have written the average generalization error as in Eq. (13) to show that we only215

need to know the joint distribution of (ν,λ) to evaluate it. Since x is a test point, and is216

thus uncorrelated with w⋆, we will take the distribution p(ν,λ) as Gaussian: to compute the217

generalization error we only need the first and second moments,218

0= E[ν] , t⋆ = E[λ] ,

ρ = E[ν2] , m⋆ = E[νλ] , q⋆ = E[λ2]− t⋆2 .
(14)

8
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Notice that by definition of the model (i.e. the normalization of the mixing parameters τℓ)219

ρ is identically equal to 1. In section 5 we will show how to obtain these quantities from a220

replica approach. Stating formally hypotheses on w⋆, F and the functions ν(x), λ(x;w) in221

order to justify this ansatz is beyond the scope of this paper: we will check a posteriori its222

validity with numerical experiments. Central limit theorems for sums of non linear functions223

of Gaussian fields (the pre-activations (5) at given feature matrix F), of the kind we just used224

to motivate this ansatz, have been proven in the past under rather technical conditions on the225

realization of the feature-feature covariance matrix C and of the vector w⋆ [33,38,53,64,65].226

The interested reader can find a sketch of proof in [36], Appendix A.2, where the moments of227

the variables λ are evaluated and the leading order diagrams identified as the Gaussian ones.228

For the case of binary classification with y = sgn(ν) and φ = sgn,229

εg =
1
4
E
�

[y − sgn(λ)]2
�

=

∫ 0

−∞
Dν

�

1−H

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

��

+

∫ ∞

0

DνH

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

�

,
(15)

where we use the Gardner notation [66] Dν= e−ν
2/2
p

2π
dν and H(x) =

∫∞
x Dt. Notice that when230

t⋆ = 0 (that is, when the student is zero-mean) the formula simplifies to231

εg =
1
π

arccos

�

m⋆
p

q⋆

�

. (16)

For the case of noisy polynomial regression, (φ = id and ∆= E[(y − ν)2]) [67,68],232

εg = E[(y −λ)2] = ρ +∆− 2m⋆ + q⋆ + t⋆2 . (17)

These formulas remind the generalization error of a generalized linear model with the same233

architecture as the teacher [60]: in that case, m⋆/
p

q⋆ corresponds to the angle between234

the teacher and the student weight vectors. For the RFM, it is not clear a priori if we can235

interpret m⋆/
p

q⋆ as a scalar product of the teacher’s weight vector and some effective weights236

of the student. If this can be done, the RFM could be mapped to an equivalent polynomial237

model. In Sec. 4 we will show how to explicitly construct it from w and F , thus achieving238

this mapping. To do so, we need to spend a few words on the connection between RFMs and239

kernel machines, in order to explain the truncation of the activation function σ on the basis240

of Hermite polynomials, which we will use later on.241

4 Kernel learning and polynomial models242

The RFM defined in (3) is a generalized linear model in the learnable parameters w, so it can243

be formulated as a kernel model, as we remind in this section. First of all, for the particular244

choice of quadratic loss, we can write down the explicit solution to (9),245

w⋆i =
1
p

N

∑

j

�

ζ1N +
P
N
K̄
�−1

i j

∑

µ

yµσ(hµj ) , (18)

where the pre-activations h are given by (5) and the operator246

K̄i j =
1
P

∑

µ

σ(hµi )σ(h
µ
j ) (19)

9
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defines the kernel in feature space. The properties of the kernel are crucial for the generaliza-247

tion performances.248

While our analysis will be more general, in this section we consider the limit P →∞, for249

the purpose of arguing.1 In this case the empirical kernel reduces to250

Ki j = Exµ[σ(h
µ
i )σ(h

µ
j )] . (20)

From this formula, it is possible to obtain an explicit formula of the kernelK as a function of the251

covariance matrix of the pre-activations (6). To this aim, as the pre-activations are Gaussian,252

it is convenient to expand the activation function on the basis of Hermite polynomials (see253

also [27]):254

σ(hi) =
∞
∑

ℓ=0

µℓ
ℓ!

Heℓ(hi) , (21)

where Heℓ is the ℓ-th Hermite polynomial and the coefficient µℓ are:255

µℓ =

∫

Dx Heℓ(x)σ(x) . (22)

Along these lines, the kernel (20) can be expressed for large D [69, 70] (see App. A for256

details) as257

Ki j =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ , (23)

where Ci j , given by (6), is a rank-D Wishart matrix with elements Cii = 1 + O(D−1/2) and258

Ci j = O(D−1/2) for i ̸= j. The matrix with entries (Ci j)ℓ, which we denote by C⊙ℓ, defines an259

interesting random matrix ensemble, obtained taking Hadamard (element by element) powers260

of the covariance C . A similar ensemble was recently studied in [71].261

Suppose now the relation between N and D is fixed: N ∼ DL+δ with 0 ≤ δ < 1. The262

N × N matrix C⊙ℓ has generically rank equal to min{Dℓ/ℓ!, N} (neglecting possible smaller263

contributions to the rank coming from outliers, see Sec. 6 where we discuss more in detail264

the properties of these matrices) and off-diagonal elements O(D−ℓ/2). For ℓ > L the matrix265

is full ranked, the small off-diagonal terms give a vanishing contribution to eigenvalues and266

eigenvectors. In other words, when Dℓ is scaling faster than N to infinity, we can take the large267

D limit before the large N one in the combination268

(Ci j)
ℓ = δi j[1+ ℓO(D

−1/2)] + (1−δi j)O(D
−ℓ/2) ≃

D large, Dℓ≫N
δi j , (24)

in the same way as the Wishart matrix Ci j = δi j[1+O(D−1/2)]+(1−δi j)O(D−1/2) concentrates269

around δi j for D≫ N (the Marchenko-Pastur distribution, providing the asymptotic distribu-270

tion of the spectrum of C , concentrates around 1 for N/D → 0). We can thus truncate the271

expansion substituting C⊙ℓ>L by the identity matrix:272

Ki j ≃
L
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ +µ2
⊥,Lδi j , (25)

where273

µ2
⊥,L =

∞
∑

ℓ=L+1

µ2
ℓ

ℓ!
= Ex[σ(x)

2]−
L
∑

ℓ=0

µ2
ℓ

ℓ!
(26)

1We do so in this section to introduce the kernel K as a limit of the empirical kernel K̄; in the replica approach
in Sec. 5 the expectation over the data will be taken explicitly and the kernel will appear naturally without taking
the P →∞ limit from the start.
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for x ∼N (0,1).274

This truncation is proven for L = 1 (that is, in the proportional regime N ∼ D) in [72], and275

extended to the case L > 1 under generic assumptions on the kernelK in [31,55]. A convincing276

check of this property for moderately large values of N is given by Fig. 2, which shows the277

theoretical curves of the generalization error obtained through a truncated effective theory278

(that we describe below) at different values of L′, compared with the numerical experiments,279

as a function of N ; quantitative agreement is obtained for L′ = L ∼ log N/ log D, with the280

numerical points interpolating nicely the theoretical curves in the various regimes.281

The analysis above suggests that in the N ∼ DL regime we can represent the RFM as an282

effective noisy polynomial student283

λeff(x
µ;w) = µ0m(0) +

L
∑

ℓ=1

µℓp
Dℓ

∑

α1,··· ,αℓ

s(ℓ)α1···αℓ
: xµα1
· · · xµαℓ :+ zµ , (27)

where284

• m(0) =
∑

i wi/
p

N is the empirical mean of the vector w, rescaled by
p

N ;285

• the student parameters s(ℓ)α1···αℓ
are the scalar product of w with the “vectors” F⊗ℓα1...αℓ

/
p

N286

with components Fiα1
· · · Fiαℓ/

p
N (see Table 1),287

s(ℓ)α1···αℓ
=

1
p

N

∑

i

wi Fiα1
· · · Fiαℓ . (28)

• we have written the expansion of the Hermite polynomials in terms of the so-called Wick288

products of the x ’s, routinely used in theoretical physics and defined from the following289

generating function (see for example [73]):290

: x1 · · · xk := ∂λ1
· · ·∂λk

G(λ;x)
�

�

λ=0 ,

G(λ;x) =
exp
�

λ⊤x
�

E [exp (λ⊤x)]
= exp
�

λ⊤x− ∥λ∥2/2
�

(29)

These quantities have the property E[: x1 · · · xk :] = 0. The mapping291

Heℓ(hi)≃
∑

α1,··· ,αℓ

Fiα1
· · · Fiαℓp
Dℓ

: xα1
· · · xαℓ : , (30)

which is true for D large and which we used to write λeff in terms of Wick products292

starting from (21), is proven in App. B.293

• the last term zµ is a Gaussian noise term with zero mean and variance E(zµ2(w)) =294

µ2
⊥,L

∑N
i=1 w2

i /N which can be represented as295

zµ =
µ⊥,Lp

N

N
∑

i=1

wi vµi , (31)

in terms of i.i.d. N (0, 1) variables vµi .296

Although ultimately the parameters s(ℓ) and z are functions on the network weights, to en-297

lighten the notation we will not explicitly write the dependence on w.298

In (27) we give an effective description of the RFM, mapping it to a polynomial model299

with correlated weights in presence of a noise term coming from the ℓ > L terms in the expan-300

sion (21). The mapping is motivated by the fact that λeff(xµ;w) defined in this way, admits301

11



SciPost Physics Submission

as second moment w⊤Kw/N at given F and w, with the kernel truncated according to (25);302

we show this explicitly for the replicated version of λ in Appendix C, together with the covari-303

ance structure with the polynomial ν(x) defining the teacher. This is an extension to generic304

scaling regimes N ∼ DL of the Gaussian equivalence principle from [38] and related works, to305

which it reduces when L = 1. In the following, we will base our analysis on this representation306

of λ. This description makes more transparent the meaning of the observables introduced in307

Sec. 3 and the mechanism by which the RFM learns the teacher’s features, as we explain in308

the following.309

5 Replica calculation310

Let us now turn to the analysis of the general case through the replica method. To obtain the311

generalization error we write the joint probability distribution of ν and λ in Eq. (13) as the312

zero temperature limit of the equilibrium distribution of a statistical mechanics system, as313

p(ν,λ) = lim
β→∞
E
∫

dw
1
Z e−β
∑

µL[y
µ,λ(xµ;w)]− βζ2 ∥w∥

2
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w)) .

(32)
Through a standard application of the replica trick we rewrite the distribution as314

p(ν,λ) = lim
n→0

lim
β→∞
E
∫ n
∏

a=1

dwae−β
∑

µ,a L[y
µ,λ(xµ;wa)]− βζ2

∑

a∥w
a∥2

×
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w1)) , (33)

which can be obtained from the calculation of the n-times replicated partition function315

Zn = E[Zn] =

∫ n
∏

a=1

dwa e−
βζ
2

∑

a∥w
a∥2EF,θ

�

Eν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa)

�P

. (34)

In this integral, we treat the distribution of ν and λa conditioned by F , θ and wa as Gaussian,316

with moments given by317

ta = E(λa|F,θ ) , Ma = E(νλa|F,θ ) , Qab = E(λaλb|F,θ )− ta tb . (35)

from which we can extract the generalization error according to (15), (17). Using the repre-318

sentation (27) we can decompose these order parameters as (see Appendix C for details)319

ta = µ0M (0)a , Ma =
min{L,B}
∑

ℓ=1

µℓτℓp
ℓ!

M (ℓ)a , Qab = µ
2
⊥,LQ(0)ab +

L
∑

ℓ=1

µ2
ℓ

ℓ!
Q(ℓ)ab , (36)

with the definitions:320

M (0)a =
1
p

N

N
∑

i=1

wa
i , M (ℓ)a =

θ (ℓ) · s(ℓ)a
�D
ℓ

� , Q(0)ab =
1
N

N
∑

i=1

wa
i wb

i , Q(ℓ)ab =
1
N

N
∑

i, j=1

wa
i Cℓi jw

b
j ,

(37)
where we are using the notation321

θ (ℓ) · s(ℓ)a =
∑

α

θ (ℓ)α s(ℓ)a,α (38)
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(remember that the sum over α is restricted to ordered tuples).322

Enforcing these definition with delta functions in Fourier representation, and anticipating323

saddle point integration for the various M and Q, and their Fourier conjugated parameters324

that we denote as M̂ and Q̂ with the due indices, we rewrite the partition function as325

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF,θ

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q̂(0))⊗1N+
∑

ℓ Q̂(ℓ)⊗ C⊙ℓ
ηℓ

i

w−
∑

ℓ,i,a,α M̂ (ℓ)a wa
i F⊗ℓi,αθ

(ℓ)
α /
Ç

ηℓ(Dℓ) ,
(39)

where now w ∈ Rn×N , the sums over ℓ span {1, · · · , L}, ηℓ = N/
�D
ℓ

�

and326

SP[Q, M] = logEν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa) . (40)

In writing Eq. (39), we took M̂ (0)a → 0, as the Fourier conjugate of the mean ta is suppressed327

in the large-N limit [66] (a property that could be checked a posteriori from the saddle point328

equation for M̂ (0)a );2 moreover, the conventional scalings with N and
�D
ℓ

�

in this equation are329

chosen in such a way that the hat variables corresponding to the asymptotic regimes explained330

in Sec. 6 have a non-trivial high-dimensional limit.331

Averaging over θ we obtain:3332

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q̂(0))⊗1N+
∑

ℓ(Q̂
(ℓ)−M̂ (ℓ)M̂ (ℓ)⊤)⊗ C⊙ℓ

ηℓ

i

w (41)

and integrating over w,333

Zn = ePSP [Q,M]e
N
2

∑

ℓ,a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a −
1
2 Tr log[A(0)⊗1N+

∑

ℓ B(ℓ)⊗C⊙ℓ], (42)

where traces are taken over replica and feature indices and we introduced for compactness334

the n× n matrices335

A(0) = βζ1n + Q̂(0) , B(ℓ) = (Q̂(ℓ) − M̂ (ℓ)M̂ (ℓ)⊤)/ηℓ . (43)

We notice at this point that, given N ∼ DL+δ, for ℓ ≤ L the matrices C⊙ℓ have rank rℓ =336

O(Dℓ) ≪ N and have eigenvalues of order N/
�D
ℓ

�

. Simple perturbation theory shows that337

adding these matrices with coefficients of order 1 only slightly modify the eigenvalues. This is338

due to the fact that the row spaces (that is, the complements to their null spaces) corresponding339

to the different ℓ are almost orthogonal (we postpone a throughout discussion on this point340

to Sec. 6, where we collect and motivate the assumptions we are using on the matrices C⊙ℓ).341

In such a situation we approximate the trace-log term appearing in (42) as342

Tr log

�

A(0) ⊗ 1N +
L
∑

ℓ=1

B(ℓ) ⊗ C⊙ℓ
�

≃ N(1− L)Tr log(A(0)) +
L
∑

ℓ=1

Tr log
�

A(0) ⊗ 1N + B(ℓ) ⊗ C⊙ℓ
�

(44)
2The terms depending on M̂ (0) are given by

SM̂ (0) =
M (0)⊤M̂ (0)

p
N

+
1
2

M̂ (0)⊤ 1
N

∑

i, j

�

(βζ1n + Q̂(0))⊗ 1N +
∑

ℓ

(Q̂(ℓ) − M̂ (ℓ)M̂ (ℓ)⊤)⊗
C⊙ℓ

ηℓ

�−1

i j

M̂ (0) ,

so that the saddle point equation for M̂ (0) gives M̂ (0) = O(1/
p

N).
3For the sake of simplicity, to write Eq. (41) we collected a common C⊙ℓ between the terms Q̂(ℓ) and M̂ (ℓ)M̂ (ℓ)⊤,

even though the average over the teacher gives instead a term
∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

, with ordered indices α’s, in front
of M̂ (ℓ)M̂ (ℓ)⊤. See discussion around Eq. (49).
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Figure 3: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ =
10−8, linear teacher (τ1 = 1, τℓ>1 = 0) and ELU activation functions; the continuous
line is the mean-field theory truncated at L = 3; dashed lines are the asymptotic
theories for P/D finite and L > 1 (red), P/

�D
2

�

finite and L > 2 (yellow), P/
�D

3

�

finite and L > 3 (blue), P/
�D

3

�

finite and L = 3 (green); black points are results
from numerical experiments averaged over 50 instances (see Appendix I). The model
learns the linear features (first step at P ∼ O(D)), then overfits the quadratic features
before learning they are zero (peak at P ∼ O(D2)), then follows the interpolation
peak P ∼ N . Notice how the accordance between the mean-field theory and the
experiment is only qualitative around the last peak. Right: Generalization error on
classification for a linear teacher, as a function of the number of random features N ,
for different amounts of data P (D = 30, ζ = 10−4, see Appendix I). The optimal
amount of hidden units, for which εg is minimal, shifts from overparametrization
to underparametrization, as it is visible in the curves for P = 40 and P = 200, 400.
At fixed value of N , not always more data means better generalization: after the
interpolation peak, the order between the red (P = 400) and yellow (P = 200)
curves is reversed (point of view complementary to the plot in the left panel, where,
at fixed N , the error can increase with P). The curves as functions of N are obtained
by gluing together the theories truncated at the corresponding L.

(notice that Tr in Tr log(A(0)) is over replica indices only). We report a detailed derivation of343

Eq. (44) under the hypothesis of orthogonality of the C⊙ℓ row spaces in Appendix E. Notice344

that we could have gotten to the same result decomposing the vectors w on the row spaces345

of the C⊙ℓ supposed orthogonal. This decomposition clearly shows the hierarchical nature of346

learning.347

5.1 Replica symmetric theory348

In order to complete the evaluation of the partition function, we need to specify the form of349

the replica parameters. In this paper we use the replica symmetry (RS) ansatz350

Q(ℓ)ab =
χ(ℓ)

β
δab + q(ℓ) , M (ℓ)a = m(ℓ) , ta = t . (45)

Notice that the diagonal elements of the matrix Q(ℓ) are Q(ℓ)aa =
χ(ℓ)

β + q(ℓ). We anticipate351

the scaling with β of the variables χ: the quantities Q(ℓ)aa − q(ℓ) measures the variance of the352

variables λ, tending to zero for β →∞. This implies the following form for the conjugate353
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order parameters in the RS:354

Q̂(ℓ)ab = βχ̂
(ℓ)δab − β2q̂(ℓ) , M̂ (ℓ)a = −βm̂(ℓ) . (46)

Exploiting the explicit parametrization of the RS matrices, we can perform the traces over355

replica indices in Eq. (44), to get (see Appendix F)356

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log(βχ̂(ℓ)) + n Tr log(γℓ1+ C⊙ℓ)

− nβηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1 − nβ

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] , (47)

where we introduced the parameter357

γℓ = ηℓ
(ζ+ χ̂(0))
χ̂(ℓ)

(48)

and the remaining traces are over feature indices only.358

We need now to evaluate the traces in feature indices. In order to proceed, we make at this359

point a crucial approximation, and treat C⊙ℓ as a matrix with a Merchenko-Pastur spectrum360

with parameter ηℓ = N/
�D
ℓ

�

. This amounts essentially in approximating C⊙ℓ, by361

C⊙ℓi j =
ℓ!
Dℓ

∑

α1<...<αl

F i
α1

F j
α1

...F i
αℓ

F j
αℓ

(49)

i.e. in neglecting the terms with equal indices α in the sum that defines C⊙ℓ. While this362

approximation can be fully justified in the regimes where N , D→∞ with N/DL finite, as we363

will see, it turns out to be an excellent approximation even for moderately large values of the364

parameters (see Sec. 6 and Appendix D for an extended discussion on this point).365

Using the properties of the resolvent of large random matrices (see Appendix D), we can366

write that, for large N ,367

1
N

Tr(γℓ1+ C⊙ℓ)−1 ≈ gℓ(−γℓ) , (50)

where gℓ is the Stieltjes transformation of the Marchenko-Pastur distribution with ratio ηℓ =368

N/
�D
ℓ

�

:369

gℓ(z) =
1− z −ηℓ −
p

(1− z −ηℓ)2 − 4zηℓ
2zηℓ

. (51)

Re-arranging terms we get, for large β ,370

Zn ∼ ePSP+NSM , (52)

where371

1
βn

SM = −
min{L,B}
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

1
2

L
∑

ℓ=0

q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ)

ηℓ
+
(1− L)

2
q̂(0)

ζ+ χ̂(0)

+
1
2

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
gℓ(−γℓ) +

1
2

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
[1− γℓg(−γℓ)]

(53)

and, for the quadratic loss (10),372

1
βn

SP =
2m⋆ 〈yν〉 − q⋆ − 〈(t⋆ − y)2〉

2(1+χ⋆)
, (54)
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where 〈·〉=
∫

dyDν p(y|ν)(·) is the average over the teacher distribution (1) and373

m⋆ =
min{L,B}
∑

ℓ=1

τℓµℓp
ℓ!

m(ℓ) , t⋆ = µ0m(0) ,

χ⋆ = µ2
⊥χ
(0) +

L
∑

ℓ=1

µ2
ℓ

ℓ!
χ(ℓ) , q⋆ = µ2

⊥q(0) +
L
∑

ℓ=1

µ2
ℓ

ℓ!
q(ℓ) .

(55)

A detailed derivation of the terms SM and SP , with the form of SP valid for generic loss func-374

tions, is reported in Appendix G.375

Eq. (55) gives the RS version of Eq. (36): these quantities are precisely the ones appearing376

in Eq. (14), giving the low-order statistics of the distribution used to evaluate the generaliza-377

tion error. Once their value is known from the saddle point equations implicit in the derivation378

of the partition function, they can be used to obtain the generalization curves reported in this379

paper.380

5.2 Saddle-point equations for quadratic loss381

The free energy in Eq. (52) has to be evaluated at the saddle point with respect to all the RS382

order parameters and their Fourier conjugates. We report here the resulting equations, in the383

special case of quadratic loss function (10). Remark however that only the equations where384

P appears explicitly depend on the form of the loss, and have to be modified for other choices385

(see Appendix G.2). The equations can be solved in steps. First, a set of 2L + 2 nonlinear386

equations is used to determine the variables χ(0), . . . ,χ(L) and χ̂(0), . . . , χ̂(L):387

χ̂(0) =
P
N

µ2
⊥

1+χ⋆
, χ(0) =

1−
∑L
ℓ=1[1− γℓgℓ(−γℓ)]
χ̂(0) + ζ

,

χ̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
1

1+χ⋆
, χ(ℓ) =

N
�D
ℓ

�

1− γℓgℓ(−γℓ)
χ̂(ℓ)

.

(56)

From the solution of Eq. (56), we can fully determine m(ℓ), m̂(ℓ) according to388

m(0) =
〈y〉
µ0

, m(ℓ) = χ(ℓ)m̂(ℓ), m̂(ℓ) =
P
�D
ℓ

�

µℓτℓp
ℓ!

〈yν〉
1+χ⋆

. (57)

With all the previous values we can determine the rest of the variables through the following389

set of linear equations:390

q(0) =
q̂(0)

(ζ+ χ̂(0))2

�

1−
L
∑

ℓ=1

�

1− γ2
ℓ g ′ℓ(−γℓ)
�

�

+
L
∑

ℓ=1

m̂(ℓ)2 + q̂(ℓ)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

,

q(ℓ) =
N
�D
ℓ

�

q̂(0)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

+
N
�D
ℓ

�

m̂(ℓ)2 + q̂(ℓ)

χ̂(ℓ)2

�

1+ γ2
ℓ g ′ℓ(−γℓ)− 2γℓgℓ(−γℓ)

�

,

q̂(0) =
P
N
µ2
⊥
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
.

(58)
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Notice that, because of the conventional scalings we chose for the hat variables starting from391

Eq. (39) and for the definition of γℓ, these equations give O(1) results for the order parameters392

m, χ, q.393

By numerically integrating Eq. (56), (57), (58), we obtain the theoretical curves for the394

generalization error in Eq. (16) and for the order parameters we report in this paper. We com-395

pare the result with numerical simulations: despite its asymptotic nature and the hypothesis396

of row space orthogonality, our theory works reasonably well even if D is not large. The results397

are shown in Fig. 1, 2 (D = 30 in this case), where the generalization error is quantitatively398

predicted by the theory both when varying P and N .399

6 Strongly separated regimes400

Our analysis relies on a number of assumptions:401

1. the Gaussian ansatz on the distribution of (ν, {λa}a) at given F , θ and wa in the repli-402

cated partition function (39);403

2. the truncation of the kernel K at order L, based on a concentration property of the404

matrices C⊙ℓ;405

3. the fact that the row spaces of the matrices C⊙ℓ and C⊙k are orthogonal for ℓ ̸= k, in406

order to factorize their contribution to the partition function;407

4. the possibility of taking C⊙ℓ as matrices with a spectrum asymptotically described by the408

Marchenko-Pastur distribution with aspect ratio N/(Dℓ/ℓ!);409

5. the Replica Symmetric ansatz for the overlap matrices describing the teacher-student410

distribution;411

6. the possibility of taking the saddle point on the replica parameters for large N , consid-412

ering only the leading order in N , P before fixing their relative scaling with D.413

Some of these assumptions have been already discussed in the previous sections. In the fol-414

lowing, we revise and motivate the assumptions on the matrices C⊙ℓ, namely 2-4, that can415

be justified if P, N , D → ∞ (see Appendix D.2 for more details). Depending on the rela-416

tion between the three parameters one is led to consider the following different asymptotic417

regimes:418

(i) N , P, D→∞, P/N → 0, P/DK finite; (this includes the case N ∼ DL with L > K).419

(ii) N , P, D→∞, N/DL finite, P/N finite;420

(iii) N , P, D→∞, P/N →∞, N/DL finite; (this includes the case P ∼ DK with K > L).421

In order to understand these regimes, we need to evaluate terms of the kind422

kℓ = Tr log(a1+ bC⊙ℓ) , C⊙ℓi j =

�

1
D

∑

α

FiαF jα

�ℓ

(59)

in three situations (a) Dℓ ≫ N ; (b) Dℓ ≪ N ; (c) Dℓ ∼ N . Notice that in all cases, while423

the diagonal elements are C⊙ℓii = 1 + ℓO(
p

1/D), the off-diagonal elements C⊙ℓi ̸= j are of the424

order D−ℓ/2. In case (a), Dℓ ≫ N , apart for a negligible number of possible eigenvalue of425

order N/Dℓ/2, all the other eigenvalues are λ = 1+O(
p

N/Dℓ), and to the leading order we426
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simply have kℓ = N log(a+ b). If we are in the opposite situation, (b), Dℓ≪ N , we have only427

O(Dℓ) non-zero eigenvalues, roughly equal to ℓ!N/Dℓ+O(
p

N/Dℓ), and to the leading order428

kℓ = N log(a). The interesting case is (c) N = O(Dℓ): we have here Dℓ eigenvalues of order 1429

that contribute to kℓ. The leading contribution can be understood writing430

C⊙ℓi j =
ℓ!
Dℓ

∑

α

F⊗ℓi,αF⊗ℓj,α + terms with less different α’s (60)

where the sum includes the terms where the α′s in the multi-index α are ordered, coherently431

with our definition in Table 1. This leading term is a matrix of rank min{N , Dℓ/ℓ!}: the Dℓ/ℓ!432

vectors F⊗ℓα are approximately orthogonal in RN , as433

F⊗ℓα · F
⊗ℓ
β =

N
∑

i=1

Fiα1
Fiβ1
· · · FiαℓFiβℓ = Nδα1β1

· · ·δαℓβℓ +O(N1/2) (61)

when α and β are ordered, by law of large numbers, so that the sum of outer products434
∑

α F⊗ℓα (F
⊗ℓ
α )
⊤ has rank Dℓ/ℓ! as long as N > Dℓ/ℓ!; if N < Dℓ/ℓ!, this N × N matrix is full435

rank. Other terms with smaller number of indices in the sum lead to matrices of lower rank r436

(with r/N → 0). Moreover, due to the randomness of the F , the row spaces of these term are437

effectively orthogonal to the leading one. To understand this, take for example the case ℓ= 2438

and N = O(D2): the leading order term of the matrix C⊙2 has eigenvectors approximately439

equal to the vectors (Fiβ1
Fiβ2
)i for β1 < β2, as440

∑

j

�

2
D2

∑

α1<α2

Fiα1
Fiα2

F jα1
F jα2

�

F jβ1
F jβ2
=

2N
D2

Fiβ1
Fiβ2
+O(N1/2/D2) . (62)

When we apply to this vector the next-to-leading order term of the matrix C⊙2 we find441

∑

j

�

1
D2

∑

α

F2
iαF2

jα

�

F jβ1
F jβ2
= O(N1/2/D2) , (63)

because the indices β1 and β2 are different and one among them remains unpaired. In this442

way we can say that the vectors (Fiβ1
Fiβ2
)i are in the null space of the terms we are discarding443

in (60). With similar arguments, one can show that the leading terms of C⊙ℓ and C⊙k have444

approximately orthogonal row spaces when k ̸= ℓ and the scaling of N with D is fixed. We445

conclude that we can compute kℓ as if C⊙ℓ were a Wishart matrix with aspect ratio ηℓ = N/
�D
ℓ

�

.446

The explicit formula is given in eq. (D.12), and both limits ηℓ → 0 and ηℓ → ∞ agree447

with the previous analysis of cases (a) and (b) respectively. We show in Appendix D.2 that448

approximating C⊙ℓ as a Wishart matrix gives good results also for moderately large values of449

N and D.450

In all our three cases, most of the order parameters go to trivial limits, while only the ones451

corresponding to the selected scaling regime converge to non-trivial values. We report the452

corresponding equations in Appendix H. In this way, we are able to plot the dashed lines in453

Fig. 1 and 3.454

7 Effective theory for finite-size random features networks455

In the last sections we devised a theory able to capture the relevant phenomenology of general-456

ization in RFMs at finite values of input dimension, hidden layer width and size of the training457

set. Indeed, even though the asymptotic approximation leading to the system of saddle-point458
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Figure 4: Generalization error vs P (D = 30, N = 104) on classification for a purely
cubic teacher (τ3 = 1); in blue, polynomial theory and numerical experiments for
ReLU activation function (7): in this case, µ3 = 0 and the model cannot learn the
cubic features, so the error remains 1/2; in yellow and red (respectively, for ζ =
10−4, 10−8), the case of ELU (8), for which µ3 ̸= 0 and the model can learn the cubic
features.

equations (56), (57), (58) is justified only for N large and N/DL finite, the curves obtained by459

fixing the values of N , P and D at finite values are in accordance with numerical simulations460

over several orders of magnitudes of the control parameters. This occurs thanks to the fact461

that we kept into account quantities that scale differently with D, as N/
�D
ℓ

�

or P/
�D
ℓ

�

, that are462

formally zero or infinity in the asymptotic regimes presented in Sec. 6.463

By developing a theory from Eq. (27), we show that the RFM is in essence equivalent to a464

polynomial model: the student tries to tune its weights through the combinations s(ℓ) defined465

in (28) to fit the corresponding coefficients θ (ℓ) of the teacher. This interpretation is also466

confirmed in the numerical experiments: see Fig. 1 (right) for the behavior of the teacher-467

student overlaps m(ℓ) in the case of a quadratic teacher.468

However, a crucial difference from a purely polynomial setting arises: the degree of the469

equivalent polynomial model is controlled by the scaling L of the random features, and higher470

order terms in the expansion of the kernel K on the Hermite basis act as noise, given by471

Eq. (31). This eventually produces the interpolation peak in the generalization error at N ∼ P,472

which would not be present for a vanilla polynomial student (see Fig. 1 and 3): in this regime,473

the model is using the effective noise to overfit the teacher. In terms of the order parameters,474

overlaps of different orders are coupled by an additional set of parameters χ(0), q(0), related475

to the noise term in the equivalent polynomial model.476

In summary, the learning of features of a certain order is possible as long as the number477

of parameters N is enough: the scaling L ∼ log N/ log D controls the learning process through478

the truncation of the kernel (25). At the same time, P also plays an important role: if K ∼479

log P/ log D is smaller than L, the model only learns as a K-degree polynomial; on the other480

hand, if K > L, the model learns as a L-degree polynomial.481

By choosing a polynomial teacher of arbitrary degree B, we are able to explore to some482

extent the interplay between the complexity of the data and the one of the neural network.483

In the case where the teacher is less complex than the network, we can see that overfitting484

can occur and that overparametrization is not always optimal. This can be seen in Fig. 3.485

In the case of a linear teacher, if the amount of data P is O(D), an overparametrized network486

generalizes better. However, as soon as P hits the quadratic regime, but is still far from enabling487

the network to realize that there is no quadratic feature, then overparametrization leads to488

overfitting and therefore the optimal N is less than P.489
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Interestingly, in order for the model to learn features of order ℓ, the activation function σ490

must have a non-zero Hermite coefficient µℓ in Eq. (21). This can be seen from our theory491

by the fact that in the total teacher-student overlap m⋆ in Eq. (55) the single entry m(ℓ) is492

weighted by the corresponding coefficient. This theoretical prediction was tested by using a493

cubic teacher and two different students, one with ReLU activation function and the other one494

with ELU: the ReLU one, which has no third order term in the Hermite basis (µ3 = 0) could495

not learn the teacher, while the ELU one, that does have a nonzero component (µ3 ̸= 0), was496

able to (see Fig. 4).497

8 Conclusions and perspectives498

The approach we have explored so far provides a way to analytically evaluate the general-499

ization performance of a RFM in the limit of large input dimension D, in the scaling regimes500

N ∼ DL , P ∼ DK .501

We considered a teacher-student setting, where a shallow random features student is re-502

quired to fit a polynomial teacher. The student network learns as an equivalent polynomial503

model with effective noise. We showed this property by expanding the kernel in feature space504

on a convenient basis (21).505

The resulting theory is effective, in the sense that it is formulated in terms of a few collective506

order parameters (the teacher-student overlaps m(ℓ), the student-student overlaps q(ℓ), χ(ℓ))507

with a clear physical interpretation and whose values are fixed via a variational principle,508

as explained in Sec. 5. To perform the calculation we neglect the correlations between the509

student’s coefficients, assuming orthogonality between the row spaces of the components C⊙ℓ510

of the kernel.511

We find quantitative agreement with numerical simulations, except close to the interpo-512

lation peak at N ∼ P in some cases (see Fig. 3, left, where this effect is more apparent).513

Nevertheless, even then the effective theory gives a good qualitative picture, predicting the514

location and the shape of the peak. See also Fig. 1, right, depicting how the teacher-student515

overlaps of already learned features become noisy in the interpolation regime. A precise finite-516

size analysis of this effect, to address the gap between theory and numerics in this regime, is517

left for future work.518

One possible direction to continue this work is to consider how close is the learning of a519

fully-trained network to this model. The role of the variables s(ℓ) could play a similar role even520

if the values for Fiα are also learned, at least close to the lazy regime. However, what is the521

fate of row space orthogonality of the kernel components, which is ultimately responsible for522

the staircase behavior of the generalization error, for networks that are trained end-to-end in523

a feature learning regime?524

Moreover, it would be interesting to extend our analysis to deeper models [10,74] in differ-525

ent scaling regimes of the dimensions. Even if the RFM, whatever the activation function of the526

last layer, is essentially bounded by a polynomial model, the precise shape of the kernel in cases527

where a deeper architecture is involved could help understanding to some extent the feature528

learning regimes of realistic models, in view of the discussion above. Our approach can also529

be extended beyond the case of unstructured input data, following for example [36,43–50,75]530

and, in particular, [76–78]: in those cases, we expect the intrinsic dimension of the data to531

play a role similar to the parameter D used here, possibly determining the order of features532

that a RFM can learn at given N and P.533

Finally, we mention how the replica approach we adopted here can be applied to non-534

convex optimization problems, at the cost of choosing a more complicated ansatz for the535

overlap matrices, accounting for replica symmetry breaking. Even in those cases, the replica536
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symmetric treatment we provided can be applied as a qualitative approximation, often quan-537

titatively correct in the teacher-student setting (that is, whenever a low-energy configuration538

of w is planted by a teacher in the energy landscape defined by the loss (9), effectively con-539

vexifying even an a priori non-convex problem, i.e. setting the problem in a replica symmetric540

region of a generically non-convex phase diagram – see, for example, [79, 80], studying the541

perceptron with hinge loss in the random labels vs. teacher-student settings).542
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A Kernel on the Hermite basis554

In this section we report the steps needed to obtain the expression of the feature-feature kernel555

in Sec. 4. The kernel to evaluate is defined as556

Kii = Ehi
[σ(hi)

2] =

∫

du
p

2πCii
e−

u2
2Cii σ(u)2

Ki j = Ehi ,h j
[σ(hi)σ(h j)] =

∫

du dv

2π
p

det C̄
e−

1
2 (u,v)C̄−1(u,v)⊤σ(u)σ(v) i ̸= j

(A.1)

where557

C̄ =

�

Cii Ci j
Ci j C j j

�

. (A.2)

Using the fact that Cii ≃ C j j ≃ 1, this kernel can be written as a series of separable kernels558

exploiting Mehler’s formula [69,70], that we report here for convenience:559

1

2π
p

1− c2
e−

1
2 (u,v)
�

1 c
c 1

�−1
(u,v)⊤ =

e−
u2
2

p
2π

e−
v2
2

p
2π

∞
∑

ℓ=0

cℓ

ℓ!
Heℓ(u)Heℓ(v) , (A.3)

from which we find Eq. (23) using the fact that, by orthogonality of the Hermite polynomials,560

Kii =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
. (A.4)

Mehler’s formula, which dates back to 1866, can be viewed as an example of Mercer’s decom-561

position [15].562
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B Hermite polynomials and Wick products563

For completeness, we show in this section that, asymptotically for D large,564

Heℓ(hi)≃
∑

α1,··· ,αℓ

Fiα1
· · · Fiαℓp
Dℓ

: xα1
· · · xαℓ : , (B.1)

for ℓ≥ 1. The equivalence follows from the generating function of the Hermite polynomials,565

Heℓ(hi) =
dℓ

dtℓ
exp
�

thi − t2/2
��

�

t=0 , (B.2)

with hi =
∑

α Fiαxα/
p

D. Defining566

λα = t
Fiαp

D
, (B.3)

we have, for D large,567

∑

α

λ2
α ≈ t2 ,
∑

α

Fiαλαp
D
≈ t ,
∑

α

Fiαp
D

∂

∂ λα
≈

d
dt

, (B.4)

where we used repeatedly
∑

α(Fiα)2/D ≃ 1. The thesis follows from comparison with Eq. (29).568

Notice that, in the simpler case of a single standard Gaussian variable x , the identity Heℓ(x) =569

: xℓ : is exact and trivially follows from the definition of the Wick power.570

C Evaluation of the moments of ν,λa
571

We assume that the variables (ν, {λa}) are normally distributed with mean and covariance572

Ex[(ν, {λa})] = (0, {ta}) , covx[(ν, {λa})] =
�

ρ M⊤

M Q

�

, (C.1)

where573

ta = Ex[λ
a] =

N
∑

i=1

wa
ip
N
Ehi
[σ(hi)] ,

ρ = Ex[ν
2]−Ex[ν]

2 =
B
∑

ℓ=1

τ2
ℓ

∥θ (ℓ)∥2
�D
ℓ

� ,

Ma = Ex[νλ
a] =

N ,B
∑

i,ℓ

wa
i τℓ
Ç

N
�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
Ex[xα1

· · · xαℓσ(hi)] ,

Qab = Ex[λ
aλb]− ta t b =

N
∑

i, j=1

wa
i wb

j

N
Ehi ,h j

[σ(hi)σ(h j)]− ta t b ,

(C.2)

To proceed, we make the following steps, starting from the expansion of the activation574

function on the Hermite basis, Eq. (21). For ta we simply observe that Ehi
[σ(hi)] = µ0. For575

ρ we use the fact that x is distributed as a standard normal random vector. To deal with Qab576

we introduce the truncation of (25). Finally, for Ma we write explicitly577

∑

α1<···<αk

θ (k)α1···αk
Ex[xα1

· · · xαk
σ(hi)] =
∑

α1<···<αk

θ (k)α1···αk

∞
∑

ℓ=0

µℓ
ℓ!
Ex[xα1

· · · xαk
Heℓ(hi)] (C.3)
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and we perform Wick’s contractions in order to evaluate the expected value, exploiting the578

mapping to Wick’s product explained in Appednix B. As the indices α of the teacher are strictly579

ordered, they must be paired only with the ones in the Wick product, leaving only the term580

ℓ= k in the sum over ℓ. The number of possible contractions is k!, so the result is581

ta =
µ0p

N

N
∑

i=1

wa
i ,

Ma =
N
∑

i

wa
ip
N

B
∑

ℓ=1

τℓ
�D
ℓ

�p
ℓ!

∑

α

θ (ℓ)α F⊗ℓi,α ,

Qab =
1
N

N
∑

i, j=1

wa
i wb

j

�

δi jµ
2
⊥,L +

L
∑

ℓ=1

µ2
ℓ

ℓ!
(Ci j)

ℓ

�

,

(C.4)

from which Eq. (36) follows.582

D Results on random matrix theory583

D.1 Marchenko-Pastur distribution and Stieltjes transformation584

In this section, we remind some textbook results in Random Matrix Theory we used in the585

main text, for the reader’s convenience. First of all, random matrices of the form586

C = F F⊤/D , (D.1)

where F is a N ×D random matrix with i.i.d. entries Fiα such that E[Fiα] = 0, E[(Fiα)2] = σ2,587

define the Wishart (or Wishart-Laguerre) ensemble. For large N and D, parameter η ≡ N/D588

finite, their spectral density follows the Marchenko-Pastur (MP) distribution,589

ρMP(λ) =

¨

(1− 1/η)δ(λ) +ρbulk(λ/σ2)/σ2 if η > 1 ,

ρbulk(λ/σ2)/σ2 if η≤ 1 ,
(D.2)

with590

ρbulk(λ) =

p

(λ+ −λ)(λ−λ−)
2πηλ

, λ± = (1±pη)2 (D.3)

with support in λ− ≤ λ≤ λ+.591

The MP distribution can be obtained with standard methods [81,82]. The determinant of592

the resolvent can be evaluated as follows:593

E
�

det

�

γ1N +
F F⊤

D

��− 1
2

= E
∫

dx

(2π)
N
2

e−
1
2 x⊤(γ1N+

F F⊤
D )x . (D.4)

By Gaussian linearization,594

E
∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2+ix⊤ Fp
D

y (D.5)

The average over F gives595

∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2− 1
2D ∥x∥

2∥y∥2 . (D.6)

23



SciPost Physics Submission

Integrating over y,596
∫

dx

(2π)
N
2

e−
γ
2 ∥x∥

2− D
2 log(1+∥x∥2/D) . (D.7)

Inserting r = ∥x∥2/N with a Dirac delta, we can integrate over x:597

∫

dr dr̂
4π

e
iN r̂ r

2 −
N
2 log(i r̂)− N

2 γr− N
2η log(1+ηr) . (D.8)

The integral over the Fourier variable r̂ can be solved via asymptotic integration, the saddle-598

point being in r̂ = −ir−1:599
∫

dr e
N
2

�

1+log(r)−γr− 1
η log(1+ηr)
�

(D.9)

The saddle point equation in r gives600

1
r
− γ−

1
1+ηr

= 0 (D.10)

with solutions601

r± =
η− γ− 1±
Æ

(η− γ− 1)2 + 4ηγ
2ηγ

. (D.11)

The correct branch can be proven to be r = r+. From this analysis, the relation602

1
N
ETr log(γ1+ C) = −(1− γr)− log(r) +

1
η

log(1+ηr) (D.12)

follows. Deriving with respect to γ,603

1
N
ETr(γ1+ C)−1 = r(γ) . (D.13)

By definition of Stieltjes transformaiton, r(γ) = g(−γ), which gives Eq. (51).604

D.2 Spectral density of C⊙ℓ605

In this Appendix we discuss the spectral density of the matrices C⊙ℓ, to clarify the kind of606

approximation we used in the main text. We are interested to the large N computation of the607

following traces:608

aℓ =
1
N

Tr(γℓ1+ C⊙ℓ)−1 , bℓ =
1
N

Tr C⊙ℓ(γℓ1+ C⊙ℓ)−1 (D.14)

under the hypothesis that ηL = N/
�D

L

�

remain finite. We anticipate that γℓ given by (48) either609

remain finite (if P/N remains finite) or tends to infinity (if P/N →∞) in that limit. As we610

have already discussed, for ℓ > L, the matrix C⊙ℓ is fully ranked, with diagonal elements close611

to one and off-diagonal elements of order D−ℓ/2: all eigenvalues will be equal to one up to612

a negligible correction. For that reason we could neglect off-diagonal terms for ℓ > L and613

aℓ ≈ bℓ ≈ (1+γℓ)−1. For ℓ < L conversely, the matrix has rank Dℓ at most, and it is easy to see614

that its max eigenvalue cannot be larger that N maxi

�

1
D

∑

α F2
i,α

�ℓ
= N(1+O(
p

log(N)/D)). 4
615

We get therefore616

1
N

�

(N − Dℓ)/γℓ + Dℓ/(γℓ + N)
�

≤ aℓ ≤
1
γℓ

, 0≤ bℓ ≤
Dℓ

N
N

γℓ + N
. (D.15)

4λmax =maxv|v2=1
1

Dℓ

∑

α1 ,...,αℓ

�∑

i vi Fi,α1
...Fi,αℓ

�2
≤ N
∑

i v2
i

�

1
D

∑

α F2
i,α

�ℓ
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Figure 5: Top row – empirical (30 instances, D = 20, N = D3) vs. analytical (MP)
distributions of the non-zero eigenvalues of the matrices defined in Sec. D.2: C (1,1)

(left), C (2,1)/D, C (2,2) (center), C (3,1)/D2, 3C (3,2)/D, C (3,3) (right). Bottom row –
comparison of the analytical curves with the empirical distribution (notice the log
scale on the axes) of C⊙2 (left), C⊙3 (center) and C⊙1+C⊙2+C⊙3 (right); analytical
curves in the bottom row are rescaled in such a way that the sum of the densities in
each panel is normalized.

It remains to be discussed the only non trivial case: ℓ = L In that case, we can decompose617

the matrix C⊙L as a matrix with rank min{N ,
�D

L

�

} and spectrum asymptotically distributed618

accordin to the Marchenko-Pastur law with parameter ηL , plus a contribution with rank at619

most DL−1 which for reasoning similar to the previous case, do not contribute to aL and bL in620

the thermodynamic limit.621

We would like now to show, that even for moderate values of N and D, neglecting all the622

subleading contributions provides an excellent approximation to the spectrum. To fix ideas,623

let us consider L = 3 (N ∼ D3), so that we consider the matrices624

C⊙1 = C (1,1) , C⊙2 =
1
D

C (2,1) + C (2,2) , C⊙3 =
1
D2

C (3,1) +
3
D

C (3,2) + C (3,3) , (D.16)

where (we use the label (ℓ, k), where ℓ is the corresponding exponent in C⊙ℓ, and k the number625

of different summation indices)626

C (1,1)
i j =

1
D

∑

α

FiαF jα = Ci j ,

C (2,1)
i j =

1
D

∑

α

F2
iαF2

jα ,

C (2,2)
i j =

2
D2

∑

α<β

FiαFiβ F jαF jβ ,

C (3,1)
i j =

1
D

∑

α

F3
iαF3

jα ,

C (3,2)
i j =

1
D2

∑

α̸=β

F2
iαFiβ F2

jαF jβ ,

C (3,3)
i j =

6
D3

∑

α<β<γ

FiαFiβ FiγF jαF jβ F jγ .

(D.17)
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We can say the following on the matrices C (ℓ,k) when N , D are both (generically) large:627

• C (1,1) = C has a Marchenko-Pastur (MP) spectrum with parameter η1 = N/D and σ2 =628

1, with D bulk eigenvalues λ= N/D+O(
q

N
D ) (and N − D zero eigenvalues).629

• C (2,1) can be written as630

C (2,1)
i j ≃ 1+

1
D

∑

α

(∆iα∆ jα) , (D.18)

where ∆iα = F2
iα − E[F

2
iα] = F2

iα − 1. Notice that E[∆2
iα] = 2. From this, it follows631

that C (2,1) has an MP spectrum with parameter η1 and σ2 = 2, with D bulk eigenvalues632

O(σ2η1), plus an additional outlier eigenvalue of order N (due to the finite mean);633

however, in C⊙2 this matrix is scaled by an additional factor of 1/D, so it contributes to634

the sum with D eigenvalues O(2N/D2) and an outlier O(N/D).635

• C (2,2) has an MP spectrum with parameter η2 = 2N/D2 and σ2 = 1, with D2/2 bulk636

eigenvalues O(η2).637

• C (3,1) has an MP spectrum with parameter η1 and σ2 = 15, with D bulk eigenvalues638

O(η1); however, in C⊙3 this matrix is scaled by an additional factor of 1/D2, so it con-639

tributes to the sum with D eigenvalues O(N/D3).640

• C (3,2) can be written as641

C (3,2) ≃
1
D2

∑

α̸=β

∆iαFiβ∆ jαF jβ +
1
D

∑

α

FiαF jα . (D.19)

The first addendum (notice that the double sum is not symmetric) has an MP spectrum642

with parameter N/D2 and σ2 = 2, with D2 eigenvalues O(2N/D2), while the second643

addendum is C; however, in C⊙3 they are both scaled by a factor 3/D, so they contribute644

to the sum with D2 eigenvalues O(6N/D3) and with D eigenvalues O(3N/D2).645

• C (3,3) has an MP spectrum with parameter η3 = 6N/D3 and σ2 = 1, with D3/6 bulk646

eigenvalues O(α3).647

This heuristics is compared with numerical results in Fig. 5, which shows a remarkable ac-648

cordance. In the main text, we took the approximation C⊙ℓ ≃ C (ℓ,ℓ), and considered the row649

spaces of C⊙ℓ for different ℓ as orthogonal: in Fig. 5, bottom right, we show how the spectrum650

of a sum of the full matrices C⊙ℓ is reasonably approximated by the sum of the (analytical)651

spectra of the corresponding C (ℓ,ℓ) matrices, validating our approach.652

E Determinant of sum of matrices with orthogonal row spaces653

In this section we derive Eq. (44). Let us take the N × N matrix given by654

K = a1+
L
∑

ℓ=1

bℓCℓ , (E.1)

where the matrices Cℓ are such that rank(Cℓ) = rℓ,
∑

ℓ rℓ ≤ N and their row spaces Rℓ (that655

is, the orthogonal complements to their null spaces) are mutually orthogonal (Rℓ ⊥ Rk for656

k ̸= ℓ). Then,657

det K = aN−
∑

ℓ rℓ
∏

ℓ

det(ℓ)∥ (a1+ bℓCℓ) , (E.2)
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where det(ℓ)∥ (·) is the determinant restricted to the row space of Cℓ:658

det(ℓ)∥ (a1+ bℓCℓ) =
rℓ
∏

α=1

(a+ bℓλα) , (E.3)

with λα the non-zero eigenvalues of Cℓ. Eq. (E.2) can be proven by noticing that, if {eα
ℓ
}rℓα=1659

is a basis of Rℓ and {eα⊥}
N−
∑

ℓ rℓ
α=1 a basis of (

⋃

ℓRℓ)⊥, the set (
⋃

ℓ{e
α
ℓ
})
⋃

{eα⊥} is a basis of RN
660

in which the matrix K is in block-diagonal form. Moreover, from Eq. (E.3)661

det(ℓ)∥ (a1+ bℓCℓ) = det(a1+ bℓCℓ)a
−(N−rℓ) , (E.4)

so we can conclude that662

det K = aN(1−L)
∏

ℓ

det(a1+ bℓCℓ) . (E.5)

F Traces over RS matrices663

In this section we derive Eq. (47). We need to evaluate664

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

, (F.1)

where A, B are RS n× n matrices. We can write665

A⊗ 1N + B ⊗ C⊙ℓ = (B ⊗ 1N )
�

B−1A⊕ C⊙ℓ
�

, (F.2)

where the Kronecker sum is defined as666

B−1A⊕ C⊙ℓ = B−1A⊗ 1N + 1n ⊗ C⊙ℓ. (F.3)

The eigenvalues of a Kronecker sum are the sums of the eigenvalues of the addenda. Calling667

σa the eigenvalues of B−1A and λi the eigenvalues of C⊙ℓ, this means that668

log det(B−1A⊕ C⊙ℓ) =
∑

a,i

log(σa +λi) . (F.4)

Given that B−1A is RS, it has 2 different eigenvalues, σ with multiplicity n−1 and σ+nσ̃ with669

multiplicity 1, so that for small n670

logdet(B−1A⊕ C⊙ℓ) = n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.5)

In total we get671

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log b+ nN
b̃
b
+ n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.6)

Using the RS algebra, we know that σ = a/b, σ̃ = (bã− ab̃)/b2, so that672

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= n Tr log(a1+ bC⊙ℓ) + nã Tr(a1+ bC⊙ℓ)−1

+ nb̃ Tr[C⊙ℓ(a1+ bC⊙ℓ)−1] . (F.7)

It only remains to find a, ã, b, b̃:673

a = β(ζ+ χ̂(0)) , ã = −β2q̂(0) , b = βχ̂(ℓ)/ηℓ , b̃ = −β2[q̂(ℓ) + (m̂(ℓ))2]/ηℓ . (F.8)

We define γℓ = a/b = ηℓ(ζ+ χ̂(0))/χ̂(ℓ) to get Eq. (47).674
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G Replica-symmetric free energy675

In this section we report the main steps to obtain the terms SM and SP in Eq. (53) and (54),676

that is the measure and pattern contributions to the free energy.677

G.1 Measure contribution678

By plugging the RS ansatz (45), (46) and Eq. (47) in Eq. (42), we readily obtain679

SM = − nβ
L
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

n
2

L
∑

ℓ=0

1
ηℓ
[χ(ℓ)χ̂(ℓ) + β(q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ))]

−
n
2

log(β(ζ+ χ̂(0))) +
βn(1− L)

2
q̂(0)

ζ+ χ̂(0)
−

n
2N

L
∑

ℓ=1

Tr log(1+ C⊙ℓ/γℓ)

+
βn
2N

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1 +

βn
2N

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] .

(G.1)

We obtain Eq. (53) by keeping the leading order terms for β large and using Eq. (50).680

G.2 Pattern contribution681

SP is a function only of the order parameters:682

SP = log

�∫

dν
n
∏

a=1

dλa p(ν, {λa})
∫

dy p(y|ν)e−β
∑

a L(y,λa)

�

,

p(ν, {λa}) =N
�

(ν, {λa})
�

�

� (0, {ta}),
�

1 M⊤

M Q

��

.

(G.2)

With the RS ansatz and for small n,683

SP = log

�∫

dy dν
n
∏

a=1

dλa p(y|ν) e−
ν2
2 +β

m⋆ν
χ⋆

∑

a λ
a− β

2χ⋆
∑

a λ
2
a−β
∑

a L(y,λa+t⋆)−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb
�

−
n
2

log(2π)−
1
2

logdet

�

1 M⊤

M Q

�

. (G.3)

To factorize the integral over replicas we use the Hubbard-Stratonovich transformation684

e
−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb

= Eξ eβ
p

q⋆−m⋆2

χ⋆

∑

a λ
aξ , (G.4)

obtaining, to leading order in n,685

SP = −
n
2

log
χ⋆

β
−

nβ
2

q⋆

χ⋆
+ nEξ

∫

dyDν p(y|ν)

× log

∫

dλ eβ
�p

q⋆−m⋆2ξ+m⋆ν
�

λ
χ⋆ −

βλ2

2χ⋆ −βL(y,λ+t⋆) . (G.5)

For our choice of loss (10) and for β large, we obtain Eq. (54).686

For a generic choice of loss L, the integral in λ in Eq. (G.5) can still be evaluated asymp-687

totically for large β . The saddle point in λ is given by688

λ⋆ = argmin
λ

�

λ2

2χ⋆
+L(y,λ+ t⋆)−

p

q⋆ −m⋆2ξ+m⋆ν
χ⋆

λ

�

, (G.6)
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that is by the solution of the stationary equation689

λ+χ⋆
∂

∂ λ
L(y,λ+ t⋆) =
Æ

q⋆ −m⋆2ξ+m⋆ν . (G.7)

For any choice of L, this equation gives the value of λ⋆ as a function of y , ν, ξ and the order690

parameters. By substituting this value in (G.5) we obtain a generalized form of SP valid for any691

loss. By differentiating with respect to the order parameters, we obtain saddle point equations692

valid for any loss, generalizing the ones for the hat variables reported in Sec. 5.2.693

H Asymptotic limits of the saddle-point equations694

The system of saddle-point equations can be studied in different asymptotic limits, as we an-695

ticipated in Sec. 6:696

(i) N , P, D→∞, P/N → 0, P/DK finite;697

(ii) N , P, D→∞, N/DL finite, P/N finite;698

(iii) N , P, D→∞, P/N →∞, N/DL finite.699

H.1 Case (i)700

In the limit where N scales faster to infinity than P, Eq. (56) reduces to701

χ̂(0)→ 0 , χ(0)→
1
ζ

,

χ̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µ2
K

K!(1+χ⋆) for ℓ= K ,

0 for ℓ > K ,

χ(ℓ)→











0 for ℓ < K ,
1

χ̂(K)+ζ for ℓ= K ,
1
ζ for ℓ > K ,

(H.1)

where we used the asymptotic results for the Stieltjes transformation of the Marchenko-Pastur702

distribution,703

1− γℓg(−γℓ;ηℓ)∼











1
ηℓ

for ℓ < K ,
1

ηK+γK
for ℓ= K ,

1
γℓ

for ℓ > K .

(H.2)

Notice that now, consistently,704

χ⋆ =
µ2
⊥,K

ζ
+
µ2

K

K!
χ(K) , (H.3)

because µ2
⊥,L recombines with the terms coming from K < ℓ≤ L to give µ2

⊥,K . Eq. (57) reduces705

to706

m(0) =
〈y〉
µ0

m̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µKτKp
K!
〈yν〉
1+χ⋆ , for ℓ= K ,

0 for ℓ > K ,

m(ℓ)→











p
ℓ!τℓµℓ 〈yν〉 for ℓ < K ,
p

K!τK
µK
〈yν〉 (1− ζχ(K)) for ℓ= K ,

0 for ℓ > K ,
(H.4)
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while Eq. (58) becomes707

q̂(0)→ 0 , q(0)→ 0

q̂(ℓ)→











∞ for ℓ < K ,
P
(DK)

µ2
K

K!
〈(µ0m(0)−y)2〉−2〈yν〉m⋆+q⋆

(1+χ⋆)2
for ℓ= K ,

0 for ℓ > K ,

q(ℓ)→



















ℓ!
τ2
ℓ

µ2
ℓ

〈yν〉2 for ℓ < K ,

(m̂(K)2+q̂(K))
(χ̂(K)+ζ)2 for ℓ= K ,

0 for ℓ > K ,
(H.5)

where now708

q⋆ = 〈yν〉2
K−1
∑

ℓ=1

τ2
ℓ +

µ2
K

K!
q(K) , m⋆ = 〈yν〉

K−1
∑

ℓ=1

τ2
ℓ +

µKτKp
K!

m(K) . (H.6)

H.2 Case (ii)709

In the limit where both P and N scale in the the same way, N ∼ P ∼ O(DL), we have, for710

0< ℓ < L,711

χ̂(ℓ)→∞ , m̂(ℓ)→∞ , q̂(ℓ)→∞ ,

χ(ℓ)→ 0 , m(ℓ)→
p

ℓ!
τℓ
µℓ
〈yν〉 , q(ℓ)→ ℓ!

τ2
ℓ

µ2
ℓ

〈yν〉2 .
(H.7)

For the other parameters we need to solve the equations for χ712

χ̂(0) =
P
N

µ2
⊥,L

1+χ⋆
, χ(0) =

γL gL(−γL)
χ̂(0) + ζ

,

χ̂(L) =
P
�D

L

�

L!

µ2
L

1+χ⋆
, χ(L) =

N
�D

L

�

1− γL gL(−γL)
χ̂(L)

,

(H.8)

for m,713

m(0) = 〈y〉/µ0 , m(L) = χ(L)m̂(L) , m̂(L) =
P
�D

L

�

µLτLp
L!

〈yν〉
1+χ⋆

, (H.9)

and for q714

q̂(0) =
P
N
µ2
⊥,L
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(L) =
P
�D

L

�

µ2
L

L!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q(0) =
q̂(0)

(ζ+ χ̂(0))2
γ2

L g ′L(−γL) +
m̂(L)2 + q̂(L)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) =
N
�D

L

�

q̂(0)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

+
N
�D

L

�

m̂(L)2 + q̂(L)

χ̂(L)2

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.10)

The values χ⋆, m⋆ and q⋆ are consistent with their definition. At variance with case (i), χ(0) and715

q(0) have non-trivial values, responsible for the interpolation peak appearing in this regime.716

Notice that their value is controlled explicitly by the regularizer ζ: the lower it is, the sharper717

is the peak. Moreover, the spectral function relative to the active component, gL , also gives a718

non-trivial contribution.719
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H.3 Case (iii)720

In the limit where P is scaling faster than N to infinity, we have that for all 0 < ℓ < L the721

order parameters behave as in Eq. (H.7), meaning that the degree-L student learns perfectly722

all the terms of the teacher of degree less then L, as the amount of training data P is effectively723

infinite. In this case724

γL =
L!µ2
⊥,L

µ2
L

(H.11)

and we have χ(L), χ̂(L)→ 0; q̂(0), q̂(L)→∞ and725

m(L) = ηL 〈yν〉
p

L!
τL

µL
(1− γL gL(−γL)),

q(0) = ηL 〈yν〉
2 τ2

L

µ2
⊥,L

�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) = ηL 〈yν〉
2 L!

τ2
L

µ2
L

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.12)

I Numerical experiments726

All numerical experiments were done in Python using JAX, [83], to generate the synthetic ran-727

dom data, and scikit, [62], to optimize the parameters. The optimizer has a simple analytic728

form given by (18). Nevertheless, it is potentially inefficient to implement the formula naively,729

as it would require the inversion of a very large matrix. Since we used very large values of N730

and P, we performed the ridge regression with the function sklearn.linear_model.Ridge.731

In this way we could explore regimes of N , P up to order D3.732

Almost all numerical experiments were performed with D = 30. In most of the simulations733

we sampled 50 times for each combination of N , P, D. For the right panel of Figure 3 we used a734

larger number of samples since in that case both D = 30 and P = 40∼ 400 were small, hence735

the generalization error had higher variability. For N < 3000 we used 500,200, 300 samples736

respectively for P = 40, 200,400. For N > 3000 we used 100, 100,50 samples respectively for737

P = 40,200, 400.738

A GitHub repository collecting the code needed to reproduce the figures of this paper (both739

numerical experiments and theoretical curves from the integration of the saddle-point equa-740

tions) can be found at [84].741
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