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This study investigates the potential performance enhancement of a quantum convolutional neu-
ral network (QCNN) through the introduction of noise, akin to the benefits observed in classical
convolutional neural networks (CNNs) with added Gaussian noise. While Gaussian noise has proven
advantageous for classical CNNs in terms of training speed, accuracy, and generalizability to unseen
data, the impact of noise on quantum counterparts remains unexplored. We specifically examine
three types of quantum noise: decoherence, Gaussian noise from imperfect quantum gates and ex-
perimental error, and systematic quantum noise that may be introduced to input states during state
creation. Our analysis aims to quantify the effects of these noise sources on the operation of QCNNs
and proposes strategies to mitigate potential drawbacks.

I. INTRODUCTION

Neural networks is a machine learning technique based
on the architecture of neurons in biological systems. Yet,
it is a far cry from its original biological counterparts. To-
day, machine learning (ML) has found many widespread
applications such as gravitational wave astronomy [1–3],
medical imaging [4, 5], data classification [6–8] and ex-
perimental particle data [9]. Recently, machine learning
techniques have been widely applied in quantum tech-
nologies [10–12]. Moreover, many examples of such algo-
rithms have been successfully implemented on quantum
computers using quantum input data [13].

Indeed, the convolutional neural network is historically
one of the first success stories of deep machine learn-
ing. An eye-catching success of convolutional neural net-
work architectures stems from its ability to tackle image-
classification tasks some ten years ago in long-standing
benchmarks like ImageNet [6]. Convolutional neural net-
works employ a technique known as convolution - essen-
tially a dot-product operation between a grid-structured
set of weights and similar grid-structured inputs drawn
from different spatial localities in the input volume. Such
an operation is often useful for data with a high spatial
or other locality level, such as image data.

Even with GPUs, machine learning techniques in gen-
eral require huge computing power. Since quantum com-
puting promises to provide a solution to the increasing
demand for computational speed and capacity, it is not
surprising that many researchers have studied the pos-
sibility of extending machine learning to the quantum
regime [14–16]. But one of the greatest challenges that
near-term quantum computers face is quantum noise.
Current physical quantum qubits are inherently unsta-
ble, and any interactions with the environment can per-
turb them and lead to decoherence. Optical quantum
qubits, while mostly safe from interactions with the en-
vironment, may similarly be affected by optical elements

and detectors that are not yet of perfect performance.
However, the introduction of Gaussian noise in quan-

tum convolutional neural networks, even on classical
computers, has been shown to provide some advantages
to its training speed [17]. Gaussian noise in the input
data is also used to prevent overfitting [18, 19]. Lastly,
it may possibly help the gradient descent process escape
shallow local minimums into deeper minimums, improv-
ing the performance of the model [20].
In this work, we seek to find whether there exist any

such benefits in introducing noise to a quantum convolu-
tional neural network as well. We investigate the effect of
three different type of noises: (i) quantum noise and de-
coherence modeled by the quantum depolarizing channel,
(ii) Gaussian noise arising possibly from imperfect gates
in a quantum circuit and measurements in an experi-
mental implementation (shot noise), and (iii) systematic
quantum noise in the form of perturbations to the input
states during state creation.
Furthermore, we seek to quantify the exact effect of

these sources of noise on the operation of the quantum
convolutional neural network. We also propose some
ways to mitigate such noises, especially in experimental
implementations of such quantum circuits.

Quantum Convolutional Neural Network (QCNN)

In a system of qubits, a quantum state |ψ⟩ is some
linear combination of its possible basis states, which can
be represented in statevector form:

|ψ⟩ = a1 |...000⟩+ a2 |...001⟩+ a3 |...010⟩

+a4 |...011⟩+ ... ≡


a1
a2
a3
a4
...

 . (1)
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We can utilize the amplitudes of each state, ai, as a
quantum system analogous to neurons in classical ma-
chine learning. Similarly, unitarily transforming such
quantum states can be akin to matrix transformations
in classical neural networks.

Each neuron in a classical CNN samples a subset of
the input through a convolution kernel - the QCNN will
accomplish this through unitary transformations across
several neighboring qubits, repeated to encompass all
qubits in a single layer. In our work, we use the QCNN
architecture in [21] and implemented in Qiskit [22].

The structure of this QCNN is determined by the to-
tal number of qubits, as well as the number of qubits to
be pooled in the pooling layer Np. The first convolu-
tion layer applies a unitary over Np + 1 qubits on every
N th
p qubit, followed by Np convolution layers of unitaries

across Np qubits in the same manner. The pooling layer
measures Np − 1 qubits in the X-basis, which then ap-
plies a unitary operator on the remaining qubit depend-
ing on the outcome of the measurement. All remaining
qubits go through the final fully connected layer, and the
hypothesis (or output) from the QCNN is taken as the
expectation value of one of these remaining qubits, as
measured in the x-basis.

A graphic example of the QCNN shown in Fig. (1),
with Np = 3 and 9 qubits, and is used for our quantum
dataset.

FIG. 1. Example graphic representation of the QCNN archi-
tecture, with Np = 3 and 9 total qubits. Qubits are evolved
through the circuit from left to right, though unitary opera-
tors represented by purple blocks. The numbers aligned along
the left of each block represent the qubits on which they act.
The blue (H) blocks are Hadamard gates, which transform the
qubits into the x-basis. The expectation value of the qubit q4
at the end of the circuit is taken as the output of the QCNN
in this case.

The unitary operators are parameterized through the
coefficients of the generators of the SU(n) group for a
n-qubit operator, so each layer contains 22n−1 trainable
parameters. A unitary U (l) on layer l (corresponding to
Ul on Figure (1)) can be obtained from these generators

Λ
(l)
i , known as the generalized Gell-Mann matrices, and

their coefficients (c
(l)
i ) through the exponential map:

U (l) = exp

22n−1∑
i=1

−c(l)i Λ
(l)
i

 . (2)

As such, c
(l)
i are the trainable parameters of our

QCNN. Similar to gradient descent for weights as in clas-
sical NNs, the training process for this QCNN will aim to

find the set of c
(l)
i , c, that minimizes some loss function

L over a set of input statevectors |ψ⟩(1,2,...N)
in and their

corresponding target labels y(1,2,...,N) of the dataset.

c ≡ argmin
c

L(h(|ψ⟩(1,2,...N)
in ; c), y(1,2,...,N)) (3)

The hypothesis (or output) from the QCNN from an
input statevector |ψ⟩in, given a set of parameters c can
thus be represented as:

h(|ψ⟩in ; c) ≡ ⟨ψ|inT
†(c)XmT (c)|ψ⟩in (4)

Here, T (c) would represent some transformation upon
the input state |ψ⟩ as prescribed by the whole QCNN,
and Xm is the measurement operator for the measured
qubit m in the x-basis. This would give us the expecta-
tion value of the measured qubit as mentioned earlier in
this section, and is bounded within [-1,1]. ML tasks that
have target values outside of this range can be normalized
to values in [-1,1].
In this QCNN, non-linearities are introduced in the

measurement processes, in the pooling layer, and in the
final measurement of the qubit. These measurements do
not take the amplitudes in a state |ψ⟩ directly, but rather
the squared absolute value of amplitudes of several basis
states in the statevector. The sum of the squared abso-
lute values would be a non-linear function of the original
amplitudes, which allows the QCNN to model non-linear
relationships much alike activation functions in classical
neural networks.
The details of this QCNN and our implementation are

elaborated in section IX.

II. DATASETS

In this section, we will introduce the datasets we will
be using in our testing. In addition to a quantum dataset
that uses quantum states as inputs, we will also explore
the effect of noise on a QCNN that handles classical data
encoded into quantum states.

Quantum Dataset: Quantum Phase Recognition

We use the quantum phase recognition task from [21],
which the QCNN was originally designed for, as the
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quantum dataset. The QCNN is tasked to recognize
the symmetry-protected topological (SPT) phases in a
1-dimensional spin chain governed by the hamiltonian:

H = −J
N−2∑
i=1

ZiXi+1Zi+2 − h1
N∑
i=1

Xi − h2
N−1∑
i=1

XiXi+1

(5)
with Xi and Zi being the x, z pauli operators for the spin
at the ith site. For our Hamiltonian in eq. (5), a phase
transition occurs in the ground state as h1/J and h2/J
changes, at which exists a Z2 × Z2 symmetry-protected
topological phase.

We can also identify this SPT phase by the second or-
der derivative of the ground state energy density (GSED)
along h2/J , which indicates the area where the phase
transition occurs. Fig. 2 shows the target labels which
the QCNN is tasked to identify, indicating this GSED for
the ground states at each value of h1/J and h2/J . More
information on specific implementation decisions in this
work for this dataset can be found in section X.

FIG. 2. Phase diagram of ground state wavefunctions from
the hamiltonian in eq. (5). The colour indicates the second
order partial derivative of ground state energy density along
h2, different from the binary output in Ref. [21]. This also
identifies the phase transition area and provides a good
estimate of the SPT phase in Figure 2(a) of Ref. [21].

Classical Dataset: MNIST

Since we expect the introduction of noise to possibly
help the QCNN be robust to the random noise and errors
inherent in real-world datasets, we also test the QCNN
on a classical dataset that contains such real-world un-
certainties.

We also use the MNIST dataset [23] for this purpose.
The MNIST dataset consists of scanned images of hand-
written number digits, with each image labelled as the
digit it represents.

FIG. 3. Several example images that are classified as the
digit ’1’ from the MNIST dataset[23], rescaled to 16× 16

pixels from the original 28× 28 pixels. The darkness of each
pixel is encoded as a numeric value ∈ [0, 1] in a 16× 16

matrix - a numeric value of 0 indicates a completely white
pixel, and 1 indicates a completely dark pixel.

This classical dataset is encoded into quantum data
through amplitude encoding. We flatten the 2-
dimensional matrix along its rows into a 1-dimensional
vector - the (i, j) element of the original matrix would
correspond to the (N × i− 1) + j component of this vec-
tor. These components can be encoded into the ampli-
tudes of the possible quantum states of the input state
vector |ψ⟩in.

|ψ⟩in = A

N∑
i=1

xi |i⟩ (6)

Here, xi is the ith component of the vector represent-
ing the classical data, and |i⟩ is the ith computational
basis state of the system of qubits. A is the normal-
ization factor, as given by 1√∑N

i=1 x
2
i

. A vector with

2n components can be encoded in the amplitudes of
the states spanned by n qubits - an example vector
with 4 components (x1, x2, x3, x4) can be encoded into
|ψ⟩in = A(x1 |00⟩ + x2 |01⟩ + x3 |10⟩ + x4 |11⟩. More de-
tails on the implementation for this dataset are found in
section XI as well.

III. SOURCES OF NOISE

In this section, we shall introduce some sources of noise
that may be present in future experimental implementa-
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tions of the QCNN - such as measurement errors, deco-
herence of the state as it goes through the circuit, and
errors during the creation of input states.

Gaussian Noise

One source of error that a quantum circuit may be af-
fected by is measurement errors. Even discounting the in-
trinsic uncertainty in the measurement of the state due to
the probabilistic nature of quantum measurements, quan-
tum devices are still affected by experimental sources of
error. We can possibly model this effect as a Gaussian
distribution applied to the supposed probability of mea-
suring the |+⟩ state when measuring a single-qubit state
|ψ⟩ = α |+⟩+ β |−⟩ when retrieving the output from the
QCNN.

| ⟨+|ψ⟩ |2 ≡ |α|2 → N (|α|2, σ2) (7)

As mentioned in the introduction, Gaussian noise in-
troduced to CNNs on classical computers has been found
to improve its training speed [17]. In addition, Gaussian
noise can potentially prevent overfitting[18][19]. We shall
investigate how various magnitude of this noise can affect
the training and operation of the QCNN.

Quantum Noise

One commonly used model for quantum noise is the
quantum depolarising channel (DPC), which models the
decoherence that a quantum state is subjected to from
interactions with the surrounding environment [24]. The
depolarising channel evolves the density matrix ρ of some
state as follows:

ρ→ p
I

2
+ (1− p)ρ.

Physically, it can be interpreted as some process that
introduces bit flip, phase flip, and a combination of both
errors each with equal probability p/4 - as such, it also
models random, non-systematic gate errors without any
bias towards any one specific type of error, when a qubit
is measured over many repetitions.

To understand how the DPC can affect the output from
the QCNN, the output from the QCNN is found as the
expectation value of a measurement Xm on the single
qubit m, which can be found from the reduced density
matrix over this qubit ρm.

h(|ψ⟩ ; c) ≡ ⟨Xm⟩ = Tr(ρmXm) (8)

We have referenced the notation from eq. (4), with
ρm being the reduced density matrix after a partial trace
over all other qubits of the full density matrix ρ at end
of the QCNN, ρ = T (c) |ψ⟩ ⟨ψ|T †(c). After the DPC,

ρm transforms as per eq. (III), and thus producing the
expectation value:

⟨Xm⟩ = Tr

((
p
I

2
+ (1− p)ρm

)
Xm

)
. (9)

Since the measurement of I/2 about any basis has an
expectation value of zero, we see that the output of the
QCNN is scaled by (1−p). We shall test and attempt to
quantify the effects of this noise on the operation of the
QCNN.

Adversarial Training

It is also possible that errors may be introduced dur-
ing the creation of an input state. To this end, we also
explore a quantum adversarial training regime as pro-
posed by [25], which prescribes a perturbation operator
Uδ within some small region ∆ on the input state |ψ⟩in
to maximize the loss function of the NN.

Uδ ≡ argmax
Uδ∈∆

L(h(Uδ |ψ⟩(1,2,...N)
in ; c), y(1,2,...,N)) (10)

Gradient ascent can be used to find such a perturbation
operator that maximizes the loss function. In [25], the
perturbation is modeled by its effect on the input stat-
evector, and the amplitude of each computational basis
state is changed by a small amount xi → xi + δi for the
ith computational basis state.
We perturb an input statevector by applying single-

qubit unitary transformations on each of the input
qubits, also parameterized by the coefficients of their gen-
eralized Gell-Mann matrices - the unitary operator on the
ith qubit would be:

U
(i)
δ = exp

(
−i(δ(i)1 X + δ

(i)
2 Y + δ

(i)
3 Z

)
. (11)

We can limit the magnitude of the perturbation by
limiting the mean of these coefficients. This is defined
as:

δ̄ =
1

3N

N∑
i=1

3∑
j=1

|δ(i)j |. (12)

The perturbation can be limited by demanding that δ̄
is less than some given value, and we shall test the effect
of various magnitudes of perturbation on the QCNN by
varying δ̄.
The main benefit of parameterizing the perturbations

in this manner would be computational complexity - dur-
ing gradient descent to find the perturbative parameters
that maximize the loss function, instead of finding the
derivative for each of the 2N amplitudes of the input stat-
evector for N qubits, this would need to be performed
for only 3N coefficients. A single-qubit transformation
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would also be easier for experimental/practical imple-
mentation of the quantum circuit.

By strategically introducing noise to the input during
the training process in this manner, it may be possible
to prevent overfitting in the QCNN, the perturbed in-
puts may prove to be more challenging for the QCNN
to identify. These perturbations can model ”worst-case”
systematic errors that an experimental setup can intro-
duce to the input states during creation and initializa-
tion, before it is fed through the QCNN.

IV. RESULTS & DISCUSSIONS

We present the results from applying various sources
and magnitudes of noise during the gradient de-
scent/training process. The noise is only applied in cal-
culation of gradients in this process; all presented results
in this section use the true value of loss, without any
noise applied whatsoever, to illustrate the actual perfor-
mance of the QCNN and be able to compare the impact
of various magnitudes of noise on the training process.

V. QUANTUM DATASET

In the absence of noise, we can verify that gradient de-
scent in the QCNN functions as expected, and the trained
model is able to consistently identify the SPT phase well,
as seen in Fig. (4, 5) as follows.

FIG. 4. The training-loss plotted over 50 epochs of training,
repeated over 10 different sets of initial parameters. The

mean squared error (MSE) over the training set is calculated
at the end of every training epoch, after parameters are

updated. The solid line indicates the mean loss over the 10
runs, and the shaded region indicates the standard

deviation. The model is able to attain a very low MSE loss
of 0.02626 ± 0.00090

FIG. 5. The output/predicted values of the QCNN for one
example trained QCNN, when given the wavefunctions at
each of the 51× 51 discrete points of the test set as input -
the predicted values can be verified to match closely with

the target labels similarly plotted in FIG. 2

We shall compare these results in this noiseless case
with the results when the training process is subjected to
the different sources of noise in the following subsections.

Gaussian Noise

Due to the stochastic nature of the Gaussian noise that
is applied, we repeat the training process for 10 different
sets of initial parameters generated from random seeds
of 0− 9.

The results of the training process are in Fig. (6), and
the loss on the training and test sets along with their
standard error over the 10 runs are tabulated in table
(I). Note that the standard deviation of loss is used in the
Fig. to highlight the range of values of loss at each epoch,
while standard error is used in the calculation of the loss
in the table since it is a final result. The standard error
in this case would be 1/

√
10 the value of the standard

deviation.
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FIG. 6. The loss (true MSE over the training set, without
any Gaussian noise applied), calculated at the end of every
training epoch, with Gaussian noise applied to the measured
outputs during the gradient descent process with standard
deviation σ. The solid lines indicates the mean of the loss at
each training epoch over the 10 repeated simulations, while
the shaded regions indicate the standard deviation.

σ Loss (Training set) Loss (Test set)

0 0.02626(90) 0.0199(13)

1e-3 0.351(11) 0.1933(58)

1e-4 0.2054(52) 0.1201(37)

1e-4.5 0.0792(36) 0.0484(23)

1e-5 0.0422(19) 0.0288(12)

TABLE I. The mean loss (true MSE, without Gaussian
noise) on the training and test datasets for the trained
model after 50 training epochs, with Gaussian noise at

various values of σ introduced during training.

The losses are higher with Gaussian noise applied in
all cases, and we were unable to find any benefit from
applying Gaussian noise in this case for the values of σ
that were tested. Even at the small value (compared
to usual experimental error) of σ = 10−3, the Gaussian
noise drastically affects the gradient descent process, pre-
venting the loss from decreasing.

At the two values of σ = 10−3, 10−4, the loss curves
flatten out most likely due to the action of the bold-driver
mechanism (elaborated at the end of section IX) on the
learning rate. Even though the threshold to halve the
learning rate is relaxed as described in section (XII), the
fluctuations in loss are still above this threshold for these
two cases. Over many epochs, this causes the learning
rate, and consequently any changes in the parameters,
to be miniscule. It is only by this mechanism that the
losses stabilise at some value - without this, the Gaussian
error causes the losses to be increasingly divergent with
training epochs.

Though we were unable to find benefits in applying
Gaussian noise in this case, we also quantify the effect
of such random errors on the operation of the QCNN, to
find methods in mitigating its effects.
In Appendix (A), we show the Gaussian noise propa-

gates through the gradient process to cause the param-
eter updates at each epoch to become a Gaussian vari-
able as well, with the variance of the parameters updates
roughly proportional to the below expression:

σ2(
∆c

(l)
i

) ∝
(
2ση

ϵ

)2 [
4σ2 + 8

N

]
(13)

Here, with σ2 being the variance of the Gaussian noise,
η the learning rate, ϵ the finite difference parameter when
estimating the gradients during gradient descent, and N
the number of training examples.
One method to reduce this variance is to increase the

value of the finite difference parameter ϵ. We illustrate
this in Fig. (7).

FIG. 7. The loss-training plot for a constant Gaussian noise
of σ = 10−3 applied onto the output at various values of ϵ.
These are compared to the noiseless case (blue line, σ = 0).

Qualitatively, increasing ϵ amounts to setting the val-
ues of h+(k), h−(k) to be proportionately further apart,
thus reducing the relative effect of random fluctuations
in these two values due to the Gaussian noise when tak-
ing their difference in the expression for estimating the
gradient in eq. (22). We can see that the effect of the
Gaussian noise that once caused divergent behaviors in
the original ϵ = 10−4 case has been greatly reduced even
at ϵ = 10−2, where the training-loss curve approaches
that of the noiseless case.
However, increasing ϵ will reduce the accuracy in es-

timating the gradient. This is especially evident near
extremal points like minimas, where the second-order
derivative gets increasingly significant in the finite differ-
ence method when ϵ is increased. This might be evident
in the ϵ = 10−2 and ϵ = 10−1 curves, where we observe
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more cases of increases in loss that are also greater in
magnitude compared to the noiseless case.

Quantum Depolarising Channel

Fig. (8) shows how loss decreases throughout the train-
ing process with DPC applied with different magnitudes
of p, corresponding to pfinal in eq. (28); a measure of
the effects of decoherence throughout the entire QCNN
circuit on the input states. The final loss on the training
and test sets after 50 epochs of training are tabulated in
table (II).

FIG. 8. The loss (true mean-squared error over the training
set, without DPC applied), calculated at the end of every

training epoch, with DPC of various values of the
probability p applied onto the output during the gradient

descent process.

p Loss (Training set) Loss (Test set)

0 0.02568 0.02303

0.05 0.02553 0.01862

0.1 0.02580 0.02320

0.2 0.02886 0.02660

0.5 0.04191 0.03809

TABLE II. The loss (true MSE, without DPC applied) on
the training and test datasets for the trained model after 50

training epochs.

While we see only a slight decrease in loss on the test
set in the p = 0.05 compared to the noiseless case, this is
not true on average. If we repeat the training process over
10 different sets of initial parameters using random seeds
0-9 as in the Gaussian noise case, we find that there is no
decrease in either on average, this is shown in appendix
(B). We are also unable to find any benefit from the noise
in this case.
However, it is clear that at low values of p, the train-

ing process remains mostly unaffected - the p = 0.05 line
almost perfectly overlaps the p = 0 line. The gradient
descent process proves to be robust against decoherence
and gate errors, as long as such errors are averaged over
many repeated runs which the DPC represents. Consid-
ering that there are 6 layers in total in our QCNN in this
case (4 convolution + 1 pooling + 1 fully connected), the
maximum tested value of p = 0.5 would be akin to hav-
ing constant decoherence of pi = 0.10910 at each layer,
as explained in section (XII).
To explain these observed differences, we will attempt

to quantify the effect of this noise on the training pro-
cess. We observe that as mentioned in (III), a DPC of
magnitude p results in a uniform scaling of all predicted
values by (1− p):

h[|ψ⟩in ; c]→ (1− p)h[|ψ⟩in ; c]. (14)

In Appendix (C), we derive the ratio between the gra-

dient with DPC,

(
∂L

∂c
(l)
i

)
p

, and what the gradient would

be without DPC

(
∂L

∂c
(l)
i

)
p=0

, when all parameters are

kept the same between the two cases:

(
∂L

∂c
(l)
i

)
p(

∂L

∂c
(l)
i

)
p=0

= 1− p

[
1 +

(1− p)
∑N
k=1

{(
h+(k) − h−(k)

) (
h+(k) + h−(k)

)}∑N
k=1

{(
h+(k) − h−(k)

) (
h+(k) + h−(k) − 2y(k)

)}] (15)

Note that this expression does not represent the cumu- lative effects of applying DPC on the gradient descent
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process over multiple epochs, but rather the instanta-
neous change caused by the DPC at each epoch, when
compared to the noiseless value without DPC.

The coefficient of p in the square brackets of the expres-
sion above are distributed about a value slightly above
unity for all parameters, by inspection. To illustrate this
point, we plot a histogram of this term for every gradient
that is calculated throughout all 50 training epochs for
each of the cases shown in Fig. (8) with DPC applied.

FIG. 9. Histograms of the value corresponding to the
expression shown in eq. (15), for every calculated gradient
in the 50 training epochs for each value of p shown in Fig.
(8). We highlight the value (1− p) along the x-axis for each
histogram using a dotted vertical line of the same colour.
The histogram is limited to values in the range [−0.5, 2],

which is able to include more than 80% of all 25650 values in
all 4 cases.

As such, most gradients by which the parameters are
updated will get scaled by approximately (1 − p) from
their original gradient. This explains how the loss de-
creases at a slower rate as p is increased, as parameters
would tend to shift less as p is increased, compared to
the noiseless case. Cumulatively, this would lead to the
training-loss of higher values of p lagging behind the cases
with lower p, as we observed in Fig. (8).

This might lead one to the conclusion that it will take
proportionately longer for the model to be trained if p is
increased - that a process with p = 0.5 may take twice as
long for loss to decrease below a certain value compared
to the p = 0 case, since parameters as shifted half as
much in the former case. In Fig. (8), the p = 0 case
reaches below MSE < 0.10 by the ninth epoch, while
the p = 0.5 case reaches this threshold by the 14th epoch.
This is because the loss is often not a linear function of
the parameters - if shifting a parameter by x produces
a shift in loss of ∆L, a shift by x/2 may not necessarily
produce a shift by ∆L/2, for example.
One last interesting feature in Fig. (8) is the slight

uptick in the training loss towards the end of the train-

ing process for the p = 0.2, 0.5 cases. To explain this, we
can explore the difference in how the parameters are up-
dated when DPC is applied. At low values of loss, which
is the case after many epochs of training, the predicted
values approach the target values - h+(k), h−(k) ≈ y(k).
In the noiseless case, the parameter update terms within
the square brackets of eq. (21) would approach zero,(
h+(k) − y(k)

)
≈ 0, and

(
h−(k) − y(k)

)
≈ 0, resulting in

near-zero parameter updates.
In the case with DPC, the parameter update term in

the square brackets of eq. (C2) differs due to the pres-
ence of the factor (1− p) on h+(k) and h−(k). At higher
values of p, such as the p = 0.2 and p = 0.5 case, the
parameter update term remains significant even when
h(k) ≈ y(k). Consequently, large values of p can lead to
parameter overshooting beyond the minima, a behavior
not observed without DPC.

In addition, when this occurs, the coefficient of p
in eq. (15) is far from unity - the denominator
in the fraction of this term would approach zero as(
h+(k) + h−(k) − 2y(k)

)
→ 0 when h(k) ≈ y(k), while the

numerator may remain finite. This phenomenon also ex-
plains why the histograms in Fig. (9) are bounded within
the range [−0.5, 2], as extreme values exceeding 1000 ex-
ist.

Though the noise does not affect the training process
much, should one want to mitigate this source of error,
one approach can be adjusting the predicted value to
account for the change caused by the DPC. If an ex-
perimental setup is found to have decoherence at some
specific value of p, the predicted value can be multiplied
by 1/(1− p).

Adversarial Training

We limit the perturbation by the adversary via bound-
ing the 1-norm of the perturbative parameters by their

absolute mean δ̄, 1
3N

(∑N
i=1

∑3
j=1 |δ

(i)
j |
)
≤ δ̄, as de-

scribed in section III. For a QCNN with 9 qubits, there
will be a total of 27 of such parameters, which are then
trained by gradient descent as described in section (XII).
The application of this perturbation is also fully deter-

ministic in the training process, given the set of initial

parameters; a set of initial parameters c
(l)
i together with

perturbative parameters δ
(i)
j will always end up in the

same minima and maxima respectively, at the end of the
training process. Though, different sets of initial param-
eters will end up in different minima/maxima - to ensure

consistency once again, we intialise all c
(l)
i and δ

(i)
j using

a random seed of 1.
Fig. (10) shows how loss decreases throughout the

training process when the perturbation is limited to var-
ious values of δ̄, and the results from the trained models
are in table (III).
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FIG. 10. The loss (true mean-squared error over the training
set, without the adversarial perturbations applied),

calculated at the end of every training epoch, with the
perturbation applied over the inputs while bounded by δ̄.

δ̄ Loss (Training set) Loss (Test set)

0 0.02799 0.02403

0.01 0.02968 0.02525

0.05 0.04409 0.03877

0.1 0.08480 0.06415

0.5 0.30128 0.16499

TABLE III. The loss (true MSE, without the adversarial
perturbations applied) on the training and test datasets for

the trained model after 50 training epochs, with the
perturbation applied over the inputs while bounded by λ.

We were unable to find any significant benefit in this
as well. Though we observe a slightly faster decrease
in loss in the first few epochs at small values of δ̄ (δ̄ =
0.01, 0.05 in Fig. (10))), the increase in time required to
gradient ascent the perturbative parameters would likely
offset any potential benefit from this quicker (by epoch)
decrease in loss.

Our results agree with the conclusions of [25],[26] - that
the QCNN is also found to be vulnerable to even small
values of adversarial perturbations.

VI. CLASSICAL DATASET

Having seen no evidence of noise being of benefit
when introduced to the training process in our quantum
dataset, we believe a likely reason for this absence of
benefit is that the input data in the quantum dataset are
computationally-generated, exact quantum states. We
expect that noise may be beneficial in cases where the
input data may be ”noisy” - where real-world errors and

variation would be present between otherwise identical
inputs, hence we test the QCNN on this classical MNIST
dataset that uses real-world data.
In the noiseless case, a QCNN that is trained for

50 epochs decreases in loss as expected on the MNIST
dataset, the mean and standard deviation of the loss at
every epoch over 10 different sets of randomly generated
initial parameters (using random seeds 0-9) are shown in
Fig. (11) as follows.

FIG. 11. The training-loss plotted over 50 epochs of
training. The Cross-Entropy Loss (as explained in section
(XI) over the training set is calculated at the end of every
training epoch, after parameters are updated. The solid line
indicates the mean loss over the 10 runs, and the shaded

region indicates the standard deviation.

There is greater variance in the final training results
compared to the quantum dataset case, as this dataset
is more representative of real-world noisy data. The
parameter-loss landscape likely has more local minimas,
and each set of initial parameters would define an initial
position on this landscape. This leads to different sets of
initial parameters descending into different local minima,
from which we observe greater variance in final loss after
training as compared to the quantum dataset.
For the trained models in Fig. (11), the accuracy

(when using a cutoff of 0.5 to discriminate between pos-
itive and negative predictions) and loss will be:

Training Test

Loss Accuracy Loss Accuracy

0.7322(73) 0.9424(64) 0.7245(78) 0.9480(60)

TABLE IV. Final loss and accuracy on the training and test
datasets for the trained model after 50 training Epochs. The
uncertainties are given by standard error (as compared to

the standard deviation shown in Fig. (11).)

We shall compare this case with the results from mod-
els with their training process subjected to the various
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sources and magnitudes of noise in the following subsec-
tions.

Gaussian Noise

In a similar manner to the quantum dataset, we re-
peat the training process for 10 different sets of initial
parameters generated from random seeds of 0 − 9, and
the training-loss curves with Gaussian noise of standard
dev. σ are shown in Fig. (12), and the loss on the train-
ing and test sets along with their standard error over the
10 runs are tabulated in table (V).

FIG. 12. The loss (true cross-entropy loss over the training
set, without any Gaussian noise applied), calculated at the
end of every training epoch. Gaussian noise is applied with
some constant standard deviation σ throughout the gradient
descent process for each case. The solid lines indicates the
mean of the loss at each training epoch over the 10 repeated
simulations, while the shaded regions indicate the standard

deviation.

σ
Training Test

Loss Accuracy Loss Accuracy

0 0.7322(73) 0.9424(64) 0.7245(78) 0.9480(60)

1e-3 0.9833(61) 0.581(34) 0.9825(64) 0.582(37)

1e-4 0.8309(41) 0.9205(73) 0.8271(37) 0.9252(77)

1e-4.5 0.7601(58) 0.9402(68) 0.7547(62) 0.9454(73)

1e-5 0.7281(61) 0.9464(56) 0.7210(64) 0.9512(51)

TABLE V. Final mean loss and mean accuracy on the
training and test datasets for the trained model after 50

training epochs, with Gaussian noise at various values of σ
introduced during training. Uncertainties in brackets are

given by the standard error.

While the loss and accuracy for the σ = 10−5 case are
found to be lower than the noiseless case on average, they
are well within standard errors of each other and there is

insufficient evidence to conclude that Gaussian noise can
be of benefit in this case as of yet. Though, the improve-
ment in loss and accuracy at σ = 10−5 may possibly be
due to the Gaussian noise helping the gradient descent
process to escape shallow local minima into deeper ones,
as described in [20].

To investigate this, we plot the accuracy on the test
set in the σ = 10−5 case compared to the noiseless case
for each random seed, i.e. we compare the final accuracy
of the model that had some set of initial parameters,
trained with Gaussian noise of σ = 10−5, to the model
that also started at the same point in parameter space,
but trained without noise.

FIG. 13. The accuracy on the test set for the σ = 10−5 case
compared to its equivalent σ = 0 case. Each data point
represents two models that began with the same set of

initial parameters, but one trained with Gaussian noise and
one without. The y-value of the point represents the

accuracy of the model trained using Gaussian noise, and the
x-value the accuracy of the model without. The line y = x is

shown as a reference for whether the model with noise
performs better than the noiseless model - data points above
this line would indicate that noise improves performance.

There may be some evidence to indicate that Gaussian
noise may help the gradient descent process to escape
shallow local minima in our case as well. Lower values
on the x-axis may indicate that the noiseless model may
be in shallow local minima at the end of the 50 epochs -
the two cases that have x < 0.92 has shown to have bet-
ter accuracy when noise is introduced. Though, due the
randomness of this process, these two data points may
be purely due to random variance in performance caused
by the Gaussian noise. We would likely need many re-
peated tests to confirm this effect - if this is indeed the
case generally, we should expect data points consistently
distributed above the y = x line at the lower values of x.

Similar to the quantum dataset case, we find that at
σ = 10−3, the Gaussian noise drastically affects the gra-
dient descent process, preventing the loss from decreasing
much. The loss curves flatten out most likely due to the
action of the bold-driver mechanism on the learning rate,
similar to the quantum dataset.
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In appendix (D), we also show that the gradients
estimated at every epoch will also be normally dis-

tributed about the value which the parameter c
(l)
i

would be shifted by in the absence of noise, ∆c
(l)
i =

η
2ϵ

1
N

∑N
k=1

{
y(k) log2

(
h−(k)

h+(k)

)
+ (1− y(k)) log2

(
1−h−(k)

1−h+(k)

)}
,

from eq. (24). We find that the variance has a lower
bound proportional to:

σ2(
∆c

(l)
i

) ∝
(

ησ

2(ln 2)ϵ

)2
1

N
. (16)

Similar to the quantum dataset case, a large contribut-
ing factor to this variance is the small value of ϵ - we can
also reduce the effect of this random Gaussian error by
increasing the value of the finite difference parameter ϵ
here.

FIG. 14. The true loss (without DPC applied) over the
training set, calculated at the end of every training epoch,
with DPC with various values of probability p applied onto
the output during the training process. All parameters are
initialised to the same set of values using random seed = 1.

We can see that the effect of the Gaussian noise is also
greatly mitigated, to the point that the ϵ = 10−2 curve is
almost identical to the noiseless case. Once again, how-
ever, increasing ϵ will reduce the accuracy in estimat-
ing the gradient. The fact that this is especially evident
when parameters are near minima is more visible here
compared to the quantum dataset, where we see greater
magnitudes in increases in loss close to the epochs where
we see the noiseless case overshoot the minima.

Quantum Depolarising Channel

Fig. (15) shows how loss decreases throughout the
training process for the classical dataset, with DPC ap-
plied with different magnitudes of p. Once again, the
QCNN is initialised to the same set of parameters prior
to the first training epoch using random seed = 1, and

any evident differences are purely due to the effect of the
DPC.

FIG. 15. The true loss (without DPC applied) over the
training set, calculated at the end of every training epoch,
with DPC with various values of probability p applied onto

the output during the training process.

p
Training Test

Loss Accuracy Loss Accuracy

0 0.7643 0.9175 0.7615 0.9180

0.05 0.7627 0.9160 0.7598 0.9200

0.1 0.7600 0.9170 0.7570 0.9200

0.2 0.7624 0.9150 0.7595 0.9160

0.5 0.7591 0.9125 0.7561 0.9150

TABLE VI. The loss and accuracy (without DPC applied)
on the training and test datasets for the trained model after

50 training epochs, with DPC at various values of p
introduced during training.

From the results, we notice two apparent effects of the
DPC:

• Alike the quantum dataset case, the gradients de-
crease as p is increased, although the relationship
is not as clearly linear.

• Unlike the quantum dataset case, we observe a
lower value of final loss on both the training and
test sets in all the cases with DPC compared to the
noiseless case. However, this unfortunately does
not seem to translate to any improvements in ac-
curacy.

To explain these effects, we will attempt to quantify
its effect on the training process. We derive how exactly
the introduction of DPC will affect the gradient descent
process in appendix (E).
To investigate the first point, we plot the ratio of

the parameter update term under DPC compared to the



12

noiseless equivalent case, for all gradients over the course
of the 50 epochs for each case in Fig. (15). This corre-
sponds to 351 parameters × 50 epochs in total, for each
value of p.

FIG. 16. Histograms of the value of the parameter update
term in eq. (E3) divided by its equivalent noiseless value
(p = 0), for every calculated gradient in the 50 training

epochs for each value of p shown in Fig. (15). We highlight
the value (1 - p) along the x-axis for each histogram using a
dotted vertical line of the same colour. The histogram is
limited to values in the range [0, 1.5], which includes more

than 90% of all 17550 values in all 4 cases.

Unlike the mean-squared error in the quantum dataset
in Fig. (9), this ratio in this logloss case is not exactly
distributed immediately next to the value of (1 − p), as
derived in appendix (E). Nonetheless, the difference from
its equivalent noiseless value (p = 0) is greater as p is
increased, as predicted.

This is evident in the training-loss plots in Fig. (15)
- the loss decreases at a slightly slower rate as p is in-
creased, close to the beginning.

The second effect of the DPC is more surprising - we
expect that because of the lower values of estimated gra-
dients, due likely to the fact that larger gradients are dis-
proportionately affected by DPC in contrast to gradients
with smaller values. To explain this counter-intuitive
phenomenon, we begin with the observation that the first
instances of overshooting the minima occur at a later
training epoch as p is increased, showing that it takes
more iterative steps for the parameter to approach the
minima, emphasized in Fig. (17) below.

FIG. 17. Identical Fig. to Fig.(15), with arrows added to
highlight the first occurrences of parameters overshooting

the minima and causing a significant increase in loss for each
curve.

We conjecture that this delay in the overshooting of
the minima for increasing p is due to the fact that the
specific parameters that are prone to this phenomenon
scale more significantly with DPC than other parame-
ters. We observe from Fig. (26) that at larger absolute

values of log2

(
a+x
a−x

)
on the vertical axis of the graph, a

shift to log2

(
a+x+ p

2(1−p)

a−x+ p
2(1−p)

)
leads to proportionally larger

decreases, compared to the smaller absolute values of

log2

(
a+x
a−x

)
.

Parameters that overshoot tend to have higher gra-
dients, and consequently cause their parameter updates
to be larger in value - the very reason why the param-
eter would be likely to overshoot onto the other side of
the minima. The higher gradients contain more terms at

larger values of log2

(
a+x
a−x

)
, which in turn is affected by

the DPC to a larger extent than terms with lower values.

This is supported by the fact that it takes three times
the number of epochs for the p = 0.5 case to reach the
minima, over the p = 0 case. Without even taking the
increasing value of the learning rate into account, the
parameters that overshoots would, on average, be shifted
by 1/3 compared to the noiseless equivalent if it takes 3
times more iterative steps to reach the minima. If we
take into account the increasing learning rate, this ratio
will be even lower at 0.225, as estimated in appendix
(F). In Fig. (16), we observe that the average ratio for
all parameters tends to be around 0.53, a value higher
than the ratio of 1/3 of the parameters that cause the
overshooting.

The delay in the overshooting of the minima also delays
the action of the bold-driver mechanism (which halves
the learning rate when loss increases). This, in combi-
nation with the fact that most other parameters that do
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not cause overshooting are scaled less so by the DPC, al-
lows most parameters to propagate a greater cumulative
distance over many epochs of gradient descent.

As an example, the bold-driver mechanism halves the
learning rate at epoch 12 and epoch 18 in the p = 0 case,
which might lead to parameters in the p = 0 case covering
a shorter cumulative distance in 31 epochs, explaining
why we observe a lower loss in the p = 0.5 case. An
estimated comparison between the cumulative distance
in these 2 cases is shown in appendix (G).

Thus, there might be some benefit to training speed
whenever DPC is introduced, as the delay in overshooting
the minima (and consequently delaying the bold-driver
mechanism in halving the learning rate) allows most pa-
rameters to descend a greater cumulative distance by the
end of training, and result in a lower final loss. However,
this would only be a benefit if the noiseless case over-
shoots the minima early on. For other datasets or even
other initial positions of the parameters (starting condi-
tions) in this dataset, this might not occur at an early
epoch. In such cases, the DPC cases will lag behind the
noiseless case, as we see in the early (< 10) epochs of Fig.
(15).

Adversarial Training

We once again limit the perturbation by the adversary
via bounding the 1-norm of the perturbative parameters

by their absolute mean δ̄, 1
3N

(∑N
i=1

∑3
j=1 |δ

(i)
j |
)
< δ̄, as

described in section III. For the QCNN in the classical
dataset case, there are 8 qubits, and correspondingly a

total of 24 of such parameters δ
(i)
j , which are then trained

by gradient ascent as described in section (XII).

Fig. (8) shows how loss decreases throughout the train-
ing process when the perturbation is limited to various
values of δ̄. We use the same set of initial parameters
generated with a random seed of 1 throughout. The
combination of gradient descent for both the perturba-
tion parameters and the actual QCNN proves to be very
computationally time-consuming. As such, we only test
the low values of λ that did not affect the training process
too adversely in the quantum dataset case, and would be
the most likely to produce favourable results.

FIG. 18. The loss (true mean-squared error over the training
set, without the adversarial perturbations applied),

calculated at the end of every training epoch, with the
perturbation applied over the inputs while bounded by δ̄.

δ̄
Training Test

Loss Accuracy Loss Accuracy

0 0.7643 0.9175 0.7615 0.9180

0.01 0.7654 0.9160 0.7625 0.9150

0.05 0.8024 0.8895 0.7993 0.8990

0.1 0.8708 0.8760 0.8656 0.8830

0.5 0.9578 0.7545 0.9553 0.7740

TABLE VII. Final loss and accuracy on the training and
test datasets by the trained model after 50 training epochs,
with the perturbation applied over the inputs bounded by δ̄.

There is no evidence that these adversarial perturba-
tions can be of any significant benefit here as well, the
loss consistently increases on both the training and test
sets, as does the accuracy decrease, with the increase in
perturbation.
While it may be possible that some benefit in terms of

training speed or accuracy can be found for some partic-
ular values of δ̄, any minuscule improvements will likely
be overshadowed by this increase the in time required to
train on the dataset due to the gradient ascent of the
perturbative parameters.

Comparison with Other Machine Learning Models

Classical machine learning algorithms can achieve ac-
curacy of more than 99% on the MNIST dataset. A list
of top-performing models with code and articles linked
are available at [27]. However, note that our QCNN is
trained with only a small subset of the original MNIST
dataset - only 2000 of the original 60000 training exam-
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ples were used. In addition, many of the classical models
have more trainable parameters than the QCNN we used.
For reference, one example[28] contains 1,514,187 param-
eters, more than 3 magnitudes more than our model,
which has only 351 parameters.

A more comparable example that uses an alternative
architecture of QCNN[29] is able to achieve an average
accuracy of 0.948 in distinguishing between the digits ”1”
and ”8”, when trained on 5000 examples while using 46
trainable parameters. This accuracy is similar in value
to the accuracy of the QCNN in our work in most cases.

VII. GENERAL DISCUSSIONS OVER BOTH
DATASETS

Gaussian Noise

We find that the effect of Gaussian noise on the gra-
dient descent process is consistent with some other nu-
merical results on other quantum machine learning mod-
els [30]. We first present one result that is indicative of
Gaussian noise, on a reinforcement learning model.

(a) (b)

FIG. 19. (a) The score (y-axis) at every training epoch (x-
axis) for a quantum reinforcement learning model from [30]
- higher score represents better performance. The number
of shots represent the number of measurements made on the
output - a higher number of shots would indicate a lower
value of standard error, and is likely to be closer to the actual
output. (b) Fig. (6) showing the effect of Gaussian noise on
our quantum dataset, for comparison.

In Fig. (19), we see that taking more shots (measure-
ments) of the output would improve both the average
performance at the end, as well as a faster increase in
score each epoch. As a higher number of shots would
indicate a lower value of standard error, this is similar to
applying a lower value of Gaussian noise onto the output
in our case. This is consistent with our results, in that
applying a lower Gaussian noise would generally increase
the rate of loss decreasing per epoch, and also leading to
a lower final loss.

In both our datasets, we were able that show that a
Gaussian Noise applied onto the output of the QCNN
would cause the parameter update term in the gradi-
ent descent process to be normally distributed about its
noiseless value. If we take the expectation value of the

parameter update term under Gaussian noise, instead of
randomly generating a random normal variable, one can
recover its equivalent noiseless training-loss curve, as the
training process will be identical to the noiseless case.
While we have proven this to be true for both mean-

squared error (in the quantum dataset case) and binary
cross-entropy loss (in the MNIST dataset case), it may
not necessarily hold true for all forms of loss functions.
It may be possible that there may exist some loss func-
tions where if used in an experimental implementation
of a quantum machine learning circuit, would cause the
gradient descent process to be biased from experimental
errors - the expectation value of the parameter update
term may not necessarily be the same as the value in an
ideal noiseless case. As such, when using loss functions
other than mean-squared error or cross-entropy loss, it
may be advisable to investigate whether the parameter
update term is truly distributed about the noiseless sce-
nario, whether through analytic derivation or numerical
simulation as was done in this work.

Quantum Depolarising Channel

The effect of DPC we have simulated in the QCNN ap-
pears to be consistent with the effect of similar simulated
noise in other quantum machine learning models. We cite
one result [31] of applying the amplitude-damping chan-
nel on a single-qubit classifier, applied to the MNIST task
as well. We are able to see parallels between the rsults
in this work, and our DPC results on both our datasets.
Specifically, we observe that the loss also decreases at a
lower rate as λ is increased in [31].
To summarize our results over both datasets, a DPC

of probability p applied onto the outputs would have the
following effects on the gradient descent process:

• Most parameter updates are scaled by some value
proportional to the magnitude of p, on average.
Therefore, the larger the value of p, the slower the
rate of decrease in loss.

• When mean-squared error is used, at low values
of loss, the parameter updates tend to zero in the
noiseless case due to h(k) ≈ y(k). However, the fac-
tor of (1 − p) applied onto predicted values causes
parameters to continue updating in the DPC cases
even at low values of loss, when p is significant.
This increases incidences of overshooting the min-
ima.

• In cases where the noiseless case (without DPC)
will overshoot the minima early and lead to an
increase in loss, the lower rate of parameter up-
dates in the cases with DPC might delay this. This
might help the loss to eventually be lower than the
noiseless case, when DPC is applied. This was only
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shown for the MNIST dataset when cross-entropy
loss is used.

Though the noise does not affect the training process
much, should one want to mitigate this source of error,
one approach can be adjusting the predicted value to
account for the change caused by the DPC. If an ex-
perimental setup is found to have decoherence at some
specific value of p, the true predicted value h be found
from the measured predicted value h′ by h = 1

1−ph
′ when

using expectation value (as in the case of the quantum
dataset). In the case of probability of measuring |+⟩, the
same can be achieved by h = 1

1−ph
′ − p

2(1−p) .

VIII. CONCLUSIONS

There is insufficient evidence to confidently conclude
that noise may be beneficial in the operation of the
QCNN we had tested. Though, we find two areas that
may be worth investigating further:

• Gaussian noise might possibly be able to help gra-
dient descent escape local minimas in the case of
noisy datasets such as the MNIST dataset - many
more repeated runs of low values of noise σ ≈ 10−5

may be needed to confirm this effect.

• There may be some benefit in improving training
time using DPC noise on noisy datasets as seen
in the DPC subsection of the MNIST dataset in
section (VI), but more testing over many different
sets of initial parameters is required to confirm this
as well.

Noise was also simulated on a QCNN with an alter-
native architecture in [29], but no advantage was found
when noise is added in that particular case.

Compared to the MNIST dataset, we were unable to
find any benefit in applying quantum noise to our quan-
tum dataset whatsoever. This is likely due to the fact
that the quantum dataset uses exact wavefunctions as
its input, where noise might be detrimental rather than
beneficial. The applications of noise in classical machine
learning usually aims to improve generalisability of the
fitted model to unseen, noisy data, which is why we
were able to see some evidence of benefit on the MNIST
dataset.

Given this, it might be worth investigating the effect of
noise by applying the QCNN on other quantum datasets
that may contain real-world noise. Some suggestions are
perhaps many-body quantum state tomography with ac-
tual experimental data, which had previously been inves-
tigated using classical neural networks on computation-
ally generated data [32]. Another possibility may be in
using the QCNN as a error-correction decoder for quan-
tum computers from learning the characteristic noise of
individual quantum computers, as suggested by [33].

In section (V) and (VI), we quantified how Gaussian
noise of various magnitudes can affect the parameter up-
date in the gradient descent process. More importantly,
we saw how changing the finite value ϵ used to estimate
the gradient at every step can change how gradient de-
scent is affected by Gaussian noise. One takeaway for
experimental implementations of such quantum machine
learning circuits where such noise can be present, is per-
haps to test the performance of the model using various
values of the finite value ϵ to find a right balance be-
tween tolerance for noise and the accuracy in estimating
the gradient.

We also find our results to be consistent with the effects
of noise simulated in other quantum machine learning
models. For a comparison to DPC noise, we cite one
result [31] of applying the amplitude-damping channel
on a single-qubit classifier, applied to the MNIST task
as well. We are able to see parallels between the rsults
in this work, and our DPC results on both our datasets.
Specifically, we observe that the loss also decreases at a
lower rate as λ is increased in [31].

It might also be worthwhile to quantify the effects of
other forms of quantum error as was done for the Gaus-
sian Noise and DPC in our work, such as the amplitude-
damping channel, which models the spontaneous emis-
sion that is relevant in any experimental implementations
of ML models using atomic systems.
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METHODS & IMPLEMENTATION

To ensure the reproducibility of our data, we detail the steps and implementation for the simulation of the QCNN,
the creation and usage of the datasets the QCNN will be applied on, as well as how the various sources of noise are
simulated.

All quantum circuits and simulated noise in this work can be implemented in Python on the Qiskit [22] or QIBO
[34] quantum circuit simulation platforms.

IX. QCNN

Notable implementation decisions and changes to the original QCNN architecture will be described in the following
subsections. For ease of reference, we once again show a copy of the QCNN architecture from Figure (1) here.

FIG. 20. Example graphic representation of the QCNN architecture, with Np = 3 and 9 total qubits. Qubits are evolved
through the circuit from left to right, though unitary operators represented by purple blocks. The numbers aligned along the
left of each block represent the qubits on which they act. The blue (H) blocks are Hadamard gates, which transform the qubits
into the x-basis. The expectation value of the qubit q4 at the end of the circuit is taken as the output of the QCNN in this
case.

Initialisation of Parameters

Different sets of initial parameters may possibly lead to different local minima during the gradient descent process,
similar to how the dynamics of a physical system depend on the initial conditions. To compare the effect of only
varying the magnitude of the applied noise, we need to initialize the parameters to the same set of values.

Considering this, and to ensure the reproducibility of our results, the parameters for the QCNN (c) are initialized
to random values as generated through the random.RandomState random number generator from NumPy[35] with
specified random seeds in each respective section in chapter 3. Using the same random seed would generate the same
set of random values, which leads to the same set of initial parameters for reproducibility.

Retrieval of Output

The output of the QCNN is given by the expectation value of a single qubit as described in eq. (4). Instead of
simulating the repeated measurements of this qubit as is usually done for Qiskit circuits, we take the statevector at
the end of the QCNN and obtain the probabilities of each possible basis state. The probability of measuring the
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measured qubit in the |+⟩ state is taken as the sum of the probabilities of all basis states where the qubit is in the
|+⟩ state.
This proves to be more efficient compared to simulating repeated runs of the circuit to obtain the fraction of qubits

measured as |+⟩, and is also able to provide a precise value of the expectation value of measuring the |+⟩ state for
simulating gaussian and DPC noise upon.

Changes to Pooling Layer

In the interest of computational efficiency, we similarly do not simulate the measurement of the pooled qubits in the
pooling layer. Instead, we utilize controlled unitary operators, which are shown as V (1) and V (2) in Figure (20). These
can be represented as the following matrix acting upon a 2-qubit statevector |ψ⟩ = a1 |00⟩+ a2 |01⟩+ a3 |10⟩+ a4 |11⟩:

V (i) |ψ⟩ =

(
I2 0

0 U ′
c

)
a1
a2
a3
a4

 (17)

With U ′
c being a 2 × 2 unitary matrix, which acts on the second qubit (labelled as 1 in Figure (20) for each V (i)

operator) only if the first qubit (labelled as 0 in Figure (20)) is in a |1⟩ state, otherwise the second qubit is left
unchanged. The unitary matrix will be generated on the trainable parameters of the QCNN. For each of the Np − 1
pooled qubits, there will be a corresponding Uc that acts on the one remaining qubit depending on the value of the
pooled qubit.

Understandably, this is a unitary process compared to the original non-unitary process which involves measurement
of the pooled qubits. As mentioned at the end of section (I), these non-unitary measurement processes are what
introduce non-linearities to the QCNN, so this form of implementation of the pooling layer may reduce the QCNN’s
ability to model non-linear relationships - the only non-linear process remaining would be the measurement of the
single measured qubit at the end.

Training Process

The trainable parameters of the QCNN are the coefficients c
(l)
i of the generalised Gell-Mann matrices, used to

generate the unitary operators. In the gradient process, the partial derivative of the loss function with respect to each

parameter c
(l)
i is required. This can be approximated by the finite difference method:

∂L(h[|ψ⟩(1,2,...N)
in ; c], y(1,2,...,N))

∂c
(l)
i

≈ 1

2ϵ

(
L(h+, y(1,2,...,N))− L(h−, y(1,2,...,N))

)
(18)

With h+ = h[|ψ⟩(1,2,...N)
in |(c(1)1 , c

(1)
2 , ..., c

(l)
i + ϵ, ...)],

and h− = h[|ψ⟩(1,2,...N)
in |(c(1)1 , c

(1)
2 , ..., c

(l)
i − ϵ, ...)]

Again, it is understood that the loss function is to be summed over all pairs of input wavefunctions and their

corresponding target labels (|ψ⟩(1)in , y(1)), (|ψ⟩(2)in , y(2)),... ,(|ψ⟩(N)
in , y(N)), for the N training examples in the training

dataset. Shifting some parameter c
(l)
i by a small finite value ϵ would change its corresponding unitary operator

accordingly, which changes the output of the QCNN and thus the loss function. The finite difference method compares

the value of the loss function at c
(l)
i + ϵ and c

(l)
i − ϵ, while holding all other parameters constant, to estimate the

partial derivative of the loss function with respect to c
(l)
i .

As prescribed by the gradient descent process, each parameter is updated according to its corresponding partial
derivative of the loss function at every training epoch by:

c
(l)
i ← c

(l)
i − η

∂L(h[|ψ⟩(1,2,...N)
in ; c], y(1,2,...,N))

∂c
(l)
i

(19)

The coefficient η is the learning rate, which is controlled by the bold-driver mechanism [36] - η is increased by 5%
if the loss in a training epoch decreases compared to the previous epoch, and decreased by 50% if it does not.
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We use a value of ϵ = 10−4 and an initial value of η = 1 in all of our tests unless specified otherwise. For all tests,
we will run 50 training epochs - iteratively repeating the above gradient process 50 times.

X. QUANTUM DATASET

The code used to generate the quantum dataset is implemented in libraries QuTip[37] and TenPy[38].

The inputs |ψ⟩in to the QCNN for the QPR task would be the ground state wavefunctions to the Hamiltonian eq.
(5) at various values of h1/J and h2/J . We generate these by diagonalizing the Hamiltonian for a system of N = 9
spin sites, at 51 evenly spaced points in h1 ∈ [0, 1.6] and 51 evenly spaced points of h2 ∈ [−1.6, 1.6] at J = 1. Note
that there are two degenerate ground states when h1 is exactly 0, for all values of h2. To lift this degeneracy, we use
h1 = 10−6 when deriving any values associated with h1 = 0. There are 4 degenerate h1 = 0, h2 = 0 that cannot be
avoided with this approach, but we shall keep it in the dataset as a ”noisy” point that might help against overfitting.

As boundary effects would be present when simulating a finite chain length, the behaviour (such as phase transitions)
of a small number of spin sites may differ from that of a system with a larger number of spin sites. However, using
larger number of spin sites would exponentially increase the computation time of the QCNN (in which hilbert space
grows by a factor of two for every additional qubit.) We find that the generated wavefunctions for 9 spin sites to be
sufficient in allowing the QCNN to predict the SPT phase reliably, within reasonable computation time.

As mentioned in section (II), we use the second order derivative of the ground state energy density to estimate the
SPT phase. We estimate this numerically using the finite difference method along h2 using a small finite value ϵ. At
a particular point (h1, h2), this will be:

y(h1,h2) =
1

ϵ2
(
E|ψ(h1,h2+ϵ)⟩ − 2E|ψ(h1,h2)⟩ + E|ψ(h1,h2−ϵ)⟩

)
(20)

Here, E|ψ(h1,h2)⟩ is the energy of the ground state wavefunction |ψ(h1, h2)⟩ at (h1, h2). Using a value of ϵ = 10−3,
we are able to obtain a good estimate of the SPT phase, shown in Figure (21) below.

FIG. 21. The value of the estimated second order derivative of the ground state energy density at various discrete points
(h1, h2).

For the quantum dataset, we opt to follow the original structure in [21] as well, having a using L = 9 qubits and
pooling size of Np = 3 qubits. This pooling size is used as the original Hamiltonian of the spin chain consists of a

term across 3 sites. The structure of the QCNN is depicted in Figure (20), and there is 513 trainable parameters c
(l)
i

in total throughout the circuit.
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Training and Test Datasets

We use the 51 data points along the h2 = 0 row as the training set, as it contains a well-varied range of target values
from 0 to 1, representative of the rest of the dataset. The entire dataset - all 51× 51 discrete points for h1 ∈ [0, 1.6]
and h2 ∈ [−1.6, 1.6] in the parameter space described prior is then used as the test set.

Loss Function

For the quantum dataset, we opt to use the mean squared loss (MSE) as the loss function for this task, as we want
our QCNN to predict the second order derivative of the ground state energy density, a continuous value.

L(h[|ψ⟩(1,2,...N)
in ; c], y(1,2,...,N))

=
1

N

N∑
i=1

{
h[|ψ⟩(i)in ; c]− y(i)

}2

(21)

This will be the loss function that will be used in the place of L in equations under section (IX), for any tests
involving the quantum dataset. The gradient descent process will therefore update each parameter by:

c
(l)
i ← c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
h+(k) − y(k)

}2

− 1

N

N∑
k=1

{
h−(k) − y(k)

}2
]
. (22)

With h+(k) once again denoting the output value for the kth input when the parameter c
(l)
i is increased by a small

finite value ϵ, and h−(k) the output value when the parameter c
(l)
i is decreased by ϵ, as per the finite difference method

as described in eq. (18). The second term is the value by which c
(l)
i will be shifted/updated by, and this is termed

the ”parameter update term”.

XI. CLASSICAL DATASET

From the original 28×28 MNIST images, we resize them to 16×16 using the tf.image.resize function from Tensorflow
[39]. The 256 values in such a 16× 16 image can be encoded in the amplitudes of the 28 possible computational basis
states of exactly 8 qubits. We therefore use a QCNN of L = 8 qubits with Np = 2 pooling size, which is shown in

Figure (22) below; there is 351 trainable parameters c
(l)
i in total throughout the circuit.

Training and Test Datasets

The original MNIST dataset contains approximately 10000 images for each digit labelled from ”0” to ”9” in the
training set, and approximately 1000 images for each digit in the test set.

We downsample this original dataset to create balanced training and test sets as described in section (??), and
also to reduce computation time. We randomly sample 1000 images labelled as the digit ”1” for our positive data
(y(i) = 1) and 1000 images labelled as digits other than ”1” as the negative data (y(i) = 0) to comprise our training
dataset. The test set similarly uses 500 images labelled as ”1” and 500 images labelled as any digit other than ”1”
from the original test set. The random.RandomState random number generator from NumPy with a specified random
seed of 1 is used to generate this random sample, and one should be able to obtain the exact same set of data we used
by doing so.

Loss Function

For this dataset, we opt to use the binary cross-entropy loss [40], or logloss, which is commonly used in classification
tasks where the target values take on values only two possible values, such as zeroes or ones, y(i) = {0, 1}.

L(h[|ψ⟩(1,2,...N)
in ; c], y(1,2,...,N)) = − 1

N

N∑
k=1

{
y(k) log2

(
h[|ψ⟩(k)in ; c]

)
+ (1− y(k)) log2

(
1− h[|ψ⟩(k)in ; c]

)}
(23)



21

FIG. 22. Graphic representation of the QCNN structure we use for the MNIST dataset, with description similar to Figure
(20). The probabiltiy of the qubit q5 measured as the |+⟩ state is taken as the output of the QCNN in this case.

This loss function is derived from the concept of entropy in information theory, and it measures the amount of
informational value relevant to the classification task, that the model is able to produce from the inputs. It is a

continuous function differentiable with respect to h[|ψ⟩(k)in ; c] to at least first order even when the target values y(k)

are discrete, which is important as the partial derivative of the loss function need to be computed for each trainable

parameter. In this context, the output of the NN h[|ψ⟩(k)in ; c] from an input |ψ⟩(k)in can be interpreted to be the
probability of this input being classified as the object whose target values are labelled as y(k) = 1.

As can be seen, the L above has a minimum value of 0, which is achieved when the predicted values all match

the target values h[|ψ⟩(i)in ; c] = y(i) for all i, and a maximum value approaching −∞ when any predicted value are
opposite the target value, which heavily penalises incorrect predictions. Using this loss function presents two issues
with the original implementation of the QCNN.

• The predicted value h[|ψ⟩(i)in ; c] is taken as the expectation value of one qubit, which has range [-1,1]. Using
this predicted value in the logarithm log2 of the loss function above would cause it to be undefined whenever

h[|ψ⟩(i)in ; c] < 0.

• The loss function is also undefined whenever h[|ψ⟩(i)in ; c] = 0 or 1.

To remedy this issue, we make the following two changes to the original QCNN.

• We instead use the probability of measuring the state |+⟩ rather than the expectation value as the output value

of the QCNN, i.e. h[|ψ⟩(i)in ; c] = |α|2 instead of 2|α|2 − 1 from eq. (??).

• We also offset the value by a small value 10−6 whenever h[|ψ⟩(i)in ; c] = 0 or 1 to avoid the singularity of the loss
function at these values.

Finally, with this loss function, the gradient descent process will update each parameter every epoch by:

c
(l)
i ← c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
y(k) log2

(
h−(k)

h+(k)

)
+ (1− y(k)) log2

(
1− h−(k)

1− h+(k)

)}]
(24)

The notation as described in eq. (18) is used, once again. The second term is the value by which c
(l)
i will be

shifted/updated by, and this is termed the ”parameter update term”.
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XII. IMPLEMENTATIONS OF NOISE

Gaussian Noise

As the probability |α|2 when measuring a single-qubit state |ψ⟩ = α |+⟩ + β |−⟩ is limited to [0, 1], we apply a
truncated Gaussian distribution with variance σ2 unto |α|2. This distribution has the probability density function:

f(x;µ, σ, a, b) =
1

σ

ϕ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) (25)

with ϕ(x) =
1√
2π

exp
(
−x2/2

)
,Φ(x) =

1

2

(
1 + erf

(
x/
√
2
))

Here, ϕ is the probability density function of the standard normal distribution, Φ its cumulative density function,
and erf is the error function. In our case, the limiting values a, b are specified as 0, 1 respectively, and the mean µ
is taken to be the original probability |α|2. At small values of σ and if the mean µ is sufficiently far away from the
limits a, b, this reduces to a normal distribution. This is indeed the case for most of our usage in this work.

The value of |α|2 used in the calculation of the expectation value of the measured qubit, and consequently the output
of the QCNN, will be a randomly-generated value that follows the distribution above. As we will be investigating the
effect of various magnitudes of noise, we shall test the QCNN at various values of σ in chapter 3.

This randomness in the predicted values will cause randomness in the gradient process as well, since the loss
functions and consequently the gradient is dependent on the predicted value. This may potentially cause parameters
to be updated in the opposite direction of the gradient. When this occurs, the loss may increase and trigger the
bold-driver mechanism to halve the learning rate η.
Halving the learning rate in the bold-driver method seek to remedy the ”overshooting the minima” phenomenon

indicative of an overly high learning rate. As this would not be helpful when it is triggered by the aforementioned
random fluctuations in loss due to Gaussian noise, we relax the threshold to halve the learning rate only when the
increase in loss is more than 4σ over the previous epoch. This specific value of 4σ is chosen, since the value by which
parameters will be updated by the gradient descent process will be a random normal variable with standard deviation
proportional to 4σ for the quantum dataset case, when Gaussian noise of with variance σ2 is introduced. This is
derived in section (V) and Appendix (A).

Due to the stochastic nature of this Gaussian noise, we also repeat the training process for 10 different sets of initial
parameters generated from random seeds of 0 − 9. This is done as we would like to confirm that there exists some
benefit on average (if any) from applying Gaussian noise, since for single cases, any benefit may be merely due to
random chance.

Quantum Depolarising Channel

We apply the transformation by the DPC as specified by eq. (III) on the reduced density matrix of the measured
qubit at the end of the QCNN.

In a real experimental implementation, it is possible for the state to be affected by decoherence throughout the
circuit, prior to passing through each of the unitary operators. Given that a unitary operator U1 would act on a
density matrix ρ by U1ρU

†
1 , the operation of a unitary operator on a density matrix after a DPC of probability p1

can be expressed as:

U1

(
p1
I

2
+ (1− p1)ρ

)
U†
1 =

(
p1
I

2
+ (1− p1)U1ρU

†
1

)
. (26)

If it undergoes a DPC with probability p2 afterwards,

p1
I

2
+ (1− p1)U1ρU

†
1

→ p2
I

2
+ (1− p2)

(
p1
I

2
+ (1− p1)U1ρU

†
1

)
= (p2 − p2p1 + p1)

I

2
+ (1− p2 + p2p1 − p1)U1ρU

†
1

(27)
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We can express (p2 − p2p1 + p1) as a new probability p′, and the density matrix above would be equivalent to the
matrix UρU† under the effect of DPC with probability p′. Applying another unitary operator U2 as per eq. (26)

would then result in
(
p′ I2 + (1− p′)U2U1ρU

†
1U

†
2

)
. Repeatedly applying this process would result in some state:(

pfinal
I

2
+ (1− pfinal)Un...U2U1ρU

†
1U

†
2 ..U

†
n

)
(28)

Therefore, the process of successively applying unitary operators on a state which undergoes decoherence represented
by a DPC with some probability pi in between each unitary, can be shown to be equivalent to applying a DPC with
some probability pfinal on the density matrix of the final state. As our QCNN consists of purely unitary operators,
we can model such decoherence over the circuit by just applying the DPC on the final state, prior to measurement of
the one measured qubit. If the decoherence by each layer is at a constant p̄, the pfinal after N layers is:

pfinal = 1− (1− p̄)N (29)

However, this method of applying the DPC onto the final state may not be able to accurately model the effect of
decoherence if the circuit involves non-unitary processes in the middle, such as the original implementation of the
pooling layer, which involves measurements of the pooled qubits. Application of any non-unitary operators would not
be canceled out when multiplied around the I/2 term.

The training process would be deterministic under this implementation of the DPC noise - with the same set of
initial parameters at some constant specified p, the training process would be identical over repeated runs, and lead
to the same final result.

Adversarial Training

As described in section (III), we first perturb the input state by individual unitary operators on each qubit.

FIG. 23. Circuit diagram showing the placements of the perturbation operators prior to the QCNN.

Each perturbation unitary U
(i)
δ is generated from some linear combination of its generators, which in this case

will be the Pauli matrices. The tensor product of these single-qubit operators for all L qubits determines an overall
perturbation operator Uδ on input states |ψ⟩in before the QCNN.
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U
(i)
δ = exp

(
−i(δ(i)1 X + δ

(i)
2 Y + δ

(i)
3 Z

)
Uδ = U

(1)
δ ⊗ U (2)

δ ...⊗ U (L)
δ

|ψ⟩in 7→ Uδ |ψ⟩in
To find the set of parameters δ

(i)
j that maximizes the loss function, as per eq. (10), 10 training epochs of gradient

”ascent” is performed prior to every training epoch of the main QCNN. Instead of updating these δ
(i)
j in the direction

of a local minima, δ
(i)
j are updated in the direction of some local maxima:

δ
(i)
j ← δ

(i)
j + ηδ

∂L(h[Uδ |ψ⟩(1,2,...N)
in ; c], y(1,2,...,N))

∂δ
(i)
j

. (30)

We use a constant learning rate ηδ = 1. To limit this perturbation to some value λ as per eq. (12), we ”normalise”
the vector of parameters after every such training epoch, by its 1-norm, if the 1-norm exceeds the value of λ:

(
δ
(1)
1 , δ

(1)
2 , ...δ

(L)
3

)
← λ

(
δ
(1)
1 , δ

(1)
2 , ...δ

(L)
3

)
(∑N

i=1

∑3
j=1 |δ

(i)
j |
) (31)

In this manner, the parameters that have higher gradients (higher value of
∂L(h[Uδ|ψ⟩(1,2,...N)

in ;c],y(1,2,...,N))

∂δ
(i)
j

) can still be

increased at the cost of decreasing other parameters with lower gradients, which increases the loss even while limiting
the 1-norm of parameters to λ.

Though adding such perturbations may increase the loss over subsequent training epochs and trigger the bold-driver
method alike the Gaussian noise case, we expect that any increase may be overshadowed by the decrease in loss from
the gradient descent of the main parameters in the QCNN, especially when the perturbative parameters are limited
by small values of λ.
Alike the main parameters in the QCNN, the final local maxima that these parameters ascend to would also depend

on their initial positions in parameter space, so we also initialise these parameters to consistent,repeatable sets of
values using specified random seeds.

Appendix A: Effect of Gaussian Noise on Parameter Update with MSE Loss

We begin from eq. (22), replacing the hypotheses from the QCNN h+(k), h−(k) by their corresponding normal
distributions due to the introduction of Gaussian noise (eq. 7).

c
(l)
i ← c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
N
(
h+(k), 4σ2

)
− y(k)

}2

− 1

N

N∑
k=1

{
N
(
h−(k), 4σ2

)
− y(k)

}2
]

= c
(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
2σZ+(k) + h+(k) − y(k)

}2

− 1

N

N∑
k=1

{
2σZ−(k) + h−(k) − y(k)

}2
]

We have changed the normal variables into standard normal variables by Z =
(
N (µ, σ2)− µ

)
/σ, for ease of

manipulation. Note that the random variables Z+(k), Z−(k) will be independent from each other, and among different

training examples k as well. We find the original term ∆c
(l)
i = 1

N

∑N
k=1

{
h+(k) − y(k)

}2 − 1
N

∑N
k=1

{
h−(k) − y(k)

}2
from eq (22) without Gaussian noise. The terms in the square brackets of the expression above can be rearranged to

be equivalent to this ∆c
(l)
i plus the following random variables:

4σ
1

N

N∑
k=1

{
σ
(
χ2
1 − χ2

1

)
+
(
h+(k) − y(k)

)
Z+(k) −

(
h−(k) − y(k)

)
Z−(k)

}
= 4σ2 1

N

(
χ2
N − χ2

N

)
+ 4σ

1

N

N∑
k=1

{
N
(
0,
(
h+(k) − y(k)

)2)
−N

(
0,
(
h−(k) − y(k)

)2)}

= 4σ2 1

N

(
χ2
N − χ2

N

)
+ 4σ

1

N

N∑
k=1

{
N
(
0,
(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2)}
.



25

With χ2
N being the chi-squared distrbution with N degrees of freedom, and Z2 ∼ χ2

1, and
∑N
k=1 χ

2
1 = χ2

N . The
two χ2

N are each from the original term containing h+(k) and h−(k) respectively. In the large limit, limN−>∞ χ2
N ≈

N (N, 2N). As such, the above expression becomes:

4σ2 1

N
(N (N, 2N)−N (N, 2N)) + 4σ

1

N

N∑
k=1

{
N
(
0,
(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2)}

= 4σ2 1

N
N (0, 4N) + 4σ

1

N

N∑
k=1

{
N
(
0,
(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2)}

= N
(
0,

64σ2

N

)
+N

(
0, 16σ2 1

N2

N∑
k=1

{(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2})

= 4σN

(
0,

4σ2

N
+

1

N2

N∑
k=1

{(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2})
.

For the quantum dataset, N = 51. To illustrate that the approximation limN−>∞ χ2
N ≈ N (N, 2N) is valid for this

value, we simulate 10000 values of 1
N

∑N
k=1

(
χ2
1 − χ2

1

)
and plot the histogram of these values against the expected pdf

N (0, 4/N).

FIG. 24. Estimated pdf from 10000 monte-carlo simulations of 1
N

∑N
k=1 σ

(
χ2
1 − χ2

1

)
plotted as a histogram, compared to the

approximate pdf N (0, 4/N).

Thus, when Gaussian noise is introduced, the value by which a parameter c
(l)
i shifts in an epoch will be distributed

about its noiseless value ∆c
(l)
i with variance of

(
2ση
ϵ

)2 [ 4σ2

N + 1
N2

∑N
k=1

{(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2}]
. I.e. eq.

(22) will become the below expression.

c
(l)
i ← c

(l)
i −N

(
∆c

(l)
i ,
(
4σ

η

2ϵ

)2 [4σ2

N
+

1

N2

N∑
k=1

{(
h+(k) − y(k)

)2
+
(
h−(k) − y(k)

)2}])
. (A1)

The predicted values and the target values are both limited to be within −1 ≥ h+(k), h−(k), y(k) ≥ 1. The variance

therefore has an upper bound of
(
2ση
ϵ

)2 [ 4σ2+8
N

]
.

Appendix B: Repeated tests of DPC for Quantum Dataset

We plot the training-loss graph for the noiseless case and the p = 0.05 case repeated over 10 different sets of initial
parameters (generated using random seed = 0-9) in figure (25), and tabulate the final loss over the training and test
sets in table (VIII) below.
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FIG. 25. The loss (true MSE over the training set, without any DPC applied) between the noiseless and p = 0.05 case,
calculated at the end of every training epoch during the gradient descent process. The solid lines indicate the mean loss at

each epoch over the 10 repeated simulations, while the shaded regions indicate the standard deviation.

p Loss (Training set) Loss (Test set)

0 0.02626 ± 0.00090 0.0199 ± 0.0013

0.05 0.0273 ± 0.0014 0.0201 ± 0.0014

TABLE VIII. The loss (true MSE, without DPC applied) on the training and test datasets for the trained model after 50
training epochs.

The loss on both training and test sets are higher in the p = 0.05 case compared to the noiseless case, and the lower
loss we observed in section (V) for the singular p = 0.05 case is likely due to the minute differences in how parameters
are updated during the gradient descent process from the action of the DPC, as elaborated in section (V).

Note that the loss increases during some runs of the noiseless case around epoch 42. This is due to some parameters
overshooting the minima. We see similar increases at epoch 45 for the p = 0.05 case. This can be explained by the
reduction in the value by which parameters are shifted during gradient descent, as mentioned in section (V) that
these are scaled by (1− p) on average in the presence of DPC. The parameters would take slightly longer to reach the
minima, hence the overshoot occurs at a later epoch.

We believe the initial singular instance of p = 0.05 achieving a lower loss than the noiseless case can be explained
by this reason as well. Some parameter in the noiseless case might have overshot the minima slightly, but shifts in
other parameters still reduced the loss compared to the previous epoch. Since most parameter updates are scaled by
(1− p) on average, this parameter might not have overshot yet by epoch 50, which leads to the lower loss.

Appendix C: Effect of DPC Noise on Parameter Update with MSE Loss

With DPC noise of magnitude p, a parameter update in the gradient process process from eq. (19) would be as:

c
(l)
i ← c

(l)
i − η

∂L((1− p)h[|ψ⟩(1,2,...N)
in ; c], y(1,2,...,N))

∂c
(l)
i

. (C1)

Considering we estimate the partial derivative in the expression above via the finite difference method as stipulated
in eq. (18), and a mean squared error loss function as defined in eq. (21), the above expression can be written
explicitly:

c
(l)
i ← c

(l)
i −

η

2ϵ

[
L
(
(1− p)h+(1,2,...,N), y(1,2,...,N)

)
− L

(
(1− p)h−(1,2,...,N), y(1,2,...,N)

)]
= c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
(1− p)h+(k) − y(k)

}2

− 1

N

N∑
k=1

{
(1− p)h−(k) − y(k)

}2
]
. (C2)
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The notation is identical to the case in eq. (22). From which we can compare the value of the gradient in the DPC

case

(
∂L

∂c
(l)
i

)
p

, in eq. (C2), as a ratio to what the gradient would be without DPC

(
∂L

∂c
(l)
i

)
p=0

, in eq. (22).

(
∂L

∂c
(l)
i

)
p(

∂L

∂c
(l)
i

)
p=0

=

∑N
k=1

{
(1− p)h+(k) − y(k)

}2 −∑N
k=1

{
(1− p)h−(k) − y(k)

}2∑N
k=1

{
h+(k) − y(k)

}2 −∑N
k=1

{
h−(k) − y(k)

}2

= 1− p

∑N
k=1

{
2y(k)(h+(k) − h−(k)) + (p− 2)

((
h+(k)

)2 − (h−(k)
)2)}

∑N
k=1

{
2y(k)(h+(k) − h−(k))−

((
h+(k)

)2 − (h−(k)
)2)}

= 1− p

1− (1− p)
∑N
k=1

{(
h+(k)

)2 − (h−(k)
)2}

∑N
k=1

{
2y(k)(h+(k) − h−(k))−

((
h+(k)

)2 − (h−(k)
)2)}


= 1− p

[
1 +

(1− p)
∑N
k=1

{(
h+(k) − h−(k)

) (
h+(k) + h−(k)

)}∑N
k=1

{(
h+(k) − h−(k)

) (
h+(k) + h−(k) − 2y(k)

)}]

Appendix D: Effect of Gaussian Noise on Parameter Update with Cross-entropy/Logloss

We begin with the parameter update process from eq. (24), which would become the following with the introduction
of gaussian noise:

c
(l)
i ← c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
y(k) log2

(
N
(
h−(k), σ2

)
N
(
h+(k), σ2

))+ (1− y(k)) log2

(
1−N

(
h−(k), σ2

)
1−N

(
h+(k), σ2

))}] (D1)

There is no factor of 4 here, as compared to the quantum dataset case, for the variance in the predicted values
h+(k), h−(k), as we use the probability of measuring the state |+⟩ rather than the expectation value of measuring in
the x-basis as we did in the quantum dataset case.

We begin with the term in the estimated gradient of eq. (D1), leaving out the factor η
2ϵ for simplicity.

1

N

N∑
k=1

{
y(k) log2

(
N
(
h−(k), σ2

)
N
(
h+(k), σ2

))+ (1− y(k)) log2

(
1−N

(
h−(k), σ2

)
1−N

(
h+(k), σ2

))}

=
1

N

N∑
k=1

{
y(k) log2

(
h−(k) +N

(
0, σ2

)
h+(k) +N (0, σ2)

)
+ (1− y(k)) log2

(
1− h−(k) −N

(
0, σ2

)
1− h+(k) −N (0, σ2)

)}

=
1

N

N∑
k=1

y(k) log2
h−(k)

h+(k)

1 +N
(
0, σ2

(h−(k))
2

)
1 +N

(
0, σ2

(h+(k))
2

)
+ (1− y(k)) log2

1− h−(k)

1− h+(k)

1 +N
(
0, σ2

(1−h−(k))
2

)
1 +N

(
0, σ2

(1−h+(k))
2

)



From the second to third line, we have switched the signs of the normal variable in the second term, since the pdf
of a normal distribution with mean 0 is an even function. For the small values of σ that we tested, σ << h+(k), h−(k),
since typical values of h are distributed around 0.5. We can apply the approximation suggested in [41], where
ln(1 +X) ≈ X − 1

2X
2 + O(X3) for a random normal variable X distributed very close to 0, i.e. with variance

σ2 << 1.
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=
1

N

N∑
k=1

{
y(k)

[
log2

(
h−(k)

h+(k)

)
+

1

ln 2
ln

(
1 +N

(
0,

σ2(
h−(k)

)2
))
− 1

ln 2
ln

(
1 +N

(
0,

σ2(
h+(k)

)2
))]

+ (1− y(k))

[
log2

(
1− h−(k)

1− h+(k)

)
+

1

ln 2
ln

(
1 +N

(
0,

σ2(
1− h−(k)

)2
))
− 1

ln 2
ln

(
1 +N

(
0,

σ2(
1− h+(k)

)2
))]}

≈ 1

N

N∑
k=1

{
y(k)

[
log2

(
h−(k)

h+(k)

)
+

1

ln 2
N

(
0,

σ2(
h−(k)

)2
)
− 1

ln 2
N

(
0,

σ2(
h+(k)

)2
)]

+ (1− y(k))

[
log2

(
1− h−(k)

1− h+(k)

)
+

1

ln 2
N

(
0,

σ2(
1− h−(k)

)2
)
− 1

ln 2
N

(
0,

σ2(
1− h+(k)

)2
)]}

=
1

N

N∑
k=1

{
y(k)

[
log2

(
h−(k)

h+(k)

)
+

1

ln 2
N

(
0,

σ2(
h−(k)

)2 +
σ2(

h+(k)
)2
)]

+ (1− y(k))

[
log2

(
1− h−(k)

1− h+(k)

)
+

1

ln 2
N

(
0,

σ2(
1− h−(k)

)2 +
σ2(

1− h+(k)
)2
)]}

We can recover the original, noiseless term ∆c
(l)
i = 1

N

∑N
k=1

{
y(k) log2

(
h−(k)

h+(k)

)
+ (1− y(k)) log2

(
1−h−(k)

1−h+(k)

)}
, alike

the MSE scenario in appendix (A). We isolate the random normal variables that are added on top of this term:

1

N

N∑
k=1

{
y(k)

[
1

ln 2
N

(
0,

σ2(
h−(k)

)2 +
σ2(

h+(k)
)2
)]

+ (1− y(k))

[
1

ln 2
N

(
0,

σ2(
1− h−(k)

)2 +
σ2(

1− h+(k)
)2
)]}

=
σ

N ln 2
N

(
0,

N∑
k=1

{(
y(k)

)2 [ 1(
h−(k)

)2 +
1(

h+(k)
)2
]
+
(
1− y(k)

)2 [ 1(
1− h−(k)

)2 +
1(

1− h+(k)
)2
]})

Note that the factor η
2ϵ is still left out in the above term. The variance about ∆c

(l)
i would therefore be:

( η
2ϵ

σ

N ln 2

)2 N∑
k=1

{(
y(k)

)2 [ 1(
h−(k)

)2 +
1(

h+(k)
)2
]
+
(
1− y(k)

)2 [ 1(
1− h−(k)

)2 +
1(

1− h+(k)
)2
]}

Since the predicted values are bounded by 0 ≤ h+(k), h−(k) ≥ 1, the above expression has a lower bound of(
ησ

2(ln 2)ϵ

)2
1
N .

Appendix E: Effect of DPC Noise on Parameter Update with Cross-Entropy/Logloss

The output of the QCNN for the classical dataset is given as the probability of measuring the state |+⟩ rather than
the expectation value of a measurement in the x-basis, as explained in section (XI). Considering the effect of the DPC
in eq. (III), this has the effect of scaling the predicted value towards 1/2 proportional to p:

h[|ψ⟩in ; c]→ (1− p)h[|ψ⟩in ; c] +
p

2
. (E1)

This will affect the parameter update term in the gradient descent process, from eq. (24):

c
(l)
i ← c

(l)
i −

η

2ϵ

[
1

N

N∑
k=1

{
y(k) log2

(
(1− p)h−(k) + p

2

(1− p)h+(k) + p
2

)
+ (1− y(k)) log2

(
1− (1− p)h−(k) − p

2

1− (1− p)h+(k) − p
2

)}]
. (E2)

The gradient term within the square brackets can be manipulated into:

1

N

N∑
k=1

{
y(k) log2

(
h−(k) + p

2(1−p)

h+(k) + p
2(1−p)

)
+ (1− y(k)) log2

(
1− h−(k) + p

2(1−p)

1− h+(k) + p
2(1−p)

)}
. (E3)
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Keep in mind that h+(k), h−(k) are terms meant to approximate the gradient of the predicted value h ≡ h[|ψ⟩in ; c]
through the finite difference method; h+(k) ≈ h+ ϵh′ + O(ϵ2), h−(k) ≈ h− ϵh′ + O(ϵ2), with h′ being the first order

partial derivative of h with respect to the parameter c
(l)
i . Given this, the logarithmic terms from eq. (24) can also be

expressed as:

y(k) log2

(
h−(k)

h+(k)

)
+ (1− y(k)) log2

(
1− h−(k)

1− h+(k)

)
≈ y(k) log2

(
h− ϵh′ +O(ϵ2)

h+ ϵh′ +O(ϵ2)

)
+ (1− y(k)) log2

(
1− h+ ϵh′ −O(ϵ2)

1− h− ϵh′ −O(ϵ2)

)
. (E4)

The terms inside the logarithms can therefore be thought of as some a+x
a−x , with x ≡ ϵh′ the term that gives the

difference between h+(k), h−(k), and a as some constant that is common between the numerator and denominator -
h in the first logarithm and 1− h in the second logarithm of eq (E3). For clarity, we only regarded terms up to first
order in ϵ here. The term x can very well also represent the terms with odd powers of ϵ: ϵh′, ϵ3h′′′, ..., and a can
include the even powers of ϵ as well. Furthermore, 0 < a < 1, |x| < a to keep the condition that all predicted values
h+(k), h−(k), and h lie between zero and one.

From eq. (E3), the action of the DPC would be akin to shifting the terms in the logarithms to
a+x+ p

2(1−p)

a−x+ p
2(1−p)

, from

some original a+xa−x .

FIG. 26. The logarithm of the fraction a+x
a−x

at various values of a that are typical in eq. (24) and eq. (E3). The domain of x

of each curve is limited to the condition that |x| < a.

As we observe in Figure (26) above, at every value of x, the value of log2

(
a+x
a−x

)
decreases as a increases. The terms

in the DPC case in eq. (E3) will always have a lower absolute value compared to their equivalents in the noiseless
case, i.e.: ∣∣∣∣∣log2

(
h−(k) + p

2(1−p)

h+(k) + p
2(1−p)

)∣∣∣∣∣ <
∣∣∣∣log2(h−(k)

h+(k)

)∣∣∣∣∣∣∣∣∣log2
(
1− h−(k) + p

2(1−p)

1− h+(k) + p
2(1−p)

)∣∣∣∣∣ <
∣∣∣∣log2(1− h−(k)

1− h+(k)

)∣∣∣∣
Hence, the values by which the parameters will be updated with DPC in eq. (E3) will be lower on average,

compared to a noiseless (p = 0) but otherwise exactly equivalent case, at the same values of parameters, inputs, etc.
The difference will be larger if p is larger as well.
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Appendix F: Scaled Value of Parameter with DPC with Learning Rate

The learning rate η begins at a value of 1 and is increased by 1.05 every epoch that the loss does not increase. If

we assume the gradient remains at a constant ∆c
(l)
i throughout the process, the cumulative distance after 12 epochs

in the noiseless case will be:

12∑
j=1

(1.05)j−1∆c
(l)
i = 15.9∆c

(l)
i .

If we also assume that the gradient for the same parameter is also constant for the p = 0.5 case, over 31 epochs,
the cumulative distance when this gradient is scaled by some constant kp will be:

31∑
j=1

(1.05)j−1kp∆c
(l)
i = 70.8kp∆c

(l)
i .

For the two distances above to be equal, we see that kp = 0.225. In reality, the gradient might decrease as it
approaches the minima in the later epochs, and this might offset the greater value of the learning rate in the later
epochs - the original estimate for 1/3 might be slightly more realistic than this.

Appendix G: Cumulative Distance of Parameter over 31 Epochs with DPC

The learning rate η begins at a value of 1 and is increased by 1.05 every epoch that the loss does not increase.

For the p = 0 case, the loss increases at epoch 12 and 18. If we also assume gradients are constant at ∆c
(l)
i over all

training epochs for all parameters, in the noiseless case, the cumlative distance covered by c
(l)
i over the 31 epochs will

be:

12∑
j=1

(1.05)j−1∆c
(l)
i +

18∑
j=12

1

2
(1.05)j−2∆c

(l)
i +

31∑
j=18

1

2
(1.05)j−3∆c

(l)
i = 31.4∆c

(l)
i .

In the p = 0.5 case, if we take a gradient that is scaled by the average factor of 0.53,

31∑
j=1

(1.05)j−10.53∆c
(l)
i = 37.524kp∆c

(l)
i .

Which is larger than that in the p = 0 case! The parameter in the p = 0.5 case will shift a greater cumulative
distance than the p = 0 case. However, oftentimes, the gradient might decrease over training as it gets closer to the
minima, which might once again reduce the effect of the increased learning rate in the later epochs, and the distance
might be closer to the p = 0 than shown.
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